root/drivers/crypto/n2_core.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. spu_next_offset
  2. job_finished
  3. cwq_intr
  4. mau_intr
  5. spu_queue_next
  6. spu_queue_num_free
  7. spu_queue_alloc
  8. spu_queue_submit
  9. control_word_base
  10. n2_should_run_async
  11. n2_hash_async_init
  12. n2_hash_async_update
  13. n2_hash_async_final
  14. n2_hash_async_finup
  15. n2_hash_async_noimport
  16. n2_hash_async_noexport
  17. n2_hash_cra_init
  18. n2_hash_cra_exit
  19. n2_hmac_cra_init
  20. n2_hmac_cra_exit
  21. n2_hmac_async_setkey
  22. wait_for_tail
  23. submit_and_wait_for_tail
  24. n2_do_async_digest
  25. n2_hash_async_digest
  26. n2_hmac_async_digest
  27. n2_aes_setkey
  28. n2_des_setkey
  29. n2_3des_setkey
  30. n2_arc4_setkey
  31. cipher_descriptor_len
  32. __n2_crypt_chunk
  33. n2_compute_chunks
  34. n2_chunk_complete
  35. n2_do_ecb
  36. n2_encrypt_ecb
  37. n2_decrypt_ecb
  38. n2_do_chaining
  39. n2_encrypt_chaining
  40. n2_decrypt_chaining
  41. __n2_unregister_algs
  42. n2_cipher_cra_init
  43. __n2_register_one_cipher
  44. __n2_register_one_hmac
  45. __n2_register_one_ahash
  46. n2_register_algs
  47. n2_unregister_algs
  48. find_devino_index
  49. spu_map_ino
  50. new_queue
  51. free_queue
  52. queue_cache_init
  53. queue_cache_destroy
  54. spu_queue_register_workfn
  55. spu_queue_register
  56. spu_queue_setup
  57. spu_queue_destroy
  58. spu_list_destroy
  59. spu_mdesc_walk_arcs
  60. handle_exec_unit
  61. spu_mdesc_scan
  62. get_irq_props
  63. grab_mdesc_irq_props
  64. n2_spu_hvapi_register
  65. n2_spu_hvapi_unregister
  66. grab_global_resources
  67. release_global_resources
  68. alloc_n2cp
  69. free_n2cp
  70. n2_spu_driver_version
  71. n2_crypto_probe
  72. n2_crypto_remove
  73. alloc_ncp
  74. free_ncp
  75. n2_mau_probe
  76. n2_mau_remove
  77. n2_init
  78. n2_exit

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
   3  *
   4  * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
   5  */
   6 
   7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   8 
   9 #include <linux/kernel.h>
  10 #include <linux/module.h>
  11 #include <linux/of.h>
  12 #include <linux/of_device.h>
  13 #include <linux/cpumask.h>
  14 #include <linux/slab.h>
  15 #include <linux/interrupt.h>
  16 #include <linux/crypto.h>
  17 #include <crypto/md5.h>
  18 #include <crypto/sha.h>
  19 #include <crypto/aes.h>
  20 #include <crypto/internal/des.h>
  21 #include <linux/mutex.h>
  22 #include <linux/delay.h>
  23 #include <linux/sched.h>
  24 
  25 #include <crypto/internal/hash.h>
  26 #include <crypto/scatterwalk.h>
  27 #include <crypto/algapi.h>
  28 
  29 #include <asm/hypervisor.h>
  30 #include <asm/mdesc.h>
  31 
  32 #include "n2_core.h"
  33 
  34 #define DRV_MODULE_NAME         "n2_crypto"
  35 #define DRV_MODULE_VERSION      "0.2"
  36 #define DRV_MODULE_RELDATE      "July 28, 2011"
  37 
  38 static const char version[] =
  39         DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  40 
  41 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
  42 MODULE_DESCRIPTION("Niagara2 Crypto driver");
  43 MODULE_LICENSE("GPL");
  44 MODULE_VERSION(DRV_MODULE_VERSION);
  45 
  46 #define N2_CRA_PRIORITY         200
  47 
  48 static DEFINE_MUTEX(spu_lock);
  49 
  50 struct spu_queue {
  51         cpumask_t               sharing;
  52         unsigned long           qhandle;
  53 
  54         spinlock_t              lock;
  55         u8                      q_type;
  56         void                    *q;
  57         unsigned long           head;
  58         unsigned long           tail;
  59         struct list_head        jobs;
  60 
  61         unsigned long           devino;
  62 
  63         char                    irq_name[32];
  64         unsigned int            irq;
  65 
  66         struct list_head        list;
  67 };
  68 
  69 struct spu_qreg {
  70         struct spu_queue        *queue;
  71         unsigned long           type;
  72 };
  73 
  74 static struct spu_queue **cpu_to_cwq;
  75 static struct spu_queue **cpu_to_mau;
  76 
  77 static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
  78 {
  79         if (q->q_type == HV_NCS_QTYPE_MAU) {
  80                 off += MAU_ENTRY_SIZE;
  81                 if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
  82                         off = 0;
  83         } else {
  84                 off += CWQ_ENTRY_SIZE;
  85                 if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
  86                         off = 0;
  87         }
  88         return off;
  89 }
  90 
  91 struct n2_request_common {
  92         struct list_head        entry;
  93         unsigned int            offset;
  94 };
  95 #define OFFSET_NOT_RUNNING      (~(unsigned int)0)
  96 
  97 /* An async job request records the final tail value it used in
  98  * n2_request_common->offset, test to see if that offset is in
  99  * the range old_head, new_head, inclusive.
 100  */
 101 static inline bool job_finished(struct spu_queue *q, unsigned int offset,
 102                                 unsigned long old_head, unsigned long new_head)
 103 {
 104         if (old_head <= new_head) {
 105                 if (offset > old_head && offset <= new_head)
 106                         return true;
 107         } else {
 108                 if (offset > old_head || offset <= new_head)
 109                         return true;
 110         }
 111         return false;
 112 }
 113 
 114 /* When the HEAD marker is unequal to the actual HEAD, we get
 115  * a virtual device INO interrupt.  We should process the
 116  * completed CWQ entries and adjust the HEAD marker to clear
 117  * the IRQ.
 118  */
 119 static irqreturn_t cwq_intr(int irq, void *dev_id)
 120 {
 121         unsigned long off, new_head, hv_ret;
 122         struct spu_queue *q = dev_id;
 123 
 124         pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
 125                smp_processor_id(), q->qhandle);
 126 
 127         spin_lock(&q->lock);
 128 
 129         hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
 130 
 131         pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
 132                smp_processor_id(), new_head, hv_ret);
 133 
 134         for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
 135                 /* XXX ... XXX */
 136         }
 137 
 138         hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
 139         if (hv_ret == HV_EOK)
 140                 q->head = new_head;
 141 
 142         spin_unlock(&q->lock);
 143 
 144         return IRQ_HANDLED;
 145 }
 146 
 147 static irqreturn_t mau_intr(int irq, void *dev_id)
 148 {
 149         struct spu_queue *q = dev_id;
 150         unsigned long head, hv_ret;
 151 
 152         spin_lock(&q->lock);
 153 
 154         pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
 155                smp_processor_id(), q->qhandle);
 156 
 157         hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
 158 
 159         pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
 160                smp_processor_id(), head, hv_ret);
 161 
 162         sun4v_ncs_sethead_marker(q->qhandle, head);
 163 
 164         spin_unlock(&q->lock);
 165 
 166         return IRQ_HANDLED;
 167 }
 168 
 169 static void *spu_queue_next(struct spu_queue *q, void *cur)
 170 {
 171         return q->q + spu_next_offset(q, cur - q->q);
 172 }
 173 
 174 static int spu_queue_num_free(struct spu_queue *q)
 175 {
 176         unsigned long head = q->head;
 177         unsigned long tail = q->tail;
 178         unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
 179         unsigned long diff;
 180 
 181         if (head > tail)
 182                 diff = head - tail;
 183         else
 184                 diff = (end - tail) + head;
 185 
 186         return (diff / CWQ_ENTRY_SIZE) - 1;
 187 }
 188 
 189 static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
 190 {
 191         int avail = spu_queue_num_free(q);
 192 
 193         if (avail >= num_entries)
 194                 return q->q + q->tail;
 195 
 196         return NULL;
 197 }
 198 
 199 static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
 200 {
 201         unsigned long hv_ret, new_tail;
 202 
 203         new_tail = spu_next_offset(q, last - q->q);
 204 
 205         hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
 206         if (hv_ret == HV_EOK)
 207                 q->tail = new_tail;
 208         return hv_ret;
 209 }
 210 
 211 static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
 212                              int enc_type, int auth_type,
 213                              unsigned int hash_len,
 214                              bool sfas, bool sob, bool eob, bool encrypt,
 215                              int opcode)
 216 {
 217         u64 word = (len - 1) & CONTROL_LEN;
 218 
 219         word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
 220         word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
 221         word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
 222         if (sfas)
 223                 word |= CONTROL_STORE_FINAL_AUTH_STATE;
 224         if (sob)
 225                 word |= CONTROL_START_OF_BLOCK;
 226         if (eob)
 227                 word |= CONTROL_END_OF_BLOCK;
 228         if (encrypt)
 229                 word |= CONTROL_ENCRYPT;
 230         if (hmac_key_len)
 231                 word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
 232         if (hash_len)
 233                 word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
 234 
 235         return word;
 236 }
 237 
 238 #if 0
 239 static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
 240 {
 241         if (this_len >= 64 ||
 242             qp->head != qp->tail)
 243                 return true;
 244         return false;
 245 }
 246 #endif
 247 
 248 struct n2_ahash_alg {
 249         struct list_head        entry;
 250         const u8                *hash_zero;
 251         const u32               *hash_init;
 252         u8                      hw_op_hashsz;
 253         u8                      digest_size;
 254         u8                      auth_type;
 255         u8                      hmac_type;
 256         struct ahash_alg        alg;
 257 };
 258 
 259 static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
 260 {
 261         struct crypto_alg *alg = tfm->__crt_alg;
 262         struct ahash_alg *ahash_alg;
 263 
 264         ahash_alg = container_of(alg, struct ahash_alg, halg.base);
 265 
 266         return container_of(ahash_alg, struct n2_ahash_alg, alg);
 267 }
 268 
 269 struct n2_hmac_alg {
 270         const char              *child_alg;
 271         struct n2_ahash_alg     derived;
 272 };
 273 
 274 static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
