root/drivers/scsi/mpt3sas/mpt3sas_base.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. mpt3sas_base_check_cmd_timeout
  2. _scsih_set_fwfault_debug
  3. _base_readl_aero
  4. _base_readl
  5. _base_clone_reply_to_sys_mem
  6. _base_clone_mpi_to_sys_mem
  7. _base_clone_to_sys_mem
  8. _base_get_chain
  9. _base_get_chain_phys
  10. _base_get_buffer_bar0
  11. _base_get_buffer_phys_bar0
  12. _base_get_chain_buffer_dma_to_chain_buffer
  13. _clone_sg_entries
  14. mpt3sas_remove_dead_ioc_func
  15. _base_fault_reset_work
  16. mpt3sas_base_start_watchdog
  17. mpt3sas_base_stop_watchdog
  18. mpt3sas_base_fault_info
  19. mpt3sas_halt_firmware
  20. _base_sas_ioc_info
  21. _base_display_event_data
  22. _base_sas_log_info
  23. _base_display_reply_info
  24. mpt3sas_base_done
  25. _base_async_event
  26. _get_st_from_smid
  27. _base_get_cb_idx
  28. _base_mask_interrupts
  29. _base_unmask_interrupts
  30. base_mod64
  31. _base_process_reply_queue
  32. _base_interrupt
  33. _base_irqpoll
  34. _base_init_irqpolls
  35. _base_is_controller_msix_enabled
  36. mpt3sas_base_sync_reply_irqs
  37. mpt3sas_base_release_callback_handler
  38. mpt3sas_base_register_callback_handler
  39. mpt3sas_base_initialize_callback_handler
  40. _base_build_zero_len_sge
  41. _base_add_sg_single_32
  42. _base_add_sg_single_64
  43. _base_get_chain_buffer_tracker
  44. _base_build_sg
  45. _base_build_nvme_prp
  46. base_make_prp_nvme
  47. base_is_prp_possible
  48. _base_check_pcie_native_sgl
  49. _base_add_sg_single_ieee
  50. _base_build_zero_len_sge_ieee
  51. _base_build_sg_scmd
  52. _base_build_sg_scmd_ieee
  53. _base_build_sg_ieee
  54. _base_config_dma_addressing
  55. _base_change_consistent_dma_mask
  56. _base_check_enable_msix
  57. _base_free_irq
  58. _base_request_irq
  59. _base_assign_reply_queues
  60. _base_check_and_enable_high_iops_queues
  61. _base_disable_msix
  62. _base_alloc_irq_vectors
  63. _base_enable_msix
  64. mpt3sas_base_unmap_resources
  65. _base_check_for_fault_and_issue_reset
  66. mpt3sas_base_map_resources
  67. mpt3sas_base_get_msg_frame
  68. mpt3sas_base_get_sense_buffer
  69. mpt3sas_base_get_sense_buffer_dma
  70. mpt3sas_base_get_pcie_sgl
  71. mpt3sas_base_get_pcie_sgl_dma
  72. mpt3sas_base_get_reply_virt_addr
  73. _base_get_msix_index
  74. _base_get_high_iops_msix_index
  75. mpt3sas_base_get_smid
  76. mpt3sas_base_get_smid_scsiio
  77. mpt3sas_base_get_smid_hpr
  78. _base_recovery_check
  79. mpt3sas_base_clear_st
  80. mpt3sas_base_free_smid
  81. _base_mpi_ep_writeq
  82. _base_writeq
  83. _base_writeq
  84. _base_set_and_get_msix_index
  85. _base_put_smid_mpi_ep_scsi_io
  86. _base_put_smid_scsi_io
  87. _base_put_smid_fast_path
  88. _base_put_smid_hi_priority
  89. mpt3sas_base_put_smid_nvme_encap
  90. _base_put_smid_default
  91. _base_put_smid_scsi_io_atomic
  92. _base_put_smid_fast_path_atomic
  93. _base_put_smid_hi_priority_atomic
  94. _base_put_smid_default_atomic
  95. _base_display_OEMs_branding
  96. _base_display_fwpkg_version
  97. _base_display_ioc_capabilities
  98. mpt3sas_base_update_missing_delay
  99. _base_update_ioc_page1_inlinewith_perf_mode
  100. _base_static_config_pages
  101. mpt3sas_free_enclosure_list
  102. _base_release_memory_pools
  103. is_MSB_are_same
  104. _base_allocate_memory_pools
  105. mpt3sas_base_get_iocstate
  106. _base_wait_on_iocstate
  107. _base_wait_for_doorbell_int
  108. _base_spin_on_doorbell_int
  109. _base_wait_for_doorbell_ack
  110. _base_wait_for_doorbell_not_used
  111. _base_send_ioc_reset
  112. mpt3sas_wait_for_ioc
  113. _base_handshake_req_reply_wait
  114. mpt3sas_base_sas_iounit_control
  115. mpt3sas_base_scsi_enclosure_processor
  116. _base_get_port_facts
  117. _base_wait_for_iocstate
  118. _base_get_ioc_facts
  119. _base_send_ioc_init
  120. mpt3sas_port_enable_done
  121. _base_send_port_enable
  122. mpt3sas_port_enable
  123. _base_determine_wait_on_discovery
  124. _base_unmask_events
  125. _base_event_notification
  126. mpt3sas_base_validate_event_type
  127. _base_diag_reset
  128. _base_make_ioc_ready
  129. _base_make_ioc_operational
  130. mpt3sas_base_free_resources
  131. mpt3sas_base_attach
  132. mpt3sas_base_detach
  133. _base_pre_reset_handler
  134. _base_after_reset_handler
  135. _base_reset_done_handler
  136. mpt3sas_wait_for_commands_to_complete
  137. _base_check_ioc_facts_changes
  138. mpt3sas_base_hard_reset_handler

   1 /*
   2  * This is the Fusion MPT base driver providing common API layer interface
   3  * for access to MPT (Message Passing Technology) firmware.
   4  *
   5  * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
   6  * Copyright (C) 2012-2014  LSI Corporation
   7  * Copyright (C) 2013-2014 Avago Technologies
   8  *  (mailto: MPT-FusionLinux.pdl@avagotech.com)
   9  *
  10  * This program is free software; you can redistribute it and/or
  11  * modify it under the terms of the GNU General Public License
  12  * as published by the Free Software Foundation; either version 2
  13  * of the License, or (at your option) any later version.
  14  *
  15  * This program is distributed in the hope that it will be useful,
  16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  18  * GNU General Public License for more details.
  19  *
  20  * NO WARRANTY
  21  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
  22  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
  23  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
  24  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
  25  * solely responsible for determining the appropriateness of using and
  26  * distributing the Program and assumes all risks associated with its
  27  * exercise of rights under this Agreement, including but not limited to
  28  * the risks and costs of program errors, damage to or loss of data,
  29  * programs or equipment, and unavailability or interruption of operations.
  30 
  31  * DISCLAIMER OF LIABILITY
  32  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
  33  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  34  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
  35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
  36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  37  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
  38  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
  39 
  40  * You should have received a copy of the GNU General Public License
  41  * along with this program; if not, write to the Free Software
  42  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
  43  * USA.
  44  */
  45 
  46 #include <linux/kernel.h>
  47 #include <linux/module.h>
  48 #include <linux/errno.h>
  49 #include <linux/init.h>
  50 #include <linux/slab.h>
  51 #include <linux/types.h>
  52 #include <linux/pci.h>
  53 #include <linux/kdev_t.h>
  54 #include <linux/blkdev.h>
  55 #include <linux/delay.h>
  56 #include <linux/interrupt.h>
  57 #include <linux/dma-mapping.h>
  58 #include <linux/io.h>
  59 #include <linux/time.h>
  60 #include <linux/ktime.h>
  61 #include <linux/kthread.h>
  62 #include <asm/page.h>        /* To get host page size per arch */
  63 #include <linux/aer.h>
  64 
  65 
  66 #include "mpt3sas_base.h"
  67 
  68 static MPT_CALLBACK     mpt_callbacks[MPT_MAX_CALLBACKS];
  69 
  70 
  71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
  72 
  73  /* maximum controller queue depth */
  74 #define MAX_HBA_QUEUE_DEPTH     30000
  75 #define MAX_CHAIN_DEPTH         100000
  76 static int max_queue_depth = -1;
  77 module_param(max_queue_depth, int, 0444);
  78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
  79 
  80 static int max_sgl_entries = -1;
  81 module_param(max_sgl_entries, int, 0444);
  82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
  83 
  84 static int msix_disable = -1;
  85 module_param(msix_disable, int, 0444);
  86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
  87 
  88 static int smp_affinity_enable = 1;
  89 module_param(smp_affinity_enable, int, 0444);
  90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)");
  91 
  92 static int max_msix_vectors = -1;
  93 module_param(max_msix_vectors, int, 0444);
  94 MODULE_PARM_DESC(max_msix_vectors,
  95         " max msix vectors");
  96 
  97 static int irqpoll_weight = -1;
  98 module_param(irqpoll_weight, int, 0444);
  99 MODULE_PARM_DESC(irqpoll_weight,
 100         "irq poll weight (default= one fourth of HBA queue depth)");
 101 
 102 static int mpt3sas_fwfault_debug;
 103 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
 104         " enable detection of firmware fault and halt firmware - (default=0)");
 105 
 106 static int perf_mode = -1;
 107 module_param(perf_mode, int, 0444);
 108 MODULE_PARM_DESC(perf_mode,
 109         "Performance mode (only for Aero/Sea Generation), options:\n\t\t"
 110         "0 - balanced: high iops mode is enabled &\n\t\t"
 111         "interrupt coalescing is enabled only on high iops queues,\n\t\t"
 112         "1 - iops: high iops mode is disabled &\n\t\t"
 113         "interrupt coalescing is enabled on all queues,\n\t\t"
 114         "2 - latency: high iops mode is disabled &\n\t\t"
 115         "interrupt coalescing is enabled on all queues with timeout value 0xA,\n"
 116         "\t\tdefault - default perf_mode is 'balanced'"
 117         );
 118 
 119 enum mpt3sas_perf_mode {
 120         MPT_PERF_MODE_DEFAULT   = -1,
 121         MPT_PERF_MODE_BALANCED  = 0,
 122         MPT_PERF_MODE_IOPS      = 1,
 123         MPT_PERF_MODE_LATENCY   = 2,
 124 };
 125 
 126 static int
 127 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
 128 
 129 /**
 130  * mpt3sas_base_check_cmd_timeout - Function
 131  *              to check timeout and command termination due
 132  *              to Host reset.
 133  *
 134  * @ioc:        per adapter object.
 135  * @status:     Status of issued command.
 136  * @mpi_request:mf request pointer.
 137  * @sz:         size of buffer.
 138  *
 139  * @Returns - 1/0 Reset to be done or Not
 140  */
 141 u8
 142 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc,
 143                 u8 status, void *mpi_request, int sz)
 144 {
 145         u8 issue_reset = 0;
 146 
 147         if (!(status & MPT3_CMD_RESET))
 148                 issue_reset = 1;
 149 
 150         ioc_err(ioc, "Command %s\n",
 151                 issue_reset == 0 ? "terminated due to Host Reset" : "Timeout");
 152         _debug_dump_mf(mpi_request, sz);
 153 
 154         return issue_reset;
 155 }
 156 
 157 /**
 158  * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
 159  * @val: ?
 160  * @kp: ?
 161  *
 162  * Return: ?
 163  */
 164 static int
 165 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp)
 166 {
 167         int ret = param_set_int(val, kp);
 168         struct MPT3SAS_ADAPTER *ioc;
 169 
 170         if (ret)
 171                 return ret;
 172 
 173         /* global ioc spinlock to protect controller list on list operations */
 174         pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
 175         spin_lock(&gioc_lock);
 176         list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
 177                 ioc->fwfault_debug = mpt3sas_fwfault_debug;
 178         spin_unlock(&gioc_lock);
 179         return 0;
 180 }
 181 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
 182         param_get_int, &mpt3sas_fwfault_debug, 0644);
 183 
 184 /**
 185  * _base_readl_aero - retry readl for max three times.
 186  * @addr - MPT Fusion system interface register address
 187  *
 188  * Retry the readl() for max three times if it gets zero value
 189  * while reading the system interface register.
 190  */
 191 static inline u32
 192 _base_readl_aero(const volatile void __iomem *addr)
 193 {
 194         u32 i = 0, ret_val;
 195 
 196         do {
 197                 ret_val = readl(addr);
 198                 i++;
 199         } while (ret_val == 0 && i < 3);
 200 
 201         return ret_val;
 202 }
 203 
 204 static inline u32
 205 _base_readl(const volatile void __iomem *addr)
 206 {
 207         return readl(addr);
 208 }
 209 
 210 /**
 211  * _base_clone_reply_to_sys_mem - copies reply to reply free iomem
 212  *                                in BAR0 space.
 213  *
 214  * @ioc: per adapter object
 215  * @reply: reply message frame(lower 32bit addr)
 216  * @index: System request message index.
 217  */
 218 static void
 219 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply,
 220                 u32 index)
 221 {
 222         /*
 223          * 256 is offset within sys register.
 224          * 256 offset MPI frame starts. Max MPI frame supported is 32.
 225          * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
 226          */
 227         u16 cmd_credit = ioc->facts.RequestCredit + 1;
 228         void __iomem *reply_free_iomem = (void __iomem *)ioc->chip +
 229                         MPI_FRAME_START_OFFSET +
 230                         (cmd_credit * ioc->request_sz) + (index * sizeof(u32));
 231 
 232         writel(reply, reply_free_iomem);
 233 }
 234 
 235 /**
 236  * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
 237  *                              to system/BAR0 region.
 238  *
 239  * @dst_iomem: Pointer to the destination location in BAR0 space.
 240  * @src: Pointer to the Source data.
 241  * @size: Size of data to be copied.
 242  */
 243 static void
 244 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size)
 245 {
 246         int i;
 247         u32 *src_virt_mem = (u32 *)src;
 248 
 249         for (i = 0; i < size/4; i++)
 250                 writel((u32)src_virt_mem[i],
 251                                 (void __iomem *)dst_iomem + (i * 4));
 252 }
 253 
 254 /**
 255  * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
 256  *
 257  * @dst_iomem: Pointer to the destination location in BAR0 space.
 258  * @src: Pointer to the Source data.
 259  * @size: Size of data to be copied.
 260  */
 261 static void
 262 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size)
 263 {
 264         int i;
 265         u32 *src_virt_mem = (u32 *)(src);
 266 
 267         for (i = 0; i < size/4; i++)
 268                 writel((u32)src_virt_mem[i],
 269                         (void __iomem *)dst_iomem + (i * 4));
 270 }
 271 
 272 /**
 273  * _base_get_chain - Calculates and Returns virtual chain address
 274  *                       for the provided smid in BAR0 space.
 275  *
 276  * @ioc: per adapter object
 277  * @smid: system request message index
 278  * @sge_chain_count: Scatter gather chain count.
 279  *
 280  * Return: the chain address.
 281  */
 282 static inline void __iomem*
 283 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid,
 284                 u8 sge_chain_count)
 285 {
 286         void __iomem *base_chain, *chain_virt;
 287         u16 cmd_credit = ioc->facts.RequestCredit + 1;
 288 
 289         base_chain  = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET +
 290                 (cmd_credit * ioc->request_sz) +
 291                 REPLY_FREE_POOL_SIZE;
 292         chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth *
 293                         ioc->request_sz) + (sge_chain_count * ioc->request_sz);
 294         return chain_virt;
 295 }
 296 
 297 /**
 298  * _base_get_chain_phys - Calculates and Returns physical address
 299  *                      in BAR0 for scatter gather chains, for
 300  *                      the provided smid.
 301  *
 302  * @ioc: per adapter object
 303  * @smid: system request message index
 304  * @sge_chain_count: Scatter gather chain count.
 305  *
 306  * Return: Physical chain address.
 307  */
 308 static inline phys_addr_t
 309 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid,
 310                 u8 sge_chain_count)
 311 {
 312         phys_addr_t base_chain_phys, chain_phys;
 313         u16 cmd_credit = ioc->facts.RequestCredit + 1;
 314 
 315         base_chain_phys  = ioc->chip_phys + MPI_FRAME_START_OFFSET +
 316                 (cmd_credit * ioc->request_sz) +
 317                 REPLY_FREE_POOL_SIZE;
 318         chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth *
 319                         ioc->request_sz) + (sge_chain_count * ioc->request_sz);
 320         return chain_phys;
 321 }
 322 
 323 /**
 324  * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
 325  *                      buffer address for the provided smid.
 326  *                      (Each smid can have 64K starts from 17024)
 327  *
 328  * @ioc: per adapter object
 329  * @smid: system request message index
 330  *
 331  * Return: Pointer to buffer location in BAR0.
 332  */
 333 
 334 static void __iomem *
 335 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
 336 {
 337         u16 cmd_credit = ioc->facts.RequestCredit + 1;
 338         // Added extra 1 to reach end of chain.
 339         void __iomem *chain_end = _base_get_chain(ioc,
 340                         cmd_credit + 1,
 341                         ioc->facts.MaxChainDepth);
 342         return chain_end + (smid * 64 * 1024);
 343 }
 344 
 345 /**
 346  * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
 347  *              Host buffer Physical address for the provided smid.
 348  *              (Each smid can have 64K starts from 17024)
 349  *
 350  * @ioc: per adapter object
 351  * @smid: system request message index
 352  *
 353  * Return: Pointer to buffer location in BAR0.
 354  */
 355 static phys_addr_t
 356 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
 357 {
 358         u16 cmd_credit = ioc->facts.RequestCredit + 1;
 359         phys_addr_t chain_end_phys = _base_get_chain_phys(ioc,
 360                         cmd_credit + 1,
 361                         ioc->facts.MaxChainDepth);
 362         return chain_end_phys + (smid * 64 * 1024);
 363 }
 364 
 365 /**
 366  * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
 367  *                      lookup list and Provides chain_buffer
 368  *                      address for the matching dma address.
 369  *                      (Each smid can have 64K starts from 17024)
 370  *
 371  * @ioc: per adapter object
 372  * @chain_buffer_dma: Chain buffer dma address.
 373  *
 374  * Return: Pointer to chain buffer. Or Null on Failure.
 375  */
 376 static void *
 377 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc,
 378                 dma_addr_t chain_buffer_dma)
 379 {
 380         u16 index, j;
 381         struct chain_tracker *ct;
 382 
 383         for (index = 0; index < ioc->scsiio_depth; index++) {
 384                 for (j = 0; j < ioc->chains_needed_per_io; j++) {
 385                         ct = &ioc->chain_lookup[index].chains_per_smid[j];
 386                         if (ct && ct->chain_buffer_dma == chain_buffer_dma)
 387                                 return ct->chain_buffer;
 388                 }
 389         }
 390         ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n");
 391         return NULL;
 392 }
 393 
 394 /**
 395  * _clone_sg_entries -  MPI EP's scsiio and config requests
 396  *                      are handled here. Base function for
 397  *                      double buffering, before submitting
 398  *                      the requests.
 399  *
 400  * @ioc: per adapter object.
 401  * @mpi_request: mf request pointer.
 402  * @smid: system request message index.
 403  */
 404 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc,
 405                 void *mpi_request, u16 smid)
 406 {
 407         Mpi2SGESimple32_t *sgel, *sgel_next;
 408         u32  sgl_flags, sge_chain_count = 0;
 409         bool is_write = 0;
 410         u16 i = 0;
 411         void __iomem *buffer_iomem;
 412         phys_addr_t buffer_iomem_phys;
 413         void __iomem *buff_ptr;
 414         phys_addr_t buff_ptr_phys;
 415         void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO];
 416         void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO];
 417         phys_addr_t dst_addr_phys;
 418         MPI2RequestHeader_t *request_hdr;
 419         struct scsi_cmnd *scmd;
 420         struct scatterlist *sg_scmd = NULL;
 421         int is_scsiio_req = 0;
 422 
 423         request_hdr = (MPI2RequestHeader_t *) mpi_request;
 424 
 425         if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
 426                 Mpi25SCSIIORequest_t *scsiio_request =
 427                         (Mpi25SCSIIORequest_t *)mpi_request;
 428                 sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL;
 429                 is_scsiio_req = 1;
 430         } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
 431                 Mpi2ConfigRequest_t  *config_req =
 432                         (Mpi2ConfigRequest_t *)mpi_request;
 433                 sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE;
 434         } else
 435                 return;
 436 
 437         /* From smid we can get scsi_cmd, once we have sg_scmd,
 438          * we just need to get sg_virt and sg_next to get virual
 439          * address associated with sgel->Address.
 440          */
 441 
 442         if (is_scsiio_req) {
 443                 /* Get scsi_cmd using smid */
 444                 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
 445                 if (scmd == NULL) {
 446                         ioc_err(ioc, "scmd is NULL\n");
 447                         return;
 448                 }
 449 
 450                 /* Get sg_scmd from scmd provided */
 451                 sg_scmd = scsi_sglist(scmd);
 452         }
 453 
 454         /*
 455          * 0 - 255      System register
 456          * 256 - 4352   MPI Frame. (This is based on maxCredit 32)
 457          * 4352 - 4864  Reply_free pool (512 byte is reserved
 458          *              considering maxCredit 32. Reply need extra
 459          *              room, for mCPU case kept four times of
 460          *              maxCredit).
 461          * 4864 - 17152 SGE chain element. (32cmd * 3 chain of
 462          *              128 byte size = 12288)
 463          * 17152 - x    Host buffer mapped with smid.
 464          *              (Each smid can have 64K Max IO.)
 465          * BAR0+Last 1K MSIX Addr and Data
 466          * Total size in use 2113664 bytes of 4MB BAR0
 467          */
 468 
 469         buffer_iomem = _base_get_buffer_bar0(ioc, smid);
 470         buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid);
 471 
 472         buff_ptr = buffer_iomem;
 473         buff_ptr_phys = buffer_iomem_phys;
 474         WARN_ON(buff_ptr_phys > U32_MAX);
 475 
 476         if (le32_to_cpu(sgel->FlagsLength) &
 477                         (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT))
 478                 is_write = 1;
 479 
 480         for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) {
 481 
 482                 sgl_flags =
 483                     (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT);
 484 
 485                 switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) {
 486                 case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
 487                         /*
 488                          * Helper function which on passing
 489                          * chain_buffer_dma returns chain_buffer. Get
 490                          * the virtual address for sgel->Address
 491                          */
 492                         sgel_next =
 493                                 _base_get_chain_buffer_dma_to_chain_buffer(ioc,
 494                                                 le32_to_cpu(sgel->Address));
 495                         if (sgel_next == NULL)
 496                                 return;
 497                         /*
 498                          * This is coping 128 byte chain
 499                          * frame (not a host buffer)
 500                          */
 501                         dst_chain_addr[sge_chain_count] =
 502                                 _base_get_chain(ioc,
 503                                         smid, sge_chain_count);
 504                         src_chain_addr[sge_chain_count] =
 505                                                 (void *) sgel_next;
 506                         dst_addr_phys = _base_get_chain_phys(ioc,
 507                                                 smid, sge_chain_count);
 508                         WARN_ON(dst_addr_phys > U32_MAX);
 509                         sgel->Address =
 510                                 cpu_to_le32(lower_32_bits(dst_addr_phys));
 511                         sgel = sgel_next;
 512                         sge_chain_count++;
 513                         break;
 514                 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
 515                         if (is_write) {
 516                                 if (is_scsiio_req) {
 517                                         _base_clone_to_sys_mem(buff_ptr,
 518                                             sg_virt(sg_scmd),
 519                                             (le32_to_cpu(sgel->FlagsLength) &
 520                                             0x00ffffff));
 521                                         /*
 522                                          * FIXME: this relies on a a zero
 523                                          * PCI mem_offset.
 524                                          */
 525                                         sgel->Address =
 526                                             cpu_to_le32((u32)buff_ptr_phys);
 527                                 } else {
 528                                         _base_clone_to_sys_mem(buff_ptr,
 529                                             ioc->config_vaddr,
 530                                             (le32_to_cpu(sgel->FlagsLength) &
 531                                             0x00ffffff));
 532                                         sgel->Address =
 533                                             cpu_to_le32((u32)buff_ptr_phys);
 534                                 }
 535                         }
 536                         buff_ptr += (le32_to_cpu(sgel->FlagsLength) &
 537                             0x00ffffff);
 538                         buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) &
 539                             0x00ffffff);
 540                         if ((le32_to_cpu(sgel->FlagsLength) &
 541                             (MPI2_SGE_FLAGS_END_OF_BUFFER
 542                                         << MPI2_SGE_FLAGS_SHIFT)))
 543                                 goto eob_clone_chain;
 544                         else {
 545                                 /*
 546                                  * Every single element in MPT will have
 547                                  * associated sg_next. Better to sanity that
 548                                  * sg_next is not NULL, but it will be a bug
 549                                  * if it is null.
