root/drivers/crypto/qce/common.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. qce_read
  2. qce_write
  3. qce_write_array
  4. qce_clear_array
  5. qce_encr_cfg
  6. qce_auth_cfg
  7. qce_config_reg
  8. qce_cpu_to_be32p_array
  9. qce_xts_swapiv
  10. qce_xtskey
  11. qce_setup_config
  12. qce_crypto_go
  13. qce_setup_regs_ahash
  14. qce_setup_regs_ablkcipher
  15. qce_start
  16. qce_check_status
  17. qce_get_version

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * Copyright (c) 2012-2014, The Linux Foundation. All rights reserved.
   4  */
   5 
   6 #include <linux/err.h>
   7 #include <linux/interrupt.h>
   8 #include <linux/types.h>
   9 #include <crypto/scatterwalk.h>
  10 #include <crypto/sha.h>
  11 
  12 #include "cipher.h"
  13 #include "common.h"
  14 #include "core.h"
  15 #include "regs-v5.h"
  16 #include "sha.h"
  17 
  18 #define QCE_SECTOR_SIZE         512
  19 
  20 static inline u32 qce_read(struct qce_device *qce, u32 offset)
  21 {
  22         return readl(qce->base + offset);
  23 }
  24 
  25 static inline void qce_write(struct qce_device *qce, u32 offset, u32 val)
  26 {
  27         writel(val, qce->base + offset);
  28 }
  29 
  30 static inline void qce_write_array(struct qce_device *qce, u32 offset,
  31                                    const u32 *val, unsigned int len)
  32 {
  33         int i;
  34 
  35         for (i = 0; i < len; i++)
  36                 qce_write(qce, offset + i * sizeof(u32), val[i]);
  37 }
  38 
  39 static inline void
  40 qce_clear_array(struct qce_device *qce, u32 offset, unsigned int len)
  41 {
  42         int i;
  43 
  44         for (i = 0; i < len; i++)
  45                 qce_write(qce, offset + i * sizeof(u32), 0);
  46 }
  47 
  48 static u32 qce_encr_cfg(unsigned long flags, u32 aes_key_size)
  49 {
  50         u32 cfg = 0;
  51 
  52         if (IS_AES(flags)) {
  53                 if (aes_key_size == AES_KEYSIZE_128)
  54                         cfg |= ENCR_KEY_SZ_AES128 << ENCR_KEY_SZ_SHIFT;
  55                 else if (aes_key_size == AES_KEYSIZE_256)
  56                         cfg |= ENCR_KEY_SZ_AES256 << ENCR_KEY_SZ_SHIFT;
  57         }
  58 
  59         if (IS_AES(flags))
  60                 cfg |= ENCR_ALG_AES << ENCR_ALG_SHIFT;
  61         else if (IS_DES(flags) || IS_3DES(flags))
  62                 cfg |= ENCR_ALG_DES << ENCR_ALG_SHIFT;
  63 
  64         if (IS_DES(flags))
  65                 cfg |= ENCR_KEY_SZ_DES << ENCR_KEY_SZ_SHIFT;
  66 
  67         if (IS_3DES(flags))
  68                 cfg |= ENCR_KEY_SZ_3DES << ENCR_KEY_SZ_SHIFT;
  69 
  70         switch (flags & QCE_MODE_MASK) {
  71         case QCE_MODE_ECB:
  72                 cfg |= ENCR_MODE_ECB << ENCR_MODE_SHIFT;
  73                 break;
  74         case QCE_MODE_CBC:
  75                 cfg |= ENCR_MODE_CBC << ENCR_MODE_SHIFT;
  76                 break;
  77         case QCE_MODE_CTR:
  78                 cfg |= ENCR_MODE_CTR << ENCR_MODE_SHIFT;
  79                 break;
  80         case QCE_MODE_XTS:
  81                 cfg |= ENCR_MODE_XTS << ENCR_MODE_SHIFT;
  82                 break;
  83         case QCE_MODE_CCM:
  84                 cfg |= ENCR_MODE_CCM << ENCR_MODE_SHIFT;
  85                 cfg |= LAST_CCM_XFR << LAST_CCM_SHIFT;
  86                 break;
  87         default:
  88                 return ~0;
