root/drivers/mailbox/bcm-pdc-mailbox.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. pdc_debugfs_read
  2. pdc_setup_debugfs
  3. pdc_free_debugfs
  4. pdc_build_rxd
  5. pdc_build_txd
  6. pdc_receive_one
  7. pdc_receive
  8. pdc_tx_list_sg_add
  9. pdc_tx_list_final
  10. pdc_rx_list_init
  11. pdc_rx_list_sg_add
  12. pdc_irq_handler
  13. pdc_tasklet_cb
  14. pdc_ring_init
  15. pdc_ring_free
  16. pdc_desc_count
  17. pdc_rings_full
  18. pdc_last_tx_done
  19. pdc_send_data
  20. pdc_startup
  21. pdc_shutdown
  22. pdc_hw_init
  23. pdc_hw_disable
  24. pdc_rx_buf_pool_create
  25. pdc_interrupts_init
  26. pdc_mb_init
  27. pdc_dt_read
  28. pdc_probe
  29. pdc_remove

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * Copyright 2016 Broadcom
   4  */
   5 
   6 /*
   7  * Broadcom PDC Mailbox Driver
   8  * The PDC provides a ring based programming interface to one or more hardware
   9  * offload engines. For example, the PDC driver works with both SPU-M and SPU2
  10  * cryptographic offload hardware. In some chips the PDC is referred to as MDE,
  11  * and in others the FA2/FA+ hardware is used with this PDC driver.
  12  *
  13  * The PDC driver registers with the Linux mailbox framework as a mailbox
  14  * controller, once for each PDC instance. Ring 0 for each PDC is registered as
  15  * a mailbox channel. The PDC driver uses interrupts to determine when data
  16  * transfers to and from an offload engine are complete. The PDC driver uses
  17  * threaded IRQs so that response messages are handled outside of interrupt
  18  * context.
  19  *
  20  * The PDC driver allows multiple messages to be pending in the descriptor
  21  * rings. The tx_msg_start descriptor index indicates where the last message
  22  * starts. The txin_numd value at this index indicates how many descriptor
  23  * indexes make up the message. Similar state is kept on the receive side. When
  24  * an rx interrupt indicates a response is ready, the PDC driver processes numd
  25  * descriptors from the tx and rx ring, thus processing one response at a time.
  26  */
  27 
  28 #include <linux/errno.h>
  29 #include <linux/module.h>
  30 #include <linux/init.h>
  31 #include <linux/slab.h>
  32 #include <linux/debugfs.h>
  33 #include <linux/interrupt.h>
  34 #include <linux/wait.h>
  35 #include <linux/platform_device.h>
  36 #include <linux/io.h>
  37 #include <linux/of.h>
  38 #include <linux/of_device.h>
  39 #include <linux/of_address.h>
  40 #include <linux/of_irq.h>
  41 #include <linux/mailbox_controller.h>
  42 #include <linux/mailbox/brcm-message.h>
  43 #include <linux/scatterlist.h>
  44 #include <linux/dma-direction.h>
  45 #include <linux/dma-mapping.h>
  46 #include <linux/dmapool.h>
  47 
  48 #define PDC_SUCCESS  0
  49 
  50 #define RING_ENTRY_SIZE   sizeof(struct dma64dd)
  51 
  52 /* # entries in PDC dma ring */
  53 #define PDC_RING_ENTRIES  512
  54 /*
  55  * Minimum number of ring descriptor entries that must be free to tell mailbox
  56  * framework that it can submit another request
  57  */
  58 #define PDC_RING_SPACE_MIN  15
  59 
  60 #define PDC_RING_SIZE    (PDC_RING_ENTRIES * RING_ENTRY_SIZE)
  61 /* Rings are 8k aligned */
  62 #define RING_ALIGN_ORDER  13
  63 #define RING_ALIGN        BIT(RING_ALIGN_ORDER)
  64 
  65 #define RX_BUF_ALIGN_ORDER  5
  66 #define RX_BUF_ALIGN        BIT(RX_BUF_ALIGN_ORDER)
  67 
  68 /* descriptor bumping macros */
  69 #define XXD(x, max_mask)              ((x) & (max_mask))
  70 #define TXD(x, max_mask)              XXD((x), (max_mask))
  71 #define RXD(x, max_mask)              XXD((x), (max_mask))
  72 #define NEXTTXD(i, max_mask)          TXD((i) + 1, (max_mask))
  73 #define PREVTXD(i, max_mask)          TXD((i) - 1, (max_mask))
  74 #define NEXTRXD(i, max_mask)          RXD((i) + 1, (max_mask))
  75 #define PREVRXD(i, max_mask)          RXD((i) - 1, (max_mask))
  76 #define NTXDACTIVE(h, t, max_mask)    TXD((t) - (h), (max_mask))
  77 #define NRXDACTIVE(h, t, max_mask)    RXD((t) - (h), (max_mask))
  78 
  79 /* Length of BCM header at start of SPU msg, in bytes */
  80 #define BCM_HDR_LEN  8
  81 
  82 /*
  83  * PDC driver reserves ringset 0 on each SPU for its own use. The driver does
  84  * not currently support use of multiple ringsets on a single PDC engine.
  85  */
  86 #define PDC_RINGSET  0
  87 
  88 /*
  89  * Interrupt mask and status definitions. Enable interrupts for tx and rx on
  90  * ring 0
  91  */
  92 #define PDC_RCVINT_0         (16 + PDC_RINGSET)
  93 #define PDC_RCVINTEN_0       BIT(PDC_RCVINT_0)
  94 #define PDC_INTMASK          (PDC_RCVINTEN_0)
  95 #define PDC_LAZY_FRAMECOUNT  1
  96 #define PDC_LAZY_TIMEOUT     10000
  97 #define PDC_LAZY_INT  (PDC_LAZY_TIMEOUT | (PDC_LAZY_FRAMECOUNT << 24))
  98 #define PDC_INTMASK_OFFSET   0x24
  99 #define PDC_INTSTATUS_OFFSET 0x20
 100 #define PDC_RCVLAZY0_OFFSET  (0x30 + 4 * PDC_RINGSET)
 101 #define FA_RCVLAZY0_OFFSET   0x100
 102 
 103 /*
 104  * For SPU2, configure MDE_CKSUM_CONTROL to write 17 bytes of metadata
 105  * before frame
 106  */
 107 #define PDC_SPU2_RESP_HDR_LEN  17
 108 #define PDC_CKSUM_CTRL         BIT(27)
 109 #define PDC_CKSUM_CTRL_OFFSET  0x400
 110 
 111 #define PDC_SPUM_RESP_HDR_LEN  32
 112 
 113 /*
 114  * Sets the following bits for write to transmit control reg:
 115  * 11    - PtyChkDisable - parity check is disabled
 116  * 20:18 - BurstLen = 3 -> 2^7 = 128 byte data reads from memory
 117  */
 118 #define PDC_TX_CTL              0x000C0800
 119 
 120 /* Bit in tx control reg to enable tx channel */
 121 #define PDC_TX_ENABLE           0x1
 122 
 123 /*
 124  * Sets the following bits for write to receive control reg:
 125  * 7:1   - RcvOffset - size in bytes of status region at start of rx frame buf
 126  * 9     - SepRxHdrDescEn - place start of new frames only in descriptors
 127  *                          that have StartOfFrame set
 128  * 10    - OflowContinue - on rx FIFO overflow, clear rx fifo, discard all
 129  *                         remaining bytes in current frame, report error
 130  *                         in rx frame status for current frame
 131  * 11    - PtyChkDisable - parity check is disabled
 132  * 20:18 - BurstLen = 3 -> 2^7 = 128 byte data reads from memory
 133  */
 134 #define PDC_RX_CTL              0x000C0E00
 135 
 136 /* Bit in rx control reg to enable rx channel */
 137 #define PDC_RX_ENABLE           0x1
 138 
 139 #define CRYPTO_D64_RS0_CD_MASK   ((PDC_RING_ENTRIES * RING_ENTRY_SIZE) - 1)
 140 
 141 /* descriptor flags */
 142 #define D64_CTRL1_EOT   BIT(28) /* end of descriptor table */
 143 #define D64_CTRL1_IOC   BIT(29) /* interrupt on complete */
 144 #define D64_CTRL1_EOF   BIT(30) /* end of frame */
 145 #define D64_CTRL1_SOF   BIT(31) /* start of frame */
 146 
 147 #define RX_STATUS_OVERFLOW       0x00800000
 148 #define RX_STATUS_LEN            0x0000FFFF
 149 
 150 #define PDC_TXREGS_OFFSET  0x200
 151 #define PDC_RXREGS_OFFSET  0x220
 152 
 153 /* Maximum size buffer the DMA engine can handle */
 154 #define PDC_DMA_BUF_MAX 16384
 155 
 156 enum pdc_hw {
 157         FA_HW,          /* FA2/FA+ hardware (i.e. Northstar Plus) */
 158         PDC_HW          /* PDC/MDE hardware (i.e. Northstar 2, Pegasus) */
 159 };
 160 
 161 struct pdc_dma_map {
 162         void *ctx;          /* opaque context associated with frame */
 163 };
 164 
 165 /* dma descriptor */
 166 struct dma64dd {
 167         u32 ctrl1;      /* misc control bits */
 168         u32 ctrl2;      /* buffer count and address extension */
 169         u32 addrlow;    /* memory address of the date buffer, bits 31:0 */
 170         u32 addrhigh;   /* memory address of the date buffer, bits 63:32 */
 171 };
 172 
 173 /* dma registers per channel(xmt or rcv) */
 174 struct dma64_regs {
 175         u32  control;   /* enable, et al */
 176         u32  ptr;       /* last descriptor posted to chip */
 177         u32  addrlow;   /* descriptor ring base address low 32-bits */
 178         u32  addrhigh;  /* descriptor ring base address bits 63:32 */
 179         u32  status0;   /* last rx descriptor written by hw */
 180         u32  status1;   /* driver does not use */
 181 };
 182 
 183 /* cpp contortions to concatenate w/arg prescan */
 184 #ifndef PAD