 275 {
 276         struct crypto_alg *alg = tfm->__crt_alg;
 277         struct ahash_alg *ahash_alg;
 278 
 279         ahash_alg = container_of(alg, struct ahash_alg, halg.base);
 280 
 281         return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
 282 }
 283 
 284 struct n2_hash_ctx {
 285         struct crypto_ahash             *fallback_tfm;
 286 };
 287 
 288 #define N2_HASH_KEY_MAX                 32 /* HW limit for all HMAC requests */
 289 
 290 struct n2_hmac_ctx {
 291         struct n2_hash_ctx              base;
 292 
 293         struct crypto_shash             *child_shash;
 294 
 295         int                             hash_key_len;
 296         unsigned char                   hash_key[N2_HASH_KEY_MAX];
 297 };
 298 
 299 struct n2_hash_req_ctx {
 300         union {
 301                 struct md5_state        md5;
 302                 struct sha1_state       sha1;
 303                 struct sha256_state     sha256;
 304         } u;
 305 
 306         struct ahash_request            fallback_req;
 307 };
 308 
 309 static int n2_hash_async_init(struct ahash_request *req)
 310 {
 311         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 312         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 313         struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 314 
 315         ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 316         rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 317 
 318         return crypto_ahash_init(&rctx->fallback_req);
 319 }
 320 
 321 static int n2_hash_async_update(struct ahash_request *req)
 322 {
 323         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 324         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 325         struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 326 
 327         ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 328         rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 329         rctx->fallback_req.nbytes = req->nbytes;
 330         rctx->fallback_req.src = req->src;
 331 
 332         return crypto_ahash_update(&rctx->fallback_req);
 333 }
 334 
 335 static int n2_hash_async_final(struct ahash_request *req)
 336 {
 337         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 338         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 339         struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 340 
 341         ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 342         rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 343         rctx->fallback_req.result = req->result;
 344 
 345         return crypto_ahash_final(&rctx->fallback_req);
 346 }
 347 
 348 static int n2_hash_async_finup(struct ahash_request *req)
 349 {
 350         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 351         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 352         struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 353 
 354         ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 355         rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 356         rctx->fallback_req.nbytes = req->nbytes;
 357         rctx->fallback_req.src = req->src;
 358         rctx->fallback_req.result = req->result;
 359 
 360         return crypto_ahash_finup(&rctx->fallback_req);
 361 }
 362 
 363 static int n2_hash_async_noimport(struct ahash_request *req, const void *in)
 364 {
 365         return -ENOSYS;
 366 }
 367 
 368 static int n2_hash_async_noexport(struct ahash_request *req, void *out)
 369 {
 370         return -ENOSYS;
 371 }
 372 
 373 static int n2_hash_cra_init(struct crypto_tfm *tfm)
 374 {
 375         const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
 376         struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 377         struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
 378         struct crypto_ahash *fallback_tfm;
 379         int err;
 380 
 381         fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
 382                                           CRYPTO_ALG_NEED_FALLBACK);
 383         if (IS_ERR(fallback_tfm)) {
 384                 pr_warning("Fallback driver '%s' could not be loaded!\n",
 385                            fallback_driver_name);
 386                 err = PTR_ERR(fallback_tfm);
 387                 goto out;
 388         }
 389 
 390         crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
 391                                          crypto_ahash_reqsize(fallback_tfm)));
 392 
 393         ctx->fallback_tfm = fallback_tfm;
 394         return 0;
 395 
 396 out:
 397         return err;
 398 }
 399 
 400 static void n2_hash_cra_exit(struct crypto_tfm *tfm)
 401 {
 402         struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 403         struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
 404 
 405         crypto_free_ahash(ctx->fallback_tfm);
 406 }
 407 
 408 static int n2_hmac_cra_init(struct crypto_tfm *tfm)
 409 {
 410         const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
 411         struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 412         struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
 413         struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
 414         struct crypto_ahash *fallback_tfm;
 415         struct crypto_shash *child_shash;
 416         int err;
 417 
 418         fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
 419                                           CRYPTO_ALG_NEED_FALLBACK);
 420         if (IS_ERR(fallback_tfm)) {
 421                 pr_warning("Fallback driver '%s' could not be loaded!\n",
 422                            fallback_driver_name);
 423                 err = PTR_ERR(fallback_tfm);
 424                 goto out;
 425         }
 426 
 427         child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
 428         if (IS_ERR(child_shash)) {
 429                 pr_warning("Child shash '%s' could not be loaded!\n",
 430                            n2alg->child_alg);
 431                 err = PTR_ERR(child_shash);
 432                 goto out_free_fallback;
 433         }
 434 
 435         crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
 436                                          crypto_ahash_reqsize(fallback_tfm)));
 437 
 438         ctx->child_shash = child_shash;
 439         ctx->base.fallback_tfm = fallback_tfm;
 440         return 0;
 441 
 442 out_free_fallback:
 443         crypto_free_ahash(fallback_tfm);
 444 
 445 out:
 446         return err;
 447 }
 448 
 449 static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
 450 {
 451         struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 452         struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
 453 
 454         crypto_free_ahash(ctx->base.fallback_tfm);
 455         crypto_free_shash(ctx->child_shash);
 456 }
 457 
 458 static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
 459                                 unsigned int keylen)
 460 {
 461         struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
 462         struct crypto_shash *child_shash = ctx->child_shash;
 463         struct crypto_ahash *fallback_tfm;
 464         SHASH_DESC_ON_STACK(shash, child_shash);
 465         int err, bs, ds;
 466 
 467         fallback_tfm = ctx->base.fallback_tfm;
 468         err = crypto_ahash_setkey(fallback_tfm, key, keylen);
 469         if (err)
 470                 return err;
 471 
 472         shash->tfm = child_shash;
 473 
 474         bs = crypto_shash_blocksize(child_shash);
 475         ds = crypto_shash_digestsize(child_shash);
 476         BUG_ON(ds > N2_HASH_KEY_MAX);
 477         if (keylen > bs) {
 478                 err = crypto_shash_digest(shash, key, keylen,
 479                                           ctx->hash_key);
 480                 if (err)
 481                         return err;
 482                 keylen = ds;
 483         } else if (keylen <= N2_HASH_KEY_MAX)
 484                 memcpy(ctx->hash_key, key, keylen);
 485 
 486         ctx->hash_key_len = keylen;
 487 
 488         return err;
 489 }
 490 
 491 static unsigned long wait_for_tail(struct spu_queue *qp)
 492 {
 493         unsigned long head, hv_ret;
 494 
 495         do {
 496                 hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
 497                 if (hv_ret != HV_EOK) {
 498                         pr_err("Hypervisor error on gethead\n");
 499                         break;
 500                 }
 501                 if (head == qp->tail) {
 502                         qp->head = head;
 503                         break;
 504                 }
 505         } while (1);
 506         return hv_ret;
 507 }
 508 
 509 static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
 510                                               struct cwq_initial_entry *ent)
 511 {
 512         unsigned long hv_ret = spu_queue_submit(qp, ent);
 513 
 514         if (hv_ret == HV_EOK)
 515                 hv_ret = wait_for_tail(qp);
 516 
 517         return hv_ret;
 518 }
 519 
 520 static int n2_do_async_digest(struct ahash_request *req,
 521                               unsigned int auth_type, unsigned int digest_size,
 522                               unsigned int result_size, void *hash_loc,
 523                               unsigned long auth_key, unsigned int auth_key_len)
 524 {
 525         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 526         struct cwq_initial_entry *ent;
 527         struct crypto_hash_walk walk;
 528         struct spu_queue *qp;
 529         unsigned long flags;
 530         int err = -ENODEV;
 531         int nbytes, cpu;
 532 
 533         /* The total effective length of the operation may not
 534          * exceed 2^16.
 535          */
 536         if (unlikely(req->nbytes > (1 << 16))) {
 537                 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 538                 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 539 
 540                 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 541                 rctx->fallback_req.base.flags =
 542                         req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 543                 rctx->fallback_req.nbytes = req->nbytes;
 544                 rctx->fallback_req.src = req->src;
 545                 rctx->fallback_req.result = req->result;
 546 
 547                 return crypto_ahash_digest(&rctx->fallback_req);
 548         }
 549 
 550         nbytes = crypto_hash_walk_first(req, &walk);
 551 
 552         cpu = get_cpu();
 553         qp = cpu_to_cwq[cpu];
 554         if (!qp)
 555                 goto out;
 556 
 557         spin_lock_irqsave(&qp->lock, flags);
 558 
 559         /* XXX can do better, improve this later by doing a by-hand scatterlist
 560          * XXX walk, etc.