  89         }
  90 
  91         return cfg;
  92 }
  93 
  94 static u32 qce_auth_cfg(unsigned long flags, u32 key_size)
  95 {
  96         u32 cfg = 0;
  97 
  98         if (IS_AES(flags) && (IS_CCM(flags) || IS_CMAC(flags)))
  99                 cfg |= AUTH_ALG_AES << AUTH_ALG_SHIFT;
 100         else
 101                 cfg |= AUTH_ALG_SHA << AUTH_ALG_SHIFT;
 102 
 103         if (IS_CCM(flags) || IS_CMAC(flags)) {
 104                 if (key_size == AES_KEYSIZE_128)
 105                         cfg |= AUTH_KEY_SZ_AES128 << AUTH_KEY_SIZE_SHIFT;
 106                 else if (key_size == AES_KEYSIZE_256)
 107                         cfg |= AUTH_KEY_SZ_AES256 << AUTH_KEY_SIZE_SHIFT;
 108         }
 109 
 110         if (IS_SHA1(flags) || IS_SHA1_HMAC(flags))
 111                 cfg |= AUTH_SIZE_SHA1 << AUTH_SIZE_SHIFT;
 112         else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags))
 113                 cfg |= AUTH_SIZE_SHA256 << AUTH_SIZE_SHIFT;
 114         else if (IS_CMAC(flags))
 115                 cfg |= AUTH_SIZE_ENUM_16_BYTES << AUTH_SIZE_SHIFT;
 116 
 117         if (IS_SHA1(flags) || IS_SHA256(flags))
 118                 cfg |= AUTH_MODE_HASH << AUTH_MODE_SHIFT;
 119         else if (IS_SHA1_HMAC(flags) || IS_SHA256_HMAC(flags) ||
 120                  IS_CBC(flags) || IS_CTR(flags))
 121                 cfg |= AUTH_MODE_HMAC << AUTH_MODE_SHIFT;
 122         else if (IS_AES(flags) && IS_CCM(flags))
 123                 cfg |= AUTH_MODE_CCM << AUTH_MODE_SHIFT;
 124         else if (IS_AES(flags) && IS_CMAC(flags))
 125                 cfg |= AUTH_MODE_CMAC << AUTH_MODE_SHIFT;
 126 
 127         if (IS_SHA(flags) || IS_SHA_HMAC(flags))
 128                 cfg |= AUTH_POS_BEFORE << AUTH_POS_SHIFT;
 129 
 130         if (IS_CCM(flags))
 131                 cfg |= QCE_MAX_NONCE_WORDS << AUTH_NONCE_NUM_WORDS_SHIFT;
 132 
 133         if (IS_CBC(flags) || IS_CTR(flags) || IS_CCM(flags) ||
 134             IS_CMAC(flags))
 135                 cfg |= BIT(AUTH_LAST_SHIFT) | BIT(AUTH_FIRST_SHIFT);
 136 
 137         return cfg;
 138 }
 139 
 140 static u32 qce_config_reg(struct qce_device *qce, int little)
 141 {
 142         u32 beats = (qce->burst_size >> 3) - 1;
 143         u32 pipe_pair = qce->pipe_pair_id;
 144         u32 config;
 145 
 146         config = (beats << REQ_SIZE_SHIFT) & REQ_SIZE_MASK;
 147         config |= BIT(MASK_DOUT_INTR_SHIFT) | BIT(MASK_DIN_INTR_SHIFT) |
 148                   BIT(MASK_OP_DONE_INTR_SHIFT) | BIT(MASK_ERR_INTR_SHIFT);
 149         config |= (pipe_pair << PIPE_SET_SELECT_SHIFT) & PIPE_SET_SELECT_MASK;
 150         config &= ~HIGH_SPD_EN_N_SHIFT;
 151 
 152         if (little)
 153                 config |= BIT(LITTLE_ENDIAN_MODE_SHIFT);
 154 
 155         return config;
 156 }
 157 
 158 void qce_cpu_to_be32p_array(__be32 *dst, const u8 *src, unsigned int len)
 159 {
 160         __be32 *d = dst;
 161         const u8 *s = src;
 162         unsigned int n;
 163 
 164         n = len / sizeof(u32);
 165         for (; n > 0; n--) {
 166                 *d = cpu_to_be32p((const __u32 *) s);
 167                 s += sizeof(__u32);
 168                 d++;
 169         }
 170 }
 171 
 172 static void qce_xts_swapiv(__be32 *dst, const u8 *src, unsigned int ivsize)
 173 {
 174         u8 swap[QCE_AES_IV_LENGTH];
 175         u32 i, j;
 176 
