root/drivers/scsi/aic94xx/aic94xx_hwi.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. asd_get_user_sas_addr
  2. asd_propagate_sas_addr
  3. asd_init_phy_identify
  4. asd_init_phy
  5. asd_init_ports
  6. asd_init_phys
  7. asd_init_sw
  8. asd_init_scbs
  9. asd_get_max_scb_ddb
  10. asd_init_dl
  11. asd_alloc_edbs
  12. asd_alloc_escbs
  13. asd_assign_edbs2escbs
  14. asd_init_escbs
  15. asd_chip_hardrst
  16. asd_init_chip
  17. asd_extend_devctx_ocm
  18. asd_extend_devctx
  19. asd_extend_cmdctx
  20. asd_init_ctxmem
  21. asd_init_hw
  22. asd_chip_reset
  23. asd_dl_tasklet_handler
  24. asd_process_donelist_isr
  25. asd_com_sas_isr
  26. asd_arp2_err
  27. asd_dch_sas_isr
  28. asd_rbi_exsi_isr
  29. asd_hst_pcix_isr
  30. asd_hw_isr
  31. asd_ascb_alloc
  32. asd_ascb_alloc_list
  33. asd_swap_head_scb
  34. asd_start_scb_timers
  35. asd_post_ascb_list
  36. asd_post_escb_list
  37. asd_turn_led
  38. asd_control_led
  39. asd_enable_phy
  40. asd_enable_phys

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * Aic94xx SAS/SATA driver hardware interface.
   4  *
   5  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
   6  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
   7  */
   8 
   9 #include <linux/pci.h>
  10 #include <linux/slab.h>
  11 #include <linux/delay.h>
  12 #include <linux/module.h>
  13 #include <linux/firmware.h>
  14 
  15 #include "aic94xx.h"
  16 #include "aic94xx_reg.h"
  17 #include "aic94xx_hwi.h"
  18 #include "aic94xx_seq.h"
  19 #include "aic94xx_dump.h"
  20 
  21 u32 MBAR0_SWB_SIZE;
  22 
  23 /* ---------- Initialization ---------- */
  24 
  25 static int asd_get_user_sas_addr(struct asd_ha_struct *asd_ha)
  26 {
  27         /* adapter came with a sas address */
  28         if (asd_ha->hw_prof.sas_addr[0])
  29                 return 0;
  30 
  31         return sas_request_addr(asd_ha->sas_ha.core.shost,
  32                                 asd_ha->hw_prof.sas_addr);
  33 }
  34 
  35 static void asd_propagate_sas_addr(struct asd_ha_struct *asd_ha)
  36 {
  37         int i;
  38 
  39         for (i = 0; i < ASD_MAX_PHYS; i++) {
  40                 if (asd_ha->hw_prof.phy_desc[i].sas_addr[0] == 0)
  41                         continue;
  42                 /* Set a phy's address only if it has none.
  43                  */
  44                 ASD_DPRINTK("setting phy%d addr to %llx\n", i,
  45                             SAS_ADDR(asd_ha->hw_prof.sas_addr));
  46                 memcpy(asd_ha->hw_prof.phy_desc[i].sas_addr,
  47                        asd_ha->hw_prof.sas_addr, SAS_ADDR_SIZE);
  48         }
  49 }
  50 
  51 /* ---------- PHY initialization ---------- */
  52 
  53 static void asd_init_phy_identify(struct asd_phy *phy)
  54 {
  55         phy->identify_frame = phy->id_frm_tok->vaddr;
  56 
  57         memset(phy->identify_frame, 0, sizeof(*phy->identify_frame));
  58 
  59         phy->identify_frame->dev_type = SAS_END_DEVICE;
  60         if (phy->sas_phy.role & PHY_ROLE_INITIATOR)
  61                 phy->identify_frame->initiator_bits = phy->sas_phy.iproto;
  62         if (phy->sas_phy.role & PHY_ROLE_TARGET)
  63                 phy->identify_frame->target_bits = phy->sas_phy.tproto;
  64         memcpy(phy->identify_frame->sas_addr, phy->phy_desc->sas_addr,
  65                SAS_ADDR_SIZE);
  66         phy->identify_frame->phy_id = phy->sas_phy.id;
  67 }
  68 
  69 static int asd_init_phy(struct asd_phy *phy)
  70 {
  71         struct asd_ha_struct *asd_ha = phy->sas_phy.ha->lldd_ha;
  72         struct asd_sas_phy *sas_phy = &phy->sas_phy;
  73 
  74         sas_phy->enabled = 1;
  75         sas_phy->class = SAS;
  76         sas_phy->iproto = SAS_PROTOCOL_ALL;
  77         sas_phy->tproto = 0;
  78         sas_phy->type = PHY_TYPE_PHYSICAL;
  79         sas_phy->role = PHY_ROLE_INITIATOR;
  80         sas_phy->oob_mode = OOB_NOT_CONNECTED;
  81         sas_phy->linkrate = SAS_LINK_RATE_UNKNOWN;
  82 
  83         phy->id_frm_tok = asd_alloc_coherent(asd_ha,
  84                                              sizeof(*phy->identify_frame),
  85                                              GFP_KERNEL);
  86         if (!phy->id_frm_tok) {
  87                 asd_printk("no mem for IDENTIFY for phy%d\n", sas_phy->id);
  88                 return -ENOMEM;
  89         } else
  90                 asd_init_phy_identify(phy);
  91 
  92         memset(phy->frame_rcvd, 0, sizeof(phy->frame_rcvd));
  93 
  94         return 0;
  95 }
  96 
  97 static void asd_init_ports(struct asd_ha_struct *asd_ha)
  98 {
  99         int i;
 100 
 101         spin_lock_init(&asd_ha->asd_ports_lock);
 102         for (i = 0; i < ASD_MAX_PHYS; i++) {
 103                 struct asd_port *asd_port = &asd_ha->asd_ports[i];
 104 
 105                 memset(asd_port->sas_addr, 0, SAS_ADDR_SIZE);
 106                 memset(asd_port->attached_sas_addr, 0, SAS_ADDR_SIZE);
 107                 asd_port->phy_mask = 0;
 108                 asd_port->num_phys = 0;
 109         }
 110 }
 111 
 112 static int asd_init_phys(struct asd_ha_struct *asd_ha)
 113 {
 114         u8 i;
 115         u8 phy_mask = asd_ha->hw_prof.enabled_phys;
 116 
 117         for (i = 0; i < ASD_MAX_PHYS; i++) {
 118                 struct asd_phy *phy = &asd_ha->phys[i];
 119 
 120                 phy->phy_desc = &asd_ha->hw_prof.phy_desc[i];
 121                 phy->asd_port = NULL;
 122 
 123                 phy->sas_phy.enabled = 0;
 124                 phy->sas_phy.id = i;
 125                 phy->sas_phy.sas_addr = &phy->phy_desc->sas_addr[0];
 126                 phy->sas_phy.frame_rcvd = &phy->frame_rcvd[0];
 127                 phy->sas_phy.ha = &asd_ha->sas_ha;
 128                 phy->sas_phy.lldd_phy = phy;
 129         }
 130 
 131         /* Now enable and initialize only the enabled phys. */
 132         for_each_phy(phy_mask, phy_mask, i) {
 133                 int err = asd_init_phy(&asd_ha->phys[i]);
 134                 if (err)
 135                         return err;
 136         }
 137 
 138         return 0;
 139 }
 140 
 141 /* ---------- Sliding windows ---------- */
 142 
 143 static int asd_init_sw(struct asd_ha_struct *asd_ha)
 144 {
 145         struct pci_dev *pcidev = asd_ha->pcidev;
 146         int err;
 147         u32 v;
 148 
 149         /* Unlock MBARs */
 150         err = pci_read_config_dword(pcidev, PCI_CONF_MBAR_KEY, &v);
 151         if (err) {
 152                 asd_printk("couldn't access conf. space of %s\n",
 153                            pci_name(pcidev));
 154                 goto Err;
 155         }
 156         if (v)
 157                 err = pci_write_config_dword(pcidev, PCI_CONF_MBAR_KEY, v);
 158         if (err) {
 159                 asd_printk("couldn't write to MBAR_KEY of %s\n",
 160                            pci_name(pcidev));
 161                 goto Err;
 162         }
 163 
 164         /* Set sliding windows A, B and C to point to proper internal
 165          * memory regions.
