root/drivers/char/hw_random/n2-drv.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. n2rng_hv_err_trans
  2. n2rng_generic_read_control_v2
  3. n2rng_control_settle_v2
  4. n2rng_write_ctl_one
  5. n2rng_generic_read_data
  6. n2rng_read_diag_data_one
  7. n2rng_generic_read_diag_data
  8. n2rng_generic_write_control
  9. n2rng_try_read_ctl
  10. n2rng_control_default
  11. n2rng_control_swstate_init
  12. n2rng_grab_diag_control
  13. n2rng_init_control
  14. n2rng_data_read
  15. n2rng_guest_check
  16. n2rng_entropy_diag_read
  17. advance_polynomial
  18. n2rng_test_buffer_find
  19. n2rng_dump_test_buffer
  20. n2rng_check_selftest_buffer
  21. n2rng_control_selftest
  22. n2rng_control_check
  23. n2rng_control_configure_units
  24. n2rng_work
  25. n2rng_driver_version
  26. n2rng_probe
  27. n2rng_remove

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /* n2-drv.c: Niagara-2 RNG driver.
   3  *
   4  * Copyright (C) 2008, 2011 David S. Miller <davem@davemloft.net>
   5  */
   6 
   7 #include <linux/kernel.h>
   8 #include <linux/module.h>
   9 #include <linux/types.h>
  10 #include <linux/delay.h>
  11 #include <linux/slab.h>
  12 #include <linux/workqueue.h>
  13 #include <linux/preempt.h>
  14 #include <linux/hw_random.h>
  15 
  16 #include <linux/of.h>
  17 #include <linux/of_device.h>
  18 
  19 #include <asm/hypervisor.h>
  20 
  21 #include "n2rng.h"
  22 
  23 #define DRV_MODULE_NAME         "n2rng"
  24 #define PFX DRV_MODULE_NAME     ": "
  25 #define DRV_MODULE_VERSION      "0.3"
  26 #define DRV_MODULE_RELDATE      "Jan 7, 2017"
  27 
  28 static char version[] =
  29         DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  30 
  31 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
  32 MODULE_DESCRIPTION("Niagara2 RNG driver");
  33 MODULE_LICENSE("GPL");
  34 MODULE_VERSION(DRV_MODULE_VERSION);
  35 
  36 /* The Niagara2 RNG provides a 64-bit read-only random number
  37  * register, plus a control register.  Access to the RNG is
  38  * virtualized through the hypervisor so that both guests and control
  39  * nodes can access the device.
  40  *
  41  * The entropy source consists of raw entropy sources, each
  42  * constructed from a voltage controlled oscillator whose phase is
  43  * jittered by thermal noise sources.
  44  *
  45  * The oscillator in each of the three raw entropy sources run at
  46  * different frequencies.  Normally, all three generator outputs are
  47  * gathered, xored together, and fed into a CRC circuit, the output of
  48  * which is the 64-bit read-only register.
  49  *
  50  * Some time is necessary for all the necessary entropy to build up
  51  * such that a full 64-bits of entropy are available in the register.
  52  * In normal operating mode (RNG_CTL_LFSR is set), the chip implements
  53  * an interlock which blocks register reads until sufficient entropy
  54  * is available.
  55  *
  56  * A control register is provided for adjusting various aspects of RNG
  57  * operation, and to enable diagnostic modes.  Each of the three raw
  58  * entropy sources has an enable bit (RNG_CTL_ES{1,2,3}).  Also
  59  * provided are fields for controlling the minimum time in cycles
  60  * between read accesses to the register (RNG_CTL_WAIT, this controls
  61  * the interlock described in the previous paragraph).
  62  *
  63  * The standard setting is to have the mode bit (RNG_CTL_LFSR) set,
  64  * all three entropy sources enabled, and the interlock time set
  65  * appropriately.