 177         if (ivsize > QCE_AES_IV_LENGTH)
 178                 return;
 179 
 180         memset(swap, 0, QCE_AES_IV_LENGTH);
 181 
 182         for (i = (QCE_AES_IV_LENGTH - ivsize), j = ivsize - 1;
 183              i < QCE_AES_IV_LENGTH; i++, j--)
 184                 swap[i] = src[j];
 185 
 186         qce_cpu_to_be32p_array(dst, swap, QCE_AES_IV_LENGTH);
 187 }
 188 
 189 static void qce_xtskey(struct qce_device *qce, const u8 *enckey,
 190                        unsigned int enckeylen, unsigned int cryptlen)
 191 {
 192         u32 xtskey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(u32)] = {0};
 193         unsigned int xtsklen = enckeylen / (2 * sizeof(u32));
 194         unsigned int xtsdusize;
 195 
 196         qce_cpu_to_be32p_array((__be32 *)xtskey, enckey + enckeylen / 2,
 197                                enckeylen / 2);
 198         qce_write_array(qce, REG_ENCR_XTS_KEY0, xtskey, xtsklen);
 199 
 200         /* xts du size 512B */
 201         xtsdusize = min_t(u32, QCE_SECTOR_SIZE, cryptlen);
 202         qce_write(qce, REG_ENCR_XTS_DU_SIZE, xtsdusize);
 203 }
 204 
 205 static void qce_setup_config(struct qce_device *qce)
 206 {
 207         u32 config;
 208 
 209         /* get big endianness */
 210         config = qce_config_reg(qce, 0);
 211 
 212         /* clear status */
 213         qce_write(qce, REG_STATUS, 0);
 214         qce_write(qce, REG_CONFIG, config);
 215 }
 216 
 217 static inline void qce_crypto_go(struct qce_device *qce)
 218 {
 219         qce_write(qce, REG_GOPROC, BIT(GO_SHIFT) | BIT(RESULTS_DUMP_SHIFT));
 220 }
 221 
 222 static int qce_setup_regs_ahash(struct crypto_async_request *async_req,
 223                                 u32 totallen, u32 offset)
 224 {
 225         struct ahash_request *req = ahash_request_cast(async_req);
 226         struct crypto_ahash *ahash = __crypto_ahash_cast(async_req->tfm);
 227         struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
 228         struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
 229         struct qce_device *qce = tmpl->qce;
 230         unsigned int digestsize = crypto_ahash_digestsize(ahash);
 231         unsigned int blocksize = crypto_tfm_alg_blocksize(async_req->tfm);
 232         __be32 auth[SHA256_DIGEST_SIZE / sizeof(__be32)] = {0};
 233         __be32 mackey[QCE_SHA_HMAC_KEY_SIZE / sizeof(__be32)] = {0};
 234         u32 auth_cfg = 0, config;
 235         unsigned int iv_words;
 236 
 237         /* if not the last, the size has to be on the block boundary */
 238         if (!rctx->last_blk && req->nbytes % blocksize)
 239                 return -EINVAL;
 240 
 241         qce_setup_config(qce);
 242 
 243         if (IS_CMAC(rctx->flags)) {
 244                 qce_write(qce, REG_AUTH_SEG_CFG, 0);
 245                 qce_write(qce, REG_ENCR_SEG_CFG, 0);
 246                 qce_write(qce, REG_ENCR_SEG_SIZE, 0);
 247                 qce_clear_array(qce, REG_AUTH_IV0, 16);
 248                 qce_clear_array(qce, REG_AUTH_KEY0, 16);
 249                 qce_clear_array(qce, REG_AUTH_BYTECNT0, 4);
 250 
 251                 auth_cfg = qce_auth_cfg(rctx->flags, rctx->authklen);
 252         }
 253 
 254         if (IS_SHA_HMAC(rctx->flags) || IS_CMAC(rctx->flags)) {
 255                 u32 authkey_words = rctx->authklen / sizeof(u32);
 256 
 257                 qce_cpu_to_be32p_array(mackey, rctx->authkey, rctx->authklen);