 185 #define _PADLINE(line)  pad ## line
 186 #define _XSTR(line)     _PADLINE(line)
 187 #define PAD             _XSTR(__LINE__)
 188 #endif  /* PAD */
 189 
 190 /* dma registers. matches hw layout. */
 191 struct dma64 {
 192         struct dma64_regs dmaxmt;  /* dma tx */
 193         u32          PAD[2];
 194         struct dma64_regs dmarcv;  /* dma rx */
 195         u32          PAD[2];
 196 };
 197 
 198 /* PDC registers */
 199 struct pdc_regs {
 200         u32  devcontrol;             /* 0x000 */
 201         u32  devstatus;              /* 0x004 */
 202         u32  PAD;
 203         u32  biststatus;             /* 0x00c */
 204         u32  PAD[4];
 205         u32  intstatus;              /* 0x020 */
 206         u32  intmask;                /* 0x024 */
 207         u32  gptimer;                /* 0x028 */
 208 
 209         u32  PAD;
 210         u32  intrcvlazy_0;           /* 0x030 (Only in PDC, not FA2) */
 211         u32  intrcvlazy_1;           /* 0x034 (Only in PDC, not FA2) */
 212         u32  intrcvlazy_2;           /* 0x038 (Only in PDC, not FA2) */
 213         u32  intrcvlazy_3;           /* 0x03c (Only in PDC, not FA2) */
 214 
 215         u32  PAD[48];
 216         u32  fa_intrecvlazy;         /* 0x100 (Only in FA2, not PDC) */
 217         u32  flowctlthresh;          /* 0x104 */
 218         u32  wrrthresh;              /* 0x108 */
 219         u32  gmac_idle_cnt_thresh;   /* 0x10c */
 220 
 221         u32  PAD[4];
 222         u32  ifioaccessaddr;         /* 0x120 */
 223         u32  ifioaccessbyte;         /* 0x124 */
 224         u32  ifioaccessdata;         /* 0x128 */
 225 
 226         u32  PAD[21];
 227         u32  phyaccess;              /* 0x180 */
 228         u32  PAD;
 229         u32  phycontrol;             /* 0x188 */
 230         u32  txqctl;                 /* 0x18c */
 231         u32  rxqctl;                 /* 0x190 */
 232         u32  gpioselect;             /* 0x194 */
 233         u32  gpio_output_en;         /* 0x198 */
 234         u32  PAD;                    /* 0x19c */
 235         u32  txq_rxq_mem_ctl;        /* 0x1a0 */
 236         u32  memory_ecc_status;      /* 0x1a4 */
 237         u32  serdes_ctl;             /* 0x1a8 */
 238         u32  serdes_status0;         /* 0x1ac */
 239         u32  serdes_status1;         /* 0x1b0 */
 240         u32  PAD[11];                /* 0x1b4-1dc */
 241         u32  clk_ctl_st;             /* 0x1e0 */
 242         u32  hw_war;                 /* 0x1e4 (Only in PDC, not FA2) */
 243         u32  pwrctl;                 /* 0x1e8 */
 244         u32  PAD[5];
 245 
 246 #define PDC_NUM_DMA_RINGS   4
 247         struct dma64 dmaregs[PDC_NUM_DMA_RINGS];  /* 0x0200 - 0x2fc */
 248 
 249         /* more registers follow, but we don't use them */
 250 };
 251 
 252 /* structure for allocating/freeing DMA rings */
 253 struct pdc_ring_alloc {
 254         dma_addr_t  dmabase; /* DMA address of start of ring */
 255         void       *vbase;   /* base kernel virtual address of ring */
 256         u32         size;    /* ring allocation size in bytes */
 257 };
 258 
 259 /*
 260  * context associated with a receive descriptor.
 261  * @rxp_ctx: opaque context associated with frame that starts at each
 262  *           rx ring index.
 263  * @dst_sg:  Scatterlist used to form reply frames beginning at a given ring
 264  *           index. Retained in order to unmap each sg after reply is processed.
 265  * @rxin_numd: Number of rx descriptors associated with the message that starts
 266  *             at a descriptor index. Not set for every index. For example,
 267  *             if descriptor index i points to a scatterlist with 4 entries,
 268  *             then the next three descriptor indexes don't have a value set.
 269  * @resp_hdr: Virtual address of buffer used to catch DMA rx status
 270  * @resp_hdr_daddr: physical address of DMA rx status buffer
 271  */
 272 struct pdc_rx_ctx {
 273         void *rxp_ctx;
 274         struct scatterlist *dst_sg;
 275         u32  rxin_numd;
 276         void *resp_hdr;
 277         dma_addr_t resp_hdr_daddr;
 278 };
 279 
 280 /* PDC state structure */
 281 struct pdc_state {
 282         /* Index of the PDC whose state is in this structure instance */
 283         u8 pdc_idx;
 284 
 285         /* Platform device for this PDC instance */
 286         struct platform_device *pdev;
 287 
 288         /*
 289          * Each PDC instance has a mailbox controller. PDC receives request
 290          * messages through mailboxes, and sends response messages through the
 291          * mailbox framework.
 292          */
 293         struct mbox_controller mbc;
 294 
 295         unsigned int pdc_irq;
 296 
 297         /* tasklet for deferred processing after DMA rx interrupt */
 298         struct tasklet_struct rx_tasklet;
 299 
 300         /* Number of bytes of receive status prior to each rx frame */
 301         u32 rx_status_len;
 302         /* Whether a BCM header is prepended to each frame */
 303         bool use_bcm_hdr;
 304         /* Sum of length of BCM header and rx status header */
 305         u32 pdc_resp_hdr_len;
 306 
 307         /* The base virtual address of DMA hw registers */
 308         void __iomem *pdc_reg_vbase;
 309 
 310         /* Pool for allocation of DMA rings */
 311         struct dma_pool *ring_pool;
 312 
 313         /* Pool for allocation of metadata buffers for response messages */
 314         struct dma_pool *rx_buf_pool;
 315 
 316         /*
 317          * The base virtual address of DMA tx/rx descriptor rings. Corresponding
 318          * DMA address and size of ring allocation.
 319          */
 320         struct pdc_ring_alloc tx_ring_alloc;
 321         struct pdc_ring_alloc rx_ring_alloc;
 322 
 323         struct pdc_regs *regs;    /* start of PDC registers */
 324 
 325         struct dma64_regs *txregs_64; /* dma tx engine registers */
 326         struct dma64_regs *rxregs_64; /* dma rx engine registers */
 327 
 328         /*
 329          * Arrays of PDC_RING_ENTRIES descriptors
 330          * To use multiple ringsets, this needs to be extended
 331          */
 332         struct dma64dd   *txd_64;  /* tx descriptor ring */
 333         struct dma64dd   *rxd_64;  /* rx descriptor ring */
 334 
 335         /* descriptor ring sizes */
 336         u32      ntxd;       /* # tx descriptors */
 337         u32      nrxd;       /* # rx descriptors */
 338         u32      nrxpost;    /* # rx buffers to keep posted */
 339         u32      ntxpost;    /* max number of tx buffers that can be posted */
 340 
 341         /*
 342          * Index of next tx descriptor to reclaim. That is, the descriptor
 343          * index of the oldest tx buffer for which the host has yet to process
 344          * the corresponding response.
 345          */
 346         u32  txin;
 347 
 348         /*
 349          * Index of the first receive descriptor for the sequence of
 350          * message fragments currently under construction. Used to build up
 351          * the rxin_numd count for a message. Updated to rxout when the host
 352          * starts a new sequence of rx buffers for a new message.
 353          */
 354         u32  tx_msg_start;
 355 
 356         /* Index of next tx descriptor to post. */
 357         u32  txout;
 358 
 359         /*
 360          * Number of tx descriptors associated with the message that starts
 361          * at this tx descriptor index.
 362          */
 363         u32      txin_numd[PDC_RING_ENTRIES];
 364 
 365         /*
 366          * Index of next rx descriptor to reclaim. This is the index of
 367          * the next descriptor whose data has yet to be processed by the host.
 368          */
 369         u32  rxin;
 370 
 371         /*
 372          * Index of the first receive descriptor for the sequence of
 373          * message fragments currently under construction. Used to build up
 374          * the rxin_numd count for a message. Updated to rxout when the host
 375          * starts a new sequence of rx buffers for a new message.
 376          */
 377         u32  rx_msg_start;
 378 
 379         /*
 380          * Saved value of current hardware rx descriptor index.