  66  *
  67  * The CRC polynomial used by the chip is:
  68  *
  69  * P(X) = x64 + x61 + x57 + x56 + x52 + x51 + x50 + x48 + x47 + x46 +
  70  *        x43 + x42 + x41 + x39 + x38 + x37 + x35 + x32 + x28 + x25 +
  71  *        x22 + x21 + x17 + x15 + x13 + x12 + x11 + x7 + x5 + x + 1
  72  *
  73  * The RNG_CTL_VCO value of each noise cell must be programmed
  74  * separately.  This is why 4 control register values must be provided
  75  * to the hypervisor.  During a write, the hypervisor writes them all,
  76  * one at a time, to the actual RNG_CTL register.  The first three
  77  * values are used to setup the desired RNG_CTL_VCO for each entropy
  78  * source, for example:
  79  *
  80  *      control 0: (1 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES1
  81  *      control 1: (2 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES2
  82  *      control 2: (3 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES3
  83  *
  84  * And then the fourth value sets the final chip state and enables
  85  * desired.
  86  */
  87 
  88 static int n2rng_hv_err_trans(unsigned long hv_err)
  89 {
  90         switch (hv_err) {
  91         case HV_EOK:
  92                 return 0;
  93         case HV_EWOULDBLOCK:
  94                 return -EAGAIN;
  95         case HV_ENOACCESS:
  96                 return -EPERM;
  97         case HV_EIO:
  98                 return -EIO;
  99         case HV_EBUSY:
 100                 return -EBUSY;
 101         case HV_EBADALIGN:
 102         case HV_ENORADDR:
 103                 return -EFAULT;
 104         default:
 105                 return -EINVAL;
 106         }
 107 }
 108 
 109 static unsigned long n2rng_generic_read_control_v2(unsigned long ra,
 110                                                    unsigned long unit)
 111 {
 112         unsigned long hv_err, state, ticks, watchdog_delta, watchdog_status;
 113         int block = 0, busy = 0;
 114 
 115         while (1) {
 116                 hv_err = sun4v_rng_ctl_read_v2(ra, unit, &state,
 117                                                &ticks,
 118                                                &watchdog_delta,
 119                                                &watchdog_status);
 120                 if (hv_err == HV_EOK)
 121                         break;
 122 
 123                 if (hv_err == HV_EBUSY) {
 124                         if (++busy >= N2RNG_BUSY_LIMIT)
 125                                 break;
 126 
 127                         udelay(1);
 128                 } else if (hv_err == HV_EWOULDBLOCK) {
 129                         if (++block >= N2RNG_BLOCK_LIMIT)
 130                                 break;
 131 
 132                         __delay(ticks);
 133                 } else
 134                         break;
 135         }
 136 
 137         return hv_err;
 138 }
 139 
 140 /* In multi-socket situations, the hypervisor might need to
 141  * queue up the RNG control register write if it's for a unit
 142  * that is on a cpu socket other than the one we are executing on.
 143  *
 144  * We poll here waiting for a successful read of that control
 145  * register to make sure the write has been actually performed.
 146  */
 147 static unsigned long n2rng_control_settle_v2(struct n2rng *np, int unit)
 148 {
 149         unsigned long ra = __pa(&np->scratch_control[0]);
 150 
 151         return n2rng_generic_read_control_v2(ra, unit);
 152 }
 153 
 154 static unsigned long n2rng_write_ctl_one(struct n2rng *np, int unit,
 155                                          unsigned long state,
 156                                          unsigned long control_ra,
 157                                          unsigned long watchdog_timeout,
 158                                          unsigned long *ticks)
 159 {
 160         unsigned long hv_err;
 161 
 162         if (np->hvapi_major == 1) {
 163                 hv_err = sun4v_rng_ctl_write_v1(control_ra, state,
 164                                                 watchdog_timeout, ticks);
 165         } else {
 166                 hv_err = sun4v_rng_ctl_write_v2(control_ra, state,
 167                                                 watchdog_timeout, unit);
 168                 if (hv_err == HV_EOK)
 169                         hv_err = n2rng_control_settle_v2(np, unit);
 170                 *ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
 171         }
 172 
 173         return hv_err;
 174 }
 175 
 176 static int n2rng_generic_read_data(unsigned long data_ra)
 177 {
 178         unsigned long ticks, hv_err;
 179         int block = 0, hcheck = 0;
 180 
 181         while (1) {