 550                                  */
 551                                 if (is_scsiio_req) {
 552                                         sg_scmd = sg_next(sg_scmd);
 553                                         if (sg_scmd)
 554                                                 sgel++;
 555                                         else
 556                                                 goto eob_clone_chain;
 557                                 }
 558                         }
 559                         break;
 560                 }
 561         }
 562 
 563 eob_clone_chain:
 564         for (i = 0; i < sge_chain_count; i++) {
 565                 if (is_scsiio_req)
 566                         _base_clone_to_sys_mem(dst_chain_addr[i],
 567                                 src_chain_addr[i], ioc->request_sz);
 568         }
 569 }
 570 
 571 /**
 572  *  mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
 573  * @arg: input argument, used to derive ioc
 574  *
 575  * Return:
 576  * 0 if controller is removed from pci subsystem.
 577  * -1 for other case.
 578  */
 579 static int mpt3sas_remove_dead_ioc_func(void *arg)
 580 {
 581         struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
 582         struct pci_dev *pdev;
 583 
 584         if (!ioc)
 585                 return -1;
 586 
 587         pdev = ioc->pdev;
 588         if (!pdev)
 589                 return -1;
 590         pci_stop_and_remove_bus_device_locked(pdev);
 591         return 0;
 592 }
 593 
 594 /**
 595  * _base_fault_reset_work - workq handling ioc fault conditions
 596  * @work: input argument, used to derive ioc
 597  *
 598  * Context: sleep.
 599  */
 600 static void
 601 _base_fault_reset_work(struct work_struct *work)
 602 {
 603         struct MPT3SAS_ADAPTER *ioc =
 604             container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
 605         unsigned long    flags;
 606         u32 doorbell;
 607         int rc;
 608         struct task_struct *p;
 609 
 610 
 611         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
 612         if (ioc->shost_recovery || ioc->pci_error_recovery)
 613                 goto rearm_timer;
 614         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
 615 
 616         doorbell = mpt3sas_base_get_iocstate(ioc, 0);
 617         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
 618                 ioc_err(ioc, "SAS host is non-operational !!!!\n");
 619 
 620                 /* It may be possible that EEH recovery can resolve some of
 621                  * pci bus failure issues rather removing the dead ioc function
 622                  * by considering controller is in a non-operational state. So
 623                  * here priority is given to the EEH recovery. If it doesn't
 624                  * not resolve this issue, mpt3sas driver will consider this
 625                  * controller to non-operational state and remove the dead ioc
 626                  * function.
 627                  */
 628                 if (ioc->non_operational_loop++ < 5) {
 629                         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
 630                                                          flags);
 631                         goto rearm_timer;
 632                 }
 633 
 634                 /*
 635                  * Call _scsih_flush_pending_cmds callback so that we flush all
 636                  * pending commands back to OS. This call is required to aovid
 637                  * deadlock at block layer. Dead IOC will fail to do diag reset,
 638                  * and this call is safe since dead ioc will never return any
 639                  * command back from HW.
 640                  */
 641                 ioc->schedule_dead_ioc_flush_running_cmds(ioc);
 642                 /*
 643                  * Set remove_host flag early since kernel thread will
 644                  * take some time to execute.
 645                  */
 646                 ioc->remove_host = 1;
 647                 /*Remove the Dead Host */
 648                 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
 649                     "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
 650                 if (IS_ERR(p))
 651                         ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
 652                                 __func__);
 653                 else
 654                         ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
 655                                 __func__);
 656                 return; /* don't rearm timer */
 657         }
 658 
 659         ioc->non_operational_loop = 0;
 660 
 661         if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
 662                 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
 663                 ioc_warn(ioc, "%s: hard reset: %s\n",
 664                          __func__, rc == 0 ? "success" : "failed");
 665                 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
 666                 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
 667                         mpt3sas_base_fault_info(ioc, doorbell &
 668                             MPI2_DOORBELL_DATA_MASK);
 669                 if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
 670                     MPI2_IOC_STATE_OPERATIONAL)
 671                         return; /* don't rearm timer */
 672         }
 673 
 674         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
 675  rearm_timer:
 676         if (ioc->fault_reset_work_q)
 677                 queue_delayed_work(ioc->fault_reset_work_q,
 678                     &ioc->fault_reset_work,
 679                     msecs_to_jiffies(FAULT_POLLING_INTERVAL));
 680         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
 681 }
 682 
 683 /**
 684  * mpt3sas_base_start_watchdog - start the fault_reset_work_q
 685  * @ioc: per adapter object
 686  *
 687  * Context: sleep.
 688  */
 689 void
 690 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
 691 {
 692         unsigned long    flags;
 693 
 694         if (ioc->fault_reset_work_q)
 695                 return;
 696 
 697         /* initialize fault polling */
 698 
 699         INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
 700         snprintf(ioc->fault_reset_work_q_name,
 701             sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
 702             ioc->driver_name, ioc->id);
 703         ioc->fault_reset_work_q =
 704                 create_singlethread_workqueue(ioc->fault_reset_work_q_name);
 705         if (!ioc->fault_reset_work_q) {
 706                 ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__);
 707                 return;
 708         }
 709         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
 710         if (ioc->fault_reset_work_q)
 711                 queue_delayed_work(ioc->fault_reset_work_q,
 712                     &ioc->fault_reset_work,
 713                     msecs_to_jiffies(FAULT_POLLING_INTERVAL));
 714         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
 715 }
 716 
 717 /**
 718  * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
 719  * @ioc: per adapter object
 720  *
 721  * Context: sleep.
 722  */
 723 void
 724 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
 725 {
 726         unsigned long flags;
 727         struct workqueue_struct *wq;
 728 
 729         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
 730         wq = ioc->fault_reset_work_q;
 731         ioc->fault_reset_work_q = NULL;
 732         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
 733         if (wq) {
 734                 if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
 735                         flush_workqueue(wq);
 736                 destroy_workqueue(wq);
 737         }
 738 }
 739 
 740 /**
 741  * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
 742  * @ioc: per adapter object
 743  * @fault_code: fault code
 744  */
 745 void
 746 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
 747 {
 748         ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code);
 749 }
 750 
 751 /**
 752  * mpt3sas_halt_firmware - halt's mpt controller firmware
 753  * @ioc: per adapter object
 754  *
 755  * For debugging timeout related issues.  Writing 0xCOFFEE00
 756  * to the doorbell register will halt controller firmware. With
 757  * the purpose to stop both driver and firmware, the enduser can
 758  * obtain a ring buffer from controller UART.
 759  */
 760 void
 761 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
 762 {
 763         u32 doorbell;
 764 
 765         if (!ioc->fwfault_debug)
 766                 return;
 767 
 768         dump_stack();
 769 
 770         doorbell = ioc->base_readl(&ioc->chip->Doorbell);
 771         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
 772                 mpt3sas_base_fault_info(ioc , doorbell);
 773         else {
 774                 writel(0xC0FFEE00, &ioc->chip->Doorbell);
 775                 ioc_err(ioc, "Firmware is halted due to command timeout\n");
 776         }
 777 
 778         if (ioc->fwfault_debug == 2)
 779                 for (;;)
 780                         ;
 781         else
 782                 panic("panic in %s\n", __func__);
 783 }
 784 
 785 /**
 786  * _base_sas_ioc_info - verbose translation of the ioc status
 787  * @ioc: per adapter object
 788  * @mpi_reply: reply mf payload returned from firmware
 789  * @request_hdr: request mf
 790  */
 791 static void
 792 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
 793         MPI2RequestHeader_t *request_hdr)
 794 {
 795         u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
 796             MPI2_IOCSTATUS_MASK;
 797         char *desc = NULL;
 798         u16 frame_sz;
 799         char *func_str = NULL;
 800 
 801         /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
 802         if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
 803             request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
 804             request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
 805                 return;
 806 
 807         if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
 808                 return;
 809 
 810         switch (ioc_status) {
 811 
 812 /****************************************************************************
 813 *  Common IOCStatus values for all replies
 814 ****************************************************************************/
 815 
 816         case MPI2_IOCSTATUS_INVALID_FUNCTION:
 817                 desc = "invalid function";
 818                 break;
 819         case MPI2_IOCSTATUS_BUSY:
 820                 desc = "busy";
 821                 break;
 822         case MPI2_IOCSTATUS_INVALID_SGL:
 823                 desc = "invalid sgl";
 824                 break;
 825         case MPI2_IOCSTATUS_INTERNAL_ERROR:
 826                 desc = "internal error";
 827                 break;
 828         case MPI2_IOCSTATUS_INVALID_VPID:
 829                 desc = "invalid vpid";
 830                 break;
 831         case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
 832                 desc = "insufficient resources";
 833                 break;
 834         case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
 835                 desc = "insufficient power";
 836                 break;
 837         case MPI2_IOCSTATUS_INVALID_FIELD:
 838                 desc = "invalid field";
 839                 break;
 840         case MPI2_IOCSTATUS_INVALID_STATE:
 841                 desc = "invalid state";
 842                 break;
 843         case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
 844                 desc = "op state not supported";
 845                 break;
 846 
 847 /****************************************************************************
 848 *  Config IOCStatus values
 849 ****************************************************************************/
 850 
 851         case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
 852                 desc = "config invalid action";
 853                 break;
 854         case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
 855                 desc = "config invalid type";
 856                 break;
 857         case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
 858                 desc = "config invalid page";
 859                 break;
 860         case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
 861                 desc = "config invalid data";
 862                 break;
 863         case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
 864                 desc = "config no defaults";
 865                 break;
 866         case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
 867                 desc = "config cant commit";
 868                 break;
 869 
 870 /****************************************************************************
 871 *  SCSI IO Reply
 872 ****************************************************************************/
 873 
 874         case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
 875         case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
 876         case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
 877         case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
 878         case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
 879         case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
 880         case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
 881         case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
 882         case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
 883         case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
 884         case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
 885         case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
 886                 break;
 887 
 888 /****************************************************************************
 889 *  For use by SCSI Initiator and SCSI Target end-to-end data protection
 890 ****************************************************************************/
 891 
 892         case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
 893                 desc = "eedp guard error";
 894                 break;
 895         case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
 896                 desc = "eedp ref tag error";
 897                 break;
 898         case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
 899                 desc = "eedp app tag error";
 900                 break;
 901 
 902 /****************************************************************************
 903 *  SCSI Target values
 904 ****************************************************************************/
 905 
 906         case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
 907                 desc = "target invalid io index";
 908                 break;
 909         case MPI2_IOCSTATUS_TARGET_ABORTED:
 910                 desc = "target aborted";
 911                 break;
 912         case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
 913                 desc = "target no conn retryable";
 914                 break;
 915         case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
 916                 desc = "target no connection";
 917                 break;
 918         case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
 919                 desc = "target xfer count mismatch";
 920                 break;
 921         case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
 922                 desc = "target data offset error";
 923                 break;
 924         case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
 925                 desc = "target too much write data";
 926                 break;
 927         case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
 928                 desc = "target iu too short";
 929                 break;
 930         case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
 931                 desc = "target ack nak timeout";
 932                 break;
 933         case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
 934                 desc = "target nak received";
 935                 break;
 936 
 937 /****************************************************************************
 938 *  Serial Attached SCSI values
 939 ****************************************************************************/
 940 
 941         case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
 942                 desc = "smp request failed";
 943                 break;
 944         case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
 945                 desc = "smp data overrun";
 946                 break;
 947 
 948 /****************************************************************************
 949 *  Diagnostic Buffer Post / Diagnostic Release values
 950 ****************************************************************************/
 951 
 952         case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
 953                 desc = "diagnostic released";
 954                 break;
 955         default:
 956                 break;
 957         }
 958 
 959         if (!desc)
 960                 return;
 961 
 962         switch (request_hdr->Function) {
 963         case MPI2_FUNCTION_CONFIG:
 964                 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
 965                 func_str = "config_page";
 966                 break;
 967         case MPI2_FUNCTION_SCSI_TASK_MGMT:
 968                 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
 969                 func_str = "task_mgmt";
 970                 break;
 971         case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
 972                 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
 973                 func_str = "sas_iounit_ctl";
 974                 break;
 975         case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
 976                 frame_sz = sizeof(Mpi2SepRequest_t);
 977                 func_str = "enclosure";
 978                 break;
 979         case MPI2_FUNCTION_IOC_INIT:
 980                 frame_sz = sizeof(Mpi2IOCInitRequest_t);
 981                 func_str = "ioc_init";
 982                 break;
 983         case MPI2_FUNCTION_PORT_ENABLE:
 984                 frame_sz = sizeof(Mpi2PortEnableRequest_t);
 985                 func_str = "port_enable";
 986                 break;
 987         case MPI2_FUNCTION_SMP_PASSTHROUGH:
 988                 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
 989                 func_str = "smp_passthru";
 990                 break;
 991         case MPI2_FUNCTION_NVME_ENCAPSULATED:
 992                 frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
 993                     ioc->sge_size;
 994                 func_str = "nvme_encapsulated";
 995                 break;
 996         default:
 997                 frame_sz = 32;
 998                 func_str = "unknown";
 999                 break;
1000         }
1001 
1002         ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
1003                  desc, ioc_status, request_hdr, func_str);
1004 
1005         _debug_dump_mf(request_hdr, frame_sz/4);
1006 }
1007 
1008 /**
1009  * _base_display_event_data - verbose translation of firmware asyn events
1010  * @ioc: per adapter object
1011  * @mpi_reply: reply mf payload returned from firmware
1012  */
1013 static void
1014 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
1015         Mpi2EventNotificationReply_t *mpi_reply)
1016 {
1017         char *desc = NULL;
1018         u16 event;
1019 
1020         if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
1021                 return;
1022 
1023         event = le16_to_cpu(mpi_reply->Event);
1024 
1025         switch (event) {
1026         case MPI2_EVENT_LOG_DATA:
1027                 desc = "Log Data";
1028                 break;
1029         case MPI2_EVENT_STATE_CHANGE:
1030                 desc = "Status Change";
1031                 break;
1032         case MPI2_EVENT_HARD_RESET_RECEIVED:
1033                 desc = "Hard Reset Received";
1034                 break;
1035         case MPI2_EVENT_EVENT_CHANGE:
1036                 desc = "Event Change";
1037                 break;
1038         case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
1039                 desc = "Device Status Change";
1040                 break;
1041         case MPI2_EVENT_IR_OPERATION_STATUS:
1042                 if (!ioc->hide_ir_msg)
1043                         desc = "IR Operation Status";
1044                 break;
1045         case MPI2_EVENT_SAS_DISCOVERY:
1046         {
1047                 Mpi2EventDataSasDiscovery_t *event_data =
1048                     (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
1049                 ioc_info(ioc, "Discovery: (%s)",
1050                          event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ?
1051                          "start" : "stop");
1052                 if (event_data->DiscoveryStatus)
1053                         pr_cont(" discovery_status(0x%08x)",
1054                             le32_to_cpu(event_data->DiscoveryStatus));
1055                 pr_cont("\n");
1056                 return;
1057         }
1058         case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
1059                 desc = "SAS Broadcast Primitive";
1060                 break;
1061         case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
1062                 desc = "SAS Init Device Status Change";
1063                 break;
1064         case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
1065                 desc = "SAS Init Table Overflow";
1066                 break;
1067         case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
1068                 desc = "SAS Topology Change List";
1069                 break;
1070         case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
1071                 desc = "SAS Enclosure Device Status Change";
1072                 break;
1073         case MPI2_EVENT_IR_VOLUME:
1074                 if (!ioc->hide_ir_msg)
1075                         desc = "IR Volume";
1076                 break;
1077         case MPI2_EVENT_IR_PHYSICAL_DISK:
1078                 if (!ioc->hide_ir_msg)
1079                         desc = "IR Physical Disk";
1080                 break;
1081         case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
1082                 if (!ioc->hide_ir_msg)
1083                         desc = "IR Configuration Change List";
1084                 break;
1085         case MPI2_EVENT_LOG_ENTRY_ADDED:
1086                 if (!ioc->hide_ir_msg)
1087                         desc = "Log Entry Added";
1088                 break;
1089         case MPI2_EVENT_TEMP_THRESHOLD:
1090                 desc = "Temperature Threshold";
1091                 break;
1092         case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
1093                 desc = "Cable Event";
1094                 break;
1095         case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR:
1096                 desc = "SAS Device Discovery Error";
1097                 break;
1098         case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
1099                 desc = "PCIE Device Status Change";
1100                 break;
1101         case MPI2_EVENT_PCIE_ENUMERATION:
1102         {
1103                 Mpi26EventDataPCIeEnumeration_t *event_data =
1104                         (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
1105                 ioc_info(ioc, "PCIE Enumeration: (%s)",
1106                          event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ?
1107                          "start" : "stop");
1108                 if (event_data->EnumerationStatus)
1109                         pr_cont("enumeration_status(0x%08x)",
1110                                 le32_to_cpu(event_data->EnumerationStatus));
1111                 pr_cont("\n");
1112                 return;
1113         }
1114         case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
1115                 desc = "PCIE Topology Change List";
1116                 break;
1117         }
1118 
1119         if (!desc)
1120                 return;
1121 
1122         ioc_info(ioc, "%s\n", desc);
1123 }
1124 
1125 /**
1126  * _base_sas_log_info - verbose translation of firmware log info
1127  * @ioc: per adapter object
1128  * @log_info: log info
1129  */
1130 static void
1131 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
1132 {
1133         union loginfo_type {
1134                 u32     loginfo;
1135                 struct {
1136                         u32     subcode:16;
1137                         u32     code:8;
1138                         u32     originator:4;
1139                         u32     bus_type:4;
1140                 } dw;
1141         };
1142         union loginfo_type sas_loginfo;
1143         char *originator_str = NULL;
1144 
1145         sas_loginfo.loginfo = log_info;
1146         if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1147                 return;
1148 
1149         /* each nexus loss loginfo */
1150         if (log_info == 0x31170000)
1151                 return;
1152 
1153         /* eat the loginfos associated with task aborts */
1154         if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
1155             0x31140000 || log_info == 0x31130000))
1156                 return;
1157 
1158         switch (sas_loginfo.dw.originator) {
1159         case 0:
1160                 originator_str = "IOP";
1161                 break;
1162         case 1:
1163                 originator_str = "PL";
1164                 break;
1165         case 2:
1166                 if (!ioc->hide_ir_msg)
1167                         originator_str = "IR";
1168                 else
1169                         originator_str = "WarpDrive";
1170                 break;
1171         }
1172 
1173         ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
1174                  log_info,
1175                  originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode);
1176 }
1177 
1178 /**
1179  * _base_display_reply_info -
1180  * @ioc: per adapter object
1181  * @smid: system request message index
1182  * @msix_index: MSIX table index supplied by the OS
1183  * @reply: reply message frame(lower 32bit addr)
1184  */
1185 static void
1186 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1187         u32 reply)
1188 {
1189         MPI2DefaultReply_t *mpi_reply;
1190         u16 ioc_status;
1191         u32 loginfo = 0;
1192 
1193         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1194         if (unlikely(!mpi_reply)) {
1195                 ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n",
1196                         __FILE__, __LINE__, __func__);
1197                 return;
1198         }
1199         ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
1200 
1201         if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
1202             (ioc->logging_level & MPT_DEBUG_REPLY)) {
1203                 _base_sas_ioc_info(ioc , mpi_reply,
1204                    mpt3sas_base_get_msg_frame(ioc, smid));
1205         }
1206 
1207         if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
1208                 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
1209                 _base_sas_log_info(ioc, loginfo);
1210         }
1211 
1212         if (ioc_status || loginfo) {
1213                 ioc_status &= MPI2_IOCSTATUS_MASK;
1214                 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
1215         }
1216 }
1217 
1218 /**
1219  * mpt3sas_base_done - base internal command completion routine
1220  * @ioc: per adapter object
1221  * @smid: system request message index
1222  * @msix_index: MSIX table index supplied by the OS
1223  * @reply: reply message frame(lower 32bit addr)
1224  *
1225  * Return:
1226  * 1 meaning mf should be freed from _base_interrupt
1227  * 0 means the mf is freed from this function.
1228  */
1229 u8
1230 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1231         u32 reply)
1232 {
1233         MPI2DefaultReply_t *mpi_reply;
1234 
1235         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1236         if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
1237                 return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
1238 
1239         if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
1240                 return 1;
1241 
1242         ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
1243         if (mpi_reply) {
1244                 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
1245                 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
1246         }
1247         ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
1248 
1249         complete(&ioc->base_cmds.done);
1250         return 1;
1251 }
1252 
1253 /**
1254  * _base_async_event - main callback handler for firmware asyn events
1255  * @ioc: per adapter object
1256  * @msix_index: MSIX table index supplied by the OS
1257  * @reply: reply message frame(lower 32bit addr)
1258  *
1259  * Return:
1260  * 1 meaning mf should be freed from _base_interrupt
1261  * 0 means the mf is freed from this function.
1262  */
1263 static u8
1264 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
1265 {
1266         Mpi2EventNotificationReply_t *mpi_reply;
1267         Mpi2EventAckRequest_t *ack_request;
1268         u16 smid;
1269         struct _event_ack_list *delayed_event_ack;
1270 
1271         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1272         if (!mpi_reply)
1273                 return 1;
1274         if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
1275                 return 1;
1276 
1277         _base_display_event_data(ioc, mpi_reply);
1278 
1279         if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
1280                 goto out;
1281         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
1282         if (!smid) {
1283                 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
1284                                         GFP_ATOMIC);
1285                 if (!delayed_event_ack)
1286                         goto out;
1287                 INIT_LIST_HEAD(&delayed_event_ack->list);
1288                 delayed_event_ack->Event = mpi_reply->Event;
1289                 delayed_event_ack->EventContext = mpi_reply->EventContext;
1290                 list_add_tail(&delayed_event_ack->list,
1291                                 &ioc->delayed_event_ack_list);
1292                 dewtprintk(ioc,
1293                            ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n",
1294                                     le16_to_cpu(mpi_reply->Event)));
1295                 goto out;
1296         }
1297 
1298         ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
1299         memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
1300         ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
1301         ack_request->Event = mpi_reply->Event;
1302         ack_request->EventContext = mpi_reply->EventContext;
1303         ack_request->VF_ID = 0;  /* TODO */
1304         ack_request->VP_ID = 0;
1305         ioc->put_smid_default(ioc, smid);
1306 
1307  out:
1308 
1309         /* scsih callback handler */
1310         mpt3sas_scsih_event_callback(ioc, msix_index, reply);
1311 
1312         /* ctl callback handler */
1313         mpt3sas_ctl_event_callback(ioc, msix_index, reply);
1314 
1315         return 1;
1316 }
1317 
1318 static struct scsiio_tracker *
1319 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1320 {
1321         struct scsi_cmnd *cmd;
1322 
1323         if (WARN_ON(!smid) ||
1324             WARN_ON(smid >= ioc->hi_priority_smid))
1325                 return NULL;
1326 
1327         cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
1328         if (cmd)
1329                 return scsi_cmd_priv(cmd);
1330 
1331         return NULL;
1332 }
1333 
1334 /**
1335  * _base_get_cb_idx - obtain the callback index
1336  * @ioc: per adapter object
1337  * @smid: system request message index
1338  *
1339  * Return: callback index.
1340  */
1341 static u8
1342 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1343 {
1344         int i;
1345         u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
1346         u8 cb_idx = 0xFF;
1347 
1348         if (smid < ioc->hi_priority_smid) {
1349                 struct scsiio_tracker *st;
1350 
1351                 if (smid < ctl_smid) {
1352                         st = _get_st_from_smid(ioc, smid);
1353                         if (st)
1354                                 cb_idx = st->cb_idx;
1355                 } else if (smid == ctl_smid)
1356                         cb_idx = ioc->ctl_cb_idx;
1357         } else if (smid < ioc->internal_smid) {
1358                 i = smid - ioc->hi_priority_smid;
1359                 cb_idx = ioc->hpr_lookup[i].cb_idx;
1360         } else if (smid <= ioc->hba_queue_depth) {
1361                 i = smid - ioc->internal_smid;
1362                 cb_idx = ioc->internal_lookup[i].cb_idx;
1363         }
1364         return cb_idx;
1365 }
1366 
1367 /**
1368  * _base_mask_interrupts - disable interrupts
1369  * @ioc: per adapter object
1370  *
1371  * Disabling ResetIRQ, Reply and Doorbell Interrupts
1372  */
1373 static void
1374 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1375 {
1376         u32 him_register;
1377 
1378         ioc->mask_interrupts = 1;
1379         him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1380         him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
1381         writel(him_register, &ioc->chip->HostInterruptMask);
1382         ioc->base_readl(&ioc->chip->HostInterruptMask);
1383 }
1384 
1385 /**
1386  * _base_unmask_interrupts - enable interrupts
1387  * @ioc: per adapter object
1388  *
1389  * Enabling only Reply Interrupts
1390  */
1391 static void
1392 _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1393 {
1394         u32 him_register;
1395 
1396         him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1397         him_register &= ~MPI2_HIM_RIM;
1398         writel(him_register, &ioc->chip->HostInterruptMask);
1399         ioc->mask_interrupts = 0;
1400 }
1401 
1402 union reply_descriptor {
1403         u64 word;
1404         struct {
1405                 u32 low;
1406                 u32 high;
1407         } u;
1408 };
1409 
1410 static u32 base_mod64(u64 dividend, u32 divisor)
1411 {
1412         u32 remainder;
1413 
1414         if (!divisor)
1415                 pr_err("mpt3sas: DIVISOR is zero, in div fn\n");
1416         remainder = do_div(dividend, divisor);
1417         return remainder;
1418 }
1419 
1420 /**
1421  * _base_process_reply_queue - Process reply descriptors from reply
1422  *              descriptor post queue.