 381          * The last rx buffer written by the hw is the index previous to
 382          * this one.
 383          */
 384         u32  last_rx_curr;
 385 
 386         /* Index of next rx descriptor to post. */
 387         u32  rxout;
 388 
 389         struct pdc_rx_ctx rx_ctx[PDC_RING_ENTRIES];
 390 
 391         /*
 392          * Scatterlists used to form request and reply frames beginning at a
 393          * given ring index. Retained in order to unmap each sg after reply
 394          * is processed
 395          */
 396         struct scatterlist *src_sg[PDC_RING_ENTRIES];
 397 
 398         /* counters */
 399         u32  pdc_requests;     /* number of request messages submitted */
 400         u32  pdc_replies;      /* number of reply messages received */
 401         u32  last_tx_not_done; /* too few tx descriptors to indicate done */
 402         u32  tx_ring_full;     /* unable to accept msg because tx ring full */
 403         u32  rx_ring_full;     /* unable to accept msg because rx ring full */
 404         u32  txnobuf;          /* unable to create tx descriptor */
 405         u32  rxnobuf;          /* unable to create rx descriptor */
 406         u32  rx_oflow;         /* count of rx overflows */
 407 
 408         /* hardware type - FA2 or PDC/MDE */
 409         enum pdc_hw hw_type;
 410 };
 411 
 412 /* Global variables */
 413 
 414 struct pdc_globals {
 415         /* Actual number of SPUs in hardware, as reported by device tree */
 416         u32 num_spu;
 417 };
 418 
 419 static struct pdc_globals pdcg;
 420 
 421 /* top level debug FS directory for PDC driver */
 422 static struct dentry *debugfs_dir;
 423 
 424 static ssize_t pdc_debugfs_read(struct file *filp, char __user *ubuf,
 425                                 size_t count, loff_t *offp)
 426 {
 427         struct pdc_state *pdcs;
 428         char *buf;
 429         ssize_t ret, out_offset, out_count;
 430 
 431         out_count = 512;
 432 
 433         buf = kmalloc(out_count, GFP_KERNEL);
 434         if (!buf)
 435                 return -ENOMEM;
 436 
 437         pdcs = filp->private_data;
 438         out_offset = 0;
 439         out_offset += snprintf(buf + out_offset, out_count - out_offset,
 440                                "SPU %u stats:\n", pdcs->pdc_idx);
 441         out_offset += snprintf(buf + out_offset, out_count - out_offset,
 442                                "PDC requests....................%u\n",
 443                                pdcs->pdc_requests);
 444         out_offset += snprintf(buf + out_offset, out_count - out_offset,
 445                                "PDC responses...................%u\n",
 446                                pdcs->pdc_replies);
 447         out_offset += snprintf(buf + out_offset, out_count - out_offset,
 448                                "Tx not done.....................%u\n",
 449                                pdcs->last_tx_not_done);
 450         out_offset += snprintf(buf + out_offset, out_count - out_offset,
 451                                "Tx ring full....................%u\n",
 452                                pdcs->tx_ring_full);
 453         out_offset += snprintf(buf + out_offset, out_count - out_offset,
 454                                "Rx ring full....................%u\n",
 455                                pdcs->rx_ring_full);
 456         out_offset += snprintf(buf + out_offset, out_count - out_offset,
 457                                "Tx desc write fail. Ring full...%u\n",
 458                                pdcs->txnobuf);
 459         out_offset += snprintf(buf + out_offset, out_count - out_offset,
 460                                "Rx desc write fail. Ring full...%u\n",
 461                                pdcs->rxnobuf);
 462         out_offset += snprintf(buf + out_offset, out_count - out_offset,
 463                                "Receive overflow................%u\n",
 464                                pdcs->rx_oflow);
 465         out_offset += snprintf(buf + out_offset, out_count - out_offset,
 466                                "Num frags in rx ring............%u\n",
 467                                NRXDACTIVE(pdcs->rxin, pdcs->last_rx_curr,
 468                                           pdcs->nrxpost));
 469 
 470         if (out_offset > out_count)
 471                 out_offset = out_count;
 472 
 473         ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset);
 474         kfree(buf);
 475         return ret;
 476 }
 477 
 478 static const struct file_operations pdc_debugfs_stats = {
 479         .owner = THIS_MODULE,
 480         .open = simple_open,
 481         .read = pdc_debugfs_read,
 482 };
 483 
 484 /**
 485  * pdc_setup_debugfs() - Create the debug FS directories. If the top-level
 486  * directory has not yet been created, create it now. Create a stats file in
 487  * this directory for a SPU.
 488  * @pdcs: PDC state structure
 489  */
 490 static void pdc_setup_debugfs(struct pdc_state *pdcs)
 491 {
 492         char spu_stats_name[16];
 493 
 494         if (!debugfs_initialized())
 495                 return;
 496 
 497         snprintf(spu_stats_name, 16, "pdc%d_stats", pdcs->pdc_idx);
 498         if (!debugfs_dir)
 499                 debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL);
 500 
 501         /* S_IRUSR == 0400 */
 502         debugfs_create_file(spu_stats_name, 0400, debugfs_dir, pdcs,
 503                             &pdc_debugfs_stats);
 504 }
 505 
 506 static void pdc_free_debugfs(void)
 507 {
 508         debugfs_remove_recursive(debugfs_dir);
 509         debugfs_dir = NULL;
 510 }
 511 
 512 /**
 513  * pdc_build_rxd() - Build DMA descriptor to receive SPU result.
 514  * @pdcs:      PDC state for SPU that will generate result
 515  * @dma_addr:  DMA address of buffer that descriptor is being built for
 516  * @buf_len:   Length of the receive buffer, in bytes
 517  * @flags:     Flags to be stored in descriptor
 518  */
 519 static inline void
 520 pdc_build_rxd(struct pdc_state *pdcs, dma_addr_t dma_addr,
 521               u32 buf_len, u32 flags)
 522 {
 523         struct device *dev = &pdcs->pdev->dev;
 524         struct dma64dd *rxd = &pdcs->rxd_64[pdcs->rxout];
 525 
 526         dev_dbg(dev,
 527                 "Writing rx descriptor for PDC %u at index %u with length %u. flags %#x\n",
 528                 pdcs->pdc_idx, pdcs->rxout, buf_len, flags);
 529 
 530         rxd->addrlow = cpu_to_le32(lower_32_bits(dma_addr));
 531         rxd->addrhigh = cpu_to_le32(upper_32_bits(dma_addr));
 532         rxd->ctrl1 = cpu_to_le32(flags);
 533         rxd->ctrl2 = cpu_to_le32(buf_len);
 534 
 535         /* bump ring index and return */
 536         pdcs->rxout = NEXTRXD(pdcs->rxout, pdcs->nrxpost);
 537 }
 538 
 539 /**
 540  * pdc_build_txd() - Build a DMA descriptor to transmit a SPU request to
 541  * hardware.
 542  * @pdcs:        PDC state for the SPU that will process this request
 543  * @dma_addr:    DMA address of packet to be transmitted
 544  * @buf_len:     Length of tx buffer, in bytes
 545  * @flags:       Flags to be stored in descriptor
 546  */
 547 static inline void
 548 pdc_build_txd(struct pdc_state *pdcs, dma_addr_t dma_addr, u32 buf_len,
 549               u32 flags)
 550 {
 551         struct device *dev = &pdcs->pdev->dev;
 552         struct dma64dd *txd = &pdcs->txd_64[pdcs->txout];
 553 
 554         dev_dbg(dev,
 555                 "Writing tx descriptor for PDC %u at index %u with length %u, flags %#x\n",
 556                 pdcs->pdc_idx, pdcs->txout, buf_len, flags);
 557 
 558         txd->addrlow = cpu_to_le32(lower_32_bits(dma_addr));
 559         txd->addrhigh = cpu_to_le32(upper_32_bits(dma_addr));
 560         txd->ctrl1 = cpu_to_le32(flags);
 561         txd->ctrl2 = cpu_to_le32(buf_len);
 562 
 563         /* bump ring index and return */
 564         pdcs->txout = NEXTTXD(pdcs->txout, pdcs->ntxpost);
 565 }
 566 
 567 /**
 568  * pdc_receive_one() - Receive a response message from a given SPU.
 569  * @pdcs:    PDC state for the SPU to receive from
 570  *
 571  * When the return code indicates success, the response message is available in
 572  * the receive buffers provided prior to submission of the request.
 573  *
 574  * Return:  PDC_SUCCESS if one or more receive descriptors was processed
 575  *          -EAGAIN indicates that no response message is available
 576  *          -EIO an error occurred
 577  */
 578 static int
 579 pdc_receive_one(struct pdc_state *pdcs)
 580 {
 581         struct device *dev = &pdcs->pdev->dev;
 582         struct mbox_controller *mbc;
 583         struct mbox_chan *chan;
 584         struct brcm_message mssg;
 585         u32 len, rx_status;
 586         u32 num_frags;
 587         u8 *resp_hdr;    /* virtual addr of start of resp message DMA header */
 588         u32 frags_rdy;   /* number of fragments ready to read */
 589         u32 rx_idx;      /* ring index of start of receive frame */
 590         dma_addr_t resp_hdr_daddr;
 591         struct pdc_rx_ctx *rx_ctx;
 592 
 593         mbc = &pdcs->mbc;
 594         chan = &mbc->chans[0];
 595         mssg.type = BRCM_MESSAGE_SPU;
 596 
 597         /*
 598          * return if a complete response message is not yet ready.