 182                 hv_err = sun4v_rng_data_read(data_ra, &ticks);
 183                 if (hv_err == HV_EOK)
 184                         return 0;
 185 
 186                 if (hv_err == HV_EWOULDBLOCK) {
 187                         if (++block >= N2RNG_BLOCK_LIMIT)
 188                                 return -EWOULDBLOCK;
 189                         __delay(ticks);
 190                 } else if (hv_err == HV_ENOACCESS) {
 191                         return -EPERM;
 192                 } else if (hv_err == HV_EIO) {
 193                         if (++hcheck >= N2RNG_HCHECK_LIMIT)
 194                                 return -EIO;
 195                         udelay(10000);
 196                 } else
 197                         return -ENODEV;
 198         }
 199 }
 200 
 201 static unsigned long n2rng_read_diag_data_one(struct n2rng *np,
 202                                               unsigned long unit,
 203                                               unsigned long data_ra,
 204                                               unsigned long data_len,
 205                                               unsigned long *ticks)
 206 {
 207         unsigned long hv_err;
 208 
 209         if (np->hvapi_major == 1) {
 210                 hv_err = sun4v_rng_data_read_diag_v1(data_ra, data_len, ticks);
 211         } else {
 212                 hv_err = sun4v_rng_data_read_diag_v2(data_ra, data_len,
 213                                                      unit, ticks);
 214                 if (!*ticks)
 215                         *ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
 216         }
 217         return hv_err;
 218 }
 219 
 220 static int n2rng_generic_read_diag_data(struct n2rng *np,
 221                                         unsigned long unit,
 222                                         unsigned long data_ra,
 223                                         unsigned long data_len)
 224 {
 225         unsigned long ticks, hv_err;
 226         int block = 0;
 227 
 228         while (1) {
 229                 hv_err = n2rng_read_diag_data_one(np, unit,
 230                                                   data_ra, data_len,
 231                                                   &ticks);
 232                 if (hv_err == HV_EOK)
 233                         return 0;
 234 
 235                 if (hv_err == HV_EWOULDBLOCK) {
 236                         if (++block >= N2RNG_BLOCK_LIMIT)
 237                                 return -EWOULDBLOCK;
 238                         __delay(ticks);
 239                 } else if (hv_err == HV_ENOACCESS) {
 240                         return -EPERM;
 241                 } else if (hv_err == HV_EIO) {
 242                         return -EIO;
 243                 } else
 244                         return -ENODEV;
 245         }
 246 }
 247 
 248 
 249 static int n2rng_generic_write_control(struct n2rng *np,
 250                                        unsigned long control_ra,
 251                                        unsigned long unit,
 252                                        unsigned long state)
 253 {
 254         unsigned long hv_err, ticks;
 255         int block = 0, busy = 0;
 256 
 257         while (1) {
 258                 hv_err = n2rng_write_ctl_one(np, unit, state, control_ra,
 259                                              np->wd_timeo, &ticks);
 260                 if (hv_err == HV_EOK)
 261                         return 0;
 262 
 263                 if (hv_err == HV_EWOULDBLOCK) {
 264                         if (++block >= N2RNG_BLOCK_LIMIT)
 265                                 return -EWOULDBLOCK;
 266                         __delay(ticks);
 267                 } else if (hv_err == HV_EBUSY) {
 268                         if (++busy >= N2RNG_BUSY_LIMIT)
 269                                 return -EBUSY;
 270                         udelay(1);
 271                 } else
 272                         return -ENODEV;
 273         }
 274 }
 275 
 276 /* Just try to see if we can successfully access the control register
 277  * of the RNG on the domain on which we are currently executing.
 278  */
 279 static int n2rng_try_read_ctl(struct n2rng *np)
 280 {
 281         unsigned long hv_err;
 282         unsigned long x;
 283 
 284         if (np->hvapi_major == 1) {
 285                 hv_err = sun4v_rng_get_diag_ctl();
 286         } else {
 287                 /* We purposefully give invalid arguments, HV_NOACCESS
 288                  * is higher priority than the errors we'd get from
 289                  * these other cases, and that's the error we are
 290                  * truly interested in.
