root/drivers/crypto/qce/sha.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. qce_ahash_done
  2. qce_ahash_async_req_handle
  3. qce_ahash_init
  4. qce_ahash_export
  5. qce_import_common
  6. qce_ahash_import
  7. qce_ahash_update
  8. qce_ahash_final
  9. qce_ahash_digest
  10. qce_ahash_hmac_setkey
  11. qce_ahash_cra_init
  12. qce_ahash_register_one
  13. qce_ahash_unregister
  14. qce_ahash_register

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * Copyright (c) 2010-2014, The Linux Foundation. All rights reserved.
   4  */
   5 
   6 #include <linux/device.h>
   7 #include <linux/interrupt.h>
   8 #include <crypto/internal/hash.h>
   9 
  10 #include "common.h"
  11 #include "core.h"
  12 #include "sha.h"
  13 
  14 /* crypto hw padding constant for first operation */
  15 #define SHA_PADDING             64
  16 #define SHA_PADDING_MASK        (SHA_PADDING - 1)
  17 
  18 static LIST_HEAD(ahash_algs);
  19 
  20 static const u32 std_iv_sha1[SHA256_DIGEST_SIZE / sizeof(u32)] = {
  21         SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4, 0, 0, 0
  22 };
  23 
  24 static const u32 std_iv_sha256[SHA256_DIGEST_SIZE / sizeof(u32)] = {
  25         SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
  26         SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7
  27 };
  28 
  29 static void qce_ahash_done(void *data)
  30 {
  31         struct crypto_async_request *async_req = data;
  32         struct ahash_request *req = ahash_request_cast(async_req);
  33         struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  34         struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
  35         struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
  36         struct qce_device *qce = tmpl->qce;
  37         struct qce_result_dump *result = qce->dma.result_buf;
  38         unsigned int digestsize = crypto_ahash_digestsize(ahash);
  39         int error;
  40         u32 status;
  41 
  42         error = qce_dma_terminate_all(&qce->dma);
  43         if (error)
  44                 dev_dbg(qce->dev, "ahash dma termination error (%d)\n", error);
  45 
  46         dma_unmap_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
  47         dma_unmap_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
  48 
  49         memcpy(rctx->digest, result->auth_iv, digestsize);
  50         if (req->result)
  51                 memcpy(req->result, result->auth_iv, digestsize);
  52 
  53         rctx->byte_count[0] = cpu_to_be32(result->auth_byte_count[0]);
  54         rctx->byte_count[1] = cpu_to_be32(result->auth_byte_count[1]);
  55 
  56         error = qce_check_status(qce, &status);
  57         if (error < 0)
  58                 dev_dbg(qce->dev, "ahash operation error (%x)\n", status);
  59 
  60         req->src = rctx->src_orig;
  61         req->nbytes = rctx->nbytes_orig;
  62         rctx->last_blk = false;
  63         rctx->first_blk = false;
  64 
  65         qce->async_req_done(tmpl->qce, error);
  66 }
  67 
  68 static int qce_ahash_async_req_handle(struct crypto_async_request *async_req)
  69 {
  70         struct ahash_request *req = ahash_request_cast(async_req);
  71         struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
  72         struct qce_sha_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
  73         struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
  74         struct qce_device *qce = tmpl->qce;
  75         unsigned long flags = rctx->flags;
  76         int ret;
  77 
  78         if (IS_SHA_HMAC(flags)) {
  79                 rctx->authkey = ctx->authkey;
  80                 rctx->authklen = QCE_SHA_HMAC_KEY_SIZE;
  81         } else if (IS_CMAC(flags)) {
  82                 rctx->authkey = ctx->authkey;
  83                 rctx->authklen = AES_KEYSIZE_128;
  84         }
  85 
  86         rctx->src_nents = sg_nents_for_len(req->src, req->nbytes);
  87         if (rctx->src_nents < 0) {
  88                 dev_err(qce->dev, "Invalid numbers of src SG.\n");
  89                 return rctx->src_nents;