 561          */
 562         ent = qp->q + qp->tail;
 563 
 564         ent->control = control_word_base(nbytes, auth_key_len, 0,
 565                                          auth_type, digest_size,
 566                                          false, true, false, false,
 567                                          OPCODE_INPLACE_BIT |
 568                                          OPCODE_AUTH_MAC);
 569         ent->src_addr = __pa(walk.data);
 570         ent->auth_key_addr = auth_key;
 571         ent->auth_iv_addr = __pa(hash_loc);
 572         ent->final_auth_state_addr = 0UL;
 573         ent->enc_key_addr = 0UL;
 574         ent->enc_iv_addr = 0UL;
 575         ent->dest_addr = __pa(hash_loc);
 576 
 577         nbytes = crypto_hash_walk_done(&walk, 0);
 578         while (nbytes > 0) {
 579                 ent = spu_queue_next(qp, ent);
 580 
 581                 ent->control = (nbytes - 1);
 582                 ent->src_addr = __pa(walk.data);
 583                 ent->auth_key_addr = 0UL;
 584                 ent->auth_iv_addr = 0UL;
 585                 ent->final_auth_state_addr = 0UL;
 586                 ent->enc_key_addr = 0UL;
 587                 ent->enc_iv_addr = 0UL;
 588                 ent->dest_addr = 0UL;
 589 
 590                 nbytes = crypto_hash_walk_done(&walk, 0);
 591         }
 592         ent->control |= CONTROL_END_OF_BLOCK;
 593 
 594         if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
 595                 err = -EINVAL;
 596         else
 597                 err = 0;
 598 
 599         spin_unlock_irqrestore(&qp->lock, flags);
 600 
 601         if (!err)
 602                 memcpy(req->result, hash_loc, result_size);
 603 out:
 604         put_cpu();
 605 
 606         return err;
 607 }
 608 
 609 static int n2_hash_async_digest(struct ahash_request *req)
 610 {
 611         struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
 612         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 613         int ds;
 614 
 615         ds = n2alg->digest_size;
 616         if (unlikely(req->nbytes == 0)) {
 617                 memcpy(req->result, n2alg->hash_zero, ds);
 618                 return 0;
 619         }
 620         memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
 621 
 622         return n2_do_async_digest(req, n2alg->auth_type,
 623                                   n2alg->hw_op_hashsz, ds,
 624                                   &rctx->u, 0UL, 0);
 625 }
 626 
 627 static int n2_hmac_async_digest(struct ahash_request *req)
 628 {
 629         struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
 630         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 631         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 632         struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
 633         int ds;
 634 
 635         ds = n2alg->derived.digest_size;
 636         if (unlikely(req->nbytes == 0) ||
 637             unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
 638                 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 639                 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 640 
 641                 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 642                 rctx->fallback_req.base.flags =
 643                         req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 644                 rctx->fallback_req.nbytes = req->nbytes;
 645                 rctx->fallback_req.src = req->src;
 646                 rctx->fallback_req.result = req->result;
 647 
 648                 return crypto_ahash_digest(&rctx->fallback_req);
 649         }
 650         memcpy(&rctx->u, n2alg->derived.hash_init,
 651                n2alg->derived.hw_op_hashsz);
 652 
 653         return n2_do_async_digest(req, n2alg->derived.hmac_type,
 654                                   n2alg->derived.hw_op_hashsz, ds,
 655                                   &rctx->u,
 656                                   __pa(&ctx->hash_key),
 657                                   ctx->hash_key_len);
 658 }
 659 
 660 struct n2_cipher_context {
 661         int                     key_len;
 662         int                     enc_type;
 663         union {
 664                 u8              aes[AES_MAX_KEY_SIZE];
 665                 u8              des[DES_KEY_SIZE];
 666                 u8              des3[3 * DES_KEY_SIZE];
 667                 u8              arc4[258]; /* S-box, X, Y */
 668         } key;
 669 };
 670 
 671 #define N2_CHUNK_ARR_LEN        16
 672 
 673 struct n2_crypto_chunk {
 674         struct list_head        entry;
 675         unsigned long           iv_paddr : 44;
 676         unsigned long           arr_len : 20;
 677         unsigned long           dest_paddr;
 678         unsigned long           dest_final;
 679         struct {
 680                 unsigned long   src_paddr : 44;
 681                 unsigned long   src_len : 20;
 682         } arr[N2_CHUNK_ARR_LEN];
 683 };
 684 
 685 struct n2_request_context {
 686         struct ablkcipher_walk  walk;
 687         struct list_head        chunk_list;
 688         struct n2_crypto_chunk  chunk;
 689         u8                      temp_iv[16];
 690 };
 691 
 692 /* The SPU allows some level of flexibility for partial cipher blocks
 693  * being specified in a descriptor.
 694  *
 695  * It merely requires that every descriptor's length field is at least
 696  * as large as the cipher block size.  This means that a cipher block
 697  * can span at most 2 descriptors.  However, this does not allow a
 698  * partial block to span into the final descriptor as that would
 699  * violate the rule (since every descriptor's length must be at lest
 700  * the block size).  So, for example, assuming an 8 byte block size:
 701  *
 702  *      0xe --> 0xa --> 0x8
 703  *
 704  * is a valid length sequence, whereas:
 705  *
 706  *      0xe --> 0xb --> 0x7
 707  *
 708  * is not a valid sequence.
 709  */
 710 
 711 struct n2_cipher_alg {
 712         struct list_head        entry;
 713         u8                      enc_type;
 714         struct crypto_alg       alg;
 715 };
 716 
 717 static inline struct n2_cipher_alg *n2_cipher_alg(struct crypto_tfm *tfm)
 718 {
 719         struct crypto_alg *alg = tfm->__crt_alg;
 720 
 721         return container_of(alg, struct n2_cipher_alg, alg);
 722 }
 723 
 724 struct n2_cipher_request_context {
 725         struct ablkcipher_walk  walk;
 726 };
 727 
 728 static int n2_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
 729                          unsigned int keylen)
 730 {
 731         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
 732         struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
 733         struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
 734 
 735         ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
 736 
 737         switch (keylen) {
 738         case AES_KEYSIZE_128:
 739                 ctx->enc_type |= ENC_TYPE_ALG_AES128;
 740                 break;
 741         case AES_KEYSIZE_192:
 742                 ctx->enc_type |= ENC_TYPE_ALG_AES192;
 743                 break;
 744         case AES_KEYSIZE_256:
 745                 ctx->enc_type |= ENC_TYPE_ALG_AES256;
 746                 break;
 747         default:
 748                 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
 749                 return -EINVAL;
 750         }
 751 
 752         ctx->key_len = keylen;
 753         memcpy(ctx->key.aes, key, keylen);
 754         return 0;
 755 }
 756 
 757 static int n2_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
 758                          unsigned int keylen)
 759 {
 760         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
 761         struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
 762         struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
 763         int err;
 764 
 765         err = verify_ablkcipher_des_key(cipher, key);
 766         if (err)
 767                 return err;
 768 
 769         ctx->enc_type = n2alg->enc_type;
 770 
 771         ctx->key_len = keylen;
 772         memcpy(ctx->key.des, key, keylen);
 773         return 0;
 774 }
 775 
 776 static int n2_3des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
 777                           unsigned int keylen)
 778 {
 779         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
 780         struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
 781         struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
 782         int err;
 783 
 784         err = verify_ablkcipher_des3_key(cipher, key);
 785         if (err)
 786                 return err;
 787 
 788         ctx->enc_type = n2alg->enc_type;
 789 
 790         ctx->key_len = keylen;
 791         memcpy(ctx->key.des3, key, keylen);
 792         return 0;
 793 }
 794 
 795 static int n2_arc4_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
 796                           unsigned int keylen)
 797 {
 798         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
 799         struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
 800         struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
 801         u8 *s = ctx->key.arc4;
 802         u8 *x = s + 256;
 803         u8 *y = x + 1;
 804         int i, j, k;
 805 
 806         ctx->enc_type = n2alg->enc_type;
 807 
 808         j = k = 0;
 809         *x = 0;
 810         *y = 0;
 811         for (i = 0; i < 256; i++)
 812                 s[i] = i;
 813         for (i = 0; i < 256; i++) {
 814                 u8 a = s[i];
 815                 j = (j + key[k] + a) & 0xff;
 816                 s[i] = s[j];
 817                 s[j] = a;
 818                 if (++k >= keylen)
 819                         k = 0;
 820         }
 821 
 822         return 0;
 823 }
 824 
 825 static inline int cipher_descriptor_len(int nbytes, unsigned int block_size)
 826 {