 258                 qce_write_array(qce, REG_AUTH_KEY0, (u32 *)mackey,
 259                                 authkey_words);
 260         }
 261 
 262         if (IS_CMAC(rctx->flags))
 263                 goto go_proc;
 264 
 265         if (rctx->first_blk)
 266                 memcpy(auth, rctx->digest, digestsize);
 267         else
 268                 qce_cpu_to_be32p_array(auth, rctx->digest, digestsize);
 269 
 270         iv_words = (IS_SHA1(rctx->flags) || IS_SHA1_HMAC(rctx->flags)) ? 5 : 8;
 271         qce_write_array(qce, REG_AUTH_IV0, (u32 *)auth, iv_words);
 272 
 273         if (rctx->first_blk)
 274                 qce_clear_array(qce, REG_AUTH_BYTECNT0, 4);
 275         else
 276                 qce_write_array(qce, REG_AUTH_BYTECNT0,
 277                                 (u32 *)rctx->byte_count, 2);
 278 
 279         auth_cfg = qce_auth_cfg(rctx->flags, 0);
 280 
 281         if (rctx->last_blk)
 282                 auth_cfg |= BIT(AUTH_LAST_SHIFT);
 283         else
 284                 auth_cfg &= ~BIT(AUTH_LAST_SHIFT);
 285 
 286         if (rctx->first_blk)
 287                 auth_cfg |= BIT(AUTH_FIRST_SHIFT);
 288         else
 289                 auth_cfg &= ~BIT(AUTH_FIRST_SHIFT);
 290 
 291 go_proc:
 292         qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg);
 293         qce_write(qce, REG_AUTH_SEG_SIZE, req->nbytes);
 294         qce_write(qce, REG_AUTH_SEG_START, 0);
 295         qce_write(qce, REG_ENCR_SEG_CFG, 0);
 296         qce_write(qce, REG_SEG_SIZE, req->nbytes);
 297 
 298         /* get little endianness */
 299         config = qce_config_reg(qce, 1);
 300         qce_write(qce, REG_CONFIG, config);
 301 
 302         qce_crypto_go(qce);
 303 
 304         return 0;
 305 }
 306 
 307 static int qce_setup_regs_ablkcipher(struct crypto_async_request *async_req,
 308                                      u32 totallen, u32 offset)
 309 {
 310         struct ablkcipher_request *req = ablkcipher_request_cast(async_req);
 311         struct qce_cipher_reqctx *rctx = ablkcipher_request_ctx(req);
 312         struct qce_cipher_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
 313         struct qce_alg_template *tmpl = to_cipher_tmpl(async_req->tfm);
 314         struct qce_device *qce = tmpl->qce;
 315         __be32 enckey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(__be32)] = {0};
 316         __be32 enciv[QCE_MAX_IV_SIZE / sizeof(__be32)] = {0};
 317         unsigned int enckey_words, enciv_words;
 318         unsigned int keylen;
 319         u32 encr_cfg = 0, auth_cfg = 0, config;
 320         unsigned int ivsize = rctx->ivsize;
 321         unsigned long flags = rctx->flags;
 322 
 323         qce_setup_config(qce);
 324 
 325         if (IS_XTS(flags))
 326                 keylen = ctx->enc_keylen / 2;
 327         else
 328                 keylen = ctx->enc_keylen;
 329 
 330         qce_cpu_to_be32p_array(enckey, ctx->enc_key, keylen);
 331         enckey_words = keylen / sizeof(u32);
 332 
 333         qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg);
 334 
 335         encr_cfg = qce_encr_cfg(flags, keylen);
 336 
 337         if (IS_DES(flags)) {
 338                 enciv_words = 2;
 339                 enckey_words = 2;
 340         } else if (IS_3DES(flags)) {
 341                 enciv_words = 2;