  90         }
  91 
  92         ret = dma_map_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
  93         if (ret < 0)
  94                 return ret;
  95 
  96         sg_init_one(&rctx->result_sg, qce->dma.result_buf, QCE_RESULT_BUF_SZ);
  97 
  98         ret = dma_map_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
  99         if (ret < 0)
 100                 goto error_unmap_src;
 101 
 102         ret = qce_dma_prep_sgs(&qce->dma, req->src, rctx->src_nents,
 103                                &rctx->result_sg, 1, qce_ahash_done, async_req);
 104         if (ret)
 105                 goto error_unmap_dst;
 106 
 107         qce_dma_issue_pending(&qce->dma);
 108 
 109         ret = qce_start(async_req, tmpl->crypto_alg_type, 0, 0);
 110         if (ret)
 111                 goto error_terminate;
 112 
 113         return 0;
 114 
 115 error_terminate:
 116         qce_dma_terminate_all(&qce->dma);
 117 error_unmap_dst:
 118         dma_unmap_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
 119 error_unmap_src:
 120         dma_unmap_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
 121         return ret;
 122 }
 123 
 124 static int qce_ahash_init(struct ahash_request *req)
 125 {
 126         struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
 127         struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
 128         const u32 *std_iv = tmpl->std_iv;
 129 
 130         memset(rctx, 0, sizeof(*rctx));
 131         rctx->first_blk = true;
 132         rctx->last_blk = false;
 133         rctx->flags = tmpl->alg_flags;
 134         memcpy(rctx->digest, std_iv, sizeof(rctx->digest));
 135 
 136         return 0;
 137 }
 138 
 139 static int qce_ahash_export(struct ahash_request *req, void *out)
 140 {
 141         struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
 142         struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
 143         unsigned long flags = rctx->flags;
 144         unsigned int digestsize = crypto_ahash_digestsize(ahash);
 145         unsigned int blocksize =
 146                         crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
 147 
 148         if (IS_SHA1(flags) || IS_SHA1_HMAC(flags)) {
 149                 struct sha1_state *out_state = out;
 150 
 151                 out_state->count = rctx->count;
 152                 qce_cpu_to_be32p_array((__be32 *)out_state->state,
 153                                        rctx->digest, digestsize);
 154                 memcpy(out_state->buffer, rctx->buf, blocksize);
 155         } else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags)) {
 156                 struct sha256_state *out_state = out;
 157 
 158                 out_state->count = rctx->count;
 159                 qce_cpu_to_be32p_array((__be32 *)out_state->state,
 160                                        rctx->digest, digestsize);
 161                 memcpy(out_state->buf, rctx->buf, blocksize);
 162         } else {
 163                 return -EINVAL;
 164         }
 165 
 166         return 0;
 167 }
 168 
 169 static int qce_import_common(struct ahash_request *req, u64 in_count,
 170                              const u32 *state, const u8 *buffer, bool hmac)
 171 {
 172         struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
 173         struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
 174         unsigned int digestsize = crypto_ahash_digestsize(ahash);
 175         unsigned int blocksize;
 176         u64 count = in_count;
 177 
 178         blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
 179         rctx->count = in_count;
 180         memcpy(rctx->buf, buffer, blocksize);
 181 
 182         if (in_count <= blocksize) {
 183                 rctx->first_blk = 1;
 184         } else {
 185                 rctx->first_blk = 0;
 186                 /*
 187                  * For HMAC, there is a hardware padding done when first block
 188                  * is set. Therefore the byte_count must be incremened by 64
 189                  * after the first block operation.