 166          */
 167         pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWA, REG_BASE_ADDR);
 168         pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWB,
 169                                REG_BASE_ADDR_CSEQCIO);
 170         pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWC, REG_BASE_ADDR_EXSI);
 171         asd_ha->io_handle[0].swa_base = REG_BASE_ADDR;
 172         asd_ha->io_handle[0].swb_base = REG_BASE_ADDR_CSEQCIO;
 173         asd_ha->io_handle[0].swc_base = REG_BASE_ADDR_EXSI;
 174         MBAR0_SWB_SIZE = asd_ha->io_handle[0].len - 0x80;
 175         if (!asd_ha->iospace) {
 176                 /* MBAR1 will point to OCM (On Chip Memory) */
 177                 pci_write_config_dword(pcidev, PCI_CONF_MBAR1, OCM_BASE_ADDR);
 178                 asd_ha->io_handle[1].swa_base = OCM_BASE_ADDR;
 179         }
 180         spin_lock_init(&asd_ha->iolock);
 181 Err:
 182         return err;
 183 }
 184 
 185 /* ---------- SCB initialization ---------- */
 186 
 187 /**
 188  * asd_init_scbs - manually allocate the first SCB.
 189  * @asd_ha: pointer to host adapter structure
 190  *
 191  * This allocates the very first SCB which would be sent to the
 192  * sequencer for execution.  Its bus address is written to
 193  * CSEQ_Q_NEW_POINTER, mode page 2, mode 8.  Since the bus address of
 194  * the _next_ scb to be DMA-ed to the host adapter is read from the last
 195  * SCB DMA-ed to the host adapter, we have to always stay one step
 196  * ahead of the sequencer and keep one SCB already allocated.
 197  */
 198 static int asd_init_scbs(struct asd_ha_struct *asd_ha)
 199 {
 200         struct asd_seq_data *seq = &asd_ha->seq;
 201         int bitmap_bytes;
 202 
 203         /* allocate the index array and bitmap */
 204         asd_ha->seq.tc_index_bitmap_bits = asd_ha->hw_prof.max_scbs;
 205         asd_ha->seq.tc_index_array = kcalloc(asd_ha->seq.tc_index_bitmap_bits,
 206                                              sizeof(void *),
 207                                              GFP_KERNEL);
 208         if (!asd_ha->seq.tc_index_array)
 209                 return -ENOMEM;
 210 
 211         bitmap_bytes = (asd_ha->seq.tc_index_bitmap_bits+7)/8;
 212         bitmap_bytes = BITS_TO_LONGS(bitmap_bytes*8)*sizeof(unsigned long);
 213         asd_ha->seq.tc_index_bitmap = kzalloc(bitmap_bytes, GFP_KERNEL);
 214         if (!asd_ha->seq.tc_index_bitmap) {
 215                 kfree(asd_ha->seq.tc_index_array);
 216                 asd_ha->seq.tc_index_array = NULL;
 217                 return -ENOMEM;
 218         }
 219 
 220         spin_lock_init(&seq->tc_index_lock);
 221 
 222         seq->next_scb.size = sizeof(struct scb);
 223         seq->next_scb.vaddr = dma_pool_alloc(asd_ha->scb_pool, GFP_KERNEL,
 224                                              &seq->next_scb.dma_handle);
 225         if (!seq->next_scb.vaddr) {
 226                 kfree(asd_ha->seq.tc_index_bitmap);
 227                 kfree(asd_ha->seq.tc_index_array);
 228                 asd_ha->seq.tc_index_bitmap = NULL;
 229                 asd_ha->seq.tc_index_array = NULL;
 230                 return -ENOMEM;
 231         }
 232 
 233         seq->pending = 0;
 234         spin_lock_init(&seq->pend_q_lock);
 235         INIT_LIST_HEAD(&seq->pend_q);
 236 
 237         return 0;
 238 }
 239 
 240 static void asd_get_max_scb_ddb(struct asd_ha_struct *asd_ha)
 241 {
 242         asd_ha->hw_prof.max_scbs = asd_get_cmdctx_size(asd_ha)/ASD_SCB_SIZE;
 243         asd_ha->hw_prof.max_ddbs = asd_get_devctx_size(asd_ha)/ASD_DDB_SIZE;
 244         ASD_DPRINTK("max_scbs:%d, max_ddbs:%d\n",
 245                     asd_ha->hw_prof.max_scbs,
 246                     asd_ha->hw_prof.max_ddbs);
 247 }
 248 
 249 /* ---------- Done List initialization ---------- */
 250 
 251 static void asd_dl_tasklet_handler(unsigned long);
 252 
 253 static int asd_init_dl(struct asd_ha_struct *asd_ha)
 254 {
 255         asd_ha->seq.actual_dl
 256                 = asd_alloc_coherent(asd_ha,
 257                              ASD_DL_SIZE * sizeof(struct done_list_struct),
 258                                      GFP_KERNEL);
 259         if (!asd_ha->seq.actual_dl)
 260                 return -ENOMEM;
 261         asd_ha->seq.dl = asd_ha->seq.actual_dl->vaddr;
 262         asd_ha->seq.dl_toggle = ASD_DEF_DL_TOGGLE;
 263         asd_ha->seq.dl_next = 0;
 264         tasklet_init(&asd_ha->seq.dl_tasklet, asd_dl_tasklet_handler,
 265                      (unsigned long) asd_ha);
 266 
 267         return 0;
 268 }
 269 
 270 /* ---------- EDB and ESCB init ---------- */
 271 
 272 static int asd_alloc_edbs(struct asd_ha_struct *asd_ha, gfp_t gfp_flags)
 273 {
 274         struct asd_seq_data *seq = &asd_ha->seq;
 275         int i;
 276 
 277         seq->edb_arr = kmalloc_array(seq->num_edbs, sizeof(*seq->edb_arr),
 278                                      gfp_flags);
 279         if (!seq->edb_arr)
 280                 return -ENOMEM;
 281 
 282         for (i = 0; i < seq->num_edbs; i++) {
 283                 seq->edb_arr[i] = asd_alloc_coherent(asd_ha, ASD_EDB_SIZE,
 284                                                      gfp_flags);
 285                 if (!seq->edb_arr[i])
 286                         goto Err_unroll;
 287                 memset(seq->edb_arr[i]->vaddr, 0, ASD_EDB_SIZE);
 288         }
 289 
 290         ASD_DPRINTK("num_edbs:%d\n", seq->num_edbs);
 291 
 292         return 0;
 293 
 294 Err_unroll:
 295         for (i-- ; i >= 0; i--)
 296                 asd_free_coherent(asd_ha, seq->edb_arr[i]);
 297         kfree(seq->edb_arr);
 298         seq->edb_arr = NULL;
 299 
 300         return -ENOMEM;
 301 }
 302 
 303 static int asd_alloc_escbs(struct asd_ha_struct *asd_ha,
 304                            gfp_t gfp_flags)
 305 {
 306         struct asd_seq_data *seq = &asd_ha->seq;
 307         struct asd_ascb *escb;
 308         int i, escbs;
 309 
 310         seq->escb_arr = kmalloc_array(seq->num_escbs, sizeof(*seq->escb_arr),
 311                                       gfp_flags);
 312         if (!seq->escb_arr)
 313                 return -ENOMEM;
 314 
 315         escbs = seq->num_escbs;
 316         escb = asd_ascb_alloc_list(asd_ha, &escbs, gfp_flags);
 317         if (!escb) {
 318                 asd_printk("couldn't allocate list of escbs\n");
 319                 goto Err;
 320         }
 321         seq->num_escbs -= escbs;  /* subtract what was not allocated */
 322         ASD_DPRINTK("num_escbs:%d\n", seq->num_escbs);
 323 
 324         for (i = 0; i < seq->num_escbs; i++, escb = list_entry(escb->list.next,
 325                                                                struct asd_ascb,
 326                                                                list)) {
 327                 seq->escb_arr[i] = escb;
 328                 escb->scb->header.opcode = EMPTY_SCB;
 329         }
 330 
 331         return 0;
 332 Err:
 333         kfree(seq->escb_arr);
 334         seq->escb_arr = NULL;
 335         return -ENOMEM;
 336 
 337 }
 338 
 339 static void asd_assign_edbs2escbs(struct asd_ha_struct *asd_ha)
 340 {
 341         struct asd_seq_data *seq = &asd_ha->seq;
 342         int i, k, z = 0;
 343 
 344         for (i = 0; i < seq->num_escbs; i++) {
 345                 struct asd_ascb *ascb = seq->escb_arr[i];
 346                 struct empty_scb *escb = &ascb->scb->escb;
 347 
 348                 ascb->edb_index = z;
 349 
 350                 escb->num_valid = ASD_EDBS_PER_SCB;
 351 
 352                 for (k = 0; k < ASD_EDBS_PER_SCB; k++) {
 353                         struct sg_el *eb = &escb->eb[k];
 354                         struct asd_dma_tok *edb = seq->edb_arr[z++];
 355 
 356                         memset(eb, 0, sizeof(*eb));
 357                         eb->bus_addr = cpu_to_le64(((u64) edb->dma_handle));
 358                         eb->size = cpu_to_le32(((u32) edb->size));
 359                 }
 360         }
 361 }
 362 
 363 /**
 364  * asd_init_escbs -- allocate and initialize empty scbs
 365  * @asd_ha: pointer to host adapter structure
 366  *
 367  * An empty SCB has sg_elements of ASD_EDBS_PER_SCB (7) buffers.