 291                  */
 292                 hv_err = sun4v_rng_ctl_read_v2(0UL, ~0UL, &x, &x, &x, &x);
 293                 switch (hv_err) {
 294                 case HV_EWOULDBLOCK:
 295                 case HV_ENOACCESS:
 296                         break;
 297                 default:
 298                         hv_err = HV_EOK;
 299                         break;
 300                 }
 301         }
 302 
 303         return n2rng_hv_err_trans(hv_err);
 304 }
 305 
 306 static u64 n2rng_control_default(struct n2rng *np, int ctl)
 307 {
 308         u64 val = 0;
 309 
 310         if (np->data->chip_version == 1) {
 311                 val = ((2 << RNG_v1_CTL_ASEL_SHIFT) |
 312                         (N2RNG_ACCUM_CYCLES_DEFAULT << RNG_v1_CTL_WAIT_SHIFT) |
 313                          RNG_CTL_LFSR);
 314 
 315                 switch (ctl) {
 316                 case 0:
 317                         val |= (1 << RNG_v1_CTL_VCO_SHIFT) | RNG_CTL_ES1;
 318                         break;
 319                 case 1:
 320                         val |= (2 << RNG_v1_CTL_VCO_SHIFT) | RNG_CTL_ES2;
 321                         break;
 322                 case 2:
 323                         val |= (3 << RNG_v1_CTL_VCO_SHIFT) | RNG_CTL_ES3;
 324                         break;
 325                 case 3:
 326                         val |= RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3;
 327                         break;
 328                 default:
 329                         break;
 330                 }
 331 
 332         } else {
 333                 val = ((2 << RNG_v2_CTL_ASEL_SHIFT) |
 334                         (N2RNG_ACCUM_CYCLES_DEFAULT << RNG_v2_CTL_WAIT_SHIFT) |
 335                          RNG_CTL_LFSR);
 336 
 337                 switch (ctl) {
 338                 case 0:
 339                         val |= (1 << RNG_v2_CTL_VCO_SHIFT) | RNG_CTL_ES1;
 340                         break;
 341                 case 1:
 342                         val |= (2 << RNG_v2_CTL_VCO_SHIFT) | RNG_CTL_ES2;
 343                         break;
 344                 case 2:
 345                         val |= (3 << RNG_v2_CTL_VCO_SHIFT) | RNG_CTL_ES3;
 346                         break;
 347                 case 3:
 348                         val |= RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3;
 349                         break;
 350                 default:
 351                         break;
 352                 }
 353         }
 354 
 355         return val;
 356 }
 357 
 358 static void n2rng_control_swstate_init(struct n2rng *np)
 359 {
 360         int i;
 361 
 362         np->flags |= N2RNG_FLAG_CONTROL;
 363 
 364         np->health_check_sec = N2RNG_HEALTH_CHECK_SEC_DEFAULT;
 365         np->accum_cycles = N2RNG_ACCUM_CYCLES_DEFAULT;
 366         np->wd_timeo = N2RNG_WD_TIMEO_DEFAULT;
 367 
 368         for (i = 0; i < np->num_units; i++) {
 369                 struct n2rng_unit *up = &np->units[i];
 370 
 371                 up->control[0] = n2rng_control_default(np, 0);
 372                 up->control[1] = n2rng_control_default(np, 1);
 373                 up->control[2] = n2rng_control_default(np, 2);
 374                 up->control[3] = n2rng_control_default(np, 3);
 375         }
 376 
 377         np->hv_state = HV_RNG_STATE_UNCONFIGURED;
 378 }
 379 
 380 static int n2rng_grab_diag_control(struct n2rng *np)
 381 {
 382         int i, busy_count, err = -ENODEV;
 383 
 384         busy_count = 0;
 385         for (i = 0; i < 100; i++) {
 386                 err = n2rng_try_read_ctl(np);
 387                 if (err != -EAGAIN)
 388                         break;
 389 
 390                 if (++busy_count > 100) {
 391                         dev_err(&np->op->dev,
 392                                 "Grab diag control timeout.\n");
 393                         return -ENODEV;
 394                 }
 395 
 396                 udelay(1);
 397         }
 398 
 399         return err;
 400 }
 401 
 402 static int n2rng_init_control(struct n2rng *np)
 403 {
 404         int err = n2rng_grab_diag_control(np);
 405 
 406         /* Not in the control domain, that's OK we are only a consumer
 407          * of the RNG data, we don't setup and program it.