1423  * @reply_q: per IRQ's reply queue object.
1424  *
1425  * Return: number of reply descriptors processed from reply
1426  *              descriptor queue.
1427  */
1428 static int
1429 _base_process_reply_queue(struct adapter_reply_queue *reply_q)
1430 {
1431         union reply_descriptor rd;
1432         u64 completed_cmds;
1433         u8 request_descript_type;
1434         u16 smid;
1435         u8 cb_idx;
1436         u32 reply;
1437         u8 msix_index = reply_q->msix_index;
1438         struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1439         Mpi2ReplyDescriptorsUnion_t *rpf;
1440         u8 rc;
1441 
1442         completed_cmds = 0;
1443         if (!atomic_add_unless(&reply_q->busy, 1, 1))
1444                 return completed_cmds;
1445 
1446         rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
1447         request_descript_type = rpf->Default.ReplyFlags
1448              & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1449         if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
1450                 atomic_dec(&reply_q->busy);
1451                 return completed_cmds;
1452         }
1453 
1454         cb_idx = 0xFF;
1455         do {
1456                 rd.word = le64_to_cpu(rpf->Words);
1457                 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
1458                         goto out;
1459                 reply = 0;
1460                 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
1461                 if (request_descript_type ==
1462                     MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
1463                     request_descript_type ==
1464                     MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
1465                     request_descript_type ==
1466                     MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
1467                         cb_idx = _base_get_cb_idx(ioc, smid);
1468                         if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1469                             (likely(mpt_callbacks[cb_idx] != NULL))) {
1470                                 rc = mpt_callbacks[cb_idx](ioc, smid,
1471                                     msix_index, 0);
1472                                 if (rc)
1473                                         mpt3sas_base_free_smid(ioc, smid);
1474                         }
1475                 } else if (request_descript_type ==
1476                     MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
1477                         reply = le32_to_cpu(
1478                             rpf->AddressReply.ReplyFrameAddress);
1479                         if (reply > ioc->reply_dma_max_address ||
1480                             reply < ioc->reply_dma_min_address)
1481                                 reply = 0;
1482                         if (smid) {
1483                                 cb_idx = _base_get_cb_idx(ioc, smid);
1484                                 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1485                                     (likely(mpt_callbacks[cb_idx] != NULL))) {
1486                                         rc = mpt_callbacks[cb_idx](ioc, smid,
1487                                             msix_index, reply);
1488                                         if (reply)
1489                                                 _base_display_reply_info(ioc,
1490                                                     smid, msix_index, reply);
1491                                         if (rc)
1492                                                 mpt3sas_base_free_smid(ioc,
1493                                                     smid);
1494                                 }
1495                         } else {
1496                                 _base_async_event(ioc, msix_index, reply);
1497                         }
1498 
1499                         /* reply free queue handling */
1500                         if (reply) {
1501                                 ioc->reply_free_host_index =
1502                                     (ioc->reply_free_host_index ==
1503                                     (ioc->reply_free_queue_depth - 1)) ?
1504                                     0 : ioc->reply_free_host_index + 1;
1505                                 ioc->reply_free[ioc->reply_free_host_index] =
1506                                     cpu_to_le32(reply);
1507                                 if (ioc->is_mcpu_endpoint)
1508                                         _base_clone_reply_to_sys_mem(ioc,
1509                                                 reply,
1510                                                 ioc->reply_free_host_index);
1511                                 writel(ioc->reply_free_host_index,
1512                                     &ioc->chip->ReplyFreeHostIndex);
1513                         }
1514                 }
1515 
1516                 rpf->Words = cpu_to_le64(ULLONG_MAX);
1517                 reply_q->reply_post_host_index =
1518                     (reply_q->reply_post_host_index ==
1519                     (ioc->reply_post_queue_depth - 1)) ? 0 :
1520                     reply_q->reply_post_host_index + 1;
1521                 request_descript_type =
1522                     reply_q->reply_post_free[reply_q->reply_post_host_index].
1523                     Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1524                 completed_cmds++;
1525                 /* Update the reply post host index after continuously
1526                  * processing the threshold number of Reply Descriptors.
1527                  * So that FW can find enough entries to post the Reply
1528                  * Descriptors in the reply descriptor post queue.
1529                  */
1530                 if (!base_mod64(completed_cmds, ioc->thresh_hold)) {
1531                         if (ioc->combined_reply_queue) {
1532                                 writel(reply_q->reply_post_host_index |
1533                                                 ((msix_index  & 7) <<
1534                                                  MPI2_RPHI_MSIX_INDEX_SHIFT),
1535                                     ioc->replyPostRegisterIndex[msix_index/8]);
1536                         } else {
1537                                 writel(reply_q->reply_post_host_index |
1538                                                 (msix_index <<
1539                                                  MPI2_RPHI_MSIX_INDEX_SHIFT),
1540                                                 &ioc->chip->ReplyPostHostIndex);
1541                         }
1542                         if (!reply_q->irq_poll_scheduled) {
1543                                 reply_q->irq_poll_scheduled = true;
1544                                 irq_poll_sched(&reply_q->irqpoll);
1545                         }
1546                         atomic_dec(&reply_q->busy);
1547                         return completed_cmds;
1548                 }
1549                 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1550                         goto out;
1551                 if (!reply_q->reply_post_host_index)
1552                         rpf = reply_q->reply_post_free;
1553                 else
1554                         rpf++;
1555         } while (1);
1556 
1557  out:
1558 
1559         if (!completed_cmds) {
1560                 atomic_dec(&reply_q->busy);
1561                 return completed_cmds;
1562         }
1563 
1564         if (ioc->is_warpdrive) {
1565                 writel(reply_q->reply_post_host_index,
1566                 ioc->reply_post_host_index[msix_index]);
1567                 atomic_dec(&reply_q->busy);
1568                 return completed_cmds;
1569         }
1570 
1571         /* Update Reply Post Host Index.
1572          * For those HBA's which support combined reply queue feature
1573          * 1. Get the correct Supplemental Reply Post Host Index Register.
1574          *    i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1575          *    Index Register address bank i.e replyPostRegisterIndex[],
1576          * 2. Then update this register with new reply host index value
1577          *    in ReplyPostIndex field and the MSIxIndex field with
1578          *    msix_index value reduced to a value between 0 and 7,
1579          *    using a modulo 8 operation. Since each Supplemental Reply Post
1580          *    Host Index Register supports 8 MSI-X vectors.
1581          *
1582          * For other HBA's just update the Reply Post Host Index register with
1583          * new reply host index value in ReplyPostIndex Field and msix_index
1584          * value in MSIxIndex field.
1585          */
1586         if (ioc->combined_reply_queue)
1587                 writel(reply_q->reply_post_host_index | ((msix_index  & 7) <<
1588                         MPI2_RPHI_MSIX_INDEX_SHIFT),
1589                         ioc->replyPostRegisterIndex[msix_index/8]);
1590         else
1591                 writel(reply_q->reply_post_host_index | (msix_index <<
1592                         MPI2_RPHI_MSIX_INDEX_SHIFT),
1593                         &ioc->chip->ReplyPostHostIndex);
1594         atomic_dec(&reply_q->busy);
1595         return completed_cmds;
1596 }
1597 
1598 /**
1599  * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
1600  * @irq: irq number (not used)
1601  * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
1602  *
1603  * Return: IRQ_HANDLED if processed, else IRQ_NONE.
1604  */
1605 static irqreturn_t
1606 _base_interrupt(int irq, void *bus_id)
1607 {
1608         struct adapter_reply_queue *reply_q = bus_id;
1609         struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1610 
1611         if (ioc->mask_interrupts)
1612                 return IRQ_NONE;
1613         if (reply_q->irq_poll_scheduled)
1614                 return IRQ_HANDLED;
1615         return ((_base_process_reply_queue(reply_q) > 0) ?
1616                         IRQ_HANDLED : IRQ_NONE);
1617 }
1618 
1619 /**
1620  * _base_irqpoll - IRQ poll callback handler
1621  * @irqpoll - irq_poll object
1622  * @budget - irq poll weight
1623  *
1624  * returns number of reply descriptors processed
1625  */
1626 static int
1627 _base_irqpoll(struct irq_poll *irqpoll, int budget)
1628 {
1629         struct adapter_reply_queue *reply_q;
1630         int num_entries = 0;
1631 
1632         reply_q = container_of(irqpoll, struct adapter_reply_queue,
1633                         irqpoll);
1634         if (reply_q->irq_line_enable) {
1635                 disable_irq(reply_q->os_irq);
1636                 reply_q->irq_line_enable = false;
1637         }
1638         num_entries = _base_process_reply_queue(reply_q);
1639         if (num_entries < budget) {
1640                 irq_poll_complete(irqpoll);
1641                 reply_q->irq_poll_scheduled = false;
1642                 reply_q->irq_line_enable = true;
1643                 enable_irq(reply_q->os_irq);
1644         }
1645 
1646         return num_entries;
1647 }
1648 
1649 /**
1650  * _base_init_irqpolls - initliaze IRQ polls
1651  * @ioc: per adapter object
1652  *
1653  * returns nothing
1654  */
1655 static void
1656 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc)
1657 {
1658         struct adapter_reply_queue *reply_q, *next;
1659 
1660         if (list_empty(&ioc->reply_queue_list))
1661                 return;
1662 
1663         list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1664                 irq_poll_init(&reply_q->irqpoll,
1665                         ioc->hba_queue_depth/4, _base_irqpoll);
1666                 reply_q->irq_poll_scheduled = false;
1667                 reply_q->irq_line_enable = true;
1668                 reply_q->os_irq = pci_irq_vector(ioc->pdev,
1669                     reply_q->msix_index);
1670         }
1671 }
1672 
1673 /**
1674  * _base_is_controller_msix_enabled - is controller support muli-reply queues
1675  * @ioc: per adapter object
1676  *
1677  * Return: Whether or not MSI/X is enabled.
1678  */
1679 static inline int
1680 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1681 {
1682         return (ioc->facts.IOCCapabilities &
1683             MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1684 }
1685 
1686 /**
1687  * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1688  * @ioc: per adapter object
1689  * Context: non ISR conext
1690  *
1691  * Called when a Task Management request has completed.
1692  */
1693 void
1694 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc)
1695 {
1696         struct adapter_reply_queue *reply_q;
1697 
1698         /* If MSIX capability is turned off
1699          * then multi-queues are not enabled
1700          */
1701         if (!_base_is_controller_msix_enabled(ioc))
1702                 return;
1703 
1704         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1705                 if (ioc->shost_recovery || ioc->remove_host ||
1706                                 ioc->pci_error_recovery)
1707                         return;
1708                 /* TMs are on msix_index == 0 */
1709                 if (reply_q->msix_index == 0)
1710                         continue;
1711                 if (reply_q->irq_poll_scheduled) {
1712                         /* Calling irq_poll_disable will wait for any pending
1713                          * callbacks to have completed.
1714                          */
1715                         irq_poll_disable(&reply_q->irqpoll);
1716                         irq_poll_enable(&reply_q->irqpoll);
1717                         reply_q->irq_poll_scheduled = false;
1718                         reply_q->irq_line_enable = true;
1719                         enable_irq(reply_q->os_irq);
1720                         continue;
1721                 }
1722                 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
1723         }
1724 }
1725 
1726 /**
1727  * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1728  * @cb_idx: callback index
1729  */
1730 void
1731 mpt3sas_base_release_callback_handler(u8 cb_idx)
1732 {
1733         mpt_callbacks[cb_idx] = NULL;
1734 }
1735 
1736 /**
1737  * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1738  * @cb_func: callback function
1739  *
1740  * Return: Index of @cb_func.
1741  */
1742 u8
1743 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1744 {
1745         u8 cb_idx;
1746 
1747         for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1748                 if (mpt_callbacks[cb_idx] == NULL)
1749                         break;
1750 
1751         mpt_callbacks[cb_idx] = cb_func;
1752         return cb_idx;
1753 }
1754 
1755 /**
1756  * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1757  */
1758 void
1759 mpt3sas_base_initialize_callback_handler(void)
1760 {
1761         u8 cb_idx;
1762 
1763         for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1764                 mpt3sas_base_release_callback_handler(cb_idx);
1765 }
1766 
1767 
1768 /**
1769  * _base_build_zero_len_sge - build zero length sg entry
1770  * @ioc: per adapter object
1771  * @paddr: virtual address for SGE
1772  *
1773  * Create a zero length scatter gather entry to insure the IOCs hardware has
1774  * something to use if the target device goes brain dead and tries
1775  * to send data even when none is asked for.
1776  */
1777 static void
1778 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1779 {
1780         u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1781             MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1782             MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1783             MPI2_SGE_FLAGS_SHIFT);
1784         ioc->base_add_sg_single(paddr, flags_length, -1);
1785 }
1786 
1787 /**
1788  * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1789  * @paddr: virtual address for SGE
1790  * @flags_length: SGE flags and data transfer length
1791  * @dma_addr: Physical address
1792  */
1793 static void
1794 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1795 {
1796         Mpi2SGESimple32_t *sgel = paddr;
1797 
1798         flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1799             MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1800         sgel->FlagsLength = cpu_to_le32(flags_length);
1801         sgel->Address = cpu_to_le32(dma_addr);
1802 }
1803 
1804 
1805 /**
1806  * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1807  * @paddr: virtual address for SGE
1808  * @flags_length: SGE flags and data transfer length
1809  * @dma_addr: Physical address
1810  */
1811 static void
1812 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1813 {
1814         Mpi2SGESimple64_t *sgel = paddr;
1815 
1816         flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1817             MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1818         sgel->FlagsLength = cpu_to_le32(flags_length);
1819         sgel->Address = cpu_to_le64(dma_addr);
1820 }
1821 
1822 /**
1823  * _base_get_chain_buffer_tracker - obtain chain tracker
1824  * @ioc: per adapter object
1825  * @scmd: SCSI commands of the IO request
1826  *
1827  * Return: chain tracker from chain_lookup table using key as
1828  * smid and smid's chain_offset.
1829  */
1830 static struct chain_tracker *
1831 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc,
1832                                struct scsi_cmnd *scmd)
1833 {
1834         struct chain_tracker *chain_req;
1835         struct scsiio_tracker *st = scsi_cmd_priv(scmd);
1836         u16 smid = st->smid;
1837         u8 chain_offset =
1838            atomic_read(&ioc->chain_lookup[smid - 1].chain_offset);
1839 
1840         if (chain_offset == ioc->chains_needed_per_io)
1841                 return NULL;
1842 
1843         chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset];
1844         atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset);
1845         return chain_req;
1846 }
1847 
1848 
1849 /**
1850  * _base_build_sg - build generic sg
1851  * @ioc: per adapter object
1852  * @psge: virtual address for SGE
1853  * @data_out_dma: physical address for WRITES
1854  * @data_out_sz: data xfer size for WRITES
1855  * @data_in_dma: physical address for READS
1856  * @data_in_sz: data xfer size for READS
1857  */
1858 static void
1859 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1860         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1861         size_t data_in_sz)
1862 {
1863         u32 sgl_flags;
1864 
1865         if (!data_out_sz && !data_in_sz) {
1866                 _base_build_zero_len_sge(ioc, psge);
1867                 return;
1868         }
1869 
1870         if (data_out_sz && data_in_sz) {
1871                 /* WRITE sgel first */
1872                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1873                     MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
1874                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1875                 ioc->base_add_sg_single(psge, sgl_flags |
1876                     data_out_sz, data_out_dma);
1877 
1878                 /* incr sgel */
1879                 psge += ioc->sge_size;
1880 
1881                 /* READ sgel last */
1882                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1883                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1884                     MPI2_SGE_FLAGS_END_OF_LIST);
1885                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1886                 ioc->base_add_sg_single(psge, sgl_flags |
1887                     data_in_sz, data_in_dma);
1888         } else if (data_out_sz) /* WRITE */ {
1889                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1890                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1891                     MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
1892                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1893                 ioc->base_add_sg_single(psge, sgl_flags |
1894                     data_out_sz, data_out_dma);
1895         } else if (data_in_sz) /* READ */ {
1896                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1897                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1898                     MPI2_SGE_FLAGS_END_OF_LIST);
1899                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1900                 ioc->base_add_sg_single(psge, sgl_flags |
1901                     data_in_sz, data_in_dma);
1902         }
1903 }
1904 
1905 /* IEEE format sgls */
1906 
1907 /**
1908  * _base_build_nvme_prp - This function is called for NVMe end devices to build
1909  * a native SGL (NVMe PRP). The native SGL is built starting in the first PRP
1910  * entry of the NVMe message (PRP1).  If the data buffer is small enough to be
1911  * described entirely using PRP1, then PRP2 is not used.  If needed, PRP2 is
1912  * used to describe a larger data buffer.  If the data buffer is too large to
1913  * describe using the two PRP entriess inside the NVMe message, then PRP1
1914  * describes the first data memory segment, and PRP2 contains a pointer to a PRP
1915  * list located elsewhere in memory to describe the remaining data memory
1916  * segments.  The PRP list will be contiguous.
1917  *
1918  * The native SGL for NVMe devices is a Physical Region Page (PRP).  A PRP
1919  * consists of a list of PRP entries to describe a number of noncontigous
1920  * physical memory segments as a single memory buffer, just as a SGL does.  Note
1921  * however, that this function is only used by the IOCTL call, so the memory
1922  * given will be guaranteed to be contiguous.  There is no need to translate
1923  * non-contiguous SGL into a PRP in this case.  All PRPs will describe
1924  * contiguous space that is one page size each.
1925  *
1926  * Each NVMe message contains two PRP entries.  The first (PRP1) either contains
1927  * a PRP list pointer or a PRP element, depending upon the command.  PRP2
1928  * contains the second PRP element if the memory being described fits within 2
1929  * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
1930  *
1931  * A PRP list pointer contains the address of a PRP list, structured as a linear
1932  * array of PRP entries.  Each PRP entry in this list describes a segment of
1933  * physical memory.
1934  *
1935  * Each 64-bit PRP entry comprises an address and an offset field.  The address
1936  * always points at the beginning of a 4KB physical memory page, and the offset
1937  * describes where within that 4KB page the memory segment begins.  Only the
1938  * first element in a PRP list may contain a non-zero offest, implying that all
1939  * memory segments following the first begin at the start of a 4KB page.
1940  *
1941  * Each PRP element normally describes 4KB of physical memory, with exceptions
1942  * for the first and last elements in the list.  If the memory being described
1943  * by the list begins at a non-zero offset within the first 4KB page, then the
1944  * first PRP element will contain a non-zero offset indicating where the region
1945  * begins within the 4KB page.  The last memory segment may end before the end
1946  * of the 4KB segment, depending upon the overall size of the memory being
1947  * described by the PRP list.
1948  *
1949  * Since PRP entries lack any indication of size, the overall data buffer length
1950  * is used to determine where the end of the data memory buffer is located, and
1951  * how many PRP entries are required to describe it.
1952  *
1953  * @ioc: per adapter object
1954  * @smid: system request message index for getting asscociated SGL
1955  * @nvme_encap_request: the NVMe request msg frame pointer
1956  * @data_out_dma: physical address for WRITES
1957  * @data_out_sz: data xfer size for WRITES
1958  * @data_in_dma: physical address for READS
1959  * @data_in_sz: data xfer size for READS
1960  */
1961 static void
1962 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
1963         Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
1964         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1965         size_t data_in_sz)
1966 {
1967         int             prp_size = NVME_PRP_SIZE;
1968         __le64          *prp_entry, *prp1_entry, *prp2_entry;
1969         __le64          *prp_page;
1970         dma_addr_t      prp_entry_dma, prp_page_dma, dma_addr;
1971         u32             offset, entry_len;
1972         u32             page_mask_result, page_mask;
1973         size_t          length;
1974         struct mpt3sas_nvme_cmd *nvme_cmd =
1975                 (void *)nvme_encap_request->NVMe_Command;
1976 
1977         /*
1978          * Not all commands require a data transfer. If no data, just return
1979          * without constructing any PRP.
1980          */
1981         if (!data_in_sz && !data_out_sz)
1982                 return;
1983         prp1_entry = &nvme_cmd->prp1;
1984         prp2_entry = &nvme_cmd->prp2;
1985         prp_entry = prp1_entry;
1986         /*
1987          * For the PRP entries, use the specially allocated buffer of
1988          * contiguous memory.
1989          */
1990         prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
1991         prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
1992 
1993         /*
1994          * Check if we are within 1 entry of a page boundary we don't
1995          * want our first entry to be a PRP List entry.
1996          */
1997         page_mask = ioc->page_size - 1;
1998         page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
1999         if (!page_mask_result) {
2000                 /* Bump up to next page boundary. */
2001                 prp_page = (__le64 *)((u8 *)prp_page + prp_size);
2002                 prp_page_dma = prp_page_dma + prp_size;
2003         }
2004 
2005         /*
2006          * Set PRP physical pointer, which initially points to the current PRP
2007          * DMA memory page.
2008          */
2009         prp_entry_dma = prp_page_dma;
2010 
2011         /* Get physical address and length of the data buffer. */
2012         if (data_in_sz) {
2013                 dma_addr = data_in_dma;
2014                 length = data_in_sz;
2015         } else {
2016                 dma_addr = data_out_dma;
2017                 length = data_out_sz;
2018         }
2019 
2020         /* Loop while the length is not zero. */
2021         while (length) {
2022                 /*
2023                  * Check if we need to put a list pointer here if we are at
2024                  * page boundary - prp_size (8 bytes).
2025                  */
2026                 page_mask_result = (prp_entry_dma + prp_size) & page_mask;
2027                 if (!page_mask_result) {
2028                         /*
2029                          * This is the last entry in a PRP List, so we need to
2030                          * put a PRP list pointer here.  What this does is:
2031                          *   - bump the current memory pointer to the next
2032                          *     address, which will be the next full page.
2033                          *   - set the PRP Entry to point to that page.  This
2034                          *     is now the PRP List pointer.
2035                          *   - bump the PRP Entry pointer the start of the
2036                          *     next page.  Since all of this PRP memory is
2037                          *     contiguous, no need to get a new page - it's
2038                          *     just the next address.
2039                          */
2040                         prp_entry_dma++;
2041                         *prp_entry = cpu_to_le64(prp_entry_dma);
2042                         prp_entry++;
2043                 }
2044 
2045                 /* Need to handle if entry will be part of a page. */
2046                 offset = dma_addr & page_mask;
2047                 entry_len = ioc->page_size - offset;
2048 
2049                 if (prp_entry == prp1_entry) {
2050                         /*
2051                          * Must fill in the first PRP pointer (PRP1) before
2052                          * moving on.
2053                          */
2054                         *prp1_entry = cpu_to_le64(dma_addr);
2055 
2056                         /*
2057                          * Now point to the second PRP entry within the
2058                          * command (PRP2).
2059                          */
2060                         prp_entry = prp2_entry;
2061                 } else if (prp_entry == prp2_entry) {
2062                         /*
2063                          * Should the PRP2 entry be a PRP List pointer or just
2064                          * a regular PRP pointer?  If there is more than one
2065                          * more page of data, must use a PRP List pointer.
2066                          */
2067                         if (length > ioc->page_size) {
2068                                 /*
2069                                  * PRP2 will contain a PRP List pointer because
2070                                  * more PRP's are needed with this command. The
2071                                  * list will start at the beginning of the
2072                                  * contiguous buffer.
2073                                  */
2074                                 *prp2_entry = cpu_to_le64(prp_entry_dma);
2075 
2076                                 /*
2077                                  * The next PRP Entry will be the start of the
2078                                  * first PRP List.
2079                                  */
2080                                 prp_entry = prp_page;
2081                         } else {
2082                                 /*
2083                                  * After this, the PRP Entries are complete.
2084                                  * This command uses 2 PRP's and no PRP list.
2085                                  */
2086                                 *prp2_entry = cpu_to_le64(dma_addr);
2087                         }
2088                 } else {
2089                         /*
2090                          * Put entry in list and bump the addresses.
2091                          *
2092                          * After PRP1 and PRP2 are filled in, this will fill in
2093                          * all remaining PRP entries in a PRP List, one per
2094                          * each time through the loop.
2095                          */
2096                         *prp_entry = cpu_to_le64(dma_addr);
2097                         prp_entry++;
2098                         prp_entry_dma++;
2099                 }
2100 
2101                 /*
2102                  * Bump the phys address of the command's data buffer by the
2103                  * entry_len.
2104                  */
2105                 dma_addr += entry_len;
2106 
2107                 /* Decrement length accounting for last partial page. */
2108                 if (entry_len > length)
2109                         length = 0;
2110                 else
2111                         length -= entry_len;
2112         }
2113 }
2114 
2115 /**
2116  * base_make_prp_nvme -
2117  * Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only
2118  *
2119  * @ioc:                per adapter object
2120  * @scmd:               SCSI command from the mid-layer
2121  * @mpi_request:        mpi request
2122  * @smid:               msg Index
2123  * @sge_count:          scatter gather element count.