 368  * They transport sense data, etc.
 369  */
 370 static int asd_init_escbs(struct asd_ha_struct *asd_ha)
 371 {
 372         struct asd_seq_data *seq = &asd_ha->seq;
 373         int err = 0;
 374 
 375         /* Allocate two empty data buffers (edb) per sequencer. */
 376         int edbs = 2*(1+asd_ha->hw_prof.num_phys);
 377 
 378         seq->num_escbs = (edbs+ASD_EDBS_PER_SCB-1)/ASD_EDBS_PER_SCB;
 379         seq->num_edbs = seq->num_escbs * ASD_EDBS_PER_SCB;
 380 
 381         err = asd_alloc_edbs(asd_ha, GFP_KERNEL);
 382         if (err) {
 383                 asd_printk("couldn't allocate edbs\n");
 384                 return err;
 385         }
 386 
 387         err = asd_alloc_escbs(asd_ha, GFP_KERNEL);
 388         if (err) {
 389                 asd_printk("couldn't allocate escbs\n");
 390                 return err;
 391         }
 392 
 393         asd_assign_edbs2escbs(asd_ha);
 394         /* In order to insure that normal SCBs do not overfill sequencer
 395          * memory and leave no space for escbs (halting condition),
 396          * we increment pending here by the number of escbs.  However,
 397          * escbs are never pending.
 398          */
 399         seq->pending   = seq->num_escbs;
 400         seq->can_queue = 1 + (asd_ha->hw_prof.max_scbs - seq->pending)/2;
 401 
 402         return 0;
 403 }
 404 
 405 /* ---------- HW initialization ---------- */
 406 
 407 /**
 408  * asd_chip_hardrst -- hard reset the chip
 409  * @asd_ha: pointer to host adapter structure
 410  *
 411  * This takes 16 cycles and is synchronous to CFCLK, which runs
 412  * at 200 MHz, so this should take at most 80 nanoseconds.
 413  */
 414 int asd_chip_hardrst(struct asd_ha_struct *asd_ha)
 415 {
 416         int i;
 417         int count = 100;
 418         u32 reg;
 419 
 420         for (i = 0 ; i < 4 ; i++) {
 421                 asd_write_reg_dword(asd_ha, COMBIST, HARDRST);
 422         }
 423 
 424         do {
 425                 udelay(1);
 426                 reg = asd_read_reg_dword(asd_ha, CHIMINT);
 427                 if (reg & HARDRSTDET) {
 428                         asd_write_reg_dword(asd_ha, CHIMINT,
 429                                             HARDRSTDET|PORRSTDET);
 430                         return 0;
 431                 }
 432         } while (--count > 0);
 433 
 434         return -ENODEV;
 435 }
 436 
 437 /**
 438  * asd_init_chip -- initialize the chip
 439  * @asd_ha: pointer to host adapter structure
 440  *
 441  * Hard resets the chip, disables HA interrupts, downloads the sequnecer
 442  * microcode and starts the sequencers.  The caller has to explicitly
 443  * enable HA interrupts with asd_enable_ints(asd_ha).
 444  */
 445 static int asd_init_chip(struct asd_ha_struct *asd_ha)
 446 {
 447         int err;
 448 
 449         err = asd_chip_hardrst(asd_ha);
 450         if (err) {
 451                 asd_printk("couldn't hard reset %s\n",
 452                             pci_name(asd_ha->pcidev));
 453                 goto out;
 454         }
 455 
 456         asd_disable_ints(asd_ha);
 457 
 458         err = asd_init_seqs(asd_ha);
 459         if (err) {
 460                 asd_printk("couldn't init seqs for %s\n",
 461                            pci_name(asd_ha->pcidev));
 462                 goto out;
 463         }
 464 
 465         err = asd_start_seqs(asd_ha);
 466         if (err) {
 467                 asd_printk("couldn't start seqs for %s\n",
 468                            pci_name(asd_ha->pcidev));
 469                 goto out;
 470         }
 471 out:
 472         return err;
 473 }
 474 
 475 #define MAX_DEVS ((OCM_MAX_SIZE) / (ASD_DDB_SIZE))
 476 
 477 static int max_devs = 0;
 478 module_param_named(max_devs, max_devs, int, S_IRUGO);
 479 MODULE_PARM_DESC(max_devs, "\n"
 480         "\tMaximum number of SAS devices to support (not LUs).\n"
 481         "\tDefault: 2176, Maximum: 65663.\n");
 482 
 483 static int max_cmnds = 0;
 484 module_param_named(max_cmnds, max_cmnds, int, S_IRUGO);
 485 MODULE_PARM_DESC(max_cmnds, "\n"
 486         "\tMaximum number of commands queuable.\n"
 487         "\tDefault: 512, Maximum: 66047.\n");
 488 
 489 static void asd_extend_devctx_ocm(struct asd_ha_struct *asd_ha)
 490 {
 491         unsigned long dma_addr = OCM_BASE_ADDR;
 492         u32 d;
 493 
 494         dma_addr -= asd_ha->hw_prof.max_ddbs * ASD_DDB_SIZE;
 495         asd_write_reg_addr(asd_ha, DEVCTXBASE, (dma_addr_t) dma_addr);
 496         d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
 497         d |= 4;
 498         asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
 499         asd_ha->hw_prof.max_ddbs += MAX_DEVS;
 500 }
 501 
 502 static int asd_extend_devctx(struct asd_ha_struct *asd_ha)
 503 {
 504         dma_addr_t dma_handle;
 505         unsigned long dma_addr;
 506         u32 d;
 507         int size;
 508 
 509         asd_extend_devctx_ocm(asd_ha);
 510 
 511         asd_ha->hw_prof.ddb_ext = NULL;
 512         if (max_devs <= asd_ha->hw_prof.max_ddbs || max_devs > 0xFFFF) {
 513                 max_devs = asd_ha->hw_prof.max_ddbs;
 514                 return 0;
 515         }
 516 
 517         size = (max_devs - asd_ha->hw_prof.max_ddbs + 1) * ASD_DDB_SIZE;
 518 
 519         asd_ha->hw_prof.ddb_ext = asd_alloc_coherent(asd_ha, size, GFP_KERNEL);
 520         if (!asd_ha->hw_prof.ddb_ext) {
 521                 asd_printk("couldn't allocate memory for %d devices\n",
 522                            max_devs);
 523                 max_devs = asd_ha->hw_prof.max_ddbs;
 524                 return -ENOMEM;
 525         }
 526         dma_handle = asd_ha->hw_prof.ddb_ext->dma_handle;
 527         dma_addr = ALIGN((unsigned long) dma_handle, ASD_DDB_SIZE);
 528         dma_addr -= asd_ha->hw_prof.max_ddbs * ASD_DDB_SIZE;
 529         dma_handle = (dma_addr_t) dma_addr;
 530         asd_write_reg_addr(asd_ha, DEVCTXBASE, dma_handle);
 531         d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
 532         d &= ~4;
 533         asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
 534 
 535         asd_ha->hw_prof.max_ddbs = max_devs;
 536 