 190                  */
 191                 if (hmac)
 192                         count += SHA_PADDING;
 193         }
 194 
 195         rctx->byte_count[0] = (__force __be32)(count & ~SHA_PADDING_MASK);
 196         rctx->byte_count[1] = (__force __be32)(count >> 32);
 197         qce_cpu_to_be32p_array((__be32 *)rctx->digest, (const u8 *)state,
 198                                digestsize);
 199         rctx->buflen = (unsigned int)(in_count & (blocksize - 1));
 200 
 201         return 0;
 202 }
 203 
 204 static int qce_ahash_import(struct ahash_request *req, const void *in)
 205 {
 206         struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
 207         unsigned long flags = rctx->flags;
 208         bool hmac = IS_SHA_HMAC(flags);
 209         int ret = -EINVAL;
 210 
 211         if (IS_SHA1(flags) || IS_SHA1_HMAC(flags)) {
 212                 const struct sha1_state *state = in;
 213 
 214                 ret = qce_import_common(req, state->count, state->state,
 215                                         state->buffer, hmac);
 216         } else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags)) {
 217                 const struct sha256_state *state = in;
 218 
 219                 ret = qce_import_common(req, state->count, state->state,
 220                                         state->buf, hmac);
 221         }
 222 
 223         return ret;
 224 }
 225 
 226 static int qce_ahash_update(struct ahash_request *req)
 227 {
 228         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 229         struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
 230         struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
 231         struct qce_device *qce = tmpl->qce;
 232         struct scatterlist *sg_last, *sg;
 233         unsigned int total, len;
 234         unsigned int hash_later;
 235         unsigned int nbytes;
 236         unsigned int blocksize;
 237 
 238         blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
 239         rctx->count += req->nbytes;
 240 
 241         /* check for buffer from previous updates and append it */
 242         total = req->nbytes + rctx->buflen;
 243 
 244         if (total <= blocksize) {
 245                 scatterwalk_map_and_copy(rctx->buf + rctx->buflen, req->src,
 246                                          0, req->nbytes, 0);
 247                 rctx->buflen += req->nbytes;
 248                 return 0;
 249         }
 250 
 251         /* save the original req structure fields */
 252         rctx->src_orig = req->src;
 253         rctx->nbytes_orig = req->nbytes;
 254 
 255         /*
 256          * if we have data from previous update copy them on buffer. The old
 257          * data will be combined with current request bytes.
 258          */
 259         if (rctx->buflen)
 260                 memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
 261 
 262         /* calculate how many bytes will be hashed later */
 263         hash_later = total % blocksize;
 264         if (hash_later) {
 265                 unsigned int src_offset = req->nbytes - hash_later;
 266                 scatterwalk_map_and_copy(rctx->buf, req->src, src_offset,
 267                                          hash_later, 0);
 268         }
 269 
 270         /* here nbytes is multiple of blocksize */
 271         nbytes = total - hash_later;
 272 
 273         len = rctx->buflen;
 274         sg = sg_last = req->src;
 275 
 276         while (len < nbytes && sg) {
 277                 if (len + sg_dma_len(sg) > nbytes)
 278                         break;
 279                 len += sg_dma_len(sg);
 280                 sg_last = sg;
 281                 sg = sg_next(sg);
 282         }
 283 
 284         if (!sg_last)
 285                 return -EINVAL;
 286 
 287         sg_mark_end(sg_last);
 288 
 289         if (rctx->buflen) {
 290                 sg_init_table(rctx->sg, 2);
 291                 sg_set_buf(rctx->sg, rctx->tmpbuf, rctx->buflen);
 292                 sg_chain(rctx->sg, 2, req->src);
 293                 req->src = rctx->sg;
 294         }
 295 
 296         req->nbytes = nbytes;
 297         rctx->buflen = hash_later;
 298 
 299         return qce->async_req_enqueue(tmpl->qce, &req->base);
 300 }
 301 
 302 static int qce_ahash_final(struct ahash_request *req)
 303 {
 304         struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
 305         struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
 306         struct qce_device *qce = tmpl->qce;
 307 
 308         if (!rctx->buflen)