 827         int this_len = nbytes;
 828 
 829         this_len -= (nbytes & (block_size - 1));
 830         return this_len > (1 << 16) ? (1 << 16) : this_len;
 831 }
 832 
 833 static int __n2_crypt_chunk(struct crypto_tfm *tfm, struct n2_crypto_chunk *cp,
 834                             struct spu_queue *qp, bool encrypt)
 835 {
 836         struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
 837         struct cwq_initial_entry *ent;
 838         bool in_place;
 839         int i;
 840 
 841         ent = spu_queue_alloc(qp, cp->arr_len);
 842         if (!ent) {
 843                 pr_info("queue_alloc() of %d fails\n",
 844                         cp->arr_len);
 845                 return -EBUSY;
 846         }
 847 
 848         in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
 849 
 850         ent->control = control_word_base(cp->arr[0].src_len,
 851                                          0, ctx->enc_type, 0, 0,
 852                                          false, true, false, encrypt,
 853                                          OPCODE_ENCRYPT |
 854                                          (in_place ? OPCODE_INPLACE_BIT : 0));
 855         ent->src_addr = cp->arr[0].src_paddr;
 856         ent->auth_key_addr = 0UL;
 857         ent->auth_iv_addr = 0UL;
 858         ent->final_auth_state_addr = 0UL;
 859         ent->enc_key_addr = __pa(&ctx->key);
 860         ent->enc_iv_addr = cp->iv_paddr;
 861         ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
 862 
 863         for (i = 1; i < cp->arr_len; i++) {
 864                 ent = spu_queue_next(qp, ent);
 865 
 866                 ent->control = cp->arr[i].src_len - 1;
 867                 ent->src_addr = cp->arr[i].src_paddr;
 868                 ent->auth_key_addr = 0UL;
 869                 ent->auth_iv_addr = 0UL;
 870                 ent->final_auth_state_addr = 0UL;
 871                 ent->enc_key_addr = 0UL;
 872                 ent->enc_iv_addr = 0UL;
 873                 ent->dest_addr = 0UL;
 874         }
 875         ent->control |= CONTROL_END_OF_BLOCK;
 876 
 877         return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
 878 }
 879 
 880 static int n2_compute_chunks(struct ablkcipher_request *req)
 881 {
 882         struct n2_request_context *rctx = ablkcipher_request_ctx(req);
 883         struct ablkcipher_walk *walk = &rctx->walk;
 884         struct n2_crypto_chunk *chunk;
 885         unsigned long dest_prev;
 886         unsigned int tot_len;
 887         bool prev_in_place;
 888         int err, nbytes;
 889 
 890         ablkcipher_walk_init(walk, req->dst, req->src, req->nbytes);
 891         err = ablkcipher_walk_phys(req, walk);
 892         if (err)
 893                 return err;
 894 
 895         INIT_LIST_HEAD(&rctx->chunk_list);
 896 
 897         chunk = &rctx->chunk;
 898         INIT_LIST_HEAD(&chunk->entry);
 899 
 900         chunk->iv_paddr = 0UL;
 901         chunk->arr_len = 0;
 902         chunk->dest_paddr = 0UL;
 903 
 904         prev_in_place = false;
 905         dest_prev = ~0UL;
 906         tot_len = 0;
 907 
 908         while ((nbytes = walk->nbytes) != 0) {
 909                 unsigned long dest_paddr, src_paddr;
 910                 bool in_place;
 911                 int this_len;
 912 
 913                 src_paddr = (page_to_phys(walk->src.page) +
 914                              walk->src.offset);
 915                 dest_paddr = (page_to_phys(walk->dst.page) +
 916                               walk->dst.offset);
 917                 in_place = (src_paddr == dest_paddr);
 918                 this_len = cipher_descriptor_len(nbytes, walk->blocksize);
 919 
 920                 if (chunk->arr_len != 0) {
 921                         if (in_place != prev_in_place ||
 922                             (!prev_in_place &&
 923                              dest_paddr != dest_prev) ||
 924                             chunk->arr_len == N2_CHUNK_ARR_LEN ||
 925                             tot_len + this_len > (1 << 16)) {
 926                                 chunk->dest_final = dest_prev;
 927                                 list_add_tail(&chunk->entry,
 928                                               &rctx->chunk_list);
 929                                 chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
 930                                 if (!chunk) {
 931                                         err = -ENOMEM;
 932                                         break;
 933                                 }
 934                                 INIT_LIST_HEAD(&chunk->entry);
 935                         }
 936                 }
 937                 if (chunk->arr_len == 0) {
 938                         chunk->dest_paddr = dest_paddr;
 939                         tot_len = 0;
 940                 }
 941                 chunk->arr[chunk->arr_len].src_paddr = src_paddr;
 942                 chunk->arr[chunk->arr_len].src_len = this_len;
 943                 chunk->arr_len++;
 944 
 945                 dest_prev = dest_paddr + this_len;
 946                 prev_in_place = in_place;
 947                 tot_len += this_len;
 948 
 949                 err = ablkcipher_walk_done(req, walk, nbytes - this_len);
 950                 if (err)
 951                         break;
 952         }
 953         if (!err && chunk->arr_len != 0) {
 954                 chunk->dest_final = dest_prev;
 955                 list_add_tail(&chunk->entry, &rctx->chunk_list);
 956         }
 957 
 958         return err;
 959 }
 960 
 961 static void n2_chunk_complete(struct ablkcipher_request *req, void *final_iv)
 962 {
 963         struct n2_request_context *rctx = ablkcipher_request_ctx(req);
 964         struct n2_crypto_chunk *c, *tmp;
 965 
 966         if (final_iv)
 967                 memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
 968 
 969         ablkcipher_walk_complete(&rctx->walk);
 970         list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
 971                 list_del(&c->entry);
 972                 if (unlikely(c != &rctx->chunk))
 973                         kfree(c);
 974         }
 975 
 976 }
 977 
 978 static int n2_do_ecb(struct ablkcipher_request *req, bool encrypt)
 979 {
 980         struct n2_request_context *rctx = ablkcipher_request_ctx(req);
 981         struct crypto_tfm *tfm = req->base.tfm;
 982         int err = n2_compute_chunks(req);
 983         struct n2_crypto_chunk *c, *tmp;
 984         unsigned long flags, hv_ret;
 985         struct spu_queue *qp;
 986 
 987         if (err)
 988                 return err;
 989 
 990         qp = cpu_to_cwq[get_cpu()];
 991         err = -ENODEV;
 992         if (!qp)
 993                 goto out;
 994 
 995         spin_lock_irqsave(&qp->lock, flags);
 996 
 997         list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
 998                 err = __n2_crypt_chunk(tfm, c, qp, encrypt);
 999                 if (err)
1000                         break;
1001                 list_del(&c->entry);
1002                 if (unlikely(c != &rctx->chunk))
1003                         kfree(c);
1004         }
1005         if (!err) {
1006                 hv_ret = wait_for_tail(qp);
1007                 if (hv_ret != HV_EOK)
1008                         err = -EINVAL;
1009         }
1010 
1011         spin_unlock_irqrestore(&qp->lock, flags);
1012 
1013 out:
1014         put_cpu();
1015 
1016         n2_chunk_complete(req, NULL);
1017         return err;
1018 }
1019 
1020 static int n2_encrypt_ecb(struct ablkcipher_request *req)
1021 {
1022         return n2_do_ecb(req, true);
1023 }
1024 
1025 static int n2_decrypt_ecb(struct ablkcipher_request *req)
1026 {
1027         return n2_do_ecb(req, false);
1028 }
1029 
1030 static int n2_do_chaining(struct ablkcipher_request *req, bool encrypt)
1031 {
1032         struct n2_request_context *rctx = ablkcipher_request_ctx(req);
1033         struct crypto_tfm *tfm = req->base.tfm;
1034         unsigned long flags, hv_ret, iv_paddr;
1035         int err = n2_compute_chunks(req);
1036         struct n2_crypto_chunk *c, *tmp;
1037         struct spu_queue *qp;
1038         void *final_iv_addr;
1039 
1040         final_iv_addr = NULL;
1041 
1042         if (err)
1043                 return err;
1044 
1045         qp = cpu_to_cwq[get_cpu()];
1046         err = -ENODEV;
1047         if (!qp)
1048                 goto out;
1049 
1050         spin_lock_irqsave(&qp->lock, flags);
1051 
1052         if (encrypt) {
1053                 iv_paddr = __pa(rctx->walk.iv);
1054                 list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1055                                          entry) {
1056                         c->iv_paddr = iv_paddr;
1057                         err = __n2_crypt_chunk(tfm, c, qp, true);
1058                         if (err)
1059                                 break;
1060                         iv_paddr = c->dest_final - rctx->walk.blocksize;
1061                         list_del(&c->entry);
1062                         if (unlikely(c != &rctx->chunk))
1063                                 kfree(c);
1064                 }
1065                 final_iv_addr = __va(iv_paddr);
1066         } else {
1067                 list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1068                                                  entry) {
1069                         if (c == &rctx->chunk) {
1070                                 iv_paddr = __pa(rctx->walk.iv);
1071                         } else {
1072                                 iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1073                                             tmp->arr[tmp->arr_len-1].src_len -
1074                                             rctx->walk.blocksize);
1075                         }
1076                         if (!final_iv_addr) {
1077                                 unsigned long pa;
1078 
1079                                 pa = (c->arr[c->arr_len-1].src_paddr +