 537         return 0;
 538 }
 539 
 540 static int asd_extend_cmdctx(struct asd_ha_struct *asd_ha)
 541 {
 542         dma_addr_t dma_handle;
 543         unsigned long dma_addr;
 544         u32 d;
 545         int size;
 546 
 547         asd_ha->hw_prof.scb_ext = NULL;
 548         if (max_cmnds <= asd_ha->hw_prof.max_scbs || max_cmnds > 0xFFFF) {
 549                 max_cmnds = asd_ha->hw_prof.max_scbs;
 550                 return 0;
 551         }
 552 
 553         size = (max_cmnds - asd_ha->hw_prof.max_scbs + 1) * ASD_SCB_SIZE;
 554 
 555         asd_ha->hw_prof.scb_ext = asd_alloc_coherent(asd_ha, size, GFP_KERNEL);
 556         if (!asd_ha->hw_prof.scb_ext) {
 557                 asd_printk("couldn't allocate memory for %d commands\n",
 558                            max_cmnds);
 559                 max_cmnds = asd_ha->hw_prof.max_scbs;
 560                 return -ENOMEM;
 561         }
 562         dma_handle = asd_ha->hw_prof.scb_ext->dma_handle;
 563         dma_addr = ALIGN((unsigned long) dma_handle, ASD_SCB_SIZE);
 564         dma_addr -= asd_ha->hw_prof.max_scbs * ASD_SCB_SIZE;
 565         dma_handle = (dma_addr_t) dma_addr;
 566         asd_write_reg_addr(asd_ha, CMDCTXBASE, dma_handle);
 567         d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
 568         d &= ~1;
 569         asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
 570 
 571         asd_ha->hw_prof.max_scbs = max_cmnds;
 572 
 573         return 0;
 574 }
 575 
 576 /**
 577  * asd_init_ctxmem -- initialize context memory
 578  * asd_ha: pointer to host adapter structure
 579  *
 580  * This function sets the maximum number of SCBs and
 581  * DDBs which can be used by the sequencer.  This is normally
 582  * 512 and 128 respectively.  If support for more SCBs or more DDBs
 583  * is required then CMDCTXBASE, DEVCTXBASE and CTXDOMAIN are
 584  * initialized here to extend context memory to point to host memory,
 585  * thus allowing unlimited support for SCBs and DDBs -- only limited
 586  * by host memory.
 587  */
 588 static int asd_init_ctxmem(struct asd_ha_struct *asd_ha)
 589 {
 590         int bitmap_bytes;
 591 
 592         asd_get_max_scb_ddb(asd_ha);
 593         asd_extend_devctx(asd_ha);
 594         asd_extend_cmdctx(asd_ha);
 595 
 596         /* The kernel wants bitmaps to be unsigned long sized. */
 597         bitmap_bytes = (asd_ha->hw_prof.max_ddbs+7)/8;
 598         bitmap_bytes = BITS_TO_LONGS(bitmap_bytes*8)*sizeof(unsigned long);
 599         asd_ha->hw_prof.ddb_bitmap = kzalloc(bitmap_bytes, GFP_KERNEL);
 600         if (!asd_ha->hw_prof.ddb_bitmap)
 601                 return -ENOMEM;
 602         spin_lock_init(&asd_ha->hw_prof.ddb_lock);
 603 
 604         return 0;
 605 }
 606 
 607 int asd_init_hw(struct asd_ha_struct *asd_ha)
 608 {
 609         int err;
 610         u32 v;
 611 
 612         err = asd_init_sw(asd_ha);
 613         if (err)
 614                 return err;
 615 
 616         err = pci_read_config_dword(asd_ha->pcidev, PCIC_HSTPCIX_CNTRL, &v);
 617         if (err) {
 618                 asd_printk("couldn't read PCIC_HSTPCIX_CNTRL of %s\n",
 619                            pci_name(asd_ha->pcidev));
 620                 return err;
 621         }
 622         err = pci_write_config_dword(asd_ha->pcidev, PCIC_HSTPCIX_CNTRL,
 623                                         v | SC_TMR_DIS);
 624         if (err) {
 625                 asd_printk("couldn't disable split completion timer of %s\n",
 626                            pci_name(asd_ha->pcidev));
 627                 return err;
 628         }
 629 
 630         err = asd_read_ocm(asd_ha);
 631         if (err) {
 632                 asd_printk("couldn't read ocm(%d)\n", err);
 633                 /* While suspicios, it is not an error that we
 634                  * couldn't read the OCM. */
 635         }
 636 
 637         err = asd_read_flash(asd_ha);
 638         if (err) {
 639                 asd_printk("couldn't read flash(%d)\n", err);
 640                 /* While suspicios, it is not an error that we
 641                  * couldn't read FLASH memory.
 642                  */
 643         }
 644 
 645         asd_init_ctxmem(asd_ha);
 646 
 647         if (asd_get_user_sas_addr(asd_ha)) {
 648                 asd_printk("No SAS Address provided for %s\n",
 649                            pci_name(asd_ha->pcidev));
 650                 err = -ENODEV;
 651                 goto Out;
 652         }
 653 
 654         asd_propagate_sas_addr(asd_ha);
 655 
 656         err = asd_init_phys(asd_ha);
 657         if (err) {
 658                 asd_printk("couldn't initialize phys for %s\n",
 659                             pci_name(asd_ha->pcidev));
 660                 goto Out;
 661         }
 662 
 663         asd_init_ports(asd_ha);
 664 
 665         err = asd_init_scbs(asd_ha);
 666         if (err) {
 667                 asd_printk("couldn't initialize scbs for %s\n",
 668                             pci_name(asd_ha->pcidev));
 669                 goto Out;
 670         }
 671 
 672         err = asd_init_dl(asd_ha);
 673         if (err) {
 674                 asd_printk("couldn't initialize the done list:%d\n",
 675                             err);
 676                 goto Out;
 677         }
 678 
 679         err = asd_init_escbs(asd_ha);
 680         if (err) {
 681                 asd_printk("couldn't initialize escbs\n");
 682                 goto Out;
 683         }
 684 
 685         err = asd_init_chip(asd_ha);
 686         if (err) {
 687                 asd_printk("couldn't init the chip\n");
 688                 goto Out;
 689         }
 690 Out:
 691         return err;
 692 }
 693 
 694 /* ---------- Chip reset ---------- */
 695 
 696 /**
 697  * asd_chip_reset -- reset the host adapter, etc
 698  * @asd_ha: pointer to host adapter structure of interest
 699  *
 700  * Called from the ISR.  Hard reset the chip.  Let everything
 701  * timeout.  This should be no different than hot-unplugging the
 702  * host adapter.  Once everything times out we'll init the chip with
 703  * a call to asd_init_chip() and enable interrupts with asd_enable_ints().