 309                 return 0;
 310 
 311         rctx->last_blk = true;
 312 
 313         rctx->src_orig = req->src;
 314         rctx->nbytes_orig = req->nbytes;
 315 
 316         memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
 317         sg_init_one(rctx->sg, rctx->tmpbuf, rctx->buflen);
 318 
 319         req->src = rctx->sg;
 320         req->nbytes = rctx->buflen;
 321 
 322         return qce->async_req_enqueue(tmpl->qce, &req->base);
 323 }
 324 
 325 static int qce_ahash_digest(struct ahash_request *req)
 326 {
 327         struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
 328         struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
 329         struct qce_device *qce = tmpl->qce;
 330         int ret;
 331 
 332         ret = qce_ahash_init(req);
 333         if (ret)
 334                 return ret;
 335 
 336         rctx->src_orig = req->src;
 337         rctx->nbytes_orig = req->nbytes;
 338         rctx->first_blk = true;
 339         rctx->last_blk = true;
 340 
 341         return qce->async_req_enqueue(tmpl->qce, &req->base);
 342 }
 343 
 344 static int qce_ahash_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
 345                                  unsigned int keylen)
 346 {
 347         unsigned int digestsize = crypto_ahash_digestsize(tfm);
 348         struct qce_sha_ctx *ctx = crypto_tfm_ctx(&tfm->base);
 349         struct crypto_wait wait;
 350         struct ahash_request *req;
 351         struct scatterlist sg;
 352         unsigned int blocksize;
 353         struct crypto_ahash *ahash_tfm;
 354         u8 *buf;
 355         int ret;
 356         const char *alg_name;
 357 
 358         blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
 359         memset(ctx->authkey, 0, sizeof(ctx->authkey));
 360 
 361         if (keylen <= blocksize) {
 362                 memcpy(ctx->authkey, key, keylen);
 363                 return 0;
 364         }
 365 
 366         if (digestsize == SHA1_DIGEST_SIZE)
 367                 alg_name = "sha1-qce";
 368         else if (digestsize == SHA256_DIGEST_SIZE)
 369                 alg_name = "sha256-qce";
 370         else
 371                 return -EINVAL;
 372 
 373         ahash_tfm = crypto_alloc_ahash(alg_name, 0, 0);
 374         if (IS_ERR(ahash_tfm))
 375                 return PTR_ERR(ahash_tfm);
 376 
 377         req = ahash_request_alloc(ahash_tfm, GFP_KERNEL);
 378         if (!req) {
 379                 ret = -ENOMEM;
 380                 goto err_free_ahash;
 381         }
 382 
 383         crypto_init_wait(&wait);
 384         ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
 385                                    crypto_req_done, &wait);
 386         crypto_ahash_clear_flags(ahash_tfm, ~0);
 387 
 388         buf = kzalloc(keylen + QCE_MAX_ALIGN_SIZE, GFP_KERNEL);
 389         if (!buf) {
 390                 ret = -ENOMEM;
 391                 goto err_free_req;
 392         }
 393 
 394         memcpy(buf, key, keylen);
 395         sg_init_one(&sg, buf, keylen);
 396         ahash_request_set_crypt(req, &sg, ctx->authkey, keylen);
 397 
 398         ret = crypto_wait_req(crypto_ahash_digest(req), &wait);
 399         if (ret)
 400                 crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
 401 
 402         kfree(buf);
 403 err_free_req:
 404         ahash_request_free(req);
 405 err_free_ahash:
 406         crypto_free_ahash(ahash_tfm);
 407         return ret;
 408 }
 409 
 410 static int qce_ahash_cra_init(struct crypto_tfm *tfm)
 411 {
 412         struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 413         struct qce_sha_ctx *ctx = crypto_tfm_ctx(tfm);
 414 
 415         crypto_ahash_set_reqsize(ahash, sizeof(struct qce_sha_reqctx));
 416         memset(ctx, 0, sizeof(*ctx));
 417         return 0;
 418 }
 419 
 420 struct qce_ahash_def {
 421         unsigned long flags;
 422         const char *name;
 423         const char *drv_name;
 424         unsigned int digestsize;
 425         unsigned int blocksize;
 426         unsigned int statesize;
 427         const u32 *std_iv;
 428 };
 429 
 430 static const struct qce_ahash_def ahash_def[] = {
 431         {
 432                 .flags          = QCE_HASH_SHA1,
 433                 .name           = "sha1",
 434                 .drv_name       = "sha1-qce",
 435                 .digestsize     = SHA1_DIGEST_SIZE,
 436                 .blocksize      = SHA1_BLOCK_SIZE,
 437                 .statesize      = sizeof(struct sha1_state),
 438                 .std_iv         = std_iv_sha1,