 408          */
 409         if (err == -EPERM)
 410                 return 0;
 411         if (err)
 412                 return err;
 413 
 414         n2rng_control_swstate_init(np);
 415 
 416         return 0;
 417 }
 418 
 419 static int n2rng_data_read(struct hwrng *rng, u32 *data)
 420 {
 421         struct n2rng *np = (struct n2rng *) rng->priv;
 422         unsigned long ra = __pa(&np->test_data);
 423         int len;
 424 
 425         if (!(np->flags & N2RNG_FLAG_READY)) {
 426                 len = 0;
 427         } else if (np->flags & N2RNG_FLAG_BUFFER_VALID) {
 428                 np->flags &= ~N2RNG_FLAG_BUFFER_VALID;
 429                 *data = np->buffer;
 430                 len = 4;
 431         } else {
 432                 int err = n2rng_generic_read_data(ra);
 433                 if (!err) {
 434                         np->flags |= N2RNG_FLAG_BUFFER_VALID;
 435                         np->buffer = np->test_data >> 32;
 436                         *data = np->test_data & 0xffffffff;
 437                         len = 4;
 438                 } else {
 439                         dev_err(&np->op->dev, "RNG error, retesting\n");
 440                         np->flags &= ~N2RNG_FLAG_READY;
 441                         if (!(np->flags & N2RNG_FLAG_SHUTDOWN))
 442                                 schedule_delayed_work(&np->work, 0);
 443                         len = 0;
 444                 }
 445         }
 446 
 447         return len;
 448 }
 449 
 450 /* On a guest node, just make sure we can read random data properly.
 451  * If a control node reboots or reloads it's n2rng driver, this won't
 452  * work during that time.  So we have to keep probing until the device
 453  * becomes usable.
 454  */
 455 static int n2rng_guest_check(struct n2rng *np)
 456 {
 457         unsigned long ra = __pa(&np->test_data);
 458 
 459         return n2rng_generic_read_data(ra);
 460 }
 461 
 462 static int n2rng_entropy_diag_read(struct n2rng *np, unsigned long unit,
 463                                    u64 *pre_control, u64 pre_state,
 464                                    u64 *buffer, unsigned long buf_len,
 465                                    u64 *post_control, u64 post_state)
 466 {
 467         unsigned long post_ctl_ra = __pa(post_control);
 468         unsigned long pre_ctl_ra = __pa(pre_control);
 469         unsigned long buffer_ra = __pa(buffer);
 470         int err;
 471 
 472         err = n2rng_generic_write_control(np, pre_ctl_ra, unit, pre_state);
 473         if (err)
 474                 return err;
 475 
 476         err = n2rng_generic_read_diag_data(np, unit,
 477                                            buffer_ra, buf_len);
 478 
 479         (void) n2rng_generic_write_control(np, post_ctl_ra, unit,
 480                                            post_state);
 481 
 482         return err;
 483 }
 484 
 485 static u64 advance_polynomial(u64 poly, u64 val, int count)
 486 {
 487         int i;
 488 
 489         for (i = 0; i < count; i++) {
 490                 int highbit_set = ((s64)val < 0);
 491 
 492                 val <<= 1;
 493                 if (highbit_set)
 494                         val ^= poly;
 495         }
 496 
 497         return val;
 498 }
 499 
 500 static int n2rng_test_buffer_find(struct n2rng *np, u64 val)
 501 {
 502         int i, count = 0;
 503 
 504         /* Purposefully skip over the first word.  */
 505         for (i = 1; i < SELFTEST_BUFFER_WORDS; i++) {
 506                 if (np->test_buffer[i] == val)
 507                         count++;
 508         }
 509         return count;
 510 }
 511 
 512 static void n2rng_dump_test_buffer(struct n2rng *np)
 513 {
 514         int i;
 515 
 516         for (i = 0; i < SELFTEST_BUFFER_WORDS; i++)
 517                 dev_err(&np->op->dev, "Test buffer slot %d [0x%016llx]\n",
 518                         i, np->test_buffer[i]);
 519 }
 520 
 521 static int n2rng_check_selftest_buffer(struct n2rng *np, unsigned long unit)
 522 {
 523         u64 val;
 524         int err, matches, limit;
 525 
 526         switch (np->data->id) {
 527         case N2_n2_rng:
 528         case N2_vf_rng:
 529         case N2_kt_rng:
 530         case N2_m4_rng:  /* yes, m4 uses the old value */
 531                 val = RNG_v1_SELFTEST_VAL;
 532                 break;
 533         default:
 534                 val = RNG_v2_SELFTEST_VAL;
 535                 break;
 536         }
 537 
 538         matches = 0;
 539         for (limit = 0; limit < SELFTEST_LOOPS_MAX; limit++) {
 540                 matches += n2rng_test_buffer_find(np, val);
 541                 if (matches >= SELFTEST_MATCH_GOAL)
 542                         break;
 543                 val = advance_polynomial(SELFTEST_POLY, val, 1);
 544         }
 545 
 546         err = 0;
 547         if (limit >= SELFTEST_LOOPS_MAX) {
 548                 err = -ENODEV;
 549                 dev_err(&np->op->dev, "Selftest failed on unit %lu\n", unit);
 550                 n2rng_dump_test_buffer(np);
 551         } else
 552                 dev_info(&np->op->dev, "Selftest passed on unit %lu\n", unit);
 553 
 554         return err;
 555 }
 556 
 557 static int n2rng_control_selftest(struct n2rng *np, unsigned long unit)
 558 {
 559         int err;
 560         u64 base, base3;
 561 
 562         switch (np->data->id) {
 563         case N2_n2_rng:
 564         case N2_vf_rng:
 565         case N2_kt_rng:
 566                 base = RNG_v1_CTL_ASEL_NOOUT << RNG_v1_CTL_ASEL_SHIFT;
 567                 base3 = base | RNG_CTL_LFSR |
 568                         ((RNG_v1_SELFTEST_TICKS - 2) << RNG_v1_CTL_WAIT_SHIFT);
 569                 break;
 570         case N2_m4_rng:
 571                 base = RNG_v2_CTL_ASEL_NOOUT << RNG_v2_CTL_ASEL_SHIFT;
 572                 base3 = base | RNG_CTL_LFSR |
 573                         ((RNG_v1_SELFTEST_TICKS - 2) << RNG_v2_CTL_WAIT_SHIFT);
 574                 break;
 575         default:
 576                 base = RNG_v2_CTL_ASEL_NOOUT << RNG_v2_CTL_ASEL_SHIFT;
 577                 base3 = base | RNG_CTL_LFSR |
 578                         (RNG_v2_SELFTEST_TICKS << RNG_v2_CTL_WAIT_SHIFT);
 579                 break;
 580         }
 581 
 582         np->test_control[0] = base;
 583         np->test_control[1] = base;
 584         np->test_control[2] = base;
 585         np->test_control[3] = base3;
 586 
 587         err = n2rng_entropy_diag_read(np, unit, np->test_control,
 588                                       HV_RNG_STATE_HEALTHCHECK,
 589                                       np->test_buffer,
 590                                       sizeof(np->test_buffer),
 591                                       &np->units[unit].control[0],
 592                                       np->hv_state);
 593         if (err)
 594                 return err;
 595 
 596         return n2rng_check_selftest_buffer(np, unit);
 597 }
 598 
 599 static int n2rng_control_check(struct n2rng *np)
 600 {
 601         int i;
 602 
 603         for (i = 0; i < np->num_units; i++) {
 604                 int err = n2rng_control_selftest(np, i);
 605                 if (err)
 606                         return err;
 607         }
 608         return 0;
 609 }
 610 
 611 /* The sanity checks passed, install the final configuration into the
 612  * chip, it's ready to use.
 613  */
 614 static int n2rng_control_configure_units(struct n2rng *np)
 615 {
 616         int unit, err;
 617 
 618         err = 0;
 619         for (unit = 0; unit < np->num_units; unit++) {
 620                 struct n2rng_unit *up = &np->units[unit];
 621                 unsigned long ctl_ra = __pa(&up->control[0]);
 622                 int esrc;
 623                 u64 base, shift;
 624 
 625                 if (np->data->chip_version == 1) {
 626                         base = ((np->accum_cycles << RNG_v1_CTL_WAIT_SHIFT) |
 627                               (RNG_v1_CTL_ASEL_NOOUT << RNG_v1_CTL_ASEL_SHIFT) |
 628                               RNG_CTL_LFSR);
 629                         shift = RNG_v1_CTL_VCO_SHIFT;
 630                 } else {
 631                         base = ((np->accum_cycles << RNG_v2_CTL_WAIT_SHIFT) |
 632                               (RNG_v2_CTL_ASEL_NOOUT << RNG_v2_CTL_ASEL_SHIFT) |
 633                               RNG_CTL_LFSR);
 634                         shift = RNG_v2_CTL_VCO_SHIFT;
 635                 }
 636 
 637                 /* XXX This isn't the best.  We should fetch a bunch
 638                  * XXX of words using each entropy source combined XXX
 639                  * with each VCO setting, and see which combinations
 640                  * XXX give the best random data.