 704  * XXX finish.
 705  */
 706 static void asd_chip_reset(struct asd_ha_struct *asd_ha)
 707 {
 708         ASD_DPRINTK("chip reset for %s\n", pci_name(asd_ha->pcidev));
 709         asd_chip_hardrst(asd_ha);
 710 }
 711 
 712 /* ---------- Done List Routines ---------- */
 713 
 714 static void asd_dl_tasklet_handler(unsigned long data)
 715 {
 716         struct asd_ha_struct *asd_ha = (struct asd_ha_struct *) data;
 717         struct asd_seq_data *seq = &asd_ha->seq;
 718         unsigned long flags;
 719 
 720         while (1) {
 721                 struct done_list_struct *dl = &seq->dl[seq->dl_next];
 722                 struct asd_ascb *ascb;
 723 
 724                 if ((dl->toggle & DL_TOGGLE_MASK) != seq->dl_toggle)
 725                         break;
 726 
 727                 /* find the aSCB */
 728                 spin_lock_irqsave(&seq->tc_index_lock, flags);
 729                 ascb = asd_tc_index_find(seq, (int)le16_to_cpu(dl->index));
 730                 spin_unlock_irqrestore(&seq->tc_index_lock, flags);
 731                 if (unlikely(!ascb)) {
 732                         ASD_DPRINTK("BUG:sequencer:dl:no ascb?!\n");
 733                         goto next_1;
 734                 } else if (ascb->scb->header.opcode == EMPTY_SCB) {
 735                         goto out;
 736                 } else if (!ascb->uldd_timer && !del_timer(&ascb->timer)) {
 737                         goto next_1;
 738                 }
 739                 spin_lock_irqsave(&seq->pend_q_lock, flags);
 740                 list_del_init(&ascb->list);
 741                 seq->pending--;
 742                 spin_unlock_irqrestore(&seq->pend_q_lock, flags);
 743         out:
 744                 ascb->tasklet_complete(ascb, dl);
 745 
 746         next_1:
 747                 seq->dl_next = (seq->dl_next + 1) & (ASD_DL_SIZE-1);
 748                 if (!seq->dl_next)
 749                         seq->dl_toggle ^= DL_TOGGLE_MASK;
 750         }
 751 }
 752 
 753 /* ---------- Interrupt Service Routines ---------- */
 754 
 755 /**
 756  * asd_process_donelist_isr -- schedule processing of done list entries
 757  * @asd_ha: pointer to host adapter structure
 758  */
 759 static void asd_process_donelist_isr(struct asd_ha_struct *asd_ha)
 760 {
 761         tasklet_schedule(&asd_ha->seq.dl_tasklet);
 762 }
 763 
 764 /**
 765  * asd_com_sas_isr -- process device communication interrupt (COMINT)
 766  * @asd_ha: pointer to host adapter structure
 767  */
 768 static void asd_com_sas_isr(struct asd_ha_struct *asd_ha)
 769 {
 770         u32 comstat = asd_read_reg_dword(asd_ha, COMSTAT);
 771 
 772         /* clear COMSTAT int */
 773         asd_write_reg_dword(asd_ha, COMSTAT, 0xFFFFFFFF);
 774 
 775         if (comstat & CSBUFPERR) {
 776                 asd_printk("%s: command/status buffer dma parity error\n",
 777                            pci_name(asd_ha->pcidev));
 778         } else if (comstat & CSERR) {
 779                 int i;
 780                 u32 dmaerr = asd_read_reg_dword(asd_ha, DMAERR);
 781                 dmaerr &= 0xFF;
 782                 asd_printk("%s: command/status dma error, DMAERR: 0x%02x, "
 783                            "CSDMAADR: 0x%04x, CSDMAADR+4: 0x%04x\n",
 784                            pci_name(asd_ha->pcidev),
 785                            dmaerr,
 786                            asd_read_reg_dword(asd_ha, CSDMAADR),
 787                            asd_read_reg_dword(asd_ha, CSDMAADR+4));
 788                 asd_printk("CSBUFFER:\n");
 789                 for (i = 0; i < 8; i++) {
 790                         asd_printk("%08x %08x %08x %08x\n",
 791                                    asd_read_reg_dword(asd_ha, CSBUFFER),
 792                                    asd_read_reg_dword(asd_ha, CSBUFFER+4),
 793                                    asd_read_reg_dword(asd_ha, CSBUFFER+8),
 794                                    asd_read_reg_dword(asd_ha, CSBUFFER+12));
 795                 }
 796                 asd_dump_seq_state(asd_ha, 0);
 797         } else if (comstat & OVLYERR) {
 798                 u32 dmaerr = asd_read_reg_dword(asd_ha, DMAERR);
 799                 dmaerr = (dmaerr >> 8) & 0xFF;
 800                 asd_printk("%s: overlay dma error:0x%x\n",
 801                            pci_name(asd_ha->pcidev),
 802                            dmaerr);
 803         }
 804         asd_chip_reset(asd_ha);
 805 }
 806 
 807 static void asd_arp2_err(struct asd_ha_struct *asd_ha, u32 dchstatus)
 808 {
 809         static const char *halt_code[256] = {
 810                 "UNEXPECTED_INTERRUPT0",
 811                 "UNEXPECTED_INTERRUPT1",
 812                 "UNEXPECTED_INTERRUPT2",
 813                 "UNEXPECTED_INTERRUPT3",
 814                 "UNEXPECTED_INTERRUPT4",
 815                 "UNEXPECTED_INTERRUPT5",
 816                 "UNEXPECTED_INTERRUPT6",
 817                 "UNEXPECTED_INTERRUPT7",
 818                 "UNEXPECTED_INTERRUPT8",
 819                 "UNEXPECTED_INTERRUPT9",
 820                 "UNEXPECTED_INTERRUPT10",
 821                 [11 ... 19] = "unknown[11,19]",
 822                 "NO_FREE_SCB_AVAILABLE",
 823                 "INVALID_SCB_OPCODE",
 824                 "INVALID_MBX_OPCODE",
 825                 "INVALID_ATA_STATE",
 826                 "ATA_QUEUE_FULL",
 827                 "ATA_TAG_TABLE_FAULT",
 828                 "ATA_TAG_MASK_FAULT",
 829                 "BAD_LINK_QUEUE_STATE",
 830                 "DMA2CHIM_QUEUE_ERROR",
 831                 "EMPTY_SCB_LIST_FULL",
 832                 "unknown[30]",
 833                 "IN_USE_SCB_ON_FREE_LIST",
 834                 "BAD_OPEN_WAIT_STATE",
 835                 "INVALID_STP_AFFILIATION",
 836                 "unknown[34]",
 837                 "EXEC_QUEUE_ERROR",
 838                 "TOO_MANY_EMPTIES_NEEDED",
 839                 "EMPTY_REQ_QUEUE_ERROR",
 840                 "Q_MONIRTT_MGMT_ERROR",
 841                 "TARGET_MODE_FLOW_ERROR",
 842                 "DEVICE_QUEUE_NOT_FOUND",
 843                 "START_IRTT_TIMER_ERROR",
 844                 "ABORT_TASK_ILLEGAL_REQ",
 845                 [43 ... 255] = "unknown[43,255]"
 846         };
 847 
 848         if (dchstatus & CSEQINT) {
 849                 u32 arp2int = asd_read_reg_dword(asd_ha, CARP2INT);
 850 
 851                 if (arp2int & (ARP2WAITTO|ARP2ILLOPC|ARP2PERR|ARP2CIOPERR)) {
 852                         asd_printk("%s: CSEQ arp2int:0x%x\n",
 853                                    pci_name(asd_ha->pcidev),
 854                                    arp2int);
 855                 } else if (arp2int & ARP2HALTC)
 856                         asd_printk("%s: CSEQ halted: %s\n",
 857                                    pci_name(asd_ha->pcidev),
 858                                    halt_code[(arp2int>>16)&0xFF]);