1080                                       c->arr[c->arr_len-1].src_len -
1081                                       rctx->walk.blocksize);
1082                                 final_iv_addr = rctx->temp_iv;
1083                                 memcpy(rctx->temp_iv, __va(pa),
1084                                        rctx->walk.blocksize);
1085                         }
1086                         c->iv_paddr = iv_paddr;
1087                         err = __n2_crypt_chunk(tfm, c, qp, false);
1088                         if (err)
1089                                 break;
1090                         list_del(&c->entry);
1091                         if (unlikely(c != &rctx->chunk))
1092                                 kfree(c);
1093                 }
1094         }
1095         if (!err) {
1096                 hv_ret = wait_for_tail(qp);
1097                 if (hv_ret != HV_EOK)
1098                         err = -EINVAL;
1099         }
1100 
1101         spin_unlock_irqrestore(&qp->lock, flags);
1102 
1103 out:
1104         put_cpu();
1105 
1106         n2_chunk_complete(req, err ? NULL : final_iv_addr);
1107         return err;
1108 }
1109 
1110 static int n2_encrypt_chaining(struct ablkcipher_request *req)
1111 {
1112         return n2_do_chaining(req, true);
1113 }
1114 
1115 static int n2_decrypt_chaining(struct ablkcipher_request *req)
1116 {
1117         return n2_do_chaining(req, false);
1118 }
1119 
1120 struct n2_cipher_tmpl {
1121         const char              *name;
1122         const char              *drv_name;
1123         u8                      block_size;
1124         u8                      enc_type;
1125         struct ablkcipher_alg   ablkcipher;
1126 };
1127 
1128 static const struct n2_cipher_tmpl cipher_tmpls[] = {
1129         /* ARC4: only ECB is supported (chaining bits ignored) */
1130         {       .name           = "ecb(arc4)",
1131                 .drv_name       = "ecb-arc4",
1132                 .block_size     = 1,
1133                 .enc_type       = (ENC_TYPE_ALG_RC4_STREAM |
1134                                    ENC_TYPE_CHAINING_ECB),
1135                 .ablkcipher     = {
1136                         .min_keysize    = 1,
1137                         .max_keysize    = 256,
1138                         .setkey         = n2_arc4_setkey,
1139                         .encrypt        = n2_encrypt_ecb,
1140                         .decrypt        = n2_decrypt_ecb,
1141                 },
1142         },
1143 
1144         /* DES: ECB CBC and CFB are supported */
1145         {       .name           = "ecb(des)",
1146                 .drv_name       = "ecb-des",
1147                 .block_size     = DES_BLOCK_SIZE,
1148                 .enc_type       = (ENC_TYPE_ALG_DES |
1149                                    ENC_TYPE_CHAINING_ECB),
1150                 .ablkcipher     = {
1151                         .min_keysize    = DES_KEY_SIZE,
1152                         .max_keysize    = DES_KEY_SIZE,
1153                         .setkey         = n2_des_setkey,
1154                         .encrypt        = n2_encrypt_ecb,
1155                         .decrypt        = n2_decrypt_ecb,
1156                 },
1157         },
1158         {       .name           = "cbc(des)",
1159                 .drv_name       = "cbc-des",
1160                 .block_size     = DES_BLOCK_SIZE,
1161                 .enc_type       = (ENC_TYPE_ALG_DES |
1162                                    ENC_TYPE_CHAINING_CBC),
1163                 .ablkcipher     = {
1164                         .ivsize         = DES_BLOCK_SIZE,
1165                         .min_keysize    = DES_KEY_SIZE,
1166                         .max_keysize    = DES_KEY_SIZE,
1167                         .setkey         = n2_des_setkey,
1168                         .encrypt        = n2_encrypt_chaining,
1169                         .decrypt        = n2_decrypt_chaining,
1170                 },
1171         },
1172         {       .name           = "cfb(des)",
1173                 .drv_name       = "cfb-des",
1174                 .block_size     = DES_BLOCK_SIZE,
1175                 .enc_type       = (ENC_TYPE_ALG_DES |
1176                                    ENC_TYPE_CHAINING_CFB),
1177                 .ablkcipher     = {
1178                         .min_keysize    = DES_KEY_SIZE,
1179                         .max_keysize    = DES_KEY_SIZE,
1180                         .setkey         = n2_des_setkey,
1181                         .encrypt        = n2_encrypt_chaining,
1182                         .decrypt        = n2_decrypt_chaining,
1183                 },
1184         },
1185 
1186         /* 3DES: ECB CBC and CFB are supported */
1187         {       .name           = "ecb(des3_ede)",
1188                 .drv_name       = "ecb-3des",
1189                 .block_size     = DES_BLOCK_SIZE,
1190                 .enc_type       = (ENC_TYPE_ALG_3DES |
1191                                    ENC_TYPE_CHAINING_ECB),
1192                 .ablkcipher     = {
1193                         .min_keysize    = 3 * DES_KEY_SIZE,
1194                         .max_keysize    = 3 * DES_KEY_SIZE,
1195                         .setkey         = n2_3des_setkey,
1196                         .encrypt        = n2_encrypt_ecb,
1197                         .decrypt        = n2_decrypt_ecb,
1198                 },
1199         },
1200         {       .name           = "cbc(des3_ede)",
1201                 .drv_name       = "cbc-3des",
1202                 .block_size     = DES_BLOCK_SIZE,
1203                 .enc_type       = (ENC_TYPE_ALG_3DES |
1204                                    ENC_TYPE_CHAINING_CBC),
1205                 .ablkcipher     = {
1206                         .ivsize         = DES_BLOCK_SIZE,
1207                         .min_keysize    = 3 * DES_KEY_SIZE,
1208                         .max_keysize    = 3 * DES_KEY_SIZE,
1209                         .setkey         = n2_3des_setkey,
1210                         .encrypt        = n2_encrypt_chaining,
1211                         .decrypt        = n2_decrypt_chaining,
1212                 },
1213         },
1214         {       .name           = "cfb(des3_ede)",
1215                 .drv_name       = "cfb-3des",
1216                 .block_size     = DES_BLOCK_SIZE,
1217                 .enc_type       = (ENC_TYPE_ALG_3DES |
1218                                    ENC_TYPE_CHAINING_CFB),
1219                 .ablkcipher     = {
1220                         .min_keysize    = 3 * DES_KEY_SIZE,
1221                         .max_keysize    = 3 * DES_KEY_SIZE,
1222                         .setkey         = n2_3des_setkey,
1223                         .encrypt        = n2_encrypt_chaining,
1224                         .decrypt        = n2_decrypt_chaining,
1225                 },
1226         },
1227         /* AES: ECB CBC and CTR are supported */
1228         {       .name           = "ecb(aes)",
1229                 .drv_name       = "ecb-aes",
1230                 .block_size     = AES_BLOCK_SIZE,
1231                 .enc_type       = (ENC_TYPE_ALG_AES128 |
1232                                    ENC_TYPE_CHAINING_ECB),
1233                 .ablkcipher     = {
1234                         .min_keysize    = AES_MIN_KEY_SIZE,
1235                         .max_keysize    = AES_MAX_KEY_SIZE,
1236                         .setkey         = n2_aes_setkey,
1237                         .encrypt        = n2_encrypt_ecb,
1238                         .decrypt        = n2_decrypt_ecb,
1239                 },
1240         },
1241         {       .name           = "cbc(aes)",
1242                 .drv_name       = "cbc-aes",
1243                 .block_size     = AES_BLOCK_SIZE,
1244                 .enc_type       = (ENC_TYPE_ALG_AES128 |
1245                                    ENC_TYPE_CHAINING_CBC),
1246                 .ablkcipher     = {
1247                         .ivsize         = AES_BLOCK_SIZE,
1248                         .min_keysize    = AES_MIN_KEY_SIZE,
1249                         .max_keysize    = AES_MAX_KEY_SIZE,
1250                         .setkey         = n2_aes_setkey,
1251                         .encrypt        = n2_encrypt_chaining,
1252                         .decrypt        = n2_decrypt_chaining,
1253                 },
1254         },
1255         {       .name           = "ctr(aes)",
1256                 .drv_name       = "ctr-aes",
1257                 .block_size     = AES_BLOCK_SIZE,
1258                 .enc_type       = (ENC_TYPE_ALG_AES128 |
1259                                    ENC_TYPE_CHAINING_COUNTER),
1260                 .ablkcipher     = {
1261                         .ivsize         = AES_BLOCK_SIZE,
1262                         .min_keysize    = AES_MIN_KEY_SIZE,
1263                         .max_keysize    = AES_MAX_KEY_SIZE,
1264                         .setkey         = n2_aes_setkey,
1265                         .encrypt        = n2_encrypt_chaining,
1266                         .decrypt        = n2_encrypt_chaining,
1267                 },
1268         },
1269 
1270 };
1271 #define NUM_CIPHER_TMPLS ARRAY_SIZE(cipher_tmpls)
1272 
1273 static LIST_HEAD(cipher_algs);
1274 
1275 struct n2_hash_tmpl {
1276         const char      *name;
1277         const u8        *hash_zero;
1278         const u32       *hash_init;
1279         u8              hw_op_hashsz;
1280         u8              digest_size;
1281         u8              block_size;
1282         u8              auth_type;
1283         u8              hmac_type;
1284 };
1285 
1286 static const u32 n2_md5_init[MD5_HASH_WORDS] = {
1287         cpu_to_le32(MD5_H0),
1288         cpu_to_le32(MD5_H1),
1289         cpu_to_le32(MD5_H2),
1290         cpu_to_le32(MD5_H3),
1291 };
1292 static const u32 n2_sha1_init[SHA1_DIGEST_SIZE / 4] = {
1293         SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1294 };
1295 static const u32 n2_sha256_init[SHA256_DIGEST_SIZE / 4] = {