 641                  */
 642                 for (esrc = 0; esrc < 3; esrc++)
 643                         up->control[esrc] = base |
 644                                 (esrc << shift) |
 645                                 (RNG_CTL_ES1 << esrc);
 646 
 647                 up->control[3] = base |
 648                         (RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3);
 649 
 650                 err = n2rng_generic_write_control(np, ctl_ra, unit,
 651                                                   HV_RNG_STATE_CONFIGURED);
 652                 if (err)
 653                         break;
 654         }
 655 
 656         return err;
 657 }
 658 
 659 static void n2rng_work(struct work_struct *work)
 660 {
 661         struct n2rng *np = container_of(work, struct n2rng, work.work);
 662         int err = 0;
 663         static int retries = 4;
 664 
 665         if (!(np->flags & N2RNG_FLAG_CONTROL)) {
 666                 err = n2rng_guest_check(np);
 667         } else {
 668                 preempt_disable();
 669                 err = n2rng_control_check(np);
 670                 preempt_enable();
 671 
 672                 if (!err)
 673                         err = n2rng_control_configure_units(np);
 674         }
 675 
 676         if (!err) {
 677                 np->flags |= N2RNG_FLAG_READY;
 678                 dev_info(&np->op->dev, "RNG ready\n");
 679         }
 680 
 681         if (--retries == 0)
 682                 dev_err(&np->op->dev, "Self-test retries failed, RNG not ready\n");
 683         else if (err && !(np->flags & N2RNG_FLAG_SHUTDOWN))
 684                 schedule_delayed_work(&np->work, HZ * 2);
 685 }
 686 
 687 static void n2rng_driver_version(void)
 688 {
 689         static int n2rng_version_printed;
 690 
 691         if (n2rng_version_printed++ == 0)
 692                 pr_info("%s", version);
 693 }
 694 
 695 static const struct of_device_id n2rng_match[];
 696 static int n2rng_probe(struct platform_device *op)
 697 {
 698         const struct of_device_id *match;
 699         int err = -ENOMEM;
 700         struct n2rng *np;
 701 
 702         match = of_match_device(n2rng_match, &op->dev);
 703         if (!match)
 704                 return -EINVAL;
 705 
 706         n2rng_driver_version();
 707         np = devm_kzalloc(&op->dev, sizeof(*np), GFP_KERNEL);
 708         if (!np)
 709                 goto out;
 710         np->op = op;
 711         np->data = (struct n2rng_template *)match->data;
 712 
 713         INIT_DELAYED_WORK(&np->work, n2rng_work);
 714 
 715         if (np->data->multi_capable)
 716                 np->flags |= N2RNG_FLAG_MULTI;
 717 
 718         err = -ENODEV;
 719         np->hvapi_major = 2;
 720         if (sun4v_hvapi_register(HV_GRP_RNG,
 721                                  np->hvapi_major,
 722                                  &np->hvapi_minor)) {
 723                 np->hvapi_major = 1;
 724                 if (sun4v_hvapi_register(HV_GRP_RNG,
 725                                          np->hvapi_major,
 726                                          &np->hvapi_minor)) {
 727                         dev_err(&op->dev, "Cannot register suitable "
 728                                 "HVAPI version.\n");
 729                         goto out;
 730                 }
 731         }
 732 
 733         if (np->flags & N2RNG_FLAG_MULTI) {
 734                 if (np->hvapi_major < 2) {
 735                         dev_err(&op->dev, "multi-unit-capable RNG requires "
 736                                 "HVAPI major version 2 or later, got %lu\n",
 737                                 np->hvapi_major);
 738                         goto out_hvapi_unregister;
 739                 }
 740                 np->num_units = of_getintprop_default(op->dev.of_node,
 741                                                       "rng-#units", 0);
 742                 if (!np->num_units) {
 743                         dev_err(&op->dev, "VF RNG lacks rng-#units property\n");
 744                         goto out_hvapi_unregister;
 745                 }
 746         } else {
 747                 np->num_units = 1;
 748         }
 749 
 750         dev_info(&op->dev, "Registered RNG HVAPI major %lu minor %lu\n",
 751                  np->hvapi_major, np->hvapi_minor);
 752         np->units = devm_kcalloc(&op->dev, np->num_units, sizeof(*np->units),
 753                                  GFP_KERNEL);
 754         err = -ENOMEM;
 755         if (!np->units)
 756                 goto out_hvapi_unregister;
 757 
 758         err = n2rng_init_control(np);
 759         if (err)
 760                 goto out_hvapi_unregister;
 761 
 762         dev_info(&op->dev, "Found %s RNG, units: %d\n",
 763                  ((np->flags & N2RNG_FLAG_MULTI) ?