 859                 else
 860                         asd_printk("%s: CARP2INT:0x%x\n",
 861                                    pci_name(asd_ha->pcidev),
 862                                    arp2int);
 863         }
 864         if (dchstatus & LSEQINT_MASK) {
 865                 int lseq;
 866                 u8  lseq_mask = dchstatus & LSEQINT_MASK;
 867 
 868                 for_each_sequencer(lseq_mask, lseq_mask, lseq) {
 869                         u32 arp2int = asd_read_reg_dword(asd_ha,
 870                                                          LmARP2INT(lseq));
 871                         if (arp2int & (ARP2WAITTO | ARP2ILLOPC | ARP2PERR
 872                                        | ARP2CIOPERR)) {
 873                                 asd_printk("%s: LSEQ%d arp2int:0x%x\n",
 874                                            pci_name(asd_ha->pcidev),
 875                                            lseq, arp2int);
 876                                 /* XXX we should only do lseq reset */
 877                         } else if (arp2int & ARP2HALTC)
 878                                 asd_printk("%s: LSEQ%d halted: %s\n",
 879                                            pci_name(asd_ha->pcidev),
 880                                            lseq,halt_code[(arp2int>>16)&0xFF]);
 881                         else
 882                                 asd_printk("%s: LSEQ%d ARP2INT:0x%x\n",
 883                                            pci_name(asd_ha->pcidev), lseq,
 884                                            arp2int);
 885                 }
 886         }
 887         asd_chip_reset(asd_ha);
 888 }
 889 
 890 /**
 891  * asd_dch_sas_isr -- process device channel interrupt (DEVINT)
 892  * @asd_ha: pointer to host adapter structure
 893  */
 894 static void asd_dch_sas_isr(struct asd_ha_struct *asd_ha)
 895 {
 896         u32 dchstatus = asd_read_reg_dword(asd_ha, DCHSTATUS);
 897 
 898         if (dchstatus & CFIFTOERR) {
 899                 asd_printk("%s: CFIFTOERR\n", pci_name(asd_ha->pcidev));
 900                 asd_chip_reset(asd_ha);
 901         } else
 902                 asd_arp2_err(asd_ha, dchstatus);
 903 }
 904 
 905 /**
 906  * ads_rbi_exsi_isr -- process external system interface interrupt (INITERR)
 907  * @asd_ha: pointer to host adapter structure
 908  */
 909 static void asd_rbi_exsi_isr(struct asd_ha_struct *asd_ha)
 910 {
 911         u32 stat0r = asd_read_reg_dword(asd_ha, ASISTAT0R);
 912 
 913         if (!(stat0r & ASIERR)) {
 914                 asd_printk("hmm, EXSI interrupted but no error?\n");
 915                 return;
 916         }
 917 
 918         if (stat0r & ASIFMTERR) {
 919                 asd_printk("ASI SEEPROM format error for %s\n",
 920                            pci_name(asd_ha->pcidev));
 921         } else if (stat0r & ASISEECHKERR) {
 922                 u32 stat1r = asd_read_reg_dword(asd_ha, ASISTAT1R);
 923                 asd_printk("ASI SEEPROM checksum 0x%x error for %s\n",
 924                            stat1r & CHECKSUM_MASK,
 925                            pci_name(asd_ha->pcidev));
 926         } else {
 927                 u32 statr = asd_read_reg_dword(asd_ha, ASIERRSTATR);
 928 
 929                 if (!(statr & CPI2ASIMSTERR_MASK)) {
 930                         ASD_DPRINTK("hmm, ASIERR?\n");
 931                         return;
 932                 } else {
 933                         u32 addr = asd_read_reg_dword(asd_ha, ASIERRADDR);
 934                         u32 data = asd_read_reg_dword(asd_ha, ASIERRDATAR);
 935 
 936                         asd_printk("%s: CPI2 xfer err: addr: 0x%x, wdata: 0x%x, "
 937                                    "count: 0x%x, byteen: 0x%x, targerr: 0x%x "
 938                                    "master id: 0x%x, master err: 0x%x\n",
 939                                    pci_name(asd_ha->pcidev),
 940                                    addr, data,
 941                                    (statr & CPI2ASIBYTECNT_MASK) >> 16,
 942                                    (statr & CPI2ASIBYTEEN_MASK) >> 12,
 943                                    (statr & CPI2ASITARGERR_MASK) >> 8,
 944                                    (statr & CPI2ASITARGMID_MASK) >> 4,
 945                                    (statr & CPI2ASIMSTERR_MASK));
 946                 }
 947         }
 948         asd_chip_reset(asd_ha);
 949 }
 950 
 951 /**
 952  * asd_hst_pcix_isr -- process host interface interrupts
 953  * @asd_ha: pointer to host adapter structure
 954  *
 955  * Asserted on PCIX errors: target abort, etc.
 956  */
 957 static void asd_hst_pcix_isr(struct asd_ha_struct *asd_ha)
 958 {
 959         u16 status;
 960         u32 pcix_status;
 961         u32 ecc_status;
 962 
 963         pci_read_config_word(asd_ha->pcidev, PCI_STATUS, &status);
 964         pci_read_config_dword(asd_ha->pcidev, PCIX_STATUS, &pcix_status);
 965         pci_read_config_dword(asd_ha->pcidev, ECC_CTRL_STAT, &ecc_status);
 966 
 967         if (status & PCI_STATUS_DETECTED_PARITY)
 968                 asd_printk("parity error for %s\n", pci_name(asd_ha->pcidev));
 969         else if (status & PCI_STATUS_REC_MASTER_ABORT)
 970                 asd_printk("master abort for %s\n", pci_name(asd_ha->pcidev));
 971         else if (status & PCI_STATUS_REC_TARGET_ABORT)
 972                 asd_printk("target abort for %s\n", pci_name(asd_ha->pcidev));
 973         else if (status & PCI_STATUS_PARITY)
 974                 asd_printk("data parity for %s\n", pci_name(asd_ha->pcidev));
 975         else if (pcix_status & RCV_SCE) {
 976                 asd_printk("received split completion error for %s\n",
 977                            pci_name(asd_ha->pcidev));
 978                 pci_write_config_dword(asd_ha->pcidev,PCIX_STATUS,pcix_status);
 979                 /* XXX: Abort task? */
 980                 return;
 981         } else if (pcix_status & UNEXP_SC) {
 982                 asd_printk("unexpected split completion for %s\n",
 983                            pci_name(asd_ha->pcidev));
 984                 pci_write_config_dword(asd_ha->pcidev,PCIX_STATUS,pcix_status);
 985                 /* ignore */
 986                 return;
 987         } else if (pcix_status & SC_DISCARD)
 988                 asd_printk("split completion discarded for %s\n",
 989                            pci_name(asd_ha->pcidev));
 990         else if (ecc_status & UNCOR_ECCERR)
 991                 asd_printk("uncorrectable ECC error for %s\n",
 992                            pci_name(asd_ha->pcidev));
 993         asd_chip_reset(asd_ha);
 994 }
 995 
 996 /**
 997  * asd_hw_isr -- host adapter interrupt service routine
 998  * @irq: ignored
 999  * @dev_id: pointer to host adapter structure
1000  *
1001  * The ISR processes done list entries and level 3 error handling.