 599          * rxin_numd[rxin] is the number of fragments in the next msg
 600          * to read.
 601          */
 602         frags_rdy = NRXDACTIVE(pdcs->rxin, pdcs->last_rx_curr, pdcs->nrxpost);
 603         if ((frags_rdy == 0) ||
 604             (frags_rdy < pdcs->rx_ctx[pdcs->rxin].rxin_numd))
 605                 /* No response ready */
 606                 return -EAGAIN;
 607 
 608         num_frags = pdcs->txin_numd[pdcs->txin];
 609         WARN_ON(num_frags == 0);
 610 
 611         dma_unmap_sg(dev, pdcs->src_sg[pdcs->txin],
 612                      sg_nents(pdcs->src_sg[pdcs->txin]), DMA_TO_DEVICE);
 613 
 614         pdcs->txin = (pdcs->txin + num_frags) & pdcs->ntxpost;
 615 
 616         dev_dbg(dev, "PDC %u reclaimed %d tx descriptors",
 617                 pdcs->pdc_idx, num_frags);
 618 
 619         rx_idx = pdcs->rxin;
 620         rx_ctx = &pdcs->rx_ctx[rx_idx];
 621         num_frags = rx_ctx->rxin_numd;
 622         /* Return opaque context with result */
 623         mssg.ctx = rx_ctx->rxp_ctx;
 624         rx_ctx->rxp_ctx = NULL;
 625         resp_hdr = rx_ctx->resp_hdr;
 626         resp_hdr_daddr = rx_ctx->resp_hdr_daddr;
 627         dma_unmap_sg(dev, rx_ctx->dst_sg, sg_nents(rx_ctx->dst_sg),
 628                      DMA_FROM_DEVICE);
 629 
 630         pdcs->rxin = (pdcs->rxin + num_frags) & pdcs->nrxpost;
 631 
 632         dev_dbg(dev, "PDC %u reclaimed %d rx descriptors",
 633                 pdcs->pdc_idx, num_frags);
 634 
 635         dev_dbg(dev,
 636                 "PDC %u txin %u, txout %u, rxin %u, rxout %u, last_rx_curr %u\n",
 637                 pdcs->pdc_idx, pdcs->txin, pdcs->txout, pdcs->rxin,
 638                 pdcs->rxout, pdcs->last_rx_curr);
 639 
 640         if (pdcs->pdc_resp_hdr_len == PDC_SPUM_RESP_HDR_LEN) {
 641                 /*
 642                  * For SPU-M, get length of response msg and rx overflow status.
 643                  */
 644                 rx_status = *((u32 *)resp_hdr);
 645                 len = rx_status & RX_STATUS_LEN;
 646                 dev_dbg(dev,
 647                         "SPU response length %u bytes", len);
 648                 if (unlikely(((rx_status & RX_STATUS_OVERFLOW) || (!len)))) {
 649                         if (rx_status & RX_STATUS_OVERFLOW) {
 650                                 dev_err_ratelimited(dev,
 651                                                     "crypto receive overflow");
 652                                 pdcs->rx_oflow++;
 653                         } else {
 654                                 dev_info_ratelimited(dev, "crypto rx len = 0");
 655                         }
 656                         return -EIO;
 657                 }
 658         }
 659 
 660         dma_pool_free(pdcs->rx_buf_pool, resp_hdr, resp_hdr_daddr);
 661 
 662         mbox_chan_received_data(chan, &mssg);
 663 
 664         pdcs->pdc_replies++;
 665         return PDC_SUCCESS;
 666 }
 667 
 668 /**
 669  * pdc_receive() - Process as many responses as are available in the rx ring.
 670  * @pdcs:  PDC state
 671  *
 672  * Called within the hard IRQ.
 673  * Return:
 674  */
 675 static int
 676 pdc_receive(struct pdc_state *pdcs)
 677 {
 678         int rx_status;
 679 
 680         /* read last_rx_curr from register once */
 681         pdcs->last_rx_curr =
 682             (ioread32(&pdcs->rxregs_64->status0) &
 683              CRYPTO_D64_RS0_CD_MASK) / RING_ENTRY_SIZE;
 684 
 685         do {
 686                 /* Could be many frames ready */
 687                 rx_status = pdc_receive_one(pdcs);
 688         } while (rx_status == PDC_SUCCESS);
 689 
 690         return 0;
 691 }
 692 
 693 /**
 694  * pdc_tx_list_sg_add() - Add the buffers in a scatterlist to the transmit
 695  * descriptors for a given SPU. The scatterlist buffers contain the data for a
 696  * SPU request message.
 697  * @spu_idx:   The index of the SPU to submit the request to, [0, max_spu)
 698  * @sg:        Scatterlist whose buffers contain part of the SPU request
 699  *
 700  * If a scatterlist buffer is larger than PDC_DMA_BUF_MAX, multiple descriptors
 701  * are written for that buffer, each <= PDC_DMA_BUF_MAX byte in length.
 702  *
 703  * Return: PDC_SUCCESS if successful
 704  *         < 0 otherwise
 705  */
 706 static int pdc_tx_list_sg_add(struct pdc_state *pdcs, struct scatterlist *sg)
 707 {
 708         u32 flags = 0;
 709         u32 eot;
 710         u32 tx_avail;
 711 
 712         /*
 713          * Num descriptors needed. Conservatively assume we need a descriptor
 714          * for every entry in sg.
 715          */
 716         u32 num_desc;
 717         u32 desc_w = 0; /* Number of tx descriptors written */
 718         u32 bufcnt;     /* Number of bytes of buffer pointed to by descriptor */
 719         dma_addr_t databufptr;  /* DMA address to put in descriptor */
 720 
 721         num_desc = (u32)sg_nents(sg);
 722 
 723         /* check whether enough tx descriptors are available */
 724         tx_avail = pdcs->ntxpost - NTXDACTIVE(pdcs->txin, pdcs->txout,
 725                                               pdcs->ntxpost);
 726         if (unlikely(num_desc > tx_avail)) {
 727                 pdcs->txnobuf++;
 728                 return -ENOSPC;
 729         }
 730 
 731         /* build tx descriptors */
 732         if (pdcs->tx_msg_start == pdcs->txout) {
 733                 /* Start of frame */
 734                 pdcs->txin_numd[pdcs->tx_msg_start] = 0;
 735                 pdcs->src_sg[pdcs->txout] = sg;
 736                 flags = D64_CTRL1_SOF;
 737         }
 738 
 739         while (sg) {
 740                 if (unlikely(pdcs->txout == (pdcs->ntxd - 1)))
 741                         eot = D64_CTRL1_EOT;
 742                 else
 743                         eot = 0;
 744 
 745                 /*
 746                  * If sg buffer larger than PDC limit, split across
 747                  * multiple descriptors
 748                  */
 749                 bufcnt = sg_dma_len(sg);
 750                 databufptr = sg_dma_address(sg);
 751                 while (bufcnt > PDC_DMA_BUF_MAX) {
 752                         pdc_build_txd(pdcs, databufptr, PDC_DMA_BUF_MAX,
 753                                       flags | eot);
 754                         desc_w++;
 755                         bufcnt -= PDC_DMA_BUF_MAX;
 756                         databufptr += PDC_DMA_BUF_MAX;
 757                         if (unlikely(pdcs->txout == (pdcs->ntxd - 1)))
 758                                 eot = D64_CTRL1_EOT;
 759                         else
 760                                 eot = 0;
 761                 }
 762                 sg = sg_next(sg);
 763                 if (!sg)
 764                         /* Writing last descriptor for frame */
 765                         flags |= (D64_CTRL1_EOF | D64_CTRL1_IOC);
 766                 pdc_build_txd(pdcs, databufptr, bufcnt, flags | eot);
 767                 desc_w++;
 768                 /* Clear start of frame after first descriptor */
 769                 flags &= ~D64_CTRL1_SOF;
 770         }
 771         pdcs->txin_numd[pdcs->tx_msg_start] += desc_w;
 772 
 773         return PDC_SUCCESS;
 774 }
 775 
 776 /**
 777  * pdc_tx_list_final() - Initiate DMA transfer of last frame written to tx
 778  * ring.
 779  * @pdcs:  PDC state for SPU to process the request
 780  *
 781  * Sets the index of the last descriptor written in both the rx and tx ring.
 782  *
 783  * Return: PDC_SUCCESS
 784  */
 785 static int pdc_tx_list_final(struct pdc_state *pdcs)
 786 {
 787         /*
 788          * write barrier to ensure all register writes are complete
 789          * before chip starts to process new request
 790          */
 791         wmb();
 792         iowrite32(pdcs->rxout << 4, &pdcs->rxregs_64->ptr);
 793         iowrite32(pdcs->txout << 4, &pdcs->txregs_64->ptr);
 794         pdcs->pdc_requests++;
 795 
 796         return PDC_SUCCESS;
 797 }
 798 
 799 /**
 800  * pdc_rx_list_init() - Start a new receive descriptor list for a given PDC.