 764                   "multi-unit-capable" : "single-unit"),
 765                  np->num_units);
 766 
 767         np->hwrng.name = DRV_MODULE_NAME;
 768         np->hwrng.data_read = n2rng_data_read;
 769         np->hwrng.priv = (unsigned long) np;
 770 
 771         err = devm_hwrng_register(&op->dev, &np->hwrng);
 772         if (err)
 773                 goto out_hvapi_unregister;
 774 
 775         platform_set_drvdata(op, np);
 776 
 777         schedule_delayed_work(&np->work, 0);
 778 
 779         return 0;
 780 
 781 out_hvapi_unregister:
 782         sun4v_hvapi_unregister(HV_GRP_RNG);
 783 
 784 out:
 785         return err;
 786 }
 787 
 788 static int n2rng_remove(struct platform_device *op)
 789 {
 790         struct n2rng *np = platform_get_drvdata(op);
 791 
 792         np->flags |= N2RNG_FLAG_SHUTDOWN;
 793 
 794         cancel_delayed_work_sync(&np->work);
 795 
 796         sun4v_hvapi_unregister(HV_GRP_RNG);
 797 
 798         return 0;
 799 }
 800 
 801 static struct n2rng_template n2_template = {
 802         .id = N2_n2_rng,
 803         .multi_capable = 0,
 804         .chip_version = 1,
 805 };
 806 
 807 static struct n2rng_template vf_template = {
 808         .id = N2_vf_rng,
 809         .multi_capable = 1,
 810         .chip_version = 1,
 811 };
 812 
 813 static struct n2rng_template kt_template = {
 814         .id = N2_kt_rng,
 815         .multi_capable = 1,
 816         .chip_version = 1,
 817 };
 818 
 819 static struct n2rng_template m4_template = {
 820         .id = N2_m4_rng,
 821         .multi_capable = 1,
 822         .chip_version = 2,
 823 };
 824 
 825 static struct n2rng_template m7_template = {
 826         .id = N2_m7_rng,
 827         .multi_capable = 1,
 828         .chip_version = 2,
 829 };
 830 
 831 static const struct of_device_id n2rng_match[] = {
 832         {
 833                 .name           = "random-number-generator",
 834                 .compatible     = "SUNW,n2-rng",
 835                 .data           = &n2_template,
 836         },
 837         {
 838                 .name           = "random-number-generator",
 839                 .compatible     = "SUNW,vf-rng",
 840                 .data           = &vf_template,
 841         },
 842         {
 843                 .name           = "random-number-generator",
 844                 .compatible     = "SUNW,kt-rng",
 845                 .data           = &kt_template,
 846         },
 847         {
 848                 .name           = "random-number-generator",
 849                 .compatible     = "ORCL,m4-rng",
 850                 .data           = &m4_template,
 851         },
 852         {
 853                 .name           = "random-number-generator",
 854                 .compatible     = "ORCL,m7-rng",
 855                 .data           = &m7_template,
 856         },
 857         {},
 858 };
 859 MODULE_DEVICE_TABLE(of, n2rng_match);
 860 
 861 static struct platform_driver n2rng_driver = {
 862         .driver = {
 863                 .name = "n2rng",
 864                 .of_match_table = n2rng_match,
 865         },
 866         .probe          = n2rng_probe,
 867         .remove         = n2rng_remove,
 868 };
 869 
 870 module_platform_driver(n2rng_driver);

/* [<][>][^][v][top][bottom][index][help] */