2124  *
2125  * Return:              true: PRPs are built
2126  *                      false: IEEE SGLs needs to be built
2127  */
2128 static void
2129 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
2130                 struct scsi_cmnd *scmd,
2131                 Mpi25SCSIIORequest_t *mpi_request,
2132                 u16 smid, int sge_count)
2133 {
2134         int sge_len, num_prp_in_chain = 0;
2135         Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
2136         __le64 *curr_buff;
2137         dma_addr_t msg_dma, sge_addr, offset;
2138         u32 page_mask, page_mask_result;
2139         struct scatterlist *sg_scmd;
2140         u32 first_prp_len;
2141         int data_len = scsi_bufflen(scmd);
2142         u32 nvme_pg_size;
2143 
2144         nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
2145         /*
2146          * Nvme has a very convoluted prp format.  One prp is required
2147          * for each page or partial page. Driver need to split up OS sg_list
2148          * entries if it is longer than one page or cross a page
2149          * boundary.  Driver also have to insert a PRP list pointer entry as
2150          * the last entry in each physical page of the PRP list.
2151          *
2152          * NOTE: The first PRP "entry" is actually placed in the first
2153          * SGL entry in the main message as IEEE 64 format.  The 2nd
2154          * entry in the main message is the chain element, and the rest
2155          * of the PRP entries are built in the contiguous pcie buffer.
2156          */
2157         page_mask = nvme_pg_size - 1;
2158 
2159         /*
2160          * Native SGL is needed.
2161          * Put a chain element in main message frame that points to the first
2162          * chain buffer.
2163          *
2164          * NOTE:  The ChainOffset field must be 0 when using a chain pointer to
2165          *        a native SGL.
2166          */
2167 
2168         /* Set main message chain element pointer */
2169         main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2170         /*
2171          * For NVMe the chain element needs to be the 2nd SG entry in the main
2172          * message.
2173          */
2174         main_chain_element = (Mpi25IeeeSgeChain64_t *)
2175                 ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2176 
2177         /*
2178          * For the PRP entries, use the specially allocated buffer of
2179          * contiguous memory.  Normal chain buffers can't be used
2180          * because each chain buffer would need to be the size of an OS
2181          * page (4k).
2182          */
2183         curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
2184         msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2185 
2186         main_chain_element->Address = cpu_to_le64(msg_dma);
2187         main_chain_element->NextChainOffset = 0;
2188         main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2189                         MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2190                         MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
2191 
2192         /* Build first prp, sge need not to be page aligned*/
2193         ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2194         sg_scmd = scsi_sglist(scmd);
2195         sge_addr = sg_dma_address(sg_scmd);
2196         sge_len = sg_dma_len(sg_scmd);
2197 
2198         offset = sge_addr & page_mask;
2199         first_prp_len = nvme_pg_size - offset;
2200 
2201         ptr_first_sgl->Address = cpu_to_le64(sge_addr);
2202         ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
2203 
2204         data_len -= first_prp_len;
2205 
2206         if (sge_len > first_prp_len) {
2207                 sge_addr += first_prp_len;
2208                 sge_len -= first_prp_len;
2209         } else if (data_len && (sge_len == first_prp_len)) {
2210                 sg_scmd = sg_next(sg_scmd);
2211                 sge_addr = sg_dma_address(sg_scmd);
2212                 sge_len = sg_dma_len(sg_scmd);
2213         }
2214 
2215         for (;;) {
2216                 offset = sge_addr & page_mask;
2217 
2218                 /* Put PRP pointer due to page boundary*/
2219                 page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
2220                 if (unlikely(!page_mask_result)) {
2221                         scmd_printk(KERN_NOTICE,
2222                                 scmd, "page boundary curr_buff: 0x%p\n",
2223                                 curr_buff);
2224                         msg_dma += 8;
2225                         *curr_buff = cpu_to_le64(msg_dma);
2226                         curr_buff++;
2227                         num_prp_in_chain++;
2228                 }
2229 
2230                 *curr_buff = cpu_to_le64(sge_addr);
2231                 curr_buff++;
2232                 msg_dma += 8;
2233                 num_prp_in_chain++;
2234 
2235                 sge_addr += nvme_pg_size;
2236                 sge_len -= nvme_pg_size;
2237                 data_len -= nvme_pg_size;
2238 
2239                 if (data_len <= 0)
2240                         break;
2241 
2242                 if (sge_len > 0)
2243                         continue;
2244 
2245                 sg_scmd = sg_next(sg_scmd);
2246                 sge_addr = sg_dma_address(sg_scmd);
2247                 sge_len = sg_dma_len(sg_scmd);
2248         }
2249 
2250         main_chain_element->Length =
2251                 cpu_to_le32(num_prp_in_chain * sizeof(u64));
2252         return;
2253 }
2254 
2255 static bool
2256 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
2257         struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
2258 {
2259         u32 data_length = 0;
2260         bool build_prp = true;
2261 
2262         data_length = scsi_bufflen(scmd);
2263         if (pcie_device &&
2264             (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) {
2265                 build_prp = false;
2266                 return build_prp;
2267         }
2268 
2269         /* If Datalenth is <= 16K and number of SGE’s entries are <= 2
2270          * we built IEEE SGL
2271          */
2272         if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
2273                 build_prp = false;
2274 
2275         return build_prp;
2276 }
2277 
2278 /**
2279  * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
2280  * determine if the driver needs to build a native SGL.  If so, that native
2281  * SGL is built in the special contiguous buffers allocated especially for
2282  * PCIe SGL creation.  If the driver will not build a native SGL, return
2283  * TRUE and a normal IEEE SGL will be built.  Currently this routine
2284  * supports NVMe.
2285  * @ioc: per adapter object
2286  * @mpi_request: mf request pointer
2287  * @smid: system request message index
2288  * @scmd: scsi command
2289  * @pcie_device: points to the PCIe device's info
2290  *
2291  * Return: 0 if native SGL was built, 1 if no SGL was built
2292  */
2293 static int
2294 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
2295         Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
2296         struct _pcie_device *pcie_device)
2297 {
2298         int sges_left;
2299 
2300         /* Get the SG list pointer and info. */
2301         sges_left = scsi_dma_map(scmd);
2302         if (sges_left < 0) {
2303                 sdev_printk(KERN_ERR, scmd->device,
2304                         "scsi_dma_map failed: request for %d bytes!\n",
2305                         scsi_bufflen(scmd));
2306                 return 1;
2307         }
2308 
2309         /* Check if we need to build a native SG list. */
2310         if (base_is_prp_possible(ioc, pcie_device,
2311                                 scmd, sges_left) == 0) {
2312                 /* We built a native SG list, just return. */
2313                 goto out;
2314         }
2315 
2316         /*
2317          * Build native NVMe PRP.
2318          */
2319         base_make_prp_nvme(ioc, scmd, mpi_request,
2320                         smid, sges_left);
2321 
2322         return 0;
2323 out:
2324         scsi_dma_unmap(scmd);
2325         return 1;
2326 }
2327 
2328 /**
2329  * _base_add_sg_single_ieee - add sg element for IEEE format
2330  * @paddr: virtual address for SGE
2331  * @flags: SGE flags
2332  * @chain_offset: number of 128 byte elements from start of segment
2333  * @length: data transfer length
2334  * @dma_addr: Physical address
2335  */
2336 static void
2337 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
2338         dma_addr_t dma_addr)
2339 {
2340         Mpi25IeeeSgeChain64_t *sgel = paddr;
2341 
2342         sgel->Flags = flags;
2343         sgel->NextChainOffset = chain_offset;
2344         sgel->Length = cpu_to_le32(length);
2345         sgel->Address = cpu_to_le64(dma_addr);
2346 }
2347 
2348 /**
2349  * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
2350  * @ioc: per adapter object
2351  * @paddr: virtual address for SGE
2352  *
2353  * Create a zero length scatter gather entry to insure the IOCs hardware has
2354  * something to use if the target device goes brain dead and tries
2355  * to send data even when none is asked for.
2356  */
2357 static void
2358 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2359 {
2360         u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2361                 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2362                 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
2363 
2364         _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
2365 }
2366 
2367 /**
2368  * _base_build_sg_scmd - main sg creation routine
2369  *              pcie_device is unused here!
2370  * @ioc: per adapter object
2371  * @scmd: scsi command
2372  * @smid: system request message index
2373  * @unused: unused pcie_device pointer
2374  * Context: none.
2375  *
2376  * The main routine that builds scatter gather table from a given
2377  * scsi request sent via the .queuecommand main handler.
2378  *
2379  * Return: 0 success, anything else error
2380  */
2381 static int
2382 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
2383         struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
2384 {
2385         Mpi2SCSIIORequest_t *mpi_request;
2386         dma_addr_t chain_dma;
2387         struct scatterlist *sg_scmd;
2388         void *sg_local, *chain;
2389         u32 chain_offset;
2390         u32 chain_length;
2391         u32 chain_flags;
2392         int sges_left;
2393         u32 sges_in_segment;
2394         u32 sgl_flags;
2395         u32 sgl_flags_last_element;
2396         u32 sgl_flags_end_buffer;
2397         struct chain_tracker *chain_req;
2398 
2399         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2400 
2401         /* init scatter gather flags */
2402         sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
2403         if (scmd->sc_data_direction == DMA_TO_DEVICE)
2404                 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2405         sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
2406             << MPI2_SGE_FLAGS_SHIFT;
2407         sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
2408             MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
2409             << MPI2_SGE_FLAGS_SHIFT;
2410         sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2411 
2412         sg_scmd = scsi_sglist(scmd);
2413         sges_left = scsi_dma_map(scmd);
2414         if (sges_left < 0) {
2415                 sdev_printk(KERN_ERR, scmd->device,
2416                  "scsi_dma_map failed: request for %d bytes!\n",
2417                  scsi_bufflen(scmd));
2418                 return -ENOMEM;
2419         }
2420 
2421         sg_local = &mpi_request->SGL;
2422         sges_in_segment = ioc->max_sges_in_main_message;
2423         if (sges_left <= sges_in_segment)
2424                 goto fill_in_last_segment;
2425 
2426         mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
2427             (sges_in_segment * ioc->sge_size))/4;
2428 
2429         /* fill in main message segment when there is a chain following */
2430         while (sges_in_segment) {
2431                 if (sges_in_segment == 1)
2432                         ioc->base_add_sg_single(sg_local,
2433                             sgl_flags_last_element | sg_dma_len(sg_scmd),
2434                             sg_dma_address(sg_scmd));
2435                 else
2436                         ioc->base_add_sg_single(sg_local, sgl_flags |
2437                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2438                 sg_scmd = sg_next(sg_scmd);
2439                 sg_local += ioc->sge_size;
2440                 sges_left--;
2441                 sges_in_segment--;
2442         }
2443 
2444         /* initializing the chain flags and pointers */
2445         chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
2446         chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2447         if (!chain_req)
2448                 return -1;
2449         chain = chain_req->chain_buffer;
2450         chain_dma = chain_req->chain_buffer_dma;
2451         do {
2452                 sges_in_segment = (sges_left <=
2453                     ioc->max_sges_in_chain_message) ? sges_left :
2454                     ioc->max_sges_in_chain_message;
2455                 chain_offset = (sges_left == sges_in_segment) ?
2456                     0 : (sges_in_segment * ioc->sge_size)/4;
2457                 chain_length = sges_in_segment * ioc->sge_size;
2458                 if (chain_offset) {
2459                         chain_offset = chain_offset <<
2460                             MPI2_SGE_CHAIN_OFFSET_SHIFT;
2461                         chain_length += ioc->sge_size;
2462                 }
2463                 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
2464                     chain_length, chain_dma);
2465                 sg_local = chain;
2466                 if (!chain_offset)
2467                         goto fill_in_last_segment;
2468 
2469                 /* fill in chain segments */
2470                 while (sges_in_segment) {
2471                         if (sges_in_segment == 1)
2472                                 ioc->base_add_sg_single(sg_local,
2473                                     sgl_flags_last_element |
2474                                     sg_dma_len(sg_scmd),
2475                                     sg_dma_address(sg_scmd));
2476                         else
2477                                 ioc->base_add_sg_single(sg_local, sgl_flags |
2478                                     sg_dma_len(sg_scmd),
2479                                     sg_dma_address(sg_scmd));
2480                         sg_scmd = sg_next(sg_scmd);
2481                         sg_local += ioc->sge_size;
2482                         sges_left--;
2483                         sges_in_segment--;
2484                 }
2485 
2486                 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2487                 if (!chain_req)
2488                         return -1;
2489                 chain = chain_req->chain_buffer;
2490                 chain_dma = chain_req->chain_buffer_dma;
2491         } while (1);
2492 
2493 
2494  fill_in_last_segment:
2495 
2496         /* fill the last segment */
2497         while (sges_left) {
2498                 if (sges_left == 1)
2499                         ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
2500                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2501                 else
2502                         ioc->base_add_sg_single(sg_local, sgl_flags |
2503                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2504                 sg_scmd = sg_next(sg_scmd);
2505                 sg_local += ioc->sge_size;
2506                 sges_left--;
2507         }
2508 
2509         return 0;
2510 }
2511 
2512 /**
2513  * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2514  * @ioc: per adapter object
2515  * @scmd: scsi command
2516  * @smid: system request message index
2517  * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2518  * constructed on need.
2519  * Context: none.
2520  *
2521  * The main routine that builds scatter gather table from a given
2522  * scsi request sent via the .queuecommand main handler.
2523  *
2524  * Return: 0 success, anything else error
2525  */
2526 static int
2527 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
2528         struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
2529 {
2530         Mpi25SCSIIORequest_t *mpi_request;
2531         dma_addr_t chain_dma;
2532         struct scatterlist *sg_scmd;
2533         void *sg_local, *chain;
2534         u32 chain_offset;
2535         u32 chain_length;
2536         int sges_left;
2537         u32 sges_in_segment;
2538         u8 simple_sgl_flags;
2539         u8 simple_sgl_flags_last;
2540         u8 chain_sgl_flags;
2541         struct chain_tracker *chain_req;
2542 
2543         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2544 
2545         /* init scatter gather flags */
2546         simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2547             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2548         simple_sgl_flags_last = simple_sgl_flags |
2549             MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2550         chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2551             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2552 
2553         /* Check if we need to build a native SG list. */
2554         if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
2555                         smid, scmd, pcie_device) == 0)) {
2556                 /* We built a native SG list, just return. */
2557                 return 0;
2558         }
2559 
2560         sg_scmd = scsi_sglist(scmd);
2561         sges_left = scsi_dma_map(scmd);
2562         if (sges_left < 0) {
2563                 sdev_printk(KERN_ERR, scmd->device,
2564                         "scsi_dma_map failed: request for %d bytes!\n",
2565                         scsi_bufflen(scmd));
2566                 return -ENOMEM;
2567         }
2568 
2569         sg_local = &mpi_request->SGL;
2570         sges_in_segment = (ioc->request_sz -
2571                    offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
2572         if (sges_left <= sges_in_segment)
2573                 goto fill_in_last_segment;
2574 
2575         mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
2576             (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
2577 
2578         /* fill in main message segment when there is a chain following */
2579         while (sges_in_segment > 1) {
2580                 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2581                     sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2582                 sg_scmd = sg_next(sg_scmd);
2583                 sg_local += ioc->sge_size_ieee;
2584                 sges_left--;
2585                 sges_in_segment--;
2586         }
2587 
2588         /* initializing the pointers */
2589         chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2590         if (!chain_req)
2591                 return -1;
2592         chain = chain_req->chain_buffer;
2593         chain_dma = chain_req->chain_buffer_dma;
2594         do {
2595                 sges_in_segment = (sges_left <=
2596                     ioc->max_sges_in_chain_message) ? sges_left :
2597                     ioc->max_sges_in_chain_message;
2598                 chain_offset = (sges_left == sges_in_segment) ?
2599                     0 : sges_in_segment;
2600                 chain_length = sges_in_segment * ioc->sge_size_ieee;
2601                 if (chain_offset)
2602                         chain_length += ioc->sge_size_ieee;
2603                 _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
2604                     chain_offset, chain_length, chain_dma);
2605 
2606                 sg_local = chain;
2607                 if (!chain_offset)
2608                         goto fill_in_last_segment;
2609 
2610                 /* fill in chain segments */
2611                 while (sges_in_segment) {
2612                         _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2613                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2614                         sg_scmd = sg_next(sg_scmd);
2615                         sg_local += ioc->sge_size_ieee;
2616                         sges_left--;
2617                         sges_in_segment--;
2618                 }
2619 
2620                 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2621                 if (!chain_req)
2622                         return -1;
2623                 chain = chain_req->chain_buffer;
2624                 chain_dma = chain_req->chain_buffer_dma;
2625         } while (1);
2626 
2627 
2628  fill_in_last_segment:
2629 
2630         /* fill the last segment */
2631         while (sges_left > 0) {
2632                 if (sges_left == 1)
2633                         _base_add_sg_single_ieee(sg_local,
2634                             simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
2635                             sg_dma_address(sg_scmd));
2636                 else
2637                         _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2638                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2639                 sg_scmd = sg_next(sg_scmd);
2640                 sg_local += ioc->sge_size_ieee;
2641                 sges_left--;
2642         }
2643 
2644         return 0;
2645 }
2646 
2647 /**
2648  * _base_build_sg_ieee - build generic sg for IEEE format
2649  * @ioc: per adapter object
2650  * @psge: virtual address for SGE
2651  * @data_out_dma: physical address for WRITES
2652  * @data_out_sz: data xfer size for WRITES
2653  * @data_in_dma: physical address for READS
2654  * @data_in_sz: data xfer size for READS
2655  */
2656 static void
2657 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
2658         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2659         size_t data_in_sz)
2660 {
2661         u8 sgl_flags;
2662 
2663         if (!data_out_sz && !data_in_sz) {
2664                 _base_build_zero_len_sge_ieee(ioc, psge);
2665                 return;
2666         }
2667 
2668         if (data_out_sz && data_in_sz) {
2669                 /* WRITE sgel first */
2670                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2671                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2672                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2673                     data_out_dma);
2674 
2675                 /* incr sgel */
2676                 psge += ioc->sge_size_ieee;
2677 
2678                 /* READ sgel last */
2679                 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2680                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2681                     data_in_dma);
2682         } else if (data_out_sz) /* WRITE */ {
2683                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2684                     MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2685                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2686                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2687                     data_out_dma);
2688         } else if (data_in_sz) /* READ */ {
2689                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2690                     MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2691                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2692                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2693                     data_in_dma);
2694         }
2695 }
2696 
2697 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
2698 
2699 /**
2700  * _base_config_dma_addressing - set dma addressing
2701  * @ioc: per adapter object
2702  * @pdev: PCI device struct
2703  *
2704  * Return: 0 for success, non-zero for failure.
2705  */
2706 static int
2707 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
2708 {
2709         u64 required_mask, coherent_mask;
2710         struct sysinfo s;
2711         /* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */
2712         int dma_mask = (ioc->hba_mpi_version_belonged > MPI2_VERSION) ? 63 : 64;
2713 
2714         if (ioc->is_mcpu_endpoint)
2715                 goto try_32bit;
2716 
2717         required_mask = dma_get_required_mask(&pdev->dev);
2718         if (sizeof(dma_addr_t) == 4 || required_mask == 32)
2719                 goto try_32bit;
2720 
2721         if (ioc->dma_mask)
2722                 coherent_mask = DMA_BIT_MASK(dma_mask);
2723         else
2724                 coherent_mask = DMA_BIT_MASK(32);
2725 
2726         if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(dma_mask)) ||
2727             dma_set_coherent_mask(&pdev->dev, coherent_mask))
2728                 goto try_32bit;
2729 
2730         ioc->base_add_sg_single = &_base_add_sg_single_64;
2731         ioc->sge_size = sizeof(Mpi2SGESimple64_t);
2732         ioc->dma_mask = dma_mask;
2733         goto out;
2734 
2735  try_32bit:
2736         if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)))
2737                 return -ENODEV;
2738 
2739         ioc->base_add_sg_single = &_base_add_sg_single_32;
2740         ioc->sge_size = sizeof(Mpi2SGESimple32_t);
2741         ioc->dma_mask = 32;
2742  out:
2743         si_meminfo(&s);
2744         ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
2745                  ioc->dma_mask, convert_to_kb(s.totalram));
2746 
2747         return 0;
2748 }
2749 
2750 static int
2751 _base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER *ioc,
2752                                       struct pci_dev *pdev)
2753 {
2754         if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(ioc->dma_mask))) {
2755                 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
2756                         return -ENODEV;
2757         }
2758         return 0;
2759 }
2760 
2761 /**
2762  * _base_check_enable_msix - checks MSIX capabable.
2763  * @ioc: per adapter object
2764  *
2765  * Check to see if card is capable of MSIX, and set number
2766  * of available msix vectors
2767  */
2768 static int
2769 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
2770 {
2771         int base;
2772         u16 message_control;
2773 
2774         /* Check whether controller SAS2008 B0 controller,
2775          * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
2776          */
2777         if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
2778             ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
2779                 return -EINVAL;
2780         }
2781 
2782         base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
2783         if (!base) {
2784                 dfailprintk(ioc, ioc_info(ioc, "msix not supported\n"));
2785                 return -EINVAL;
2786         }
2787 
2788         /* get msix vector count */
2789         /* NUMA_IO not supported for older controllers */
2790         if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
2791             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
2792             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
2793             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
2794             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
2795             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
2796             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
2797                 ioc->msix_vector_count = 1;
2798         else {
2799                 pci_read_config_word(ioc->pdev, base + 2, &message_control);
2800                 ioc->msix_vector_count = (message_control & 0x3FF) + 1;
2801         }
2802         dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n",
2803                                   ioc->msix_vector_count));
2804         return 0;
2805 }
2806 
2807 /**
2808  * _base_free_irq - free irq
2809  * @ioc: per adapter object
2810  *
2811  * Freeing respective reply_queue from the list.
2812  */
2813 static void
2814 _base_free_irq(struct MPT3SAS_ADAPTER *ioc)
2815 {
2816         struct adapter_reply_queue *reply_q, *next;
2817 
2818         if (list_empty(&ioc->reply_queue_list))
2819                 return;
2820 
2821         list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
2822                 list_del(&reply_q->list);
2823                 if (ioc->smp_affinity_enable)
2824                         irq_set_affinity_hint(pci_irq_vector(ioc->pdev,
2825                             reply_q->msix_index), NULL);
2826                 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
2827                          reply_q);
2828                 kfree(reply_q);
2829         }
2830 }
2831 
2832 /**
2833  * _base_request_irq - request irq
2834  * @ioc: per adapter object
2835  * @index: msix index into vector table
2836  *
2837  * Inserting respective reply_queue into the list.
2838  */
2839 static int
2840 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
2841 {
2842         struct pci_dev *pdev = ioc->pdev;
2843         struct adapter_reply_queue *reply_q;
2844         int r;
2845 
2846         reply_q =  kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
2847         if (!reply_q) {
2848                 ioc_err(ioc, "unable to allocate memory %zu!\n",
2849                         sizeof(struct adapter_reply_queue));
2850                 return -ENOMEM;
2851         }
2852         reply_q->ioc = ioc;
2853         reply_q->msix_index = index;
2854 
2855         atomic_set(&reply_q->busy, 0);
2856         if (ioc->msix_enable)
2857                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
2858                     ioc->driver_name, ioc->id, index);
2859         else
2860                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
2861                     ioc->driver_name, ioc->id);
2862         r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
2863                         IRQF_SHARED, reply_q->name, reply_q);
2864         if (r) {
2865                 pr_err("%s: unable to allocate interrupt %d!\n",
2866                        reply_q->name, pci_irq_vector(pdev, index));
2867                 kfree(reply_q);
2868                 return -EBUSY;
2869         }
2870 
2871         INIT_LIST_HEAD(&reply_q->list);
2872         list_add_tail(&reply_q->list, &ioc->reply_queue_list);
2873         return 0;
2874 }
2875 
2876 /**
2877  * _base_assign_reply_queues - assigning msix index for each cpu
2878  * @ioc: per adapter object
2879  *
2880  * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
2881  *
2882  * It would nice if we could call irq_set_affinity, however it is not
2883  * an exported symbol
2884  */
2885 static void
2886 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
2887 {
2888         unsigned int cpu, nr_cpus, nr_msix, index = 0;
2889         struct adapter_reply_queue *reply_q;
2890         int local_numa_node;
2891 
2892         if (!_base_is_controller_msix_enabled(ioc))
2893                 return;
2894 
2895         if (ioc->msix_load_balance)
2896                 return;
2897 
2898         memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
2899 
2900         nr_cpus = num_online_cpus();
2901         nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
2902                                                ioc->facts.MaxMSIxVectors);
2903         if (!nr_msix)
2904                 return;
2905 
2906         if (ioc->smp_affinity_enable) {
2907 
2908                 /*
2909                  * set irq affinity to local numa node for those irqs
2910                  * corresponding to high iops queues.