1296         SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1297         SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1298 };
1299 static const u32 n2_sha224_init[SHA256_DIGEST_SIZE / 4] = {
1300         SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1301         SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1302 };
1303 
1304 static const struct n2_hash_tmpl hash_tmpls[] = {
1305         { .name         = "md5",
1306           .hash_zero    = md5_zero_message_hash,
1307           .hash_init    = n2_md5_init,
1308           .auth_type    = AUTH_TYPE_MD5,
1309           .hmac_type    = AUTH_TYPE_HMAC_MD5,
1310           .hw_op_hashsz = MD5_DIGEST_SIZE,
1311           .digest_size  = MD5_DIGEST_SIZE,
1312           .block_size   = MD5_HMAC_BLOCK_SIZE },
1313         { .name         = "sha1",
1314           .hash_zero    = sha1_zero_message_hash,
1315           .hash_init    = n2_sha1_init,
1316           .auth_type    = AUTH_TYPE_SHA1,
1317           .hmac_type    = AUTH_TYPE_HMAC_SHA1,
1318           .hw_op_hashsz = SHA1_DIGEST_SIZE,
1319           .digest_size  = SHA1_DIGEST_SIZE,
1320           .block_size   = SHA1_BLOCK_SIZE },
1321         { .name         = "sha256",
1322           .hash_zero    = sha256_zero_message_hash,
1323           .hash_init    = n2_sha256_init,
1324           .auth_type    = AUTH_TYPE_SHA256,
1325           .hmac_type    = AUTH_TYPE_HMAC_SHA256,
1326           .hw_op_hashsz = SHA256_DIGEST_SIZE,
1327           .digest_size  = SHA256_DIGEST_SIZE,
1328           .block_size   = SHA256_BLOCK_SIZE },
1329         { .name         = "sha224",
1330           .hash_zero    = sha224_zero_message_hash,
1331           .hash_init    = n2_sha224_init,
1332           .auth_type    = AUTH_TYPE_SHA256,
1333           .hmac_type    = AUTH_TYPE_RESERVED,
1334           .hw_op_hashsz = SHA256_DIGEST_SIZE,
1335           .digest_size  = SHA224_DIGEST_SIZE,
1336           .block_size   = SHA224_BLOCK_SIZE },
1337 };
1338 #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1339 
1340 static LIST_HEAD(ahash_algs);
1341 static LIST_HEAD(hmac_algs);
1342 
1343 static int algs_registered;
1344 
1345 static void __n2_unregister_algs(void)
1346 {
1347         struct n2_cipher_alg *cipher, *cipher_tmp;
1348         struct n2_ahash_alg *alg, *alg_tmp;
1349         struct n2_hmac_alg *hmac, *hmac_tmp;
1350 
1351         list_for_each_entry_safe(cipher, cipher_tmp, &cipher_algs, entry) {
1352                 crypto_unregister_alg(&cipher->alg);
1353                 list_del(&cipher->entry);
1354                 kfree(cipher);
1355         }
1356         list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1357                 crypto_unregister_ahash(&hmac->derived.alg);
1358                 list_del(&hmac->derived.entry);
1359                 kfree(hmac);
1360         }
1361         list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1362                 crypto_unregister_ahash(&alg->alg);
1363                 list_del(&alg->entry);
1364                 kfree(alg);
1365         }
1366 }
1367 
1368 static int n2_cipher_cra_init(struct crypto_tfm *tfm)
1369 {
1370         tfm->crt_ablkcipher.reqsize = sizeof(struct n2_request_context);
1371         return 0;
1372 }
1373 
1374 static int __n2_register_one_cipher(const struct n2_cipher_tmpl *tmpl)
1375 {
1376         struct n2_cipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1377         struct crypto_alg *alg;
1378         int err;
1379 
1380         if (!p)
1381                 return -ENOMEM;
1382 
1383         alg = &p->alg;
1384 
1385         snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1386         snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1387         alg->cra_priority = N2_CRA_PRIORITY;
1388         alg->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1389                          CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
1390         alg->cra_blocksize = tmpl->block_size;
1391         p->enc_type = tmpl->enc_type;
1392         alg->cra_ctxsize = sizeof(struct n2_cipher_context);
1393         alg->cra_type = &crypto_ablkcipher_type;
1394         alg->cra_u.ablkcipher = tmpl->ablkcipher;
1395         alg->cra_init = n2_cipher_cra_init;
1396         alg->cra_module = THIS_MODULE;
1397 
1398         list_add(&p->entry, &cipher_algs);
1399         err = crypto_register_alg(alg);
1400         if (err) {
1401                 pr_err("%s alg registration failed\n", alg->cra_name);
1402                 list_del(&p->entry);
1403                 kfree(p);
1404         } else {
1405                 pr_info("%s alg registered\n", alg->cra_name);
1406         }
1407         return err;
1408 }
1409 
1410 static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1411 {
1412         struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1413         struct ahash_alg *ahash;
1414         struct crypto_alg *base;
1415         int err;
1416 
1417         if (!p)
1418                 return -ENOMEM;
1419 
1420         p->child_alg = n2ahash->alg.halg.base.cra_name;
1421         memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1422         INIT_LIST_HEAD(&p->derived.entry);
1423 
1424         ahash = &p->derived.alg;
1425         ahash->digest = n2_hmac_async_digest;
1426         ahash->setkey = n2_hmac_async_setkey;
1427 
1428         base = &ahash->halg.base;
1429         snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
1430         snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
1431 
1432         base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1433         base->cra_init = n2_hmac_cra_init;
1434         base->cra_exit = n2_hmac_cra_exit;
1435 
1436         list_add(&p->derived.entry, &hmac_algs);
1437         err = crypto_register_ahash(ahash);
1438         if (err) {
1439                 pr_err("%s alg registration failed\n", base->cra_name);
1440                 list_del(&p->derived.entry);
1441                 kfree(p);
1442         } else {
1443                 pr_info("%s alg registered\n", base->cra_name);
1444         }
1445         return err;
1446 }
1447 
1448 static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1449 {
1450         struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1451         struct hash_alg_common *halg;
1452         struct crypto_alg *base;
1453         struct ahash_alg *ahash;
1454         int err;
1455 
1456         if (!p)
1457                 return -ENOMEM;
1458 
1459         p->hash_zero = tmpl->hash_zero;
1460         p->hash_init = tmpl->hash_init;
1461         p->auth_type = tmpl->auth_type;
1462         p->hmac_type = tmpl->hmac_type;
1463         p->hw_op_hashsz = tmpl->hw_op_hashsz;
1464         p->digest_size = tmpl->digest_size;
1465 
1466         ahash = &p->alg;
1467         ahash->init = n2_hash_async_init;
1468         ahash->update = n2_hash_async_update;
1469         ahash->final = n2_hash_async_final;
1470         ahash->finup = n2_hash_async_finup;
1471         ahash->digest = n2_hash_async_digest;
1472         ahash->export = n2_hash_async_noexport;
1473         ahash->import = n2_hash_async_noimport;
1474 
1475         halg = &ahash->halg;
1476         halg->digestsize = tmpl->digest_size;
1477 
1478         base = &halg->base;
1479         snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1480         snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1481         base->cra_priority = N2_CRA_PRIORITY;
1482         base->cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1483                           CRYPTO_ALG_NEED_FALLBACK;
1484         base->cra_blocksize = tmpl->block_size;
1485         base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1486         base->cra_module = THIS_MODULE;
1487         base->cra_init = n2_hash_cra_init;
1488         base->cra_exit = n2_hash_cra_exit;
1489 
1490         list_add(&p->entry, &ahash_algs);
1491         err = crypto_register_ahash(ahash);
1492         if (err) {
1493                 pr_err("%s alg registration failed\n", base->cra_name);
1494                 list_del(&p->entry);
1495                 kfree(p);
1496         } else {
1497                 pr_info("%s alg registered\n", base->cra_name);
1498         }
1499         if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1500                 err = __n2_register_one_hmac(p);
1501         return err;
1502 }
1503 
1504 static int n2_register_algs(void)
1505 {
1506         int i, err = 0;
1507 
1508         mutex_lock(&spu_lock);
1509         if (algs_registered++)
1510                 goto out;
1511 
1512         for (i = 0; i < NUM_HASH_TMPLS; i++) {
1513                 err = __n2_register_one_ahash(&hash_tmpls[i]);
1514                 if (err) {
1515                         __n2_unregister_algs();
1516                         goto out;
1517                 }
1518         }
1519         for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1520                 err = __n2_register_one_cipher(&cipher_tmpls[i]);
1521                 if (err) {
1522                         __n2_unregister_algs();
1523                         goto out;
1524                 }
1525         }
1526 
1527 out:
1528         mutex_unlock(&spu_lock);
1529         return err;
1530 }
1531 
1532 static void n2_unregister_algs(void)
1533 {
1534         mutex_lock(&spu_lock);
1535         if (!--algs_registered)
1536                 __n2_unregister_algs();
1537         mutex_unlock(&spu_lock);
1538 }
1539 
1540 /* To map CWQ queues to interrupt sources, the hypervisor API provides
1541  * a devino.  This isn't very useful to us because all of the
1542  * interrupts listed in the device_node have been translated to
1543  * Linux virtual IRQ cookie numbers.
1544  *
1545  * So we have to back-translate, going through the 'intr' and 'ino'
1546  * property tables of the n2cp MDESC node, matching it with the OF
1547  * 'interrupts' property entries, in order to to figure out which
1548  * devino goes to which already-translated IRQ.