1002  */
1003 irqreturn_t asd_hw_isr(int irq, void *dev_id)
1004 {
1005         struct asd_ha_struct *asd_ha = dev_id;
1006         u32 chimint = asd_read_reg_dword(asd_ha, CHIMINT);
1007 
1008         if (!chimint)
1009                 return IRQ_NONE;
1010 
1011         asd_write_reg_dword(asd_ha, CHIMINT, chimint);
1012         (void) asd_read_reg_dword(asd_ha, CHIMINT);
1013 
1014         if (chimint & DLAVAIL)
1015                 asd_process_donelist_isr(asd_ha);
1016         if (chimint & COMINT)
1017                 asd_com_sas_isr(asd_ha);
1018         if (chimint & DEVINT)
1019                 asd_dch_sas_isr(asd_ha);
1020         if (chimint & INITERR)
1021                 asd_rbi_exsi_isr(asd_ha);
1022         if (chimint & HOSTERR)
1023                 asd_hst_pcix_isr(asd_ha);
1024 
1025         return IRQ_HANDLED;
1026 }
1027 
1028 /* ---------- SCB handling ---------- */
1029 
1030 static struct asd_ascb *asd_ascb_alloc(struct asd_ha_struct *asd_ha,
1031                                        gfp_t gfp_flags)
1032 {
1033         extern struct kmem_cache *asd_ascb_cache;
1034         struct asd_seq_data *seq = &asd_ha->seq;
1035         struct asd_ascb *ascb;
1036         unsigned long flags;
1037 
1038         ascb = kmem_cache_zalloc(asd_ascb_cache, gfp_flags);
1039 
1040         if (ascb) {
1041                 ascb->dma_scb.size = sizeof(struct scb);
1042                 ascb->dma_scb.vaddr = dma_pool_zalloc(asd_ha->scb_pool,
1043                                                      gfp_flags,
1044                                                     &ascb->dma_scb.dma_handle);
1045                 if (!ascb->dma_scb.vaddr) {
1046                         kmem_cache_free(asd_ascb_cache, ascb);
1047                         return NULL;
1048                 }
1049                 asd_init_ascb(asd_ha, ascb);
1050 
1051                 spin_lock_irqsave(&seq->tc_index_lock, flags);
1052                 ascb->tc_index = asd_tc_index_get(seq, ascb);
1053                 spin_unlock_irqrestore(&seq->tc_index_lock, flags);
1054                 if (ascb->tc_index == -1)
1055                         goto undo;
1056 
1057                 ascb->scb->header.index = cpu_to_le16((u16)ascb->tc_index);
1058         }
1059 
1060         return ascb;
1061 undo:
1062         dma_pool_free(asd_ha->scb_pool, ascb->dma_scb.vaddr,
1063                       ascb->dma_scb.dma_handle);
1064         kmem_cache_free(asd_ascb_cache, ascb);
1065         ASD_DPRINTK("no index for ascb\n");
1066         return NULL;
1067 }
1068 
1069 /**
1070  * asd_ascb_alloc_list -- allocate a list of aSCBs
1071  * @asd_ha: pointer to host adapter structure
1072  * @num: pointer to integer number of aSCBs
1073  * @gfp_flags: GFP_ flags.
1074  *
1075  * This is the only function which is used to allocate aSCBs.
1076  * It can allocate one or many. If more than one, then they form
1077  * a linked list in two ways: by their list field of the ascb struct
1078  * and by the next_scb field of the scb_header.
1079  *
1080  * Returns NULL if no memory was available, else pointer to a list
1081  * of ascbs.  When this function returns, @num would be the number
1082  * of SCBs which were not able to be allocated, 0 if all requested
1083  * were able to be allocated.
1084  */
1085 struct asd_ascb *asd_ascb_alloc_list(struct asd_ha_struct
1086                                      *asd_ha, int *num,
1087                                      gfp_t gfp_flags)
1088 {
1089         struct asd_ascb *first = NULL;
1090 
1091         for ( ; *num > 0; --*num) {
1092                 struct asd_ascb *ascb = asd_ascb_alloc(asd_ha, gfp_flags);
1093 
1094                 if (!ascb)
1095                         break;
1096                 else if (!first)
1097                         first = ascb;
1098                 else {
1099                         struct asd_ascb *last = list_entry(first->list.prev,
1100                                                            struct asd_ascb,
1101                                                            list);
1102                         list_add_tail(&ascb->list, &first->list);
1103                         last->scb->header.next_scb =
1104                                 cpu_to_le64(((u64)ascb->dma_scb.dma_handle));
1105                 }
1106         }
1107 
1108         return first;
1109 }
1110 
1111 /**
1112  * asd_swap_head_scb -- swap the head scb
1113  * @asd_ha: pointer to host adapter structure
1114  * @ascb: pointer to the head of an ascb list
1115  *
1116  * The sequencer knows the DMA address of the next SCB to be DMAed to
1117  * the host adapter, from initialization or from the last list DMAed.
1118  * seq->next_scb keeps the address of this SCB.  The sequencer will
1119  * DMA to the host adapter this list of SCBs.  But the head (first
1120  * element) of this list is not known to the sequencer.  Here we swap
1121  * the head of the list with the known SCB (memcpy()).
1122  * Only one memcpy() is required per list so it is in our interest
1123  * to keep the list of SCB as long as possible so that the ratio
1124  * of number of memcpy calls to the number of SCB DMA-ed is as small
1125  * as possible.
1126  *
1127  * LOCKING: called with the pending list lock held.
1128  */
1129 static void asd_swap_head_scb(struct asd_ha_struct *asd_ha,
1130                               struct asd_ascb *ascb)
1131 {
1132         struct asd_seq_data *seq = &asd_ha->seq;
1133         struct asd_ascb *last = list_entry(ascb->list.prev,
1134                                            struct asd_ascb,
1135                                            list);
1136         struct asd_dma_tok t = ascb->dma_scb;
1137 
1138         memcpy(seq->next_scb.vaddr, ascb->scb, sizeof(*ascb->scb));
1139         ascb->dma_scb = seq->next_scb;
1140         ascb->scb = ascb->dma_scb.vaddr;
1141         seq->next_scb = t;
1142         last->scb->header.next_scb =
1143                 cpu_to_le64(((u64)seq->next_scb.dma_handle));
1144 }
1145 
1146 /**
1147  * asd_start_timers -- (add and) start timers of SCBs
1148  * @list: pointer to struct list_head of the scbs
1149  * @to: timeout in jiffies
1150  *
1151  * If an SCB in the @list has no timer function, assign the default
1152  * one,  then start the timer of the SCB.  This function is
1153  * intended to be called from asd_post_ascb_list(), just prior to
1154  * posting the SCBs to the sequencer.
1155  */
1156 static void asd_start_scb_timers(struct list_head *list)
1157 {
1158         struct asd_ascb *ascb;
1159         list_for_each_entry(ascb, list, list) {
1160                 if (!ascb->uldd_timer) {
1161                         ascb->timer.function = asd_ascb_timedout;
1162                         ascb->timer.expires = jiffies + AIC94XX_SCB_TIMEOUT;
1163                         add_timer(&ascb->timer);
1164                 }
1165         }
1166 }
1167 
1168 /**
1169  * asd_post_ascb_list -- post a list of 1 or more aSCBs to the host adapter
1170  * @asd_ha: pointer to a host adapter structure
1171  * @ascb: pointer to the first aSCB in the list
1172  * @num: number of aSCBs in the list (to be posted)
1173  *
1174  * See queueing comment in asd_post_escb_list().
1175  *
1176  * Additional note on queuing: In order to minimize the ratio of memcpy()
1177  * to the number of ascbs sent, we try to batch-send as many ascbs as possible
1178  * in one go.