 801  * @pdcs:   PDC state for SPU handling request
 802  * @dst_sg: scatterlist providing rx buffers for response to be returned to
 803  *          mailbox client
 804  * @ctx:    Opaque context for this request
 805  *
 806  * Posts a single receive descriptor to hold the metadata that precedes a
 807  * response. For example, with SPU-M, the metadata is a 32-byte DMA header and
 808  * an 8-byte BCM header. Moves the msg_start descriptor indexes for both tx and
 809  * rx to indicate the start of a new message.
 810  *
 811  * Return:  PDC_SUCCESS if successful
 812  *          < 0 if an error (e.g., rx ring is full)
 813  */
 814 static int pdc_rx_list_init(struct pdc_state *pdcs, struct scatterlist *dst_sg,
 815                             void *ctx)
 816 {
 817         u32 flags = 0;
 818         u32 rx_avail;
 819         u32 rx_pkt_cnt = 1;     /* Adding a single rx buffer */
 820         dma_addr_t daddr;
 821         void *vaddr;
 822         struct pdc_rx_ctx *rx_ctx;
 823 
 824         rx_avail = pdcs->nrxpost - NRXDACTIVE(pdcs->rxin, pdcs->rxout,
 825                                               pdcs->nrxpost);
 826         if (unlikely(rx_pkt_cnt > rx_avail)) {
 827                 pdcs->rxnobuf++;
 828                 return -ENOSPC;
 829         }
 830 
 831         /* allocate a buffer for the dma rx status */
 832         vaddr = dma_pool_zalloc(pdcs->rx_buf_pool, GFP_ATOMIC, &daddr);
 833         if (unlikely(!vaddr))
 834                 return -ENOMEM;
 835 
 836         /*
 837          * Update msg_start indexes for both tx and rx to indicate the start
 838          * of a new sequence of descriptor indexes that contain the fragments
 839          * of the same message.
 840          */
 841         pdcs->rx_msg_start = pdcs->rxout;
 842         pdcs->tx_msg_start = pdcs->txout;
 843 
 844         /* This is always the first descriptor in the receive sequence */
 845         flags = D64_CTRL1_SOF;
 846         pdcs->rx_ctx[pdcs->rx_msg_start].rxin_numd = 1;
 847 
 848         if (unlikely(pdcs->rxout == (pdcs->nrxd - 1)))
 849                 flags |= D64_CTRL1_EOT;
 850 
 851         rx_ctx = &pdcs->rx_ctx[pdcs->rxout];
 852         rx_ctx->rxp_ctx = ctx;
 853         rx_ctx->dst_sg = dst_sg;
 854         rx_ctx->resp_hdr = vaddr;
 855         rx_ctx->resp_hdr_daddr = daddr;
 856         pdc_build_rxd(pdcs, daddr, pdcs->pdc_resp_hdr_len, flags);
 857         return PDC_SUCCESS;
 858 }
 859 
 860 /**
 861  * pdc_rx_list_sg_add() - Add the buffers in a scatterlist to the receive
 862  * descriptors for a given SPU. The caller must have already DMA mapped the
 863  * scatterlist.
 864  * @spu_idx:    Indicates which SPU the buffers are for
 865  * @sg:         Scatterlist whose buffers are added to the receive ring
 866  *
 867  * If a receive buffer in the scatterlist is larger than PDC_DMA_BUF_MAX,
 868  * multiple receive descriptors are written, each with a buffer <=
 869  * PDC_DMA_BUF_MAX.
 870  *
 871  * Return: PDC_SUCCESS if successful
 872  *         < 0 otherwise (e.g., receive ring is full)
 873  */
 874 static int pdc_rx_list_sg_add(struct pdc_state *pdcs, struct scatterlist *sg)
 875 {
 876         u32 flags = 0;
 877         u32 rx_avail;
 878 
 879         /*
 880          * Num descriptors needed. Conservatively assume we need a descriptor
 881          * for every entry from our starting point in the scatterlist.
 882          */
 883         u32 num_desc;
 884         u32 desc_w = 0; /* Number of tx descriptors written */
 885         u32 bufcnt;     /* Number of bytes of buffer pointed to by descriptor */
 886         dma_addr_t databufptr;  /* DMA address to put in descriptor */
 887 
 888         num_desc = (u32)sg_nents(sg);
 889 
 890         rx_avail = pdcs->nrxpost - NRXDACTIVE(pdcs->rxin, pdcs->rxout,
 891                                               pdcs->nrxpost);
 892         if (unlikely(num_desc > rx_avail)) {
 893                 pdcs->rxnobuf++;
 894                 return -ENOSPC;
 895         }
 896 
 897         while (sg) {
 898                 if (unlikely(pdcs->rxout == (pdcs->nrxd - 1)))
 899                         flags = D64_CTRL1_EOT;
 900                 else
 901                         flags = 0;
 902 
 903                 /*
 904                  * If sg buffer larger than PDC limit, split across
 905                  * multiple descriptors
 906                  */
 907                 bufcnt = sg_dma_len(sg);
 908                 databufptr = sg_dma_address(sg);
 909                 while (bufcnt > PDC_DMA_BUF_MAX) {
 910                         pdc_build_rxd(pdcs, databufptr, PDC_DMA_BUF_MAX, flags);
 911                         desc_w++;
 912                         bufcnt -= PDC_DMA_BUF_MAX;
 913                         databufptr += PDC_DMA_BUF_MAX;
 914                         if (unlikely(pdcs->rxout == (pdcs->nrxd - 1)))
 915                                 flags = D64_CTRL1_EOT;
 916                         else
 917                                 flags = 0;
 918                 }
 919                 pdc_build_rxd(pdcs, databufptr, bufcnt, flags);
 920                 desc_w++;
 921                 sg = sg_next(sg);
 922         }
 923         pdcs->rx_ctx[pdcs->rx_msg_start].rxin_numd += desc_w;
 924 
 925         return PDC_SUCCESS;
 926 }
 927 
 928 /**
 929  * pdc_irq_handler() - Interrupt handler called in interrupt context.
 930  * @irq:      Interrupt number that has fired
 931  * @data:     device struct for DMA engine that generated the interrupt
 932  *
 933  * We have to clear the device interrupt status flags here. So cache the
 934  * status for later use in the thread function. Other than that, just return
 935  * WAKE_THREAD to invoke the thread function.
 936  *
 937  * Return: IRQ_WAKE_THREAD if interrupt is ours
 938  *         IRQ_NONE otherwise
 939  */
 940 static irqreturn_t pdc_irq_handler(int irq, void *data)
 941 {
 942         struct device *dev = (struct device *)data;
 943         struct pdc_state *pdcs = dev_get_drvdata(dev);
 944         u32 intstatus = ioread32(pdcs->pdc_reg_vbase + PDC_INTSTATUS_OFFSET);
 945 
 946         if (unlikely(intstatus == 0))
 947                 return IRQ_NONE;
 948 
 949         /* Disable interrupts until soft handler runs */
 950         iowrite32(0, pdcs->pdc_reg_vbase + PDC_INTMASK_OFFSET);
 951 
 952         /* Clear interrupt flags in device */
 953         iowrite32(intstatus, pdcs->pdc_reg_vbase + PDC_INTSTATUS_OFFSET);
 954 
 955         /* Wakeup IRQ thread */
 956         tasklet_schedule(&pdcs->rx_tasklet);
 957         return IRQ_HANDLED;
 958 }
 959 
 960 /**
 961  * pdc_tasklet_cb() - Tasklet callback that runs the deferred processing after
 962  * a DMA receive interrupt. Reenables the receive interrupt.
 963  * @data: PDC state structure
 964  */
 965 static void pdc_tasklet_cb(unsigned long data)
 966 {
 967         struct pdc_state *pdcs = (struct pdc_state *)data;
 968 
 969         pdc_receive(pdcs);
 970 
 971         /* reenable interrupts */
 972         iowrite32(PDC_INTMASK, pdcs->pdc_reg_vbase + PDC_INTMASK_OFFSET);
 973 }
 974 
 975 /**
 976  * pdc_ring_init() - Allocate DMA rings and initialize constant fields of
 977  * descriptors in one ringset.