1549  */
1550 static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1551                              unsigned long dev_ino)
1552 {
1553         const unsigned int *dev_intrs;
1554         unsigned int intr;
1555         int i;
1556 
1557         for (i = 0; i < ip->num_intrs; i++) {
1558                 if (ip->ino_table[i].ino == dev_ino)
1559                         break;
1560         }
1561         if (i == ip->num_intrs)
1562                 return -ENODEV;
1563 
1564         intr = ip->ino_table[i].intr;
1565 
1566         dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1567         if (!dev_intrs)
1568                 return -ENODEV;
1569 
1570         for (i = 0; i < dev->archdata.num_irqs; i++) {
1571                 if (dev_intrs[i] == intr)
1572                         return i;
1573         }
1574 
1575         return -ENODEV;
1576 }
1577 
1578 static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1579                        const char *irq_name, struct spu_queue *p,
1580                        irq_handler_t handler)
1581 {
1582         unsigned long herr;
1583         int index;
1584 
1585         herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1586         if (herr)
1587                 return -EINVAL;
1588 
1589         index = find_devino_index(dev, ip, p->devino);
1590         if (index < 0)
1591                 return index;
1592 
1593         p->irq = dev->archdata.irqs[index];
1594 
1595         sprintf(p->irq_name, "%s-%d", irq_name, index);
1596 
1597         return request_irq(p->irq, handler, 0, p->irq_name, p);
1598 }
1599 
1600 static struct kmem_cache *queue_cache[2];
1601 
1602 static void *new_queue(unsigned long q_type)
1603 {
1604         return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1605 }
1606 
1607 static void free_queue(void *p, unsigned long q_type)
1608 {
1609         kmem_cache_free(queue_cache[q_type - 1], p);
1610 }
1611 
1612 static int queue_cache_init(void)
1613 {
1614         if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1615                 queue_cache[HV_NCS_QTYPE_MAU - 1] =
1616                         kmem_cache_create("mau_queue",
1617                                           (MAU_NUM_ENTRIES *
1618                                            MAU_ENTRY_SIZE),
1619                                           MAU_ENTRY_SIZE, 0, NULL);
1620         if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1621                 return -ENOMEM;
1622 
1623         if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1624                 queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1625                         kmem_cache_create("cwq_queue",
1626                                           (CWQ_NUM_ENTRIES *
1627                                            CWQ_ENTRY_SIZE),
1628                                           CWQ_ENTRY_SIZE, 0, NULL);
1629         if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1630                 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1631                 queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1632                 return -ENOMEM;
1633         }
1634         return 0;
1635 }
1636 
1637 static void queue_cache_destroy(void)
1638 {
1639         kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1640         kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
1641         queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1642         queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL;
1643 }
1644 
1645 static long spu_queue_register_workfn(void *arg)
1646 {
1647         struct spu_qreg *qr = arg;
1648         struct spu_queue *p = qr->queue;
1649         unsigned long q_type = qr->type;
1650         unsigned long hv_ret;
1651 
1652         hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1653                                  CWQ_NUM_ENTRIES, &p->qhandle);
1654         if (!hv_ret)
1655                 sun4v_ncs_sethead_marker(p->qhandle, 0);
1656 
1657         return hv_ret ? -EINVAL : 0;
1658 }
1659 
1660 static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1661 {
1662         int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
1663         struct spu_qreg qr = { .queue = p, .type = q_type };
1664 
1665         return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
1666 }
1667 
1668 static int spu_queue_setup(struct spu_queue *p)
1669 {
1670         int err;
1671 
1672         p->q = new_queue(p->q_type);
1673         if (!p->q)
1674                 return -ENOMEM;
1675 
1676         err = spu_queue_register(p, p->q_type);
1677         if (err) {
1678                 free_queue(p->q, p->q_type);
1679                 p->q = NULL;
1680         }
1681 
1682         return err;
1683 }
1684 
1685 static void spu_queue_destroy(struct spu_queue *p)
1686 {
1687         unsigned long hv_ret;
1688 
1689         if (!p->q)
1690                 return;
1691 
1692         hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1693 
1694         if (!hv_ret)
1695                 free_queue(p->q, p->q_type);
1696 }
1697 
1698 static void spu_list_destroy(struct list_head *list)
1699 {
1700         struct spu_queue *p, *n;
1701 
1702         list_for_each_entry_safe(p, n, list, list) {
1703                 int i;
1704 
1705                 for (i = 0; i < NR_CPUS; i++) {
1706                         if (cpu_to_cwq[i] == p)
1707                                 cpu_to_cwq[i] = NULL;
1708                 }
1709 
1710                 if (p->irq) {
1711                         free_irq(p->irq, p);
1712                         p->irq = 0;
1713                 }
1714                 spu_queue_destroy(p);
1715                 list_del(&p->list);
1716                 kfree(p);
1717         }
1718 }
1719 
1720 /* Walk the backward arcs of a CWQ 'exec-unit' node,
1721  * gathering cpu membership information.
1722  */
1723 static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1724                                struct platform_device *dev,
1725                                u64 node, struct spu_queue *p,
1726                                struct spu_queue **table)
1727 {
1728         u64 arc;
1729 
1730         mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1731                 u64 tgt = mdesc_arc_target(mdesc, arc);
1732                 const char *name = mdesc_node_name(mdesc, tgt);
1733                 const u64 *id;
1734 
1735                 if (strcmp(name, "cpu"))
1736                         continue;
1737                 id = mdesc_get_property(mdesc, tgt, "id", NULL);
1738                 if (table[*id] != NULL) {
1739                         dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n",
1740                                 dev->dev.of_node);
1741                         return -EINVAL;
1742                 }
1743                 cpumask_set_cpu(*id, &p->sharing);
1744                 table[*id] = p;
1745         }
1746         return 0;
1747 }
1748 
1749 /* Process an 'exec-unit' MDESC node of type 'cwq'.  */
1750 static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1751                             struct platform_device *dev, struct mdesc_handle *mdesc,
1752                             u64 node, const char *iname, unsigned long q_type,
1753                             irq_handler_t handler, struct spu_queue **table)
1754 {
1755         struct spu_queue *p;
1756         int err;
1757 
1758         p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1759         if (!p) {
1760                 dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n",
1761                         dev->dev.of_node);
1762                 return -ENOMEM;
1763         }
1764 
1765         cpumask_clear(&p->sharing);
1766         spin_lock_init(&p->lock);
1767         p->q_type = q_type;
1768         INIT_LIST_HEAD(&p->jobs);
1769         list_add(&p->list, list);
1770 
1771         err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1772         if (err)
1773                 return err;
1774 
1775         err = spu_queue_setup(p);
1776         if (err)
1777                 return err;
1778 
1779         return spu_map_ino(dev, ip, iname, p, handler);
1780 }
1781 
1782 static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1783                           struct spu_mdesc_info *ip, struct list_head *list,
1784                           const char *exec_name, unsigned long q_type,
1785                           irq_handler_t handler, struct spu_queue **table)
1786 {
1787         int err = 0;
1788         u64 node;
1789 
1790         mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1791                 const char *type;
1792 
1793                 type = mdesc_get_property(mdesc, node, "type", NULL);
1794                 if (!type || strcmp(type, exec_name))
1795                         continue;
1796 
1797                 err = handle_exec_unit(ip, list, dev, mdesc, node,
1798                                        exec_name, q_type, handler, table);
1799                 if (err) {
1800                         spu_list_destroy(list);
1801                         break;
1802                 }
1803         }
1804 
1805         return err;
1806 }
1807 
1808 static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
1809                          struct spu_mdesc_info *ip)
1810 {
1811         const u64 *ino;
1812         int ino_len;
1813         int i;
1814 
1815         ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1816         if (!ino) {
1817                 printk("NO 'ino'\n");
1818                 return -ENODEV;
1819         }
1820 
1821         ip->num_intrs = ino_len / sizeof(u64);
1822         ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1823                                  ip->num_intrs),
1824                                 GFP_KERNEL);
1825         if (!ip->ino_table)
1826                 return -ENOMEM;
1827 
1828         for (i = 0; i < ip->num_intrs; i++) {
1829                 struct ino_blob *b = &ip->ino_table[i];
1830                 b->intr = i + 1;
1831                 b->ino = ino[i];
1832         }
1833 
1834         return 0;
1835 }
1836 
1837 static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1838                                 struct platform_device *dev,
1839                                 struct spu_mdesc_info *ip,
1840                                 const char *node_name)
1841 {
1842         const unsigned int *reg;
1843         u64 node;
1844 
1845         reg = of_get_property(dev->dev.of_node, "reg", NULL);
1846         if (!reg)
1847                 return -ENODEV;
1848 
1849         mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1850                 const char *name;
1851                 const u64 *chdl;
1852 
1853                 name = mdesc_get_property(mdesc, node, "name", NULL);
1854                 if (!name || strcmp(name, node_name))
1855                         continue;
1856                 chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1857                 if (!chdl || (*chdl != *reg))