 439         },
 440         {
 441                 .flags          = QCE_HASH_SHA256,
 442                 .name           = "sha256",
 443                 .drv_name       = "sha256-qce",
 444                 .digestsize     = SHA256_DIGEST_SIZE,
 445                 .blocksize      = SHA256_BLOCK_SIZE,
 446                 .statesize      = sizeof(struct sha256_state),
 447                 .std_iv         = std_iv_sha256,
 448         },
 449         {
 450                 .flags          = QCE_HASH_SHA1_HMAC,
 451                 .name           = "hmac(sha1)",
 452                 .drv_name       = "hmac-sha1-qce",
 453                 .digestsize     = SHA1_DIGEST_SIZE,
 454                 .blocksize      = SHA1_BLOCK_SIZE,
 455                 .statesize      = sizeof(struct sha1_state),
 456                 .std_iv         = std_iv_sha1,
 457         },
 458         {
 459                 .flags          = QCE_HASH_SHA256_HMAC,
 460                 .name           = "hmac(sha256)",
 461                 .drv_name       = "hmac-sha256-qce",
 462                 .digestsize     = SHA256_DIGEST_SIZE,
 463                 .blocksize      = SHA256_BLOCK_SIZE,
 464                 .statesize      = sizeof(struct sha256_state),
 465                 .std_iv         = std_iv_sha256,
 466         },
 467 };
 468 
 469 static int qce_ahash_register_one(const struct qce_ahash_def *def,
 470                                   struct qce_device *qce)
 471 {
 472         struct qce_alg_template *tmpl;
 473         struct ahash_alg *alg;
 474         struct crypto_alg *base;
 475         int ret;
 476 
 477         tmpl = kzalloc(sizeof(*tmpl), GFP_KERNEL);
 478         if (!tmpl)
 479                 return -ENOMEM;
 480 
 481         tmpl->std_iv = def->std_iv;
 482 
 483         alg = &tmpl->alg.ahash;
 484         alg->init = qce_ahash_init;
 485         alg->update = qce_ahash_update;
 486         alg->final = qce_ahash_final;
 487         alg->digest = qce_ahash_digest;
 488         alg->export = qce_ahash_export;
 489         alg->import = qce_ahash_import;
 490         if (IS_SHA_HMAC(def->flags))
 491                 alg->setkey = qce_ahash_hmac_setkey;
 492         alg->halg.digestsize = def->digestsize;
 493         alg->halg.statesize = def->statesize;
 494 
 495         base = &alg->halg.base;
 496         base->cra_blocksize = def->blocksize;
 497         base->cra_priority = 300;
 498         base->cra_flags = CRYPTO_ALG_ASYNC;
 499         base->cra_ctxsize = sizeof(struct qce_sha_ctx);
 500         base->cra_alignmask = 0;
 501         base->cra_module = THIS_MODULE;
 502         base->cra_init = qce_ahash_cra_init;
 503 
 504         snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
 505         snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
 506                  def->drv_name);
 507 
 508         INIT_LIST_HEAD(&tmpl->entry);
 509         tmpl->crypto_alg_type = CRYPTO_ALG_TYPE_AHASH;
 510         tmpl->alg_flags = def->flags;
 511         tmpl->qce = qce;
 512 
 513         ret = crypto_register_ahash(alg);
 514         if (ret) {
 515                 kfree(tmpl);
 516                 dev_err(qce->dev, "%s registration failed\n", base->cra_name);
 517                 return ret;
 518         }
 519 
 520         list_add_tail(&tmpl->entry, &ahash_algs);
 521         dev_dbg(qce->dev, "%s is registered\n", base->cra_name);
 522         return 0;
 523 }
 524 
 525 static void qce_ahash_unregister(struct qce_device *qce)
 526 {
 527         struct qce_alg_template *tmpl, *n;
 528 
 529         list_for_each_entry_safe(tmpl, n, &ahash_algs, entry) {
 530                 crypto_unregister_ahash(&tmpl->alg.ahash);
 531                 list_del(&tmpl->entry);
 532                 kfree(tmpl);
 533         }
 534 }
 535 
 536 static int qce_ahash_register(struct qce_device *qce)
 537 {
 538         int ret, i;
 539 
 540         for (i = 0; i < ARRAY_SIZE(ahash_def); i++) {
 541                 ret = qce_ahash_register_one(&ahash_def[i], qce);
 542                 if (ret)
 543                         goto err;
 544         }
 545 
 546         return 0;
 547 err:
 548         qce_ahash_unregister(qce);
 549         return ret;
 550 }
 551 
 552 const struct qce_algo_ops ahash_ops = {
 553         .type = CRYPTO_ALG_TYPE_AHASH,
 554         .register_algs = qce_ahash_register,
 555         .unregister_algs = qce_ahash_unregister,
 556         .async_req_handle = qce_ahash_async_req_handle,
 557 };

/* [<][>][^][v][top][bottom][index][help] */