 978  * @pdcs:    PDC instance state
 979  * @ringset: index of ringset being used
 980  *
 981  * Return: PDC_SUCCESS if ring initialized
 982  *         < 0 otherwise
 983  */
 984 static int pdc_ring_init(struct pdc_state *pdcs, int ringset)
 985 {
 986         int i;
 987         int err = PDC_SUCCESS;
 988         struct dma64 *dma_reg;
 989         struct device *dev = &pdcs->pdev->dev;
 990         struct pdc_ring_alloc tx;
 991         struct pdc_ring_alloc rx;
 992 
 993         /* Allocate tx ring */
 994         tx.vbase = dma_pool_zalloc(pdcs->ring_pool, GFP_KERNEL, &tx.dmabase);
 995         if (unlikely(!tx.vbase)) {
 996                 err = -ENOMEM;
 997                 goto done;
 998         }
 999 
1000         /* Allocate rx ring */
1001         rx.vbase = dma_pool_zalloc(pdcs->ring_pool, GFP_KERNEL, &rx.dmabase);
1002         if (unlikely(!rx.vbase)) {
1003                 err = -ENOMEM;
1004                 goto fail_dealloc;
1005         }
1006 
1007         dev_dbg(dev, " - base DMA addr of tx ring      %pad", &tx.dmabase);
1008         dev_dbg(dev, " - base virtual addr of tx ring  %p", tx.vbase);
1009         dev_dbg(dev, " - base DMA addr of rx ring      %pad", &rx.dmabase);
1010         dev_dbg(dev, " - base virtual addr of rx ring  %p", rx.vbase);
1011 
1012         memcpy(&pdcs->tx_ring_alloc, &tx, sizeof(tx));
1013         memcpy(&pdcs->rx_ring_alloc, &rx, sizeof(rx));
1014 
1015         pdcs->rxin = 0;
1016         pdcs->rx_msg_start = 0;
1017         pdcs->last_rx_curr = 0;
1018         pdcs->rxout = 0;
1019         pdcs->txin = 0;
1020         pdcs->tx_msg_start = 0;
1021         pdcs->txout = 0;
1022 
1023         /* Set descriptor array base addresses */
1024         pdcs->txd_64 = (struct dma64dd *)pdcs->tx_ring_alloc.vbase;
1025         pdcs->rxd_64 = (struct dma64dd *)pdcs->rx_ring_alloc.vbase;
1026 
1027         /* Tell device the base DMA address of each ring */
1028         dma_reg = &pdcs->regs->dmaregs[ringset];
1029 
1030         /* But first disable DMA and set curptr to 0 for both TX & RX */
1031         iowrite32(PDC_TX_CTL, &dma_reg->dmaxmt.control);
1032         iowrite32((PDC_RX_CTL + (pdcs->rx_status_len << 1)),
1033                   &dma_reg->dmarcv.control);
1034         iowrite32(0, &dma_reg->dmaxmt.ptr);
1035         iowrite32(0, &dma_reg->dmarcv.ptr);
1036 
1037         /* Set base DMA addresses */
1038         iowrite32(lower_32_bits(pdcs->tx_ring_alloc.dmabase),
1039                   &dma_reg->dmaxmt.addrlow);
1040         iowrite32(upper_32_bits(pdcs->tx_ring_alloc.dmabase),
1041                   &dma_reg->dmaxmt.addrhigh);
1042 
1043         iowrite32(lower_32_bits(pdcs->rx_ring_alloc.dmabase),
1044                   &dma_reg->dmarcv.addrlow);
1045         iowrite32(upper_32_bits(pdcs->rx_ring_alloc.dmabase),
1046                   &dma_reg->dmarcv.addrhigh);
1047 
1048         /* Re-enable DMA */
1049         iowrite32(PDC_TX_CTL | PDC_TX_ENABLE, &dma_reg->dmaxmt.control);
1050         iowrite32((PDC_RX_CTL | PDC_RX_ENABLE | (pdcs->rx_status_len << 1)),
1051                   &dma_reg->dmarcv.control);
1052 
1053         /* Initialize descriptors */
1054         for (i = 0; i < PDC_RING_ENTRIES; i++) {
1055                 /* Every tx descriptor can be used for start of frame. */
1056                 if (i != pdcs->ntxpost) {
1057                         iowrite32(D64_CTRL1_SOF | D64_CTRL1_EOF,
1058                                   &pdcs->txd_64[i].ctrl1);
1059                 } else {
1060                         /* Last descriptor in ringset. Set End of Table. */
1061                         iowrite32(D64_CTRL1_SOF | D64_CTRL1_EOF |
1062                                   D64_CTRL1_EOT, &pdcs->txd_64[i].ctrl1);
1063                 }
1064 
1065                 /* Every rx descriptor can be used for start of frame */
1066                 if (i != pdcs->nrxpost) {
1067                         iowrite32(D64_CTRL1_SOF,
1068                                   &pdcs->rxd_64[i].ctrl1);
1069                 } else {
1070                         /* Last descriptor in ringset. Set End of Table. */
1071                         iowrite32(D64_CTRL1_SOF | D64_CTRL1_EOT,
1072                                   &pdcs->rxd_64[i].ctrl1);
1073                 }
1074         }
1075         return PDC_SUCCESS;
1076 
1077 fail_dealloc:
1078         dma_pool_free(pdcs->ring_pool, tx.vbase, tx.dmabase);
1079 done:
1080         return err;
1081 }
1082 
1083 static void pdc_ring_free(struct pdc_state *pdcs)
1084 {
1085         if (pdcs->tx_ring_alloc.vbase) {
1086                 dma_pool_free(pdcs->ring_pool, pdcs->tx_ring_alloc.vbase,
1087                               pdcs->tx_ring_alloc.dmabase);
1088                 pdcs->tx_ring_alloc.vbase = NULL;
1089         }
1090 
1091         if (pdcs->rx_ring_alloc.vbase) {
1092                 dma_pool_free(pdcs->ring_pool, pdcs->rx_ring_alloc.vbase,
1093                               pdcs->rx_ring_alloc.dmabase);
1094                 pdcs->rx_ring_alloc.vbase = NULL;
1095         }
1096 }
1097 
1098 /**
1099  * pdc_desc_count() - Count the number of DMA descriptors that will be required
1100  * for a given scatterlist. Account for the max length of a DMA buffer.
1101  * @sg:    Scatterlist to be DMA'd
1102  * Return: Number of descriptors required
1103  */
1104 static u32 pdc_desc_count(struct scatterlist *sg)
1105 {
1106         u32 cnt = 0;
1107 
1108         while (sg) {
1109                 cnt += ((sg->length / PDC_DMA_BUF_MAX) + 1);
1110                 sg = sg_next(sg);
1111         }
1112         return cnt;
1113 }
1114 
1115 /**
1116  * pdc_rings_full() - Check whether the tx ring has room for tx_cnt descriptors
1117  * and the rx ring has room for rx_cnt descriptors.
1118  * @pdcs:  PDC state
1119  * @tx_cnt: The number of descriptors required in the tx ring
1120  * @rx_cnt: The number of descriptors required i the rx ring
1121  *
1122  * Return: true if one of the rings does not have enough space
1123  *         false if sufficient space is available in both rings
1124  */
1125 static bool pdc_rings_full(struct pdc_state *pdcs, int tx_cnt, int rx_cnt)
1126 {
1127         u32 rx_avail;
1128         u32 tx_avail;
1129         bool full = false;
1130 
1131         /* Check if the tx and rx rings are likely to have enough space */
1132         rx_avail = pdcs->nrxpost - NRXDACTIVE(pdcs->rxin, pdcs->rxout,
1133                                               pdcs->nrxpost);
1134         if (unlikely(rx_cnt > rx_avail)) {
1135                 pdcs->rx_ring_full++;
1136                 full = true;
1137         }
1138 
1139         if (likely(!full)) {
1140                 tx_avail = pdcs->ntxpost - NTXDACTIVE(pdcs->txin, pdcs->txout,
1141                                                       pdcs->ntxpost);
1142                 if (unlikely(tx_cnt > tx_avail)) {
1143                         pdcs->tx_ring_full++;
1144                         full = true;
1145                 }
1146         }
1147         return full;
1148 }
1149 
1150 /**
1151  * pdc_last_tx_done() - If both the tx and rx rings have at least
1152  * PDC_RING_SPACE_MIN descriptors available, then indicate that the mailbox
1153  * framework can submit another message.
1154  * @chan:  mailbox channel to check
1155  * Return: true if PDC can accept another message on this channel
1156  */
1157 static bool pdc_last_tx_done(struct mbox_chan *chan)
1158 {
1159         struct pdc_state *pdcs = chan->con_priv;
1160         bool ret;
1161 
1162         if (unlikely(pdc_rings_full(pdcs, PDC_RING_SPACE_MIN,
1163                                     PDC_RING_SPACE_MIN))) {
1164                 pdcs->last_tx_not_done++;
1165                 ret = false;
1166         } else {
1167                 ret = true;
1168         }
1169         return ret;
1170 }
1171 
1172 /**
1173  * pdc_send_data() - mailbox send_data function
1174  * @chan:       The mailbox channel on which the data is sent. The channel
1175  *              corresponds to a DMA ringset.
1176  * @data:       The mailbox message to be sent. The message must be a
1177  *              brcm_message structure.
1178  *
1179  * This function is registered as the send_data function for the mailbox
1180  * controller. From the destination scatterlist in the mailbox message, it
1181  * creates a sequence of receive descriptors in the rx ring. From the source
1182  * scatterlist, it creates a sequence of transmit descriptors in the tx ring.
1183  * After creating the descriptors, it writes the rx ptr and tx ptr registers to
1184  * initiate the DMA transfer.
1185  *
1186  * This function does the DMA map and unmap of the src and dst scatterlists in
1187  * the mailbox message.