2911                  */
2912                 if (ioc->high_iops_queues) {
2913                         local_numa_node = dev_to_node(&ioc->pdev->dev);
2914                         for (index = 0; index < ioc->high_iops_queues;
2915                             index++) {
2916                                 irq_set_affinity_hint(pci_irq_vector(ioc->pdev,
2917                                     index), cpumask_of_node(local_numa_node));
2918                         }
2919                 }
2920 
2921                 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
2922                         const cpumask_t *mask;
2923 
2924                         if (reply_q->msix_index < ioc->high_iops_queues)
2925                                 continue;
2926 
2927                         mask = pci_irq_get_affinity(ioc->pdev,
2928                             reply_q->msix_index);
2929                         if (!mask) {
2930                                 ioc_warn(ioc, "no affinity for msi %x\n",
2931                                          reply_q->msix_index);
2932                                 goto fall_back;
2933                         }
2934 
2935                         for_each_cpu_and(cpu, mask, cpu_online_mask) {
2936                                 if (cpu >= ioc->cpu_msix_table_sz)
2937                                         break;
2938                                 ioc->cpu_msix_table[cpu] = reply_q->msix_index;
2939                         }
2940                 }
2941                 return;
2942         }
2943 
2944 fall_back:
2945         cpu = cpumask_first(cpu_online_mask);
2946         nr_msix -= ioc->high_iops_queues;
2947         index = 0;
2948 
2949         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
2950                 unsigned int i, group = nr_cpus / nr_msix;
2951 
2952                 if (reply_q->msix_index < ioc->high_iops_queues)
2953                         continue;
2954 
2955                 if (cpu >= nr_cpus)
2956                         break;
2957 
2958                 if (index < nr_cpus % nr_msix)
2959                         group++;
2960 
2961                 for (i = 0 ; i < group ; i++) {
2962                         ioc->cpu_msix_table[cpu] = reply_q->msix_index;
2963                         cpu = cpumask_next(cpu, cpu_online_mask);
2964                 }
2965                 index++;
2966         }
2967 }
2968 
2969 /**
2970  * _base_check_and_enable_high_iops_queues - enable high iops mode
2971  * @ ioc - per adapter object
2972  * @ hba_msix_vector_count - msix vectors supported by HBA
2973  *
2974  * Enable high iops queues only if
2975  *  - HBA is a SEA/AERO controller and
2976  *  - MSI-Xs vector supported by the HBA is 128 and
2977  *  - total CPU count in the system >=16 and
2978  *  - loaded driver with default max_msix_vectors module parameter and
2979  *  - system booted in non kdump mode
2980  *
2981  * returns nothing.
2982  */
2983 static void
2984 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc,
2985                 int hba_msix_vector_count)
2986 {
2987         u16 lnksta, speed;
2988 
2989         if (perf_mode == MPT_PERF_MODE_IOPS ||
2990             perf_mode == MPT_PERF_MODE_LATENCY) {
2991                 ioc->high_iops_queues = 0;
2992                 return;
2993         }
2994 
2995         if (perf_mode == MPT_PERF_MODE_DEFAULT) {
2996 
2997                 pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta);
2998                 speed = lnksta & PCI_EXP_LNKSTA_CLS;
2999 
3000                 if (speed < 0x4) {
3001                         ioc->high_iops_queues = 0;
3002                         return;
3003                 }
3004         }
3005 
3006         if (!reset_devices && ioc->is_aero_ioc &&
3007             hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES &&
3008             num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES &&
3009             max_msix_vectors == -1)
3010                 ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES;
3011         else
3012                 ioc->high_iops_queues = 0;
3013 }
3014 
3015 /**
3016  * _base_disable_msix - disables msix
3017  * @ioc: per adapter object
3018  *
3019  */
3020 static void
3021 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
3022 {
3023         if (!ioc->msix_enable)
3024                 return;
3025         pci_free_irq_vectors(ioc->pdev);
3026         ioc->msix_enable = 0;
3027 }
3028 
3029 /**
3030  * _base_alloc_irq_vectors - allocate msix vectors
3031  * @ioc: per adapter object
3032  *
3033  */
3034 static int
3035 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc)
3036 {
3037         int i, irq_flags = PCI_IRQ_MSIX;
3038         struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues };
3039         struct irq_affinity *descp = &desc;
3040 
3041         if (ioc->smp_affinity_enable)
3042                 irq_flags |= PCI_IRQ_AFFINITY;
3043         else
3044                 descp = NULL;
3045 
3046         ioc_info(ioc, " %d %d\n", ioc->high_iops_queues,
3047             ioc->msix_vector_count);
3048 
3049         i = pci_alloc_irq_vectors_affinity(ioc->pdev,
3050             ioc->high_iops_queues,
3051             ioc->msix_vector_count, irq_flags, descp);
3052 
3053         return i;
3054 }
3055 
3056 /**
3057  * _base_enable_msix - enables msix, failback to io_apic
3058  * @ioc: per adapter object
3059  *
3060  */
3061 static int
3062 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3063 {
3064         int r;
3065         int i, local_max_msix_vectors;
3066         u8 try_msix = 0;
3067 
3068         ioc->msix_load_balance = false;
3069 
3070         if (msix_disable == -1 || msix_disable == 0)
3071                 try_msix = 1;
3072 
3073         if (!try_msix)
3074                 goto try_ioapic;
3075 
3076         if (_base_check_enable_msix(ioc) != 0)
3077                 goto try_ioapic;
3078 
3079         ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count);
3080         pr_info("\t no of cores: %d, max_msix_vectors: %d\n",
3081                 ioc->cpu_count, max_msix_vectors);
3082         if (ioc->is_aero_ioc)
3083                 _base_check_and_enable_high_iops_queues(ioc,
3084                         ioc->msix_vector_count);
3085         ioc->reply_queue_count =
3086                 min_t(int, ioc->cpu_count + ioc->high_iops_queues,
3087                 ioc->msix_vector_count);
3088 
3089         if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
3090                 local_max_msix_vectors = (reset_devices) ? 1 : 8;
3091         else
3092                 local_max_msix_vectors = max_msix_vectors;
3093 
3094         if (local_max_msix_vectors > 0)
3095                 ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
3096                         ioc->reply_queue_count);
3097         else if (local_max_msix_vectors == 0)
3098                 goto try_ioapic;
3099 
3100         /*
3101          * Enable msix_load_balance only if combined reply queue mode is
3102          * disabled on SAS3 & above generation HBA devices.
3103          */
3104         if (!ioc->combined_reply_queue &&
3105             ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3106                 ioc->msix_load_balance = true;
3107         }
3108 
3109         /*
3110          * smp affinity setting is not need when msix load balance
3111          * is enabled.
3112          */
3113         if (ioc->msix_load_balance)
3114                 ioc->smp_affinity_enable = 0;
3115 
3116         r = _base_alloc_irq_vectors(ioc);
3117         if (r < 0) {
3118                 dfailprintk(ioc,
3119                             ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n",
3120                                      r));
3121                 goto try_ioapic;
3122         }
3123 
3124         ioc->msix_enable = 1;
3125         ioc->reply_queue_count = r;
3126         for (i = 0; i < ioc->reply_queue_count; i++) {
3127                 r = _base_request_irq(ioc, i);
3128                 if (r) {
3129                         _base_free_irq(ioc);
3130                         _base_disable_msix(ioc);
3131                         goto try_ioapic;
3132                 }
3133         }
3134 
3135         ioc_info(ioc, "High IOPs queues : %s\n",
3136                         ioc->high_iops_queues ? "enabled" : "disabled");
3137 
3138         return 0;
3139 
3140 /* failback to io_apic interrupt routing */
3141  try_ioapic:
3142         ioc->high_iops_queues = 0;
3143         ioc_info(ioc, "High IOPs queues : disabled\n");
3144         ioc->reply_queue_count = 1;
3145         r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
3146         if (r < 0) {
3147                 dfailprintk(ioc,
3148                             ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
3149                                      r));
3150         } else
3151                 r = _base_request_irq(ioc, 0);
3152 
3153         return r;
3154 }
3155 
3156 /**
3157  * mpt3sas_base_unmap_resources - free controller resources
3158  * @ioc: per adapter object
3159  */
3160 static void
3161 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
3162 {
3163         struct pci_dev *pdev = ioc->pdev;
3164 
3165         dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3166 
3167         _base_free_irq(ioc);
3168         _base_disable_msix(ioc);
3169 
3170         kfree(ioc->replyPostRegisterIndex);
3171         ioc->replyPostRegisterIndex = NULL;
3172 
3173 
3174         if (ioc->chip_phys) {
3175                 iounmap(ioc->chip);
3176                 ioc->chip_phys = 0;
3177         }
3178 
3179         if (pci_is_enabled(pdev)) {
3180                 pci_release_selected_regions(ioc->pdev, ioc->bars);
3181                 pci_disable_pcie_error_reporting(pdev);
3182                 pci_disable_device(pdev);
3183         }
3184 }
3185 
3186 static int
3187 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
3188 
3189 /**
3190  * _base_check_for_fault_and_issue_reset - check if IOC is in fault state
3191  *     and if it is in fault state then issue diag reset.
3192  * @ioc: per adapter object
3193  *
3194  * Returns: 0 for success, non-zero for failure.
3195  */
3196 static int
3197 _base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc)
3198 {
3199         u32 ioc_state;
3200         int rc = -EFAULT;
3201 
3202         dinitprintk(ioc, pr_info("%s\n", __func__));
3203         if (ioc->pci_error_recovery)
3204                 return 0;
3205         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
3206         dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state));
3207 
3208         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
3209                 mpt3sas_base_fault_info(ioc, ioc_state &
3210                     MPI2_DOORBELL_DATA_MASK);
3211                 rc = _base_diag_reset(ioc);
3212         }
3213 
3214         return rc;
3215 }
3216 
3217 /**
3218  * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
3219  * @ioc: per adapter object
3220  *
3221  * Return: 0 for success, non-zero for failure.
3222  */
3223 int
3224 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
3225 {
3226         struct pci_dev *pdev = ioc->pdev;
3227         u32 memap_sz;
3228         u32 pio_sz;
3229         int i, r = 0, rc;
3230         u64 pio_chip = 0;
3231         phys_addr_t chip_phys = 0;
3232         struct adapter_reply_queue *reply_q;
3233 
3234         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3235 
3236         ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
3237         if (pci_enable_device_mem(pdev)) {
3238                 ioc_warn(ioc, "pci_enable_device_mem: failed\n");
3239                 ioc->bars = 0;
3240                 return -ENODEV;
3241         }
3242 
3243 
3244         if (pci_request_selected_regions(pdev, ioc->bars,
3245             ioc->driver_name)) {
3246                 ioc_warn(ioc, "pci_request_selected_regions: failed\n");
3247                 ioc->bars = 0;
3248                 r = -ENODEV;
3249                 goto out_fail;
3250         }
3251 
3252 /* AER (Advanced Error Reporting) hooks */
3253         pci_enable_pcie_error_reporting(pdev);
3254 
3255         pci_set_master(pdev);
3256 
3257 
3258         if (_base_config_dma_addressing(ioc, pdev) != 0) {
3259                 ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev));
3260                 r = -ENODEV;
3261                 goto out_fail;
3262         }
3263 
3264         for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
3265              (!memap_sz || !pio_sz); i++) {
3266                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
3267                         if (pio_sz)
3268                                 continue;
3269                         pio_chip = (u64)pci_resource_start(pdev, i);
3270                         pio_sz = pci_resource_len(pdev, i);
3271                 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3272                         if (memap_sz)
3273                                 continue;
3274                         ioc->chip_phys = pci_resource_start(pdev, i);
3275                         chip_phys = ioc->chip_phys;
3276                         memap_sz = pci_resource_len(pdev, i);
3277                         ioc->chip = ioremap(ioc->chip_phys, memap_sz);
3278                 }
3279         }
3280 
3281         if (ioc->chip == NULL) {
3282                 ioc_err(ioc, "unable to map adapter memory! or resource not found\n");
3283                 r = -EINVAL;
3284                 goto out_fail;
3285         }
3286 
3287         _base_mask_interrupts(ioc);
3288 
3289         r = _base_get_ioc_facts(ioc);
3290         if (r) {
3291                 rc = _base_check_for_fault_and_issue_reset(ioc);
3292                 if (rc || (_base_get_ioc_facts(ioc)))
3293                         goto out_fail;
3294         }
3295 
3296         if (!ioc->rdpq_array_enable_assigned) {
3297                 ioc->rdpq_array_enable = ioc->rdpq_array_capable;
3298                 ioc->rdpq_array_enable_assigned = 1;
3299         }
3300 
3301         r = _base_enable_msix(ioc);
3302         if (r)
3303                 goto out_fail;
3304 
3305         if (!ioc->is_driver_loading)
3306                 _base_init_irqpolls(ioc);
3307         /* Use the Combined reply queue feature only for SAS3 C0 & higher
3308          * revision HBAs and also only when reply queue count is greater than 8
3309          */
3310         if (ioc->combined_reply_queue) {
3311                 /* Determine the Supplemental Reply Post Host Index Registers
3312                  * Addresse. Supplemental Reply Post Host Index Registers
3313                  * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
3314                  * each register is at offset bytes of
3315                  * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
3316                  */
3317                 ioc->replyPostRegisterIndex = kcalloc(
3318                      ioc->combined_reply_index_count,
3319                      sizeof(resource_size_t *), GFP_KERNEL);
3320                 if (!ioc->replyPostRegisterIndex) {
3321                         dfailprintk(ioc,
3322                                     ioc_warn(ioc, "allocation for reply Post Register Index failed!!!\n"));
3323                         r = -ENOMEM;
3324                         goto out_fail;
3325                 }
3326 
3327                 for (i = 0; i < ioc->combined_reply_index_count; i++) {
3328                         ioc->replyPostRegisterIndex[i] = (resource_size_t *)
3329                              ((u8 __force *)&ioc->chip->Doorbell +
3330                              MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
3331                              (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
3332                 }
3333         }
3334 
3335         if (ioc->is_warpdrive) {
3336                 ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
3337                     &ioc->chip->ReplyPostHostIndex;
3338 
3339                 for (i = 1; i < ioc->cpu_msix_table_sz; i++)
3340                         ioc->reply_post_host_index[i] =
3341                         (resource_size_t __iomem *)
3342                         ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
3343                         * 4)));
3344         }
3345 
3346         list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
3347                 pr_info("%s: %s enabled: IRQ %d\n",
3348                         reply_q->name,
3349                         ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC",
3350                         pci_irq_vector(ioc->pdev, reply_q->msix_index));
3351 
3352         ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n",
3353                  &chip_phys, ioc->chip, memap_sz);
3354         ioc_info(ioc, "ioport(0x%016llx), size(%d)\n",
3355                  (unsigned long long)pio_chip, pio_sz);
3356 
3357         /* Save PCI configuration state for recovery from PCI AER/EEH errors */
3358         pci_save_state(pdev);
3359         return 0;
3360 
3361  out_fail:
3362         mpt3sas_base_unmap_resources(ioc);
3363         return r;
3364 }
3365 
3366 /**
3367  * mpt3sas_base_get_msg_frame - obtain request mf pointer
3368  * @ioc: per adapter object
3369  * @smid: system request message index(smid zero is invalid)
3370  *
3371  * Return: virt pointer to message frame.
3372  */
3373 void *
3374 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3375 {
3376         return (void *)(ioc->request + (smid * ioc->request_sz));
3377 }
3378 
3379 /**
3380  * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
3381  * @ioc: per adapter object
3382  * @smid: system request message index
3383  *
3384  * Return: virt pointer to sense buffer.
3385  */
3386 void *
3387 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3388 {
3389         return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
3390 }
3391 
3392 /**
3393  * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
3394  * @ioc: per adapter object
3395  * @smid: system request message index
3396  *
3397  * Return: phys pointer to the low 32bit address of the sense buffer.
3398  */
3399 __le32
3400 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3401 {
3402         return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
3403             SCSI_SENSE_BUFFERSIZE));
3404 }
3405 
3406 /**
3407  * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
3408  * @ioc: per adapter object
3409  * @smid: system request message index
3410  *
3411  * Return: virt pointer to a PCIe SGL.
3412  */
3413 void *
3414 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3415 {
3416         return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl);
3417 }
3418 
3419 /**
3420  * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
3421  * @ioc: per adapter object
3422  * @smid: system request message index
3423  *
3424  * Return: phys pointer to the address of the PCIe buffer.
3425  */
3426 dma_addr_t
3427 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3428 {
3429         return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma;
3430 }
3431 
3432 /**
3433  * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
3434  * @ioc: per adapter object
3435  * @phys_addr: lower 32 physical addr of the reply
3436  *
3437  * Converts 32bit lower physical addr into a virt address.
3438  */
3439 void *
3440 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
3441 {
3442         if (!phys_addr)
3443                 return NULL;
3444         return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
3445 }
3446 
3447 /**
3448  * _base_get_msix_index - get the msix index
3449  * @ioc: per adapter object
3450  * @scmd: scsi_cmnd object
3451  *
3452  * returns msix index of general reply queues,
3453  * i.e. reply queue on which IO request's reply
3454  * should be posted by the HBA firmware.
3455  */
3456 static inline u8
3457 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc,
3458         struct scsi_cmnd *scmd)
3459 {
3460         /* Enables reply_queue load balancing */
3461         if (ioc->msix_load_balance)
3462                 return ioc->reply_queue_count ?
3463                     base_mod64(atomic64_add_return(1,
3464                     &ioc->total_io_cnt), ioc->reply_queue_count) : 0;
3465 
3466         return ioc->cpu_msix_table[raw_smp_processor_id()];
3467 }
3468 
3469 /**
3470  * _base_get_high_iops_msix_index - get the msix index of
3471  *                              high iops queues
3472  * @ioc: per adapter object
3473  * @scmd: scsi_cmnd object
3474  *
3475  * Returns: msix index of high iops reply queues.
3476  * i.e. high iops reply queue on which IO request's
3477  * reply should be posted by the HBA firmware.
3478  */
3479 static inline u8
3480 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc,
3481         struct scsi_cmnd *scmd)
3482 {
3483         /**
3484          * Round robin the IO interrupts among the high iops
3485          * reply queues in terms of batch count 16 when outstanding
3486          * IOs on the target device is >=8.
3487          */
3488         if (atomic_read(&scmd->device->device_busy) >
3489             MPT3SAS_DEVICE_HIGH_IOPS_DEPTH)
3490                 return base_mod64((
3491                     atomic64_add_return(1, &ioc->high_iops_outstanding) /
3492                     MPT3SAS_HIGH_IOPS_BATCH_COUNT),
3493                     MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
3494 
3495         return _base_get_msix_index(ioc, scmd);
3496 }
3497 
3498 /**
3499  * mpt3sas_base_get_smid - obtain a free smid from internal queue
3500  * @ioc: per adapter object
3501  * @cb_idx: callback index
3502  *
3503  * Return: smid (zero is invalid)
3504  */
3505 u16
3506 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3507 {
3508         unsigned long flags;
3509         struct request_tracker *request;
3510         u16 smid;
3511 
3512         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3513         if (list_empty(&ioc->internal_free_list)) {
3514                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3515                 ioc_err(ioc, "%s: smid not available\n", __func__);
3516                 return 0;
3517         }
3518 
3519         request = list_entry(ioc->internal_free_list.next,
3520             struct request_tracker, tracker_list);
3521         request->cb_idx = cb_idx;
3522         smid = request->smid;
3523         list_del(&request->tracker_list);
3524         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3525         return smid;
3526 }
3527 
3528 /**
3529  * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
3530  * @ioc: per adapter object
3531  * @cb_idx: callback index
3532  * @scmd: pointer to scsi command object
3533  *
3534  * Return: smid (zero is invalid)
3535  */
3536 u16
3537 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
3538         struct scsi_cmnd *scmd)
3539 {
3540         struct scsiio_tracker *request = scsi_cmd_priv(scmd);
3541         unsigned int tag = scmd->request->tag;
3542         u16 smid;
3543 
3544         smid = tag + 1;
3545         request->cb_idx = cb_idx;
3546         request->smid = smid;
3547         request->scmd = scmd;
3548         INIT_LIST_HEAD(&request->chain_list);
3549         return smid;
3550 }
3551 
3552 /**
3553  * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
3554  * @ioc: per adapter object
3555  * @cb_idx: callback index
3556  *
3557  * Return: smid (zero is invalid)
3558  */
3559 u16
3560 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3561 {
3562         unsigned long flags;
3563         struct request_tracker *request;
3564         u16 smid;
3565 
3566         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3567         if (list_empty(&ioc->hpr_free_list)) {
3568                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3569                 return 0;
3570         }
3571 
3572         request = list_entry(ioc->hpr_free_list.next,
3573             struct request_tracker, tracker_list);
3574         request->cb_idx = cb_idx;
3575         smid = request->smid;
3576         list_del(&request->tracker_list);
3577         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3578         return smid;
3579 }
3580 
3581 static void
3582 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc)
3583 {
3584         /*
3585          * See _wait_for_commands_to_complete() call with regards to this code.
3586          */
3587         if (ioc->shost_recovery && ioc->pending_io_count) {
3588                 ioc->pending_io_count = scsi_host_busy(ioc->shost);
3589                 if (ioc->pending_io_count == 0)
3590                         wake_up(&ioc->reset_wq);
3591         }
3592 }
3593 
3594 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc,
3595                            struct scsiio_tracker *st)
3596 {
3597         if (WARN_ON(st->smid == 0))
3598                 return;
3599         st->cb_idx = 0xFF;
3600         st->direct_io = 0;
3601         st->scmd = NULL;
3602         atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0);
3603         st->smid = 0;
3604 }
3605 
3606 /**
3607  * mpt3sas_base_free_smid - put smid back on free_list
3608  * @ioc: per adapter object
3609  * @smid: system request message index
3610  */
3611 void
3612 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3613 {
3614         unsigned long flags;
3615         int i;
3616 
3617         if (smid < ioc->hi_priority_smid) {
3618                 struct scsiio_tracker *st;
3619                 void *request;
3620 
3621                 st = _get_st_from_smid(ioc, smid);
3622                 if (!st) {
3623                         _base_recovery_check(ioc);
3624                         return;
3625                 }
3626 
3627                 /* Clear MPI request frame */
3628                 request = mpt3sas_base_get_msg_frame(ioc, smid);
3629                 memset(request, 0, ioc->request_sz);
3630 
3631                 mpt3sas_base_clear_st(ioc, st);
3632                 _base_recovery_check(ioc);
3633                 return;
3634         }
3635 
3636         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3637         if (smid < ioc->internal_smid) {
3638                 /* hi-priority */
3639                 i = smid - ioc->hi_priority_smid;
3640                 ioc->hpr_lookup[i].cb_idx = 0xFF;
3641                 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
3642         } else if (smid <= ioc->hba_queue_depth) {
3643                 /* internal queue */
3644                 i = smid - ioc->internal_smid;
3645                 ioc->internal_lookup[i].cb_idx = 0xFF;
3646                 list_add(&ioc->internal_lookup[i].tracker_list,
3647                     &ioc->internal_free_list);
3648         }
3649         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3650 }
3651 
3652 /**
3653  * _base_mpi_ep_writeq - 32 bit write to MMIO
3654  * @b: data payload
3655  * @addr: address in MMIO space
3656  * @writeq_lock: spin lock
3657  *
3658  * This special handling for MPI EP to take care of 32 bit
3659  * environment where its not quarenteed to send the entire word
3660  * in one transfer.
3661  */
3662 static inline void
3663 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr,
3664                                         spinlock_t *writeq_lock)
3665 {
3666         unsigned long flags;
3667 
3668         spin_lock_irqsave(writeq_lock, flags);
3669         __raw_writel((u32)(b), addr);
3670         __raw_writel((u32)(b >> 32), (addr + 4));
3671         spin_unlock_irqrestore(writeq_lock, flags);
3672 }
3673 
3674 /**
3675  * _base_writeq - 64 bit write to MMIO
3676  * @b: data payload
3677  * @addr: address in MMIO space
3678  * @writeq_lock: spin lock
3679  *
3680  * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
3681  * care of 32 bit environment where its not quarenteed to send the entire word
3682  * in one transfer.
3683  */
3684 #if defined(writeq) && defined(CONFIG_64BIT)
3685 static inline void
3686 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3687 {
3688         wmb();
3689         __raw_writeq(b, addr);
3690         barrier();
3691 }
3692 #else
3693 static inline void
3694 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3695 {
3696         _base_mpi_ep_writeq(b, addr, writeq_lock);
3697 }
3698 #endif
3699 
3700 /**
3701  * _base_set_and_get_msix_index - get the msix index and assign to msix_io
3702  *                                variable of scsi tracker
3703  * @ioc: per adapter object
3704  * @smid: system request message index
3705  *
3706  * returns msix index.