1179  * Two cases are possible:
1180  *    A) can_queue >= num,
1181  *    B) can_queue < num.
1182  * Case A: we can send the whole batch at once.  Increment "pending"
1183  * in the beginning of this function, when it is checked, in order to
1184  * eliminate races when this function is called by multiple processes.
1185  * Case B: should never happen.
1186  */
1187 int asd_post_ascb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb,
1188                        int num)
1189 {
1190         unsigned long flags;
1191         LIST_HEAD(list);
1192         int can_queue;
1193 
1194         spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags);
1195         can_queue = asd_ha->hw_prof.max_scbs - asd_ha->seq.pending;
1196         if (can_queue >= num)
1197                 asd_ha->seq.pending += num;
1198         else
1199                 can_queue = 0;
1200 
1201         if (!can_queue) {
1202                 spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
1203                 asd_printk("%s: scb queue full\n", pci_name(asd_ha->pcidev));
1204                 return -SAS_QUEUE_FULL;
1205         }
1206 
1207         asd_swap_head_scb(asd_ha, ascb);
1208 
1209         __list_add(&list, ascb->list.prev, &ascb->list);
1210 
1211         asd_start_scb_timers(&list);
1212 
1213         asd_ha->seq.scbpro += num;
1214         list_splice_init(&list, asd_ha->seq.pend_q.prev);
1215         asd_write_reg_dword(asd_ha, SCBPRO, (u32)asd_ha->seq.scbpro);
1216         spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
1217 
1218         return 0;
1219 }
1220 
1221 /**
1222  * asd_post_escb_list -- post a list of 1 or more empty scb
1223  * @asd_ha: pointer to a host adapter structure
1224  * @ascb: pointer to the first empty SCB in the list
1225  * @num: number of aSCBs in the list (to be posted)
1226  *
1227  * This is essentially the same as asd_post_ascb_list, but we do not
1228  * increment pending, add those to the pending list or get indexes.
1229  * See asd_init_escbs() and asd_init_post_escbs().
1230  *
1231  * Since sending a list of ascbs is a superset of sending a single
1232  * ascb, this function exists to generalize this.  More specifically,
1233  * when sending a list of those, we want to do only a _single_
1234  * memcpy() at swap head, as opposed to for each ascb sent (in the
1235  * case of sending them one by one).  That is, we want to minimize the
1236  * ratio of memcpy() operations to the number of ascbs sent.  The same
1237  * logic applies to asd_post_ascb_list().
1238  */
1239 int asd_post_escb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb,
1240                        int num)
1241 {
1242         unsigned long flags;
1243 
1244         spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags);
1245         asd_swap_head_scb(asd_ha, ascb);
1246         asd_ha->seq.scbpro += num;
1247         asd_write_reg_dword(asd_ha, SCBPRO, (u32)asd_ha->seq.scbpro);
1248         spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
1249 
1250         return 0;
1251 }
1252 
1253 /* ---------- LED ---------- */
1254 
1255 /**
1256  * asd_turn_led -- turn on/off an LED
1257  * @asd_ha: pointer to host adapter structure
1258  * @phy_id: the PHY id whose LED we want to manupulate
1259  * @op: 1 to turn on, 0 to turn off
1260  */
1261 void asd_turn_led(struct asd_ha_struct *asd_ha, int phy_id, int op)
1262 {
1263         if (phy_id < ASD_MAX_PHYS) {
1264                 u32 v = asd_read_reg_dword(asd_ha, LmCONTROL(phy_id));
1265                 if (op)
1266                         v |= LEDPOL;
1267                 else
1268                         v &= ~LEDPOL;
1269                 asd_write_reg_dword(asd_ha, LmCONTROL(phy_id), v);
1270         }
1271 }
1272 
1273 /**
1274  * asd_control_led -- enable/disable an LED on the board
1275  * @asd_ha: pointer to host adapter structure
1276  * @phy_id: integer, the phy id
1277  * @op: integer, 1 to enable, 0 to disable the LED
1278  *
1279  * First we output enable the LED, then we set the source
1280  * to be an external module.
1281  */
1282 void asd_control_led(struct asd_ha_struct *asd_ha, int phy_id, int op)
1283 {
1284         if (phy_id < ASD_MAX_PHYS) {
1285                 u32 v;
1286 
1287                 v = asd_read_reg_dword(asd_ha, GPIOOER);
1288                 if (op)
1289                         v |= (1 << phy_id);
1290                 else
1291                         v &= ~(1 << phy_id);
1292                 asd_write_reg_dword(asd_ha, GPIOOER, v);
1293 
1294                 v = asd_read_reg_dword(asd_ha, GPIOCNFGR);
1295                 if (op)
1296                         v |= (1 << phy_id);
1297                 else
1298                         v &= ~(1 << phy_id);
1299                 asd_write_reg_dword(asd_ha, GPIOCNFGR, v);
1300         }
1301 }
1302 
1303 /* ---------- PHY enable ---------- */
1304 
1305 static int asd_enable_phy(struct asd_ha_struct *asd_ha, int phy_id)
1306 {
1307         struct asd_phy *phy = &asd_ha->phys[phy_id];
1308 
1309         asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, INT_ENABLE_2), 0);
1310         asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, HOT_PLUG_DELAY),
1311                            HOTPLUG_DELAY_TIMEOUT);
1312 
1313         /* Get defaults from manuf. sector */
1314         /* XXX we need defaults for those in case MS is broken. */
1315         asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_0),
1316                            phy->phy_desc->phy_control_0);
1317         asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_1),
1318                            phy->phy_desc->phy_control_1);
1319         asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_2),
1320                            phy->phy_desc->phy_control_2);
1321         asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_3),
1322                            phy->phy_desc->phy_control_3);
1323 
1324         asd_write_reg_dword(asd_ha, LmSEQ_TEN_MS_COMINIT_TIMEOUT(phy_id),
1325                             ASD_COMINIT_TIMEOUT);
1326 
1327         asd_write_reg_addr(asd_ha, LmSEQ_TX_ID_ADDR_FRAME(phy_id),
1328                            phy->id_frm_tok->dma_handle);
1329 
1330         asd_control_led(asd_ha, phy_id, 1);
1331 
1332         return 0;
1333 }
1334 
1335 int asd_enable_phys(struct asd_ha_struct *asd_ha, const u8 phy_mask)
1336 {
1337         u8  phy_m;
1338         u8  i;
1339         int num = 0, k;
1340         struct asd_ascb *ascb;
1341         struct asd_ascb *ascb_list;
1342 
1343         if (!phy_mask) {
1344                 asd_printk("%s called with phy_mask of 0!?\n", __func__);
1345                 return 0;
1346         }
1347 
1348         for_each_phy(phy_mask, phy_m, i) {
1349                 num++;
1350                 asd_enable_phy(asd_ha, i);
1351         }
1352 
1353         k = num;
1354         ascb_list = asd_ascb_alloc_list(asd_ha, &k, GFP_KERNEL);
1355         if (!ascb_list) {
1356                 asd_printk("no memory for control phy ascb list\n");
1357                 return -ENOMEM;
1358         }
1359         num -= k;
1360 
1361         ascb = ascb_list;
1362         for_each_phy(phy_mask, phy_m, i) {
1363                 asd_build_control_phy(ascb, i, ENABLE_PHY);
1364                 ascb = list_entry(ascb->list.next, struct asd_ascb, list);
1365         }
1366         ASD_DPRINTK("posting %d control phy scbs\n", num);
1367         k = asd_post_ascb_list(asd_ha, ascb_list, num);
1368         if (k)
1369                 asd_ascb_free_list(ascb_list);
1370 
1371         return k;
1372 }

/* [<][>][^][v][top][bottom][index][help] */