1188  *
1189  * Return: 0 if successful
1190  *         -ENOTSUPP if the mailbox message is a type this driver does not
1191  *                      support
1192  *         < 0 if an error
1193  */
1194 static int pdc_send_data(struct mbox_chan *chan, void *data)
1195 {
1196         struct pdc_state *pdcs = chan->con_priv;
1197         struct device *dev = &pdcs->pdev->dev;
1198         struct brcm_message *mssg = data;
1199         int err = PDC_SUCCESS;
1200         int src_nent;
1201         int dst_nent;
1202         int nent;
1203         u32 tx_desc_req;
1204         u32 rx_desc_req;
1205 
1206         if (unlikely(mssg->type != BRCM_MESSAGE_SPU))
1207                 return -ENOTSUPP;
1208 
1209         src_nent = sg_nents(mssg->spu.src);
1210         if (likely(src_nent)) {
1211                 nent = dma_map_sg(dev, mssg->spu.src, src_nent, DMA_TO_DEVICE);
1212                 if (unlikely(nent == 0))
1213                         return -EIO;
1214         }
1215 
1216         dst_nent = sg_nents(mssg->spu.dst);
1217         if (likely(dst_nent)) {
1218                 nent = dma_map_sg(dev, mssg->spu.dst, dst_nent,
1219                                   DMA_FROM_DEVICE);
1220                 if (unlikely(nent == 0)) {
1221                         dma_unmap_sg(dev, mssg->spu.src, src_nent,
1222                                      DMA_TO_DEVICE);
1223                         return -EIO;
1224                 }
1225         }
1226 
1227         /*
1228          * Check if the tx and rx rings have enough space. Do this prior to
1229          * writing any tx or rx descriptors. Need to ensure that we do not write
1230          * a partial set of descriptors, or write just rx descriptors but
1231          * corresponding tx descriptors don't fit. Note that we want this check
1232          * and the entire sequence of descriptor to happen without another
1233          * thread getting in. The channel spin lock in the mailbox framework
1234          * ensures this.
1235          */
1236         tx_desc_req = pdc_desc_count(mssg->spu.src);
1237         rx_desc_req = pdc_desc_count(mssg->spu.dst);
1238         if (unlikely(pdc_rings_full(pdcs, tx_desc_req, rx_desc_req + 1)))
1239                 return -ENOSPC;
1240 
1241         /* Create rx descriptors to SPU catch response */
1242         err = pdc_rx_list_init(pdcs, mssg->spu.dst, mssg->ctx);
1243         err |= pdc_rx_list_sg_add(pdcs, mssg->spu.dst);
1244 
1245         /* Create tx descriptors to submit SPU request */
1246         err |= pdc_tx_list_sg_add(pdcs, mssg->spu.src);
1247         err |= pdc_tx_list_final(pdcs); /* initiate transfer */
1248 
1249         if (unlikely(err))
1250                 dev_err(&pdcs->pdev->dev,
1251                         "%s failed with error %d", __func__, err);
1252 
1253         return err;
1254 }
1255 
1256 static int pdc_startup(struct mbox_chan *chan)
1257 {
1258         return pdc_ring_init(chan->con_priv, PDC_RINGSET);
1259 }
1260 
1261 static void pdc_shutdown(struct mbox_chan *chan)
1262 {
1263         struct pdc_state *pdcs = chan->con_priv;
1264 
1265         if (!pdcs)
1266                 return;
1267 
1268         dev_dbg(&pdcs->pdev->dev,
1269                 "Shutdown mailbox channel for PDC %u", pdcs->pdc_idx);
1270         pdc_ring_free(pdcs);
1271 }
1272 
1273 /**
1274  * pdc_hw_init() - Use the given initialization parameters to initialize the
1275  * state for one of the PDCs.
1276  * @pdcs:  state of the PDC
1277  */
1278 static
1279 void pdc_hw_init(struct pdc_state *pdcs)
1280 {
1281         struct platform_device *pdev;
1282         struct device *dev;
1283         struct dma64 *dma_reg;
1284         int ringset = PDC_RINGSET;
1285 
1286         pdev = pdcs->pdev;
1287         dev = &pdev->dev;
1288 
1289         dev_dbg(dev, "PDC %u initial values:", pdcs->pdc_idx);
1290         dev_dbg(dev, "state structure:                   %p",
1291                 pdcs);
1292         dev_dbg(dev, " - base virtual addr of hw regs    %p",
1293                 pdcs->pdc_reg_vbase);
1294 
1295         /* initialize data structures */
1296         pdcs->regs = (struct pdc_regs *)pdcs->pdc_reg_vbase;
1297         pdcs->txregs_64 = (struct dma64_regs *)
1298             (((u8 *)pdcs->pdc_reg_vbase) +
1299                      PDC_TXREGS_OFFSET + (sizeof(struct dma64) * ringset));
1300         pdcs->rxregs_64 = (struct dma64_regs *)
1301             (((u8 *)pdcs->pdc_reg_vbase) +
1302                      PDC_RXREGS_OFFSET + (sizeof(struct dma64) * ringset));
1303 
1304         pdcs->ntxd = PDC_RING_ENTRIES;
1305         pdcs->nrxd = PDC_RING_ENTRIES;
1306         pdcs->ntxpost = PDC_RING_ENTRIES - 1;
1307         pdcs->nrxpost = PDC_RING_ENTRIES - 1;
1308         iowrite32(0, &pdcs->regs->intmask);
1309 
1310         dma_reg = &pdcs->regs->dmaregs[ringset];
1311 
1312         /* Configure DMA but will enable later in pdc_ring_init() */
1313         iowrite32(PDC_TX_CTL, &dma_reg->dmaxmt.control);
1314 
1315         iowrite32(PDC_RX_CTL + (pdcs->rx_status_len << 1),
1316                   &dma_reg->dmarcv.control);
1317 
1318         /* Reset current index pointers after making sure DMA is disabled */
1319         iowrite32(0, &dma_reg->dmaxmt.ptr);
1320         iowrite32(0, &dma_reg->dmarcv.ptr);
1321 
1322         if (pdcs->pdc_resp_hdr_len == PDC_SPU2_RESP_HDR_LEN)
1323                 iowrite32(PDC_CKSUM_CTRL,
1324                           pdcs->pdc_reg_vbase + PDC_CKSUM_CTRL_OFFSET);
1325 }
1326 
1327 /**
1328  * pdc_hw_disable() - Disable the tx and rx control in the hw.
1329  * @pdcs: PDC state structure
1330  *
1331  */
1332 static void pdc_hw_disable(struct pdc_state *pdcs)
1333 {
1334         struct dma64 *dma_reg;
1335 
1336         dma_reg = &pdcs->regs->dmaregs[PDC_RINGSET];
1337         iowrite32(PDC_TX_CTL, &dma_reg->dmaxmt.control);
1338         iowrite32(PDC_RX_CTL + (pdcs->rx_status_len << 1),
1339                   &dma_reg->dmarcv.control);
1340 }
1341 
1342 /**
1343  * pdc_rx_buf_pool_create() - Pool of receive buffers used to catch the metadata
1344  * header returned with each response message.
1345  * @pdcs: PDC state structure
1346  *
1347  * The metadata is not returned to the mailbox client. So the PDC driver
1348  * manages these buffers.
1349  *
1350  * Return: PDC_SUCCESS
1351  *         -ENOMEM if pool creation fails
1352  */
1353 static int pdc_rx_buf_pool_create(struct pdc_state *pdcs)
1354 {
1355         struct platform_device *pdev;
1356         struct device *dev;
1357 
1358         pdev = pdcs->pdev;
1359         dev = &pdev->dev;
1360 
1361         pdcs->pdc_resp_hdr_len = pdcs->rx_status_len;
1362         if (pdcs->use_bcm_hdr)
1363                 pdcs->pdc_resp_hdr_len += BCM_HDR_LEN;
1364 
1365         pdcs->rx_buf_pool = dma_pool_create("pdc rx bufs", dev,
1366                                             pdcs->pdc_resp_hdr_len,
1367                                             RX_BUF_ALIGN, 0);
1368         if (!pdcs->rx_buf_pool)
1369                 return -ENOMEM;
1370 
1371         return PDC_SUCCESS;
1372 }
1373 
1374 /**
1375  * pdc_interrupts_init() - Initialize the interrupt configuration for a PDC and
1376  * specify a threaded IRQ handler for deferred handling of interrupts outside of
1377  * interrupt context.
1378  * @pdcs:   PDC state
1379  *
1380  * Set the interrupt mask for transmit and receive done.
1381  * Set the lazy interrupt frame count to generate an interrupt for just one pkt.
1382  *
1383  * Return:  PDC_SUCCESS
1384  *          <0 if threaded irq request fails
1385  */
1386 static int pdc_interrupts_init(struct pdc_state *pdcs)
1387 {
1388         struct platform_device *pdev = pdcs->pdev;
1389         struct device *dev = &pdev->dev;
1390         struct device_node *dn = pdev->dev.of_node;
1391         int err;
1392 
1393         /* interrupt configuration */
1394         iowrite32(PDC_INTMASK, pdcs->pdc_reg_vbase + PDC_INTMASK_OFFSET);
1395 
1396         if (pdcs->hw_type == FA_HW)
1397                 iowrite32(PDC_LAZY_INT, pdcs->pdc_reg_vbase +
1398                           FA_RCVLAZY0_OFFSET);
1399         else
1400                 iowrite32(PDC_LAZY_INT, pdcs->pdc_reg_vbase +
1401                           PDC_RCVLAZY0_OFFSET);
1402 
1403         /* read irq from device tree */
1404         pdcs->pdc_irq = irq_of_parse_and_map(dn, 0);
1405         dev_dbg(dev, "pdc device %s irq %u for pdcs %p",
1406                 dev_name(dev), pdcs->pdc_irq, pdcs);
1407 
1408         err = devm_request_irq(dev, pdcs->pdc_irq, pdc_irq_handler, 0,
1409                                dev_name(dev), dev);
1410         if (err) {
1411                 dev_err(dev, "IRQ %u request failed with err %d\n",
1412                         pdcs->pdc_irq, err);
1413                 return err;
1414         }
1415         return PDC_SUCCESS;
1416 }
1417 
1418 static const struct mbox_chan_ops pdc_mbox_chan_ops = {
1419         .send_data = pdc_send_data,
1420         .last_tx_done = pdc_last_tx_done,
1421         .startup = pdc_startup,
1422         .shutdown = pdc_shutdown
1423 };
1424 
1425 /**
1426  * pdc_mb_init() - Initialize the mailbox controller.