3707  */
3708 static u8
3709 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3710 {
3711         struct scsiio_tracker *st = NULL;
3712 
3713         if (smid < ioc->hi_priority_smid)
3714                 st = _get_st_from_smid(ioc, smid);
3715 
3716         if (st == NULL)
3717                 return  _base_get_msix_index(ioc, NULL);
3718 
3719         st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd);
3720         return st->msix_io;
3721 }
3722 
3723 /**
3724  * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
3725  * @ioc: per adapter object
3726  * @smid: system request message index
3727  * @handle: device handle
3728  */
3729 static void
3730 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc,
3731         u16 smid, u16 handle)
3732 {
3733         Mpi2RequestDescriptorUnion_t descriptor;
3734         u64 *request = (u64 *)&descriptor;
3735         void *mpi_req_iomem;
3736         __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3737 
3738         _clone_sg_entries(ioc, (void *) mfp, smid);
3739         mpi_req_iomem = (void __force *)ioc->chip +
3740                         MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
3741         _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3742                                         ioc->request_sz);
3743         descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3744         descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3745         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3746         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3747         descriptor.SCSIIO.LMID = 0;
3748         _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3749             &ioc->scsi_lookup_lock);
3750 }
3751 
3752 /**
3753  * _base_put_smid_scsi_io - send SCSI_IO request to firmware
3754  * @ioc: per adapter object
3755  * @smid: system request message index
3756  * @handle: device handle
3757  */
3758 static void
3759 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
3760 {
3761         Mpi2RequestDescriptorUnion_t descriptor;
3762         u64 *request = (u64 *)&descriptor;
3763 
3764 
3765         descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3766         descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3767         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3768         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3769         descriptor.SCSIIO.LMID = 0;
3770         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3771             &ioc->scsi_lookup_lock);
3772 }
3773 
3774 /**
3775  * _base_put_smid_fast_path - send fast path request to firmware
3776  * @ioc: per adapter object
3777  * @smid: system request message index
3778  * @handle: device handle
3779  */
3780 static void
3781 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3782         u16 handle)
3783 {
3784         Mpi2RequestDescriptorUnion_t descriptor;
3785         u64 *request = (u64 *)&descriptor;
3786 
3787         descriptor.SCSIIO.RequestFlags =
3788             MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
3789         descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3790         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3791         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3792         descriptor.SCSIIO.LMID = 0;
3793         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3794             &ioc->scsi_lookup_lock);
3795 }
3796 
3797 /**
3798  * _base_put_smid_hi_priority - send Task Management request to firmware
3799  * @ioc: per adapter object
3800  * @smid: system request message index
3801  * @msix_task: msix_task will be same as msix of IO incase of task abort else 0.
3802  */
3803 static void
3804 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3805         u16 msix_task)
3806 {
3807         Mpi2RequestDescriptorUnion_t descriptor;
3808         void *mpi_req_iomem;
3809         u64 *request;
3810 
3811         if (ioc->is_mcpu_endpoint) {
3812                 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3813 
3814                 /* TBD 256 is offset within sys register. */
3815                 mpi_req_iomem = (void __force *)ioc->chip
3816                                         + MPI_FRAME_START_OFFSET
3817                                         + (smid * ioc->request_sz);
3818                 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3819                                                         ioc->request_sz);
3820         }
3821 
3822         request = (u64 *)&descriptor;
3823 
3824         descriptor.HighPriority.RequestFlags =
3825             MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
3826         descriptor.HighPriority.MSIxIndex =  msix_task;
3827         descriptor.HighPriority.SMID = cpu_to_le16(smid);
3828         descriptor.HighPriority.LMID = 0;
3829         descriptor.HighPriority.Reserved1 = 0;
3830         if (ioc->is_mcpu_endpoint)
3831                 _base_mpi_ep_writeq(*request,
3832                                 &ioc->chip->RequestDescriptorPostLow,
3833                                 &ioc->scsi_lookup_lock);
3834         else
3835                 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3836                     &ioc->scsi_lookup_lock);
3837 }
3838 
3839 /**
3840  * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
3841  *  firmware
3842  * @ioc: per adapter object
3843  * @smid: system request message index
3844  */
3845 void
3846 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3847 {
3848         Mpi2RequestDescriptorUnion_t descriptor;
3849         u64 *request = (u64 *)&descriptor;
3850 
3851         descriptor.Default.RequestFlags =
3852                 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
3853         descriptor.Default.MSIxIndex =  _base_set_and_get_msix_index(ioc, smid);
3854         descriptor.Default.SMID = cpu_to_le16(smid);
3855         descriptor.Default.LMID = 0;
3856         descriptor.Default.DescriptorTypeDependent = 0;
3857         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3858             &ioc->scsi_lookup_lock);
3859 }
3860 
3861 /**
3862  * _base_put_smid_default - Default, primarily used for config pages
3863  * @ioc: per adapter object
3864  * @smid: system request message index
3865  */
3866 static void
3867 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3868 {
3869         Mpi2RequestDescriptorUnion_t descriptor;
3870         void *mpi_req_iomem;
3871         u64 *request;
3872 
3873         if (ioc->is_mcpu_endpoint) {
3874                 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3875 
3876                 _clone_sg_entries(ioc, (void *) mfp, smid);
3877                 /* TBD 256 is offset within sys register */
3878                 mpi_req_iomem = (void __force *)ioc->chip +
3879                         MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
3880                 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3881                                                         ioc->request_sz);
3882         }
3883         request = (u64 *)&descriptor;
3884         descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
3885         descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3886         descriptor.Default.SMID = cpu_to_le16(smid);
3887         descriptor.Default.LMID = 0;
3888         descriptor.Default.DescriptorTypeDependent = 0;
3889         if (ioc->is_mcpu_endpoint)
3890                 _base_mpi_ep_writeq(*request,
3891                                 &ioc->chip->RequestDescriptorPostLow,
3892                                 &ioc->scsi_lookup_lock);
3893         else
3894                 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3895                                 &ioc->scsi_lookup_lock);
3896 }
3897 
3898 /**
3899  * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
3900  *   Atomic Request Descriptor
3901  * @ioc: per adapter object
3902  * @smid: system request message index
3903  * @handle: device handle, unused in this function, for function type match
3904  *
3905  * Return nothing.
3906  */
3907 static void
3908 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3909         u16 handle)
3910 {
3911         Mpi26AtomicRequestDescriptor_t descriptor;
3912         u32 *request = (u32 *)&descriptor;
3913 
3914         descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3915         descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3916         descriptor.SMID = cpu_to_le16(smid);
3917 
3918         writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
3919 }
3920 
3921 /**
3922  * _base_put_smid_fast_path_atomic - send fast path request to firmware
3923  * using Atomic Request Descriptor
3924  * @ioc: per adapter object
3925  * @smid: system request message index
3926  * @handle: device handle, unused in this function, for function type match
3927  * Return nothing
3928  */
3929 static void
3930 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3931         u16 handle)
3932 {
3933         Mpi26AtomicRequestDescriptor_t descriptor;
3934         u32 *request = (u32 *)&descriptor;
3935 
3936         descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
3937         descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3938         descriptor.SMID = cpu_to_le16(smid);
3939 
3940         writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
3941 }
3942 
3943 /**
3944  * _base_put_smid_hi_priority_atomic - send Task Management request to
3945  * firmware using Atomic Request Descriptor
3946  * @ioc: per adapter object
3947  * @smid: system request message index
3948  * @msix_task: msix_task will be same as msix of IO incase of task abort else 0
3949  *
3950  * Return nothing.
3951  */
3952 static void
3953 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3954         u16 msix_task)
3955 {
3956         Mpi26AtomicRequestDescriptor_t descriptor;
3957         u32 *request = (u32 *)&descriptor;
3958 
3959         descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
3960         descriptor.MSIxIndex = msix_task;
3961         descriptor.SMID = cpu_to_le16(smid);
3962 
3963         writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
3964 }
3965 
3966 /**
3967  * _base_put_smid_default - Default, primarily used for config pages
3968  * use Atomic Request Descriptor
3969  * @ioc: per adapter object
3970  * @smid: system request message index
3971  *
3972  * Return nothing.
3973  */
3974 static void
3975 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3976 {
3977         Mpi26AtomicRequestDescriptor_t descriptor;
3978         u32 *request = (u32 *)&descriptor;
3979 
3980         descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
3981         descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3982         descriptor.SMID = cpu_to_le16(smid);
3983 
3984         writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
3985 }
3986 
3987 /**
3988  * _base_display_OEMs_branding - Display branding string
3989  * @ioc: per adapter object
3990  */
3991 static void
3992 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
3993 {
3994         if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
3995                 return;
3996 
3997         switch (ioc->pdev->subsystem_vendor) {
3998         case PCI_VENDOR_ID_INTEL:
3999                 switch (ioc->pdev->device) {
4000                 case MPI2_MFGPAGE_DEVID_SAS2008:
4001                         switch (ioc->pdev->subsystem_device) {
4002                         case MPT2SAS_INTEL_RMS2LL080_SSDID:
4003                                 ioc_info(ioc, "%s\n",
4004                                          MPT2SAS_INTEL_RMS2LL080_BRANDING);
4005                                 break;
4006                         case MPT2SAS_INTEL_RMS2LL040_SSDID:
4007                                 ioc_info(ioc, "%s\n",
4008                                          MPT2SAS_INTEL_RMS2LL040_BRANDING);
4009                                 break;
4010                         case MPT2SAS_INTEL_SSD910_SSDID:
4011                                 ioc_info(ioc, "%s\n",
4012                                          MPT2SAS_INTEL_SSD910_BRANDING);
4013                                 break;
4014                         default:
4015                                 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4016                                          ioc->pdev->subsystem_device);
4017                                 break;
4018                         }
4019                         break;
4020                 case MPI2_MFGPAGE_DEVID_SAS2308_2:
4021                         switch (ioc->pdev->subsystem_device) {
4022                         case MPT2SAS_INTEL_RS25GB008_SSDID:
4023                                 ioc_info(ioc, "%s\n",
4024                                          MPT2SAS_INTEL_RS25GB008_BRANDING);
4025                                 break;
4026                         case MPT2SAS_INTEL_RMS25JB080_SSDID:
4027                                 ioc_info(ioc, "%s\n",
4028                                          MPT2SAS_INTEL_RMS25JB080_BRANDING);
4029                                 break;
4030                         case MPT2SAS_INTEL_RMS25JB040_SSDID:
4031                                 ioc_info(ioc, "%s\n",
4032                                          MPT2SAS_INTEL_RMS25JB040_BRANDING);
4033                                 break;
4034                         case MPT2SAS_INTEL_RMS25KB080_SSDID:
4035                                 ioc_info(ioc, "%s\n",
4036                                          MPT2SAS_INTEL_RMS25KB080_BRANDING);
4037                                 break;
4038                         case MPT2SAS_INTEL_RMS25KB040_SSDID:
4039                                 ioc_info(ioc, "%s\n",
4040                                          MPT2SAS_INTEL_RMS25KB040_BRANDING);
4041                                 break;
4042                         case MPT2SAS_INTEL_RMS25LB040_SSDID:
4043                                 ioc_info(ioc, "%s\n",
4044                                          MPT2SAS_INTEL_RMS25LB040_BRANDING);
4045                                 break;
4046                         case MPT2SAS_INTEL_RMS25LB080_SSDID:
4047                                 ioc_info(ioc, "%s\n",
4048                                          MPT2SAS_INTEL_RMS25LB080_BRANDING);
4049                                 break;
4050                         default:
4051                                 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4052                                          ioc->pdev->subsystem_device);
4053                                 break;
4054                         }
4055                         break;
4056                 case MPI25_MFGPAGE_DEVID_SAS3008:
4057                         switch (ioc->pdev->subsystem_device) {
4058                         case MPT3SAS_INTEL_RMS3JC080_SSDID:
4059                                 ioc_info(ioc, "%s\n",
4060                                          MPT3SAS_INTEL_RMS3JC080_BRANDING);
4061                                 break;
4062 
4063                         case MPT3SAS_INTEL_RS3GC008_SSDID:
4064                                 ioc_info(ioc, "%s\n",
4065                                          MPT3SAS_INTEL_RS3GC008_BRANDING);
4066                                 break;
4067                         case MPT3SAS_INTEL_RS3FC044_SSDID:
4068                                 ioc_info(ioc, "%s\n",
4069                                          MPT3SAS_INTEL_RS3FC044_BRANDING);
4070                                 break;
4071                         case MPT3SAS_INTEL_RS3UC080_SSDID:
4072                                 ioc_info(ioc, "%s\n",
4073                                          MPT3SAS_INTEL_RS3UC080_BRANDING);
4074                                 break;
4075                         default:
4076                                 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4077                                          ioc->pdev->subsystem_device);
4078                                 break;
4079                         }
4080                         break;
4081                 default:
4082                         ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4083                                  ioc->pdev->subsystem_device);
4084                         break;
4085                 }
4086                 break;
4087         case PCI_VENDOR_ID_DELL:
4088                 switch (ioc->pdev->device) {
4089                 case MPI2_MFGPAGE_DEVID_SAS2008:
4090                         switch (ioc->pdev->subsystem_device) {
4091                         case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
4092                                 ioc_info(ioc, "%s\n",
4093                                          MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
4094                                 break;
4095                         case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
4096                                 ioc_info(ioc, "%s\n",
4097                                          MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
4098                                 break;
4099                         case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
4100                                 ioc_info(ioc, "%s\n",
4101                                          MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
4102                                 break;
4103                         case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
4104                                 ioc_info(ioc, "%s\n",
4105                                          MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
4106                                 break;
4107                         case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
4108                                 ioc_info(ioc, "%s\n",
4109                                          MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
4110                                 break;
4111                         case MPT2SAS_DELL_PERC_H200_SSDID:
4112                                 ioc_info(ioc, "%s\n",
4113                                          MPT2SAS_DELL_PERC_H200_BRANDING);
4114                                 break;
4115                         case MPT2SAS_DELL_6GBPS_SAS_SSDID:
4116                                 ioc_info(ioc, "%s\n",
4117                                          MPT2SAS_DELL_6GBPS_SAS_BRANDING);
4118                                 break;
4119                         default:
4120                                 ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
4121                                          ioc->pdev->subsystem_device);
4122                                 break;
4123                         }
4124                         break;
4125                 case MPI25_MFGPAGE_DEVID_SAS3008:
4126                         switch (ioc->pdev->subsystem_device) {
4127                         case MPT3SAS_DELL_12G_HBA_SSDID:
4128                                 ioc_info(ioc, "%s\n",
4129                                          MPT3SAS_DELL_12G_HBA_BRANDING);
4130                                 break;
4131                         default:
4132                                 ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
4133                                          ioc->pdev->subsystem_device);
4134                                 break;
4135                         }
4136                         break;
4137                 default:
4138                         ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n",
4139                                  ioc->pdev->subsystem_device);
4140                         break;
4141                 }
4142                 break;
4143         case PCI_VENDOR_ID_CISCO:
4144                 switch (ioc->pdev->device) {
4145                 case MPI25_MFGPAGE_DEVID_SAS3008:
4146                         switch (ioc->pdev->subsystem_device) {
4147                         case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
4148                                 ioc_info(ioc, "%s\n",
4149                                          MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
4150                                 break;
4151                         case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
4152                                 ioc_info(ioc, "%s\n",
4153                                          MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
4154                                 break;
4155                         case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4156                                 ioc_info(ioc, "%s\n",
4157                                          MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4158                                 break;
4159                         default:
4160                                 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4161                                          ioc->pdev->subsystem_device);
4162                                 break;
4163                         }
4164                         break;
4165                 case MPI25_MFGPAGE_DEVID_SAS3108_1:
4166                         switch (ioc->pdev->subsystem_device) {
4167                         case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4168                                 ioc_info(ioc, "%s\n",
4169                                          MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4170                                 break;
4171                         case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
4172                                 ioc_info(ioc, "%s\n",
4173                                          MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING);
4174                                 break;
4175                         default:
4176                                 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4177                                          ioc->pdev->subsystem_device);
4178                                 break;
4179                         }
4180                         break;
4181                 default:
4182                         ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n",
4183                                  ioc->pdev->subsystem_device);
4184                         break;
4185                 }
4186                 break;
4187         case MPT2SAS_HP_3PAR_SSVID:
4188                 switch (ioc->pdev->device) {
4189                 case MPI2_MFGPAGE_DEVID_SAS2004:
4190                         switch (ioc->pdev->subsystem_device) {
4191                         case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
4192                                 ioc_info(ioc, "%s\n",
4193                                          MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
4194                                 break;
4195                         default:
4196                                 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4197                                          ioc->pdev->subsystem_device);
4198                                 break;
4199                         }
4200                         break;
4201                 case MPI2_MFGPAGE_DEVID_SAS2308_2:
4202                         switch (ioc->pdev->subsystem_device) {
4203                         case MPT2SAS_HP_2_4_INTERNAL_SSDID:
4204                                 ioc_info(ioc, "%s\n",
4205                                          MPT2SAS_HP_2_4_INTERNAL_BRANDING);
4206                                 break;
4207                         case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
4208                                 ioc_info(ioc, "%s\n",
4209                                          MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
4210                                 break;
4211                         case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
4212                                 ioc_info(ioc, "%s\n",
4213                                          MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
4214                                 break;
4215                         case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
4216                                 ioc_info(ioc, "%s\n",
4217                                          MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
4218                                 break;
4219                         default:
4220                                 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4221                                          ioc->pdev->subsystem_device);
4222                                 break;
4223                         }
4224                         break;
4225                 default:
4226                         ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n",
4227                                  ioc->pdev->subsystem_device);
4228                         break;
4229                 }
4230         default:
4231                 break;
4232         }
4233 }
4234 
4235 /**
4236  * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
4237  *                              version from FW Image Header.
4238  * @ioc: per adapter object
4239  *
4240  * Return: 0 for success, non-zero for failure.
4241  */
4242         static int
4243 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc)
4244 {
4245         Mpi2FWImageHeader_t *FWImgHdr;
4246         Mpi25FWUploadRequest_t *mpi_request;
4247         Mpi2FWUploadReply_t mpi_reply;
4248         int r = 0;
4249         void *fwpkg_data = NULL;
4250         dma_addr_t fwpkg_data_dma;
4251         u16 smid, ioc_status;
4252         size_t data_length;
4253 
4254         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4255 
4256         if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4257                 ioc_err(ioc, "%s: internal command already in use\n", __func__);
4258                 return -EAGAIN;
4259         }
4260 
4261         data_length = sizeof(Mpi2FWImageHeader_t);
4262         fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length,
4263                         &fwpkg_data_dma, GFP_KERNEL);
4264         if (!fwpkg_data) {
4265                 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4266                         __FILE__, __LINE__, __func__);
4267                 return -ENOMEM;
4268         }
4269 
4270         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4271         if (!smid) {
4272                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
4273                 r = -EAGAIN;
4274                 goto out;
4275         }
4276 
4277         ioc->base_cmds.status = MPT3_CMD_PENDING;
4278         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4279         ioc->base_cmds.smid = smid;
4280         memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t));
4281         mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD;
4282         mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH;
4283         mpi_request->ImageSize = cpu_to_le32(data_length);
4284         ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma,
4285                         data_length);
4286         init_completion(&ioc->base_cmds.done);
4287         ioc->put_smid_default(ioc, smid);
4288         /* Wait for 15 seconds */
4289         wait_for_completion_timeout(&ioc->base_cmds.done,
4290                         FW_IMG_HDR_READ_TIMEOUT*HZ);
4291         ioc_info(ioc, "%s: complete\n", __func__);
4292         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4293                 ioc_err(ioc, "%s: timeout\n", __func__);
4294                 _debug_dump_mf(mpi_request,
4295                                 sizeof(Mpi25FWUploadRequest_t)/4);
4296                 r = -ETIME;
4297         } else {
4298                 memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t));
4299                 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) {
4300                         memcpy(&mpi_reply, ioc->base_cmds.reply,
4301                                         sizeof(Mpi2FWUploadReply_t));
4302                         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4303                                                 MPI2_IOCSTATUS_MASK;
4304                         if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4305                                 FWImgHdr = (Mpi2FWImageHeader_t *)fwpkg_data;
4306                                 if (FWImgHdr->PackageVersion.Word) {
4307                                         ioc_info(ioc, "FW Package Version (%02d.%02d.%02d.%02d)\n",
4308                                                  FWImgHdr->PackageVersion.Struct.Major,
4309                                                  FWImgHdr->PackageVersion.Struct.Minor,
4310                                                  FWImgHdr->PackageVersion.Struct.Unit,
4311                                                  FWImgHdr->PackageVersion.Struct.Dev);
4312                                 }
4313                         } else {
4314                                 _debug_dump_mf(&mpi_reply,
4315                                                 sizeof(Mpi2FWUploadReply_t)/4);
4316                         }
4317                 }
4318         }
4319         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4320 out:
4321         if (fwpkg_data)
4322                 dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data,
4323                                 fwpkg_data_dma);
4324         return r;
4325 }
4326 
4327 /**
4328  * _base_display_ioc_capabilities - Disply IOC's capabilities.
4329  * @ioc: per adapter object
4330  */
4331 static void
4332 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
4333 {
4334         int i = 0;
4335         char desc[16];
4336         u32 iounit_pg1_flags;
4337         u32 bios_version;
4338 
4339         bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
4340         strncpy(desc, ioc->manu_pg0.ChipName, 16);
4341         ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
4342                  desc,
4343                  (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
4344                  (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
4345                  (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
4346                  ioc->facts.FWVersion.Word & 0x000000FF,
4347                  ioc->pdev->revision,
4348                  (bios_version & 0xFF000000) >> 24,
4349                  (bios_version & 0x00FF0000) >> 16,
4350                  (bios_version & 0x0000FF00) >> 8,
4351                  bios_version & 0x000000FF);
4352 
4353         _base_display_OEMs_branding(ioc);
4354 
4355         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
4356                 pr_info("%sNVMe", i ? "," : "");
4357                 i++;
4358         }
4359 
4360         ioc_info(ioc, "Protocol=(");
4361 
4362         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
4363                 pr_cont("Initiator");
4364                 i++;
4365         }
4366 
4367         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
4368                 pr_cont("%sTarget", i ? "," : "");
4369                 i++;
4370         }
4371 
4372         i = 0;
4373         pr_cont("), Capabilities=(");
4374 
4375         if (!ioc->hide_ir_msg) {
4376                 if (ioc->facts.IOCCapabilities &
4377                     MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
4378                         pr_cont("Raid");
4379                         i++;
4380                 }
4381         }
4382 
4383         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
4384                 pr_cont("%sTLR", i ? "," : "");
4385                 i++;
4386         }
4387 
4388         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
4389                 pr_cont("%sMulticast", i ? "," : "");
4390                 i++;
4391         }
4392 
4393         if (ioc->facts.IOCCapabilities &
4394             MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
4395                 pr_cont("%sBIDI Target", i ? "," : "");
4396                 i++;
4397         }
4398 
4399         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
4400                 pr_cont("%sEEDP", i ? "," : "");
4401                 i++;
4402         }
4403 
4404         if (ioc->facts.IOCCapabilities &
4405             MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
4406                 pr_cont("%sSnapshot Buffer", i ? "," : "");
4407                 i++;
4408         }
4409 
4410         if (ioc->facts.IOCCapabilities &
4411             MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
4412                 pr_cont("%sDiag Trace Buffer", i ? "," : "");
4413                 i++;
4414         }
4415 
4416         if (ioc->facts.IOCCapabilities &
4417             MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
4418                 pr_cont("%sDiag Extended Buffer", i ? "," : "");
4419                 i++;
4420         }
4421 
4422         if (ioc->facts.IOCCapabilities &
4423             MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
4424                 pr_cont("%sTask Set Full", i ? "," : "");
4425                 i++;
4426         }
4427 
4428         iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4429         if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
4430                 pr_cont("%sNCQ", i ? "," : "");
4431                 i++;
4432         }
4433 
4434         pr_cont(")\n");
4435 }
4436 
4437 /**
4438  * mpt3sas_base_update_missing_delay - change the missing delay timers
4439  * @ioc: per adapter object
4440  * @device_missing_delay: amount of time till device is reported missing
4441  * @io_missing_delay: interval IO is returned when there is a missing device
4442  *
4443  * Passed on the command line, this function will modify the device missing
4444  * delay, as well as the io missing delay. This should be called at driver
4445  * load time.
4446  */
4447 void
4448 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
4449         u16 device_missing_delay, u8 io_missing_delay)
4450 {
4451         u16 dmd, dmd_new, dmd_orignal;
4452         u8 io_missing_delay_original;
4453         u16 sz;
4454         Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
4455         Mpi2ConfigReply_t mpi_reply;
4456         u8 num_phys = 0;
4457         u16 ioc_status;
4458 
4459         mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
4460         if (!num_phys)
4461                 return;
4462 
4463         sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
4464             sizeof(Mpi2SasIOUnit1PhyData_t));
4465         sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
4466         if (!sas_iounit_pg1) {
4467                 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4468                         __FILE__, __LINE__, __func__);
4469                 goto out;
4470         }
4471         if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
4472             sas_iounit_pg1, sz))) {
4473                 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4474                         __FILE__, __LINE__, __func__);
4475                 goto out;
4476         }
4477         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4478             MPI2_IOCSTATUS_MASK;
4479         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4480                 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4481                         __FILE__, __LINE__, __func__);
4482                 goto out;
4483         }
4484 
4485         /* device missing delay */
4486         dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
4487         if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4488                 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4489         else
4490                 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4491         dmd_orignal = dmd;
4492         if (device_missing_delay > 0x7F) {
4493                 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
4494                     device_missing_delay;
4495                 dmd = dmd / 16;
4496                 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
4497         } else
4498                 dmd = device_missing_delay;
4499         sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
4500 
4501         /* io missing delay */
4502         io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
4503         sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
4504 
4505         if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
4506             sz)) {
4507                 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4508                         dmd_new = (dmd &
4509                             MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4510                 else
4511                         dmd_new =
4512                     dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4513                 ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n",
4514                          dmd_orignal, dmd_new);
4515                 ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n",
4516                          io_missing_delay_original,
4517                          io_missing_delay);
4518                 ioc->device_missing_delay = dmd_new;
4519                 ioc->io_missing_delay = io_missing_delay;
4520         }
4521 
4522 out:
4523         kfree(sas_iounit_pg1);
4524 }
4525 
4526 /**
4527  * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields
4528  *    according to performance mode.