 342                 enckey_words = 6;
 343         } else if (IS_AES(flags)) {
 344                 if (IS_XTS(flags))
 345                         qce_xtskey(qce, ctx->enc_key, ctx->enc_keylen,
 346                                    rctx->cryptlen);
 347                 enciv_words = 4;
 348         } else {
 349                 return -EINVAL;
 350         }
 351 
 352         qce_write_array(qce, REG_ENCR_KEY0, (u32 *)enckey, enckey_words);
 353 
 354         if (!IS_ECB(flags)) {
 355                 if (IS_XTS(flags))
 356                         qce_xts_swapiv(enciv, rctx->iv, ivsize);
 357                 else
 358                         qce_cpu_to_be32p_array(enciv, rctx->iv, ivsize);
 359 
 360                 qce_write_array(qce, REG_CNTR0_IV0, (u32 *)enciv, enciv_words);
 361         }
 362 
 363         if (IS_ENCRYPT(flags))
 364                 encr_cfg |= BIT(ENCODE_SHIFT);
 365 
 366         qce_write(qce, REG_ENCR_SEG_CFG, encr_cfg);
 367         qce_write(qce, REG_ENCR_SEG_SIZE, rctx->cryptlen);
 368         qce_write(qce, REG_ENCR_SEG_START, offset & 0xffff);
 369 
 370         if (IS_CTR(flags)) {
 371                 qce_write(qce, REG_CNTR_MASK, ~0);
 372                 qce_write(qce, REG_CNTR_MASK0, ~0);
 373                 qce_write(qce, REG_CNTR_MASK1, ~0);
 374                 qce_write(qce, REG_CNTR_MASK2, ~0);
 375         }
 376 
 377         qce_write(qce, REG_SEG_SIZE, totallen);
 378 
 379         /* get little endianness */
 380         config = qce_config_reg(qce, 1);
 381         qce_write(qce, REG_CONFIG, config);
 382 
 383         qce_crypto_go(qce);
 384 
 385         return 0;
 386 }
 387 
 388 int qce_start(struct crypto_async_request *async_req, u32 type, u32 totallen,
 389               u32 offset)
 390 {
 391         switch (type) {
 392         case CRYPTO_ALG_TYPE_ABLKCIPHER:
 393                 return qce_setup_regs_ablkcipher(async_req, totallen, offset);
 394         case CRYPTO_ALG_TYPE_AHASH:
 395                 return qce_setup_regs_ahash(async_req, totallen, offset);
 396         default:
 397                 return -EINVAL;
 398         }
 399 }
 400 
 401 #define STATUS_ERRORS   \
 402                 (BIT(SW_ERR_SHIFT) | BIT(AXI_ERR_SHIFT) | BIT(HSD_ERR_SHIFT))
 403 
 404 int qce_check_status(struct qce_device *qce, u32 *status)
 405 {
 406         int ret = 0;
 407 
 408         *status = qce_read(qce, REG_STATUS);
 409 
 410         /*
 411          * Don't use result dump status. The operation may not be complete.
 412          * Instead, use the status we just read from device. In case, we need to
 413          * use result_status from result dump the result_status needs to be byte
 414          * swapped, since we set the device to little endian.
 415          */
 416         if (*status & STATUS_ERRORS || !(*status & BIT(OPERATION_DONE_SHIFT)))
 417                 ret = -ENXIO;
 418 
 419         return ret;
 420 }
 421 
 422 void qce_get_version(struct qce_device *qce, u32 *major, u32 *minor, u32 *step)
 423 {
 424         u32 val;
 425 
 426         val = qce_read(qce, REG_VERSION);
 427         *major = (val & CORE_MAJOR_REV_MASK) >> CORE_MAJOR_REV_SHIFT;
 428         *minor = (val & CORE_MINOR_REV_MASK) >> CORE_MINOR_REV_SHIFT;
 429         *step = (val & CORE_STEP_REV_MASK) >> CORE_STEP_REV_SHIFT;
 430 }

/* [<][>][^][v][top][bottom][index][help] */