1427  * @pdcs:  PDC state
1428  *
1429  * Each PDC is a mailbox controller. Each ringset is a mailbox channel. Kernel
1430  * driver only uses one ringset and thus one mb channel. PDC uses the transmit
1431  * complete interrupt to determine when a mailbox message has successfully been
1432  * transmitted.
1433  *
1434  * Return: 0 on success
1435  *         < 0 if there is an allocation or registration failure
1436  */
1437 static int pdc_mb_init(struct pdc_state *pdcs)
1438 {
1439         struct device *dev = &pdcs->pdev->dev;
1440         struct mbox_controller *mbc;
1441         int chan_index;
1442         int err;
1443 
1444         mbc = &pdcs->mbc;
1445         mbc->dev = dev;
1446         mbc->ops = &pdc_mbox_chan_ops;
1447         mbc->num_chans = 1;
1448         mbc->chans = devm_kcalloc(dev, mbc->num_chans, sizeof(*mbc->chans),
1449                                   GFP_KERNEL);
1450         if (!mbc->chans)
1451                 return -ENOMEM;
1452 
1453         mbc->txdone_irq = false;
1454         mbc->txdone_poll = true;
1455         mbc->txpoll_period = 1;
1456         for (chan_index = 0; chan_index < mbc->num_chans; chan_index++)
1457                 mbc->chans[chan_index].con_priv = pdcs;
1458 
1459         /* Register mailbox controller */
1460         err = devm_mbox_controller_register(dev, mbc);
1461         if (err) {
1462                 dev_crit(dev,
1463                          "Failed to register PDC mailbox controller. Error %d.",
1464                          err);
1465                 return err;
1466         }
1467         return 0;
1468 }
1469 
1470 /* Device tree API */
1471 static const int pdc_hw = PDC_HW;
1472 static const int fa_hw = FA_HW;
1473 
1474 static const struct of_device_id pdc_mbox_of_match[] = {
1475         {.compatible = "brcm,iproc-pdc-mbox", .data = &pdc_hw},
1476         {.compatible = "brcm,iproc-fa2-mbox", .data = &fa_hw},
1477         { /* sentinel */ }
1478 };
1479 MODULE_DEVICE_TABLE(of, pdc_mbox_of_match);
1480 
1481 /**
1482  * pdc_dt_read() - Read application-specific data from device tree.
1483  * @pdev:  Platform device
1484  * @pdcs:  PDC state
1485  *
1486  * Reads the number of bytes of receive status that precede each received frame.
1487  * Reads whether transmit and received frames should be preceded by an 8-byte
1488  * BCM header.
1489  *
1490  * Return: 0 if successful
1491  *         -ENODEV if device not available
1492  */
1493 static int pdc_dt_read(struct platform_device *pdev, struct pdc_state *pdcs)
1494 {
1495         struct device *dev = &pdev->dev;
1496         struct device_node *dn = pdev->dev.of_node;
1497         const struct of_device_id *match;
1498         const int *hw_type;
1499         int err;
1500 
1501         err = of_property_read_u32(dn, "brcm,rx-status-len",
1502                                    &pdcs->rx_status_len);
1503         if (err < 0)
1504                 dev_err(dev,
1505                         "%s failed to get DMA receive status length from device tree",
1506                         __func__);
1507 
1508         pdcs->use_bcm_hdr = of_property_read_bool(dn, "brcm,use-bcm-hdr");
1509 
1510         pdcs->hw_type = PDC_HW;
1511 
1512         match = of_match_device(of_match_ptr(pdc_mbox_of_match), dev);
1513         if (match != NULL) {
1514                 hw_type = match->data;
1515                 pdcs->hw_type = *hw_type;
1516         }
1517 
1518         return 0;
1519 }
1520 
1521 /**
1522  * pdc_probe() - Probe function for PDC driver.
1523  * @pdev:   PDC platform device
1524  *
1525  * Reserve and map register regions defined in device tree.
1526  * Allocate and initialize tx and rx DMA rings.
1527  * Initialize a mailbox controller for each PDC.
1528  *
1529  * Return: 0 if successful
1530  *         < 0 if an error
1531  */
1532 static int pdc_probe(struct platform_device *pdev)
1533 {
1534         int err = 0;
1535         struct device *dev = &pdev->dev;
1536         struct resource *pdc_regs;
1537         struct pdc_state *pdcs;
1538 
1539         /* PDC state for one SPU */
1540         pdcs = devm_kzalloc(dev, sizeof(*pdcs), GFP_KERNEL);
1541         if (!pdcs) {
1542                 err = -ENOMEM;
1543                 goto cleanup;
1544         }
1545 
1546         pdcs->pdev = pdev;
1547         platform_set_drvdata(pdev, pdcs);
1548         pdcs->pdc_idx = pdcg.num_spu;
1549         pdcg.num_spu++;
1550 
1551         err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(39));
1552         if (err) {
1553                 dev_warn(dev, "PDC device cannot perform DMA. Error %d.", err);
1554                 goto cleanup;
1555         }
1556 
1557         /* Create DMA pool for tx ring */
1558         pdcs->ring_pool = dma_pool_create("pdc rings", dev, PDC_RING_SIZE,
1559                                           RING_ALIGN, 0);
1560         if (!pdcs->ring_pool) {
1561                 err = -ENOMEM;
1562                 goto cleanup;
1563         }
1564 
1565         err = pdc_dt_read(pdev, pdcs);
1566         if (err)
1567                 goto cleanup_ring_pool;
1568 
1569         pdc_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1570         if (!pdc_regs) {
1571                 err = -ENODEV;
1572                 goto cleanup_ring_pool;
1573         }
1574         dev_dbg(dev, "PDC register region res.start = %pa, res.end = %pa",
1575                 &pdc_regs->start, &pdc_regs->end);
1576 
1577         pdcs->pdc_reg_vbase = devm_ioremap_resource(&pdev->dev, pdc_regs);
1578         if (IS_ERR(pdcs->pdc_reg_vbase)) {
1579                 err = PTR_ERR(pdcs->pdc_reg_vbase);
1580                 dev_err(&pdev->dev, "Failed to map registers: %d\n", err);
1581                 goto cleanup_ring_pool;
1582         }
1583 
1584         /* create rx buffer pool after dt read to know how big buffers are */
1585         err = pdc_rx_buf_pool_create(pdcs);
1586         if (err)
1587                 goto cleanup_ring_pool;
1588 
1589         pdc_hw_init(pdcs);
1590 
1591         /* Init tasklet for deferred DMA rx processing */
1592         tasklet_init(&pdcs->rx_tasklet, pdc_tasklet_cb, (unsigned long)pdcs);
1593 
1594         err = pdc_interrupts_init(pdcs);
1595         if (err)
1596                 goto cleanup_buf_pool;
1597 
1598         /* Initialize mailbox controller */
1599         err = pdc_mb_init(pdcs);
1600         if (err)
1601                 goto cleanup_buf_pool;
1602 
1603         pdc_setup_debugfs(pdcs);
1604 
1605         dev_dbg(dev, "pdc_probe() successful");
1606         return PDC_SUCCESS;
1607 
1608 cleanup_buf_pool:
1609         tasklet_kill(&pdcs->rx_tasklet);
1610         dma_pool_destroy(pdcs->rx_buf_pool);
1611 
1612 cleanup_ring_pool:
1613         dma_pool_destroy(pdcs->ring_pool);
1614 
1615 cleanup:
1616         return err;
1617 }
1618 
1619 static int pdc_remove(struct platform_device *pdev)
1620 {
1621         struct pdc_state *pdcs = platform_get_drvdata(pdev);
1622 
1623         pdc_free_debugfs();
1624 
1625         tasklet_kill(&pdcs->rx_tasklet);
1626 
1627         pdc_hw_disable(pdcs);
1628 
1629         dma_pool_destroy(pdcs->rx_buf_pool);
1630         dma_pool_destroy(pdcs->ring_pool);
1631         return 0;
1632 }
1633 
1634 static struct platform_driver pdc_mbox_driver = {
1635         .probe = pdc_probe,
1636         .remove = pdc_remove,
1637         .driver = {
1638                    .name = "brcm-iproc-pdc-mbox",
1639                    .of_match_table = of_match_ptr(pdc_mbox_of_match),
1640                    },
1641 };
1642 module_platform_driver(pdc_mbox_driver);
1643 
1644 MODULE_AUTHOR("Rob Rice <rob.rice@broadcom.com>");
1645 MODULE_DESCRIPTION("Broadcom PDC mailbox driver");
1646 MODULE_LICENSE("GPL v2");

/* [<][>][^][v][top][bottom][index][help] */