4529  * @ioc : per adapter object
4530  *
4531  * Return nothing.
4532  */
4533 static void
4534 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc)
4535 {
4536         Mpi2IOCPage1_t ioc_pg1;
4537         Mpi2ConfigReply_t mpi_reply;
4538 
4539         mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy);
4540         memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t));
4541 
4542         switch (perf_mode) {
4543         case MPT_PERF_MODE_DEFAULT:
4544         case MPT_PERF_MODE_BALANCED:
4545                 if (ioc->high_iops_queues) {
4546                         ioc_info(ioc,
4547                                 "Enable interrupt coalescing only for first\t"
4548                                 "%d reply queues\n",
4549                                 MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
4550                         /*
4551                          * If 31st bit is zero then interrupt coalescing is
4552                          * enabled for all reply descriptor post queues.
4553                          * If 31st bit is set to one then user can
4554                          * enable/disable interrupt coalescing on per reply
4555                          * descriptor post queue group(8) basis. So to enable
4556                          * interrupt coalescing only on first reply descriptor
4557                          * post queue group 31st bit and zero th bit is enabled.
4558                          */
4559                         ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 |
4560                             ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1));
4561                         mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4562                         ioc_info(ioc, "performance mode: balanced\n");
4563                         return;
4564                 }
4565                 /* Fall through */
4566         case MPT_PERF_MODE_LATENCY:
4567                 /*
4568                  * Enable interrupt coalescing on all reply queues
4569                  * with timeout value 0xA
4570                  */
4571                 ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa);
4572                 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
4573                 ioc_pg1.ProductSpecific = 0;
4574                 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4575                 ioc_info(ioc, "performance mode: latency\n");
4576                 break;
4577         case MPT_PERF_MODE_IOPS:
4578                 /*
4579                  * Enable interrupt coalescing on all reply queues.
4580                  */
4581                 ioc_info(ioc,
4582                     "performance mode: iops with coalescing timeout: 0x%x\n",
4583                     le32_to_cpu(ioc_pg1.CoalescingTimeout));
4584                 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
4585                 ioc_pg1.ProductSpecific = 0;
4586                 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4587                 break;
4588         }
4589 }
4590 
4591 /**
4592  * _base_static_config_pages - static start of day config pages
4593  * @ioc: per adapter object
4594  */
4595 static void
4596 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
4597 {
4598         Mpi2ConfigReply_t mpi_reply;
4599         u32 iounit_pg1_flags;
4600 
4601         ioc->nvme_abort_timeout = 30;
4602         mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
4603         if (ioc->ir_firmware)
4604                 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
4605                     &ioc->manu_pg10);
4606 
4607         /*
4608          * Ensure correct T10 PI operation if vendor left EEDPTagMode
4609          * flag unset in NVDATA.
4610          */
4611         mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
4612         if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) {
4613                 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
4614                     ioc->name);
4615                 ioc->manu_pg11.EEDPTagMode &= ~0x3;
4616                 ioc->manu_pg11.EEDPTagMode |= 0x1;
4617                 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
4618                     &ioc->manu_pg11);
4619         }
4620         if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK)
4621                 ioc->tm_custom_handling = 1;
4622         else {
4623                 ioc->tm_custom_handling = 0;
4624                 if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT)
4625                         ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT;
4626                 else if (ioc->manu_pg11.NVMeAbortTO >
4627                                         NVME_TASK_ABORT_MAX_TIMEOUT)
4628                         ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT;
4629                 else
4630                         ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO;
4631         }
4632 
4633         mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
4634         mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
4635         mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
4636         mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
4637         mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
4638         mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
4639         _base_display_ioc_capabilities(ioc);
4640 
4641         /*
4642          * Enable task_set_full handling in iounit_pg1 when the
4643          * facts capabilities indicate that its supported.
4644          */
4645         iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4646         if ((ioc->facts.IOCCapabilities &
4647             MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
4648                 iounit_pg1_flags &=
4649                     ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
4650         else
4651                 iounit_pg1_flags |=
4652                     MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
4653         ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
4654         mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
4655 
4656         if (ioc->iounit_pg8.NumSensors)
4657                 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
4658         if (ioc->is_aero_ioc)
4659                 _base_update_ioc_page1_inlinewith_perf_mode(ioc);
4660 }
4661 
4662 /**
4663  * mpt3sas_free_enclosure_list - release memory
4664  * @ioc: per adapter object
4665  *
4666  * Free memory allocated during encloure add.
4667  */
4668 void
4669 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc)
4670 {
4671         struct _enclosure_node *enclosure_dev, *enclosure_dev_next;
4672 
4673         /* Free enclosure list */
4674         list_for_each_entry_safe(enclosure_dev,
4675                         enclosure_dev_next, &ioc->enclosure_list, list) {
4676                 list_del(&enclosure_dev->list);
4677                 kfree(enclosure_dev);
4678         }
4679 }
4680 
4681 /**
4682  * _base_release_memory_pools - release memory
4683  * @ioc: per adapter object
4684  *
4685  * Free memory allocated from _base_allocate_memory_pools.
4686  */
4687 static void
4688 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
4689 {
4690         int i = 0;
4691         int j = 0;
4692         struct chain_tracker *ct;
4693         struct reply_post_struct *rps;
4694 
4695         dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4696 
4697         if (ioc->request) {
4698                 dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz,
4699                     ioc->request,  ioc->request_dma);
4700                 dexitprintk(ioc,
4701                             ioc_info(ioc, "request_pool(0x%p): free\n",
4702                                      ioc->request));
4703                 ioc->request = NULL;
4704         }
4705 
4706         if (ioc->sense) {
4707                 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
4708                 dma_pool_destroy(ioc->sense_dma_pool);
4709                 dexitprintk(ioc,
4710                             ioc_info(ioc, "sense_pool(0x%p): free\n",
4711                                      ioc->sense));
4712                 ioc->sense = NULL;
4713         }
4714 
4715         if (ioc->reply) {
4716                 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
4717                 dma_pool_destroy(ioc->reply_dma_pool);
4718                 dexitprintk(ioc,
4719                             ioc_info(ioc, "reply_pool(0x%p): free\n",
4720                                      ioc->reply));
4721                 ioc->reply = NULL;
4722         }
4723 
4724         if (ioc->reply_free) {
4725                 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
4726                     ioc->reply_free_dma);
4727                 dma_pool_destroy(ioc->reply_free_dma_pool);
4728                 dexitprintk(ioc,
4729                             ioc_info(ioc, "reply_free_pool(0x%p): free\n",
4730                                      ioc->reply_free));
4731                 ioc->reply_free = NULL;
4732         }
4733 
4734         if (ioc->reply_post) {
4735                 do {
4736                         rps = &ioc->reply_post[i];
4737                         if (rps->reply_post_free) {
4738                                 dma_pool_free(
4739                                     ioc->reply_post_free_dma_pool,
4740                                     rps->reply_post_free,
4741                                     rps->reply_post_free_dma);
4742                                 dexitprintk(ioc,
4743                                             ioc_info(ioc, "reply_post_free_pool(0x%p): free\n",
4744                                                      rps->reply_post_free));
4745                                 rps->reply_post_free = NULL;
4746                         }
4747                 } while (ioc->rdpq_array_enable &&
4748                            (++i < ioc->reply_queue_count));
4749                 if (ioc->reply_post_free_array &&
4750                         ioc->rdpq_array_enable) {
4751                         dma_pool_free(ioc->reply_post_free_array_dma_pool,
4752                                 ioc->reply_post_free_array,
4753                                 ioc->reply_post_free_array_dma);
4754                         ioc->reply_post_free_array = NULL;
4755                 }
4756                 dma_pool_destroy(ioc->reply_post_free_array_dma_pool);
4757                 dma_pool_destroy(ioc->reply_post_free_dma_pool);
4758                 kfree(ioc->reply_post);
4759         }
4760 
4761         if (ioc->pcie_sgl_dma_pool) {
4762                 for (i = 0; i < ioc->scsiio_depth; i++) {
4763                         dma_pool_free(ioc->pcie_sgl_dma_pool,
4764                                         ioc->pcie_sg_lookup[i].pcie_sgl,
4765                                         ioc->pcie_sg_lookup[i].pcie_sgl_dma);
4766                 }
4767                 if (ioc->pcie_sgl_dma_pool)
4768                         dma_pool_destroy(ioc->pcie_sgl_dma_pool);
4769         }
4770 
4771         if (ioc->config_page) {
4772                 dexitprintk(ioc,
4773                             ioc_info(ioc, "config_page(0x%p): free\n",
4774                                      ioc->config_page));
4775                 dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz,
4776                     ioc->config_page, ioc->config_page_dma);
4777         }
4778 
4779         kfree(ioc->hpr_lookup);
4780         kfree(ioc->internal_lookup);
4781         if (ioc->chain_lookup) {
4782                 for (i = 0; i < ioc->scsiio_depth; i++) {
4783                         for (j = ioc->chains_per_prp_buffer;
4784                             j < ioc->chains_needed_per_io; j++) {
4785                                 ct = &ioc->chain_lookup[i].chains_per_smid[j];
4786                                 if (ct && ct->chain_buffer)
4787                                         dma_pool_free(ioc->chain_dma_pool,
4788                                                 ct->chain_buffer,
4789                                                 ct->chain_buffer_dma);
4790                         }
4791                         kfree(ioc->chain_lookup[i].chains_per_smid);
4792                 }
4793                 dma_pool_destroy(ioc->chain_dma_pool);
4794                 kfree(ioc->chain_lookup);
4795                 ioc->chain_lookup = NULL;
4796         }
4797 }
4798 
4799 /**
4800  * is_MSB_are_same - checks whether all reply queues in a set are
4801  *      having same upper 32bits in their base memory address.
4802  * @reply_pool_start_address: Base address of a reply queue set
4803  * @pool_sz: Size of single Reply Descriptor Post Queues pool size
4804  *
4805  * Return: 1 if reply queues in a set have a same upper 32bits in their base
4806  * memory address, else 0.
4807  */
4808 
4809 static int
4810 is_MSB_are_same(long reply_pool_start_address, u32 pool_sz)
4811 {
4812         long reply_pool_end_address;
4813 
4814         reply_pool_end_address = reply_pool_start_address + pool_sz;
4815 
4816         if (upper_32_bits(reply_pool_start_address) ==
4817                 upper_32_bits(reply_pool_end_address))
4818                 return 1;
4819         else
4820                 return 0;
4821 }
4822 
4823 /**
4824  * _base_allocate_memory_pools - allocate start of day memory pools
4825  * @ioc: per adapter object
4826  *
4827  * Return: 0 success, anything else error.
4828  */
4829 static int
4830 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
4831 {
4832         struct mpt3sas_facts *facts;
4833         u16 max_sge_elements;
4834         u16 chains_needed_per_io;
4835         u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz;
4836         u32 retry_sz;
4837         u16 max_request_credit, nvme_blocks_needed;
4838         unsigned short sg_tablesize;
4839         u16 sge_size;
4840         int i, j;
4841         struct chain_tracker *ct;
4842 
4843         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4844 
4845 
4846         retry_sz = 0;
4847         facts = &ioc->facts;
4848 
4849         /* command line tunables for max sgl entries */
4850         if (max_sgl_entries != -1)
4851                 sg_tablesize = max_sgl_entries;
4852         else {
4853                 if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
4854                         sg_tablesize = MPT2SAS_SG_DEPTH;
4855                 else
4856                         sg_tablesize = MPT3SAS_SG_DEPTH;
4857         }
4858 
4859         /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
4860         if (reset_devices)
4861                 sg_tablesize = min_t(unsigned short, sg_tablesize,
4862                    MPT_KDUMP_MIN_PHYS_SEGMENTS);
4863 
4864         if (ioc->is_mcpu_endpoint)
4865                 ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
4866         else {
4867                 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
4868                         sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
4869                 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
4870                         sg_tablesize = min_t(unsigned short, sg_tablesize,
4871                                         SG_MAX_SEGMENTS);
4872                         ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n",
4873                                  sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
4874                 }
4875                 ioc->shost->sg_tablesize = sg_tablesize;
4876         }
4877 
4878         ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
4879                 (facts->RequestCredit / 4));
4880         if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
4881                 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
4882                                 INTERNAL_SCSIIO_CMDS_COUNT)) {
4883                         ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n",
4884                                 facts->RequestCredit);
4885                         return -ENOMEM;
4886                 }
4887                 ioc->internal_depth = 10;
4888         }
4889 
4890         ioc->hi_priority_depth = ioc->internal_depth - (5);
4891         /* command line tunables  for max controller queue depth */
4892         if (max_queue_depth != -1 && max_queue_depth != 0) {
4893                 max_request_credit = min_t(u16, max_queue_depth +
4894                         ioc->internal_depth, facts->RequestCredit);
4895                 if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
4896                         max_request_credit =  MAX_HBA_QUEUE_DEPTH;
4897         } else if (reset_devices)
4898                 max_request_credit = min_t(u16, facts->RequestCredit,
4899                     (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
4900         else
4901                 max_request_credit = min_t(u16, facts->RequestCredit,
4902                     MAX_HBA_QUEUE_DEPTH);
4903 
4904         /* Firmware maintains additional facts->HighPriorityCredit number of
4905          * credits for HiPriprity Request messages, so hba queue depth will be
4906          * sum of max_request_credit and high priority queue depth.
4907          */
4908         ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
4909 
4910         /* request frame size */
4911         ioc->request_sz = facts->IOCRequestFrameSize * 4;
4912 
4913         /* reply frame size */
4914         ioc->reply_sz = facts->ReplyFrameSize * 4;
4915 
4916         /* chain segment size */
4917         if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
4918                 if (facts->IOCMaxChainSegmentSize)
4919                         ioc->chain_segment_sz =
4920                                         facts->IOCMaxChainSegmentSize *
4921                                         MAX_CHAIN_ELEMT_SZ;
4922                 else
4923                 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
4924                         ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
4925                                                     MAX_CHAIN_ELEMT_SZ;
4926         } else
4927                 ioc->chain_segment_sz = ioc->request_sz;
4928 
4929         /* calculate the max scatter element size */
4930         sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
4931 
4932  retry_allocation:
4933         total_sz = 0;
4934         /* calculate number of sg elements left over in the 1st frame */
4935         max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
4936             sizeof(Mpi2SGEIOUnion_t)) + sge_size);
4937         ioc->max_sges_in_main_message = max_sge_elements/sge_size;
4938 
4939         /* now do the same for a chain buffer */
4940         max_sge_elements = ioc->chain_segment_sz - sge_size;
4941         ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
4942 
4943         /*
4944          *  MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
4945          */
4946         chains_needed_per_io = ((ioc->shost->sg_tablesize -
4947            ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
4948             + 1;
4949         if (chains_needed_per_io > facts->MaxChainDepth) {
4950                 chains_needed_per_io = facts->MaxChainDepth;
4951                 ioc->shost->sg_tablesize = min_t(u16,
4952                 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
4953                 * chains_needed_per_io), ioc->shost->sg_tablesize);
4954         }
4955         ioc->chains_needed_per_io = chains_needed_per_io;
4956 
4957         /* reply free queue sizing - taking into account for 64 FW events */
4958         ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
4959 
4960         /* mCPU manage single counters for simplicity */
4961         if (ioc->is_mcpu_endpoint)
4962                 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth;
4963         else {
4964                 /* calculate reply descriptor post queue depth */
4965                 ioc->reply_post_queue_depth = ioc->hba_queue_depth +
4966                         ioc->reply_free_queue_depth +  1;
4967                 /* align the reply post queue on the next 16 count boundary */
4968                 if (ioc->reply_post_queue_depth % 16)
4969                         ioc->reply_post_queue_depth += 16 -
4970                                 (ioc->reply_post_queue_depth % 16);
4971         }
4972 
4973         if (ioc->reply_post_queue_depth >
4974             facts->MaxReplyDescriptorPostQueueDepth) {
4975                 ioc->reply_post_queue_depth =
4976                                 facts->MaxReplyDescriptorPostQueueDepth -
4977                     (facts->MaxReplyDescriptorPostQueueDepth % 16);
4978                 ioc->hba_queue_depth =
4979                                 ((ioc->reply_post_queue_depth - 64) / 2) - 1;
4980                 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
4981         }
4982 
4983         dinitprintk(ioc,
4984                     ioc_info(ioc, "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), chains_per_io(%d)\n",
4985                              ioc->max_sges_in_main_message,
4986                              ioc->max_sges_in_chain_message,
4987                              ioc->shost->sg_tablesize,
4988                              ioc->chains_needed_per_io));
4989 
4990         /* reply post queue, 16 byte align */
4991         reply_post_free_sz = ioc->reply_post_queue_depth *
4992             sizeof(Mpi2DefaultReplyDescriptor_t);
4993 
4994         sz = reply_post_free_sz;
4995         if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
4996                 sz *= ioc->reply_queue_count;
4997 
4998         ioc->reply_post = kcalloc((ioc->rdpq_array_enable) ?
4999             (ioc->reply_queue_count):1,
5000             sizeof(struct reply_post_struct), GFP_KERNEL);
5001 
5002         if (!ioc->reply_post) {
5003                 ioc_err(ioc, "reply_post_free pool: kcalloc failed\n");
5004                 goto out;
5005         }
5006         ioc->reply_post_free_dma_pool = dma_pool_create("reply_post_free pool",
5007             &ioc->pdev->dev, sz, 16, 0);
5008         if (!ioc->reply_post_free_dma_pool) {
5009                 ioc_err(ioc, "reply_post_free pool: dma_pool_create failed\n");
5010                 goto out;
5011         }
5012         i = 0;
5013         do {
5014                 ioc->reply_post[i].reply_post_free =
5015                     dma_pool_zalloc(ioc->reply_post_free_dma_pool,
5016                     GFP_KERNEL,
5017                     &ioc->reply_post[i].reply_post_free_dma);
5018                 if (!ioc->reply_post[i].reply_post_free) {
5019                         ioc_err(ioc, "reply_post_free pool: dma_pool_alloc failed\n");
5020                         goto out;
5021                 }
5022                 dinitprintk(ioc,
5023                             ioc_info(ioc, "reply post free pool (0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
5024                                      ioc->reply_post[i].reply_post_free,
5025                                      ioc->reply_post_queue_depth,
5026                                      8, sz / 1024));
5027                 dinitprintk(ioc,
5028                             ioc_info(ioc, "reply_post_free_dma = (0x%llx)\n",
5029                                      (u64)ioc->reply_post[i].reply_post_free_dma));
5030                 total_sz += sz;
5031         } while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count));
5032 
5033         if (ioc->dma_mask > 32) {
5034                 if (_base_change_consistent_dma_mask(ioc, ioc->pdev) != 0) {
5035                         ioc_warn(ioc, "no suitable consistent DMA mask for %s\n",
5036                                  pci_name(ioc->pdev));
5037                         goto out;
5038                 }
5039         }
5040 
5041         ioc->scsiio_depth = ioc->hba_queue_depth -
5042             ioc->hi_priority_depth - ioc->internal_depth;
5043 
5044         /* set the scsi host can_queue depth
5045          * with some internal commands that could be outstanding
5046          */
5047         ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
5048         dinitprintk(ioc,
5049                     ioc_info(ioc, "scsi host: can_queue depth (%d)\n",
5050                              ioc->shost->can_queue));
5051 
5052 
5053         /* contiguous pool for request and chains, 16 byte align, one extra "
5054          * "frame for smid=0
5055          */
5056         ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
5057         sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
5058 
5059         /* hi-priority queue */
5060         sz += (ioc->hi_priority_depth * ioc->request_sz);
5061 
5062         /* internal queue */
5063         sz += (ioc->internal_depth * ioc->request_sz);
5064 
5065         ioc->request_dma_sz = sz;
5066         ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz,
5067                         &ioc->request_dma, GFP_KERNEL);
5068         if (!ioc->request) {
5069                 ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n",
5070                         ioc->hba_queue_depth, ioc->chains_needed_per_io,
5071                         ioc->request_sz, sz / 1024);
5072                 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
5073                         goto out;
5074                 retry_sz = 64;
5075                 ioc->hba_queue_depth -= retry_sz;
5076                 _base_release_memory_pools(ioc);
5077                 goto retry_allocation;
5078         }
5079         memset(ioc->request, 0, sz);
5080 
5081         if (retry_sz)
5082                 ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n",
5083                         ioc->hba_queue_depth, ioc->chains_needed_per_io,
5084                         ioc->request_sz, sz / 1024);
5085 
5086         /* hi-priority queue */
5087         ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
5088             ioc->request_sz);
5089         ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
5090             ioc->request_sz);
5091 
5092         /* internal queue */
5093         ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
5094             ioc->request_sz);
5095         ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
5096             ioc->request_sz);
5097 
5098         dinitprintk(ioc,
5099                     ioc_info(ioc, "request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
5100                              ioc->request, ioc->hba_queue_depth,
5101                              ioc->request_sz,
5102                              (ioc->hba_queue_depth * ioc->request_sz) / 1024));
5103 
5104         dinitprintk(ioc,
5105                     ioc_info(ioc, "request pool: dma(0x%llx)\n",
5106                              (unsigned long long)ioc->request_dma));
5107         total_sz += sz;
5108 
5109         dinitprintk(ioc,
5110                     ioc_info(ioc, "scsiio(0x%p): depth(%d)\n",
5111                              ioc->request, ioc->scsiio_depth));
5112 
5113         ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
5114         sz = ioc->scsiio_depth * sizeof(struct chain_lookup);
5115         ioc->chain_lookup = kzalloc(sz, GFP_KERNEL);
5116         if (!ioc->chain_lookup) {
5117                 ioc_err(ioc, "chain_lookup: __get_free_pages failed\n");
5118                 goto out;
5119         }
5120 
5121         sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker);
5122         for (i = 0; i < ioc->scsiio_depth; i++) {
5123                 ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL);
5124                 if (!ioc->chain_lookup[i].chains_per_smid) {
5125                         ioc_err(ioc, "chain_lookup: kzalloc failed\n");
5126                         goto out;
5127                 }
5128         }
5129 
5130         /* initialize hi-priority queue smid's */
5131         ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
5132             sizeof(struct request_tracker), GFP_KERNEL);
5133         if (!ioc->hpr_lookup) {
5134                 ioc_err(ioc, "hpr_lookup: kcalloc failed\n");
5135                 goto out;
5136         }
5137         ioc->hi_priority_smid = ioc->scsiio_depth + 1;
5138         dinitprintk(ioc,
5139                     ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n",
5140                              ioc->hi_priority,
5141                              ioc->hi_priority_depth, ioc->hi_priority_smid));
5142 
5143         /* initialize internal queue smid's */
5144         ioc->internal_lookup = kcalloc(ioc->internal_depth,
5145             sizeof(struct request_tracker), GFP_KERNEL);
5146         if (!ioc->internal_lookup) {
5147                 ioc_err(ioc, "internal_lookup: kcalloc failed\n");
5148                 goto out;
5149         }
5150         ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
5151         dinitprintk(ioc,
5152                     ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n",
5153                              ioc->internal,
5154                              ioc->internal_depth, ioc->internal_smid));
5155         /*
5156          * The number of NVMe page sized blocks needed is:
5157          *     (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
5158          * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
5159          * that is placed in the main message frame.  8 is the size of each PRP
5160          * entry or PRP list pointer entry.  8 is subtracted from page_size
5161          * because of the PRP list pointer entry at the end of a page, so this
5162          * is not counted as a PRP entry.  The 1 added page is a round up.
5163          *
5164          * To avoid allocation failures due to the amount of memory that could
5165          * be required for NVMe PRP's, only each set of NVMe blocks will be
5166          * contiguous, so a new set is allocated for each possible I/O.