1858                         continue;
1859                 ip->cfg_handle = *chdl;
1860                 return get_irq_props(mdesc, node, ip);
1861         }
1862 
1863         return -ENODEV;
1864 }
1865 
1866 static unsigned long n2_spu_hvapi_major;
1867 static unsigned long n2_spu_hvapi_minor;
1868 
1869 static int n2_spu_hvapi_register(void)
1870 {
1871         int err;
1872 
1873         n2_spu_hvapi_major = 2;
1874         n2_spu_hvapi_minor = 0;
1875 
1876         err = sun4v_hvapi_register(HV_GRP_NCS,
1877                                    n2_spu_hvapi_major,
1878                                    &n2_spu_hvapi_minor);
1879 
1880         if (!err)
1881                 pr_info("Registered NCS HVAPI version %lu.%lu\n",
1882                         n2_spu_hvapi_major,
1883                         n2_spu_hvapi_minor);
1884 
1885         return err;
1886 }
1887 
1888 static void n2_spu_hvapi_unregister(void)
1889 {
1890         sun4v_hvapi_unregister(HV_GRP_NCS);
1891 }
1892 
1893 static int global_ref;
1894 
1895 static int grab_global_resources(void)
1896 {
1897         int err = 0;
1898 
1899         mutex_lock(&spu_lock);
1900 
1901         if (global_ref++)
1902                 goto out;
1903 
1904         err = n2_spu_hvapi_register();
1905         if (err)
1906                 goto out;
1907 
1908         err = queue_cache_init();
1909         if (err)
1910                 goto out_hvapi_release;
1911 
1912         err = -ENOMEM;
1913         cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1914                              GFP_KERNEL);
1915         if (!cpu_to_cwq)
1916                 goto out_queue_cache_destroy;
1917 
1918         cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1919                              GFP_KERNEL);
1920         if (!cpu_to_mau)
1921                 goto out_free_cwq_table;
1922 
1923         err = 0;
1924 
1925 out:
1926         if (err)
1927                 global_ref--;
1928         mutex_unlock(&spu_lock);
1929         return err;
1930 
1931 out_free_cwq_table:
1932         kfree(cpu_to_cwq);
1933         cpu_to_cwq = NULL;
1934 
1935 out_queue_cache_destroy:
1936         queue_cache_destroy();
1937 
1938 out_hvapi_release:
1939         n2_spu_hvapi_unregister();
1940         goto out;
1941 }
1942 
1943 static void release_global_resources(void)
1944 {
1945         mutex_lock(&spu_lock);
1946         if (!--global_ref) {
1947                 kfree(cpu_to_cwq);
1948                 cpu_to_cwq = NULL;
1949 
1950                 kfree(cpu_to_mau);
1951                 cpu_to_mau = NULL;
1952 
1953                 queue_cache_destroy();
1954                 n2_spu_hvapi_unregister();
1955         }
1956         mutex_unlock(&spu_lock);
1957 }
1958 
1959 static struct n2_crypto *alloc_n2cp(void)
1960 {
1961         struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1962 
1963         if (np)
1964                 INIT_LIST_HEAD(&np->cwq_list);
1965 
1966         return np;
1967 }
1968 
1969 static void free_n2cp(struct n2_crypto *np)
1970 {
1971         kfree(np->cwq_info.ino_table);
1972         np->cwq_info.ino_table = NULL;
1973 
1974         kfree(np);
1975 }
1976 
1977 static void n2_spu_driver_version(void)
1978 {
1979         static int n2_spu_version_printed;
1980 
1981         if (n2_spu_version_printed++ == 0)
1982                 pr_info("%s", version);
1983 }
1984 
1985 static int n2_crypto_probe(struct platform_device *dev)
1986 {
1987         struct mdesc_handle *mdesc;
1988         struct n2_crypto *np;
1989         int err;
1990 
1991         n2_spu_driver_version();
1992 
1993         pr_info("Found N2CP at %pOF\n", dev->dev.of_node);
1994 
1995         np = alloc_n2cp();
1996         if (!np) {
1997                 dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n",
1998                         dev->dev.of_node);
1999                 return -ENOMEM;
2000         }
2001 
2002         err = grab_global_resources();
2003         if (err) {
2004                 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2005                         dev->dev.of_node);
2006                 goto out_free_n2cp;
2007         }
2008 
2009         mdesc = mdesc_grab();
2010 
2011         if (!mdesc) {
2012                 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2013                         dev->dev.of_node);
2014                 err = -ENODEV;
2015                 goto out_free_global;
2016         }
2017         err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
2018         if (err) {
2019                 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2020                         dev->dev.of_node);
2021                 mdesc_release(mdesc);
2022                 goto out_free_global;
2023         }
2024 
2025         err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
2026                              "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
2027                              cpu_to_cwq);
2028         mdesc_release(mdesc);
2029 
2030         if (err) {
2031                 dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n",
2032                         dev->dev.of_node);
2033                 goto out_free_global;
2034         }
2035 
2036         err = n2_register_algs();
2037         if (err) {
2038                 dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n",
2039                         dev->dev.of_node);
2040                 goto out_free_spu_list;
2041         }
2042 
2043         dev_set_drvdata(&dev->dev, np);
2044 
2045         return 0;
2046 
2047 out_free_spu_list:
2048         spu_list_destroy(&np->cwq_list);
2049 
2050 out_free_global:
2051         release_global_resources();
2052 
2053 out_free_n2cp:
2054         free_n2cp(np);
2055 
2056         return err;
2057 }
2058 
2059 static int n2_crypto_remove(struct platform_device *dev)
2060 {
2061         struct n2_crypto *np = dev_get_drvdata(&dev->dev);
2062 
2063         n2_unregister_algs();
2064 
2065         spu_list_destroy(&np->cwq_list);
2066 
2067         release_global_resources();
2068 
2069         free_n2cp(np);
2070 
2071         return 0;
2072 }
2073 
2074 static struct n2_mau *alloc_ncp(void)
2075 {
2076         struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2077 
2078         if (mp)
2079                 INIT_LIST_HEAD(&mp->mau_list);
2080 
2081         return mp;
2082 }
2083 
2084 static void free_ncp(struct n2_mau *mp)
2085 {
2086         kfree(mp->mau_info.ino_table);
2087         mp->mau_info.ino_table = NULL;
2088 
2089         kfree(mp);
2090 }
2091 
2092 static int n2_mau_probe(struct platform_device *dev)
2093 {
2094         struct mdesc_handle *mdesc;
2095         struct n2_mau *mp;
2096         int err;
2097 
2098         n2_spu_driver_version();
2099 
2100         pr_info("Found NCP at %pOF\n", dev->dev.of_node);
2101 
2102         mp = alloc_ncp();
2103         if (!mp) {
2104                 dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n",
2105                         dev->dev.of_node);
2106                 return -ENOMEM;
2107         }
2108 
2109         err = grab_global_resources();
2110         if (err) {
2111                 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2112                         dev->dev.of_node);
2113                 goto out_free_ncp;
2114         }
2115 
2116         mdesc = mdesc_grab();
2117 
2118         if (!mdesc) {
2119                 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2120                         dev->dev.of_node);
2121                 err = -ENODEV;
2122                 goto out_free_global;
2123         }
2124 
2125         err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2126         if (err) {
2127                 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2128                         dev->dev.of_node);
2129                 mdesc_release(mdesc);
2130                 goto out_free_global;
2131         }
2132 
2133         err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2134                              "mau", HV_NCS_QTYPE_MAU, mau_intr,
2135                              cpu_to_mau);
2136         mdesc_release(mdesc);
2137 
2138         if (err) {
2139                 dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n",
2140                         dev->dev.of_node);
2141                 goto out_free_global;
2142         }
2143 
2144         dev_set_drvdata(&dev->dev, mp);
2145 
2146         return 0;
2147 
2148 out_free_global:
2149         release_global_resources();
2150 
2151 out_free_ncp:
2152         free_ncp(mp);
2153 
2154         return err;
2155 }
2156 
2157 static int n2_mau_remove(struct platform_device *dev)
2158 {
2159         struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2160 
2161         spu_list_destroy(&mp->mau_list);
2162 
2163         release_global_resources();
2164 
2165         free_ncp(mp);
2166 
2167         return 0;
2168 }
2169 
2170 static const struct of_device_id n2_crypto_match[] = {
2171         {
2172                 .name = "n2cp",
2173                 .compatible = "SUNW,n2-cwq",
2174         },
2175         {
2176                 .name = "n2cp",
2177                 .compatible = "SUNW,vf-cwq",
2178         },
2179         {
2180                 .name = "n2cp",
2181                 .compatible = "SUNW,kt-cwq",
2182         },
2183         {},
2184 };
2185 
2186 MODULE_DEVICE_TABLE(of, n2_crypto_match);
2187 
2188 static struct platform_driver n2_crypto_driver = {
2189         .driver = {
2190                 .name           =       "n2cp",
2191                 .of_match_table =       n2_crypto_match,
2192         },
2193         .probe          =       n2_crypto_probe,
2194         .remove         =       n2_crypto_remove,
2195 };
2196 
2197 static const struct of_device_id n2_mau_match[] = {
2198         {
2199                 .name = "ncp",
2200                 .compatible = "SUNW,n2-mau",
2201         },
2202         {
2203                 .name = "ncp",
2204                 .compatible = "SUNW,vf-mau",
2205         },
2206         {
2207                 .name = "ncp",
2208                 .compatible = "SUNW,kt-mau",
2209         },
2210         {},
2211 };
2212 
2213 MODULE_DEVICE_TABLE(of, n2_mau_match);
2214 
2215 static struct platform_driver n2_mau_driver = {
2216         .driver = {
2217                 .name           =       "ncp",
2218                 .of_match_table =       n2_mau_match,
2219         },
2220         .probe          =       n2_mau_probe,
2221         .remove         =       n2_mau_remove,
2222 };
2223 
2224 static struct platform_driver * const drivers[] = {
2225         &n2_crypto_driver,
2226         &n2_mau_driver,
2227 };
2228 
2229 static int __init n2_init(void)
2230 {
2231         return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2232 }
2233 
2234 static void __exit n2_exit(void)
2235 {
2236         platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2237 }
2238 
2239 module_init(n2_init);
2240 module_exit(n2_exit);

/* [<][>][^][v][top][bottom][index][help] */