5167          */
5168         ioc->chains_per_prp_buffer = 0;
5169         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
5170                 nvme_blocks_needed =
5171                         (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
5172                 nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
5173                 nvme_blocks_needed++;
5174 
5175                 sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth;
5176                 ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL);
5177                 if (!ioc->pcie_sg_lookup) {
5178                         ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n");
5179                         goto out;
5180                 }
5181                 sz = nvme_blocks_needed * ioc->page_size;
5182                 ioc->pcie_sgl_dma_pool =
5183                         dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz, 16, 0);
5184                 if (!ioc->pcie_sgl_dma_pool) {
5185                         ioc_info(ioc, "PCIe SGL pool: dma_pool_create failed\n");
5186                         goto out;
5187                 }
5188 
5189                 ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz;
5190                 ioc->chains_per_prp_buffer = min(ioc->chains_per_prp_buffer,
5191                                                 ioc->chains_needed_per_io);
5192 
5193                 for (i = 0; i < ioc->scsiio_depth; i++) {
5194                         ioc->pcie_sg_lookup[i].pcie_sgl = dma_pool_alloc(
5195                                 ioc->pcie_sgl_dma_pool, GFP_KERNEL,
5196                                 &ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5197                         if (!ioc->pcie_sg_lookup[i].pcie_sgl) {
5198                                 ioc_info(ioc, "PCIe SGL pool: dma_pool_alloc failed\n");
5199                                 goto out;
5200                         }
5201                         for (j = 0; j < ioc->chains_per_prp_buffer; j++) {
5202                                 ct = &ioc->chain_lookup[i].chains_per_smid[j];
5203                                 ct->chain_buffer =
5204                                     ioc->pcie_sg_lookup[i].pcie_sgl +
5205                                     (j * ioc->chain_segment_sz);
5206                                 ct->chain_buffer_dma =
5207                                     ioc->pcie_sg_lookup[i].pcie_sgl_dma +
5208                                     (j * ioc->chain_segment_sz);
5209                         }
5210                 }
5211 
5212                 dinitprintk(ioc,
5213                             ioc_info(ioc, "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n",
5214                                      ioc->scsiio_depth, sz,
5215                                      (sz * ioc->scsiio_depth) / 1024));
5216                 dinitprintk(ioc,
5217                             ioc_info(ioc, "Number of chains can fit in a PRP page(%d)\n",
5218                                      ioc->chains_per_prp_buffer));
5219                 total_sz += sz * ioc->scsiio_depth;
5220         }
5221 
5222         ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
5223             ioc->chain_segment_sz, 16, 0);
5224         if (!ioc->chain_dma_pool) {
5225                 ioc_err(ioc, "chain_dma_pool: dma_pool_create failed\n");
5226                 goto out;
5227         }
5228         for (i = 0; i < ioc->scsiio_depth; i++) {
5229                 for (j = ioc->chains_per_prp_buffer;
5230                                 j < ioc->chains_needed_per_io; j++) {
5231                         ct = &ioc->chain_lookup[i].chains_per_smid[j];
5232                         ct->chain_buffer = dma_pool_alloc(
5233                                         ioc->chain_dma_pool, GFP_KERNEL,
5234                                         &ct->chain_buffer_dma);
5235                         if (!ct->chain_buffer) {
5236                                 ioc_err(ioc, "chain_lookup: pci_pool_alloc failed\n");
5237                                 goto out;
5238                         }
5239                 }
5240                 total_sz += ioc->chain_segment_sz;
5241         }
5242 
5243         dinitprintk(ioc,
5244                     ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
5245                              ioc->chain_depth, ioc->chain_segment_sz,
5246                              (ioc->chain_depth * ioc->chain_segment_sz) / 1024));
5247 
5248         /* sense buffers, 4 byte align */
5249         sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
5250         ioc->sense_dma_pool = dma_pool_create("sense pool", &ioc->pdev->dev, sz,
5251                                               4, 0);
5252         if (!ioc->sense_dma_pool) {
5253                 ioc_err(ioc, "sense pool: dma_pool_create failed\n");
5254                 goto out;
5255         }
5256         ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
5257             &ioc->sense_dma);
5258         if (!ioc->sense) {
5259                 ioc_err(ioc, "sense pool: dma_pool_alloc failed\n");
5260                 goto out;
5261         }
5262         /* sense buffer requires to be in same 4 gb region.
5263          * Below function will check the same.
5264          * In case of failure, new pci pool will be created with updated
5265          * alignment. Older allocation and pool will be destroyed.
5266          * Alignment will be used such a way that next allocation if
5267          * success, will always meet same 4gb region requirement.
5268          * Actual requirement is not alignment, but we need start and end of
5269          * DMA address must have same upper 32 bit address.
5270          */
5271         if (!is_MSB_are_same((long)ioc->sense, sz)) {
5272                 //Release Sense pool & Reallocate
5273                 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
5274                 dma_pool_destroy(ioc->sense_dma_pool);
5275                 ioc->sense = NULL;
5276 
5277                 ioc->sense_dma_pool =
5278                         dma_pool_create("sense pool", &ioc->pdev->dev, sz,
5279                                                 roundup_pow_of_two(sz), 0);
5280                 if (!ioc->sense_dma_pool) {
5281                         ioc_err(ioc, "sense pool: pci_pool_create failed\n");
5282                         goto out;
5283                 }
5284                 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
5285                                 &ioc->sense_dma);
5286                 if (!ioc->sense) {
5287                         ioc_err(ioc, "sense pool: pci_pool_alloc failed\n");
5288                         goto out;
5289                 }
5290         }
5291         dinitprintk(ioc,
5292                     ioc_info(ioc, "sense pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
5293                              ioc->sense, ioc->scsiio_depth,
5294                              SCSI_SENSE_BUFFERSIZE, sz / 1024));
5295         dinitprintk(ioc,
5296                     ioc_info(ioc, "sense_dma(0x%llx)\n",
5297                              (unsigned long long)ioc->sense_dma));
5298         total_sz += sz;
5299 
5300         /* reply pool, 4 byte align */
5301         sz = ioc->reply_free_queue_depth * ioc->reply_sz;
5302         ioc->reply_dma_pool = dma_pool_create("reply pool", &ioc->pdev->dev, sz,
5303                                               4, 0);
5304         if (!ioc->reply_dma_pool) {
5305                 ioc_err(ioc, "reply pool: dma_pool_create failed\n");
5306                 goto out;
5307         }
5308         ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
5309             &ioc->reply_dma);
5310         if (!ioc->reply) {
5311                 ioc_err(ioc, "reply pool: dma_pool_alloc failed\n");
5312                 goto out;
5313         }
5314         ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
5315         ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
5316         dinitprintk(ioc,
5317                     ioc_info(ioc, "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
5318                              ioc->reply, ioc->reply_free_queue_depth,
5319                              ioc->reply_sz, sz / 1024));
5320         dinitprintk(ioc,
5321                     ioc_info(ioc, "reply_dma(0x%llx)\n",
5322                              (unsigned long long)ioc->reply_dma));
5323         total_sz += sz;
5324 
5325         /* reply free queue, 16 byte align */
5326         sz = ioc->reply_free_queue_depth * 4;
5327         ioc->reply_free_dma_pool = dma_pool_create("reply_free pool",
5328             &ioc->pdev->dev, sz, 16, 0);
5329         if (!ioc->reply_free_dma_pool) {
5330                 ioc_err(ioc, "reply_free pool: dma_pool_create failed\n");
5331                 goto out;
5332         }
5333         ioc->reply_free = dma_pool_zalloc(ioc->reply_free_dma_pool, GFP_KERNEL,
5334             &ioc->reply_free_dma);
5335         if (!ioc->reply_free) {
5336                 ioc_err(ioc, "reply_free pool: dma_pool_alloc failed\n");
5337                 goto out;
5338         }
5339         dinitprintk(ioc,
5340                     ioc_info(ioc, "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
5341                              ioc->reply_free, ioc->reply_free_queue_depth,
5342                              4, sz / 1024));
5343         dinitprintk(ioc,
5344                     ioc_info(ioc, "reply_free_dma (0x%llx)\n",
5345                              (unsigned long long)ioc->reply_free_dma));
5346         total_sz += sz;
5347 
5348         if (ioc->rdpq_array_enable) {
5349                 reply_post_free_array_sz = ioc->reply_queue_count *
5350                     sizeof(Mpi2IOCInitRDPQArrayEntry);
5351                 ioc->reply_post_free_array_dma_pool =
5352                     dma_pool_create("reply_post_free_array pool",
5353                     &ioc->pdev->dev, reply_post_free_array_sz, 16, 0);
5354                 if (!ioc->reply_post_free_array_dma_pool) {
5355                         dinitprintk(ioc,
5356                                     ioc_info(ioc, "reply_post_free_array pool: dma_pool_create failed\n"));
5357                         goto out;
5358                 }
5359                 ioc->reply_post_free_array =
5360                     dma_pool_alloc(ioc->reply_post_free_array_dma_pool,
5361                     GFP_KERNEL, &ioc->reply_post_free_array_dma);
5362                 if (!ioc->reply_post_free_array) {
5363                         dinitprintk(ioc,
5364                                     ioc_info(ioc, "reply_post_free_array pool: dma_pool_alloc failed\n"));
5365                         goto out;
5366                 }
5367         }
5368         ioc->config_page_sz = 512;
5369         ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev,
5370                         ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL);
5371         if (!ioc->config_page) {
5372                 ioc_err(ioc, "config page: dma_pool_alloc failed\n");
5373                 goto out;
5374         }
5375         dinitprintk(ioc,
5376                     ioc_info(ioc, "config page(0x%p): size(%d)\n",
5377                              ioc->config_page, ioc->config_page_sz));
5378         dinitprintk(ioc,
5379                     ioc_info(ioc, "config_page_dma(0x%llx)\n",
5380                              (unsigned long long)ioc->config_page_dma));
5381         total_sz += ioc->config_page_sz;
5382 
5383         ioc_info(ioc, "Allocated physical memory: size(%d kB)\n",
5384                  total_sz / 1024);
5385         ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
5386                  ioc->shost->can_queue, facts->RequestCredit);
5387         ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n",
5388                  ioc->shost->sg_tablesize);
5389         return 0;
5390 
5391  out:
5392         return -ENOMEM;
5393 }
5394 
5395 /**
5396  * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
5397  * @ioc: Pointer to MPT_ADAPTER structure
5398  * @cooked: Request raw or cooked IOC state
5399  *
5400  * Return: all IOC Doorbell register bits if cooked==0, else just the
5401  * Doorbell bits in MPI_IOC_STATE_MASK.
5402  */
5403 u32
5404 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
5405 {
5406         u32 s, sc;
5407 
5408         s = ioc->base_readl(&ioc->chip->Doorbell);
5409         sc = s & MPI2_IOC_STATE_MASK;
5410         return cooked ? sc : s;
5411 }
5412 
5413 /**
5414  * _base_wait_on_iocstate - waiting on a particular ioc state
5415  * @ioc: ?
5416  * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
5417  * @timeout: timeout in second
5418  *
5419  * Return: 0 for success, non-zero for failure.
5420  */
5421 static int
5422 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
5423 {
5424         u32 count, cntdn;
5425         u32 current_state;
5426 
5427         count = 0;
5428         cntdn = 1000 * timeout;
5429         do {
5430                 current_state = mpt3sas_base_get_iocstate(ioc, 1);
5431                 if (current_state == ioc_state)
5432                         return 0;
5433                 if (count && current_state == MPI2_IOC_STATE_FAULT)
5434                         break;
5435 
5436                 usleep_range(1000, 1500);
5437                 count++;
5438         } while (--cntdn);
5439 
5440         return current_state;
5441 }
5442 
5443 /**
5444  * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
5445  * a write to the doorbell)
5446  * @ioc: per adapter object
5447  *
5448  * Return: 0 for success, non-zero for failure.
5449  *
5450  * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
5451  */
5452 
5453 static int
5454 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
5455 {
5456         u32 cntdn, count;
5457         u32 int_status;
5458 
5459         count = 0;
5460         cntdn = 1000 * timeout;
5461         do {
5462                 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
5463                 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5464                         dhsprintk(ioc,
5465                                   ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5466                                            __func__, count, timeout));
5467                         return 0;
5468                 }
5469 
5470                 usleep_range(1000, 1500);
5471                 count++;
5472         } while (--cntdn);
5473 
5474         ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
5475                 __func__, count, int_status);
5476         return -EFAULT;
5477 }
5478 
5479 static int
5480 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
5481 {
5482         u32 cntdn, count;
5483         u32 int_status;
5484 
5485         count = 0;
5486         cntdn = 2000 * timeout;
5487         do {
5488                 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
5489                 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5490                         dhsprintk(ioc,
5491                                   ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5492                                            __func__, count, timeout));
5493                         return 0;
5494                 }
5495 
5496                 udelay(500);
5497                 count++;
5498         } while (--cntdn);
5499 
5500         ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
5501                 __func__, count, int_status);
5502         return -EFAULT;
5503 
5504 }
5505 
5506 /**
5507  * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
5508  * @ioc: per adapter object
5509  * @timeout: timeout in second
5510  *
5511  * Return: 0 for success, non-zero for failure.
5512  *
5513  * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
5514  * doorbell.
5515  */
5516 static int
5517 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
5518 {
5519         u32 cntdn, count;
5520         u32 int_status;
5521         u32 doorbell;
5522 
5523         count = 0;
5524         cntdn = 1000 * timeout;
5525         do {
5526                 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
5527                 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
5528                         dhsprintk(ioc,
5529                                   ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5530                                            __func__, count, timeout));
5531                         return 0;
5532                 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5533                         doorbell = ioc->base_readl(&ioc->chip->Doorbell);
5534                         if ((doorbell & MPI2_IOC_STATE_MASK) ==
5535                             MPI2_IOC_STATE_FAULT) {
5536                                 mpt3sas_base_fault_info(ioc , doorbell);
5537                                 return -EFAULT;
5538                         }
5539                 } else if (int_status == 0xFFFFFFFF)
5540                         goto out;
5541 
5542                 usleep_range(1000, 1500);
5543                 count++;
5544         } while (--cntdn);
5545 
5546  out:
5547         ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
5548                 __func__, count, int_status);
5549         return -EFAULT;
5550 }
5551 
5552 /**
5553  * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
5554  * @ioc: per adapter object
5555  * @timeout: timeout in second
5556  *
5557  * Return: 0 for success, non-zero for failure.
5558  */
5559 static int
5560 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
5561 {
5562         u32 cntdn, count;
5563         u32 doorbell_reg;
5564 
5565         count = 0;
5566         cntdn = 1000 * timeout;
5567         do {
5568                 doorbell_reg = ioc->base_readl(&ioc->chip->Doorbell);
5569                 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
5570                         dhsprintk(ioc,
5571                                   ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5572                                            __func__, count, timeout));
5573                         return 0;
5574                 }
5575 
5576                 usleep_range(1000, 1500);
5577                 count++;
5578         } while (--cntdn);
5579 
5580         ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
5581                 __func__, count, doorbell_reg);
5582         return -EFAULT;
5583 }
5584 
5585 /**
5586  * _base_send_ioc_reset - send doorbell reset
5587  * @ioc: per adapter object
5588  * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
5589  * @timeout: timeout in second
5590  *
5591  * Return: 0 for success, non-zero for failure.
5592  */
5593 static int
5594 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
5595 {
5596         u32 ioc_state;
5597         int r = 0;
5598 
5599         if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
5600                 ioc_err(ioc, "%s: unknown reset_type\n", __func__);
5601                 return -EFAULT;
5602         }
5603 
5604         if (!(ioc->facts.IOCCapabilities &
5605            MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
5606                 return -EFAULT;
5607 
5608         ioc_info(ioc, "sending message unit reset !!\n");
5609 
5610         writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
5611             &ioc->chip->Doorbell);
5612         if ((_base_wait_for_doorbell_ack(ioc, 15))) {
5613                 r = -EFAULT;
5614                 goto out;
5615         }
5616         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
5617         if (ioc_state) {
5618                 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
5619                         __func__, ioc_state);
5620                 r = -EFAULT;
5621                 goto out;
5622         }
5623  out:
5624         ioc_info(ioc, "message unit reset: %s\n",
5625                  r == 0 ? "SUCCESS" : "FAILED");
5626         return r;
5627 }
5628 
5629 /**
5630  * mpt3sas_wait_for_ioc - IOC's operational state is checked here.
5631  * @ioc: per adapter object
5632  * @wait_count: timeout in seconds
5633  *
5634  * Return: Waits up to timeout seconds for the IOC to
5635  * become operational. Returns 0 if IOC is present
5636  * and operational; otherwise returns -EFAULT.
5637  */
5638 
5639 int
5640 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout)
5641 {
5642         int wait_state_count = 0;
5643         u32 ioc_state;
5644 
5645         do {
5646                 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
5647                 if (ioc_state == MPI2_IOC_STATE_OPERATIONAL)
5648                         break;
5649                 ssleep(1);
5650                 ioc_info(ioc, "%s: waiting for operational state(count=%d)\n",
5651                                 __func__, ++wait_state_count);
5652         } while (--timeout);
5653         if (!timeout) {
5654                 ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__);
5655                 return -EFAULT;
5656         }
5657         if (wait_state_count)
5658                 ioc_info(ioc, "ioc is operational\n");
5659         return 0;
5660 }
5661 
5662 /**
5663  * _base_handshake_req_reply_wait - send request thru doorbell interface
5664  * @ioc: per adapter object
5665  * @request_bytes: request length
5666  * @request: pointer having request payload
5667  * @reply_bytes: reply length
5668  * @reply: pointer to reply payload
5669  * @timeout: timeout in second
5670  *
5671  * Return: 0 for success, non-zero for failure.
5672  */
5673 static int
5674 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
5675         u32 *request, int reply_bytes, u16 *reply, int timeout)
5676 {
5677         MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
5678         int i;
5679         u8 failed;
5680         __le32 *mfp;
5681 
5682         /* make sure doorbell is not in use */
5683         if ((ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
5684                 ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__);
5685                 return -EFAULT;
5686         }
5687 
5688         /* clear pending doorbell interrupts from previous state changes */
5689         if (ioc->base_readl(&ioc->chip->HostInterruptStatus) &
5690             MPI2_HIS_IOC2SYS_DB_STATUS)
5691                 writel(0, &ioc->chip->HostInterruptStatus);
5692 
5693         /* send message to ioc */
5694         writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
5695             ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
5696             &ioc->chip->Doorbell);
5697 
5698         if ((_base_spin_on_doorbell_int(ioc, 5))) {
5699                 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
5700                         __LINE__);
5701                 return -EFAULT;
5702         }
5703         writel(0, &ioc->chip->HostInterruptStatus);
5704 
5705         if ((_base_wait_for_doorbell_ack(ioc, 5))) {
5706                 ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n",
5707                         __LINE__);
5708                 return -EFAULT;
5709         }
5710 
5711         /* send message 32-bits at a time */
5712         for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
5713                 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
5714                 if ((_base_wait_for_doorbell_ack(ioc, 5)))
5715                         failed = 1;
5716         }
5717 
5718         if (failed) {
5719                 ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n",
5720                         __LINE__);
5721                 return -EFAULT;
5722         }
5723 
5724         /* now wait for the reply */
5725         if ((_base_wait_for_doorbell_int(ioc, timeout))) {
5726                 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
5727                         __LINE__);
5728                 return -EFAULT;
5729         }
5730 
5731         /* read the first two 16-bits, it gives the total length of the reply */
5732         reply[0] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
5733             & MPI2_DOORBELL_DATA_MASK);
5734         writel(0, &ioc->chip->HostInterruptStatus);
5735         if ((_base_wait_for_doorbell_int(ioc, 5))) {
5736                 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
5737                         __LINE__);
5738                 return -EFAULT;
5739         }
5740         reply[1] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
5741             & MPI2_DOORBELL_DATA_MASK);
5742         writel(0, &ioc->chip->HostInterruptStatus);
5743 
5744         for (i = 2; i < default_reply->MsgLength * 2; i++)  {
5745                 if ((_base_wait_for_doorbell_int(ioc, 5))) {
5746                         ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
5747                                 __LINE__);
5748                         return -EFAULT;
5749                 }
5750                 if (i >=  reply_bytes/2) /* overflow case */
5751                         ioc->base_readl(&ioc->chip->Doorbell);
5752                 else
5753                         reply[i] = le16_to_cpu(
5754                             ioc->base_readl(&ioc->chip->Doorbell)
5755                             & MPI2_DOORBELL_DATA_MASK);
5756                 writel(0, &ioc->chip->HostInterruptStatus);
5757         }
5758 
5759         _base_wait_for_doorbell_int(ioc, 5);
5760         if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
5761                 dhsprintk(ioc,
5762                           ioc_info(ioc, "doorbell is in use (line=%d)\n",
5763                                    __LINE__));
5764         }
5765         writel(0, &ioc->chip->HostInterruptStatus);
5766 
5767         if (ioc->logging_level & MPT_DEBUG_INIT) {
5768                 mfp = (__le32 *)reply;
5769                 pr_info("\toffset:data\n");
5770                 for (i = 0; i < reply_bytes/4; i++)
5771                         pr_info("\t[0x%02x]:%08x\n", i*4,
5772                             le32_to_cpu(mfp[i]));
5773         }
5774         return 0;
5775 }
5776 
5777 /**
5778  * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
5779  * @ioc: per adapter object
5780  * @mpi_reply: the reply payload from FW
5781  * @mpi_request: the request payload sent to FW
5782  *
5783  * The SAS IO Unit Control Request message allows the host to perform low-level
5784  * operations, such as resets on the PHYs of the IO Unit, also allows the host
5785  * to obtain the IOC assigned device handles for a device if it has other
5786  * identifying information about the device, in addition allows the host to
5787  * remove IOC resources associated with the device.
5788  *
5789  * Return: 0 for success, non-zero for failure.
5790  */
5791 int
5792 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
5793         Mpi2SasIoUnitControlReply_t *mpi_reply,
5794         Mpi2SasIoUnitControlRequest_t *mpi_request)
5795 {
5796         u16 smid;
5797         u8 issue_reset = 0;
5798         int rc;
5799         void *request;
5800 
5801         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5802 
5803         mutex_lock(&ioc->base_cmds.mutex);
5804 
5805         if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
5806                 ioc_err(ioc, "%s: base_cmd in use\n", __func__);
5807                 rc = -EAGAIN;
5808                 goto out;
5809         }
5810 
5811         rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
5812         if (rc)
5813                 goto out;
5814 
5815         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
5816         if (!smid) {
5817                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
5818                 rc = -EAGAIN;
5819                 goto out;
5820         }
5821 
5822         rc = 0;
5823         ioc->base_cmds.status = MPT3_CMD_PENDING;
5824         request = mpt3sas_base_get_msg_frame(ioc, smid);
5825         ioc->base_cmds.smid = smid;
5826         memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
5827         if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
5828             mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
5829                 ioc->ioc_link_reset_in_progress = 1;
5830         init_completion(&ioc->base_cmds.done);
5831         ioc->put_smid_default(ioc, smid);
5832         wait_for_completion_timeout(&ioc->base_cmds.done,
5833             msecs_to_jiffies(10000));
5834         if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
5835             mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
5836             ioc->ioc_link_reset_in_progress)
5837                 ioc->ioc_link_reset_in_progress = 0;
5838         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
5839                 issue_reset =
5840                         mpt3sas_base_check_cmd_timeout(ioc,
5841                                 ioc->base_cmds.status, mpi_request,
5842                                 sizeof(Mpi2SasIoUnitControlRequest_t)/4);
5843                 goto issue_host_reset;
5844         }
5845         if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
5846                 memcpy(mpi_reply, ioc->base_cmds.reply,
5847                     sizeof(Mpi2SasIoUnitControlReply_t));
5848         else
5849                 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
5850         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5851         goto out;
5852 
5853  issue_host_reset:
5854         if (issue_reset)
5855                 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
5856         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5857         rc = -EFAULT;
5858  out:
5859         mutex_unlock(&ioc->base_cmds.mutex);
5860         return rc;
5861 }
5862 
5863 /**
5864  * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
5865  * @ioc: per adapter object
5866  * @mpi_reply: the reply payload from FW
5867  * @mpi_request: the request payload sent to FW
5868  *
5869  * The SCSI Enclosure Processor request message causes the IOC to
5870  * communicate with SES devices to control LED status signals.
5871  *
5872  * Return: 0 for success, non-zero for failure.
5873  */
5874 int
5875 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
5876         Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
5877 {
5878         u16 smid;
5879         u8 issue_reset = 0;
5880         int rc;
5881         void *request;
5882 
5883         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5884 
5885         mutex_lock(&ioc->base_cmds.mutex);
5886 
5887         if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
5888                 ioc_err(ioc, "%s: base_cmd in use\n", __func__);
5889                 rc = -EAGAIN;
5890                 goto out;
5891         }
5892 
5893         rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
5894         if (rc)
5895                 goto out;
5896 
5897         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
5898         if (!smid) {
5899                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
5900                 rc = -EAGAIN;
5901                 goto out;
5902         }
5903 
5904         rc = 0;
5905         ioc->base_cmds.status = MPT3_CMD_PENDING;
5906         request = mpt3sas_base_get_msg_frame(ioc, smid);
5907         ioc->base_cmds.smid = smid;
5908         memset(request, 0, ioc->request_sz);
5909         memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
5910         init_completion(&ioc->base_cmds.done);
5911         ioc->put_smid_default(ioc, smid);
5912         wait_for_completion_timeout(&ioc->base_cmds.done,
5913             msecs_to_jiffies(10000));
5914         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
5915                 issue_reset =
5916                         mpt3sas_base_check_cmd_timeout(ioc,
5917                                 ioc->base_cmds.status, mpi_request,
5918                                 sizeof(Mpi2SepRequest_t)/4);
5919                 goto issue_host_reset;
5920         }
5921         if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
5922                 memcpy(mpi_reply, ioc->base_cmds.reply,
5923                     sizeof(Mpi2SepReply_t));
5924         else
5925                 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
5926         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5927         goto out;
5928 
5929  issue_host_reset:
5930         if (issue_reset)
5931                 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
5932         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5933         rc = -EFAULT;
5934  out:
5935         mutex_unlock(&ioc->base_cmds.mutex);
5936         return rc;
5937 }
5938 
5939 /**
5940  * _base_get_port_facts - obtain port facts reply and save in ioc
5941  * @ioc: per adapter object
5942  * @port: ?
5943  *
5944  * Return: 0 for success, non-zero for failure.
5945  */
5946 static int
5947 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
5948 {
5949         Mpi2PortFactsRequest_t mpi_request;
5950         Mpi2PortFactsReply_t mpi_reply;
5951         struct mpt3sas_port_facts *pfacts;
5952         int mpi_reply_sz, mpi_request_sz, r;
5953 
5954         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5955 
5956         mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
5957         mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
5958         memset(&mpi_request, 0, mpi_request_sz);
5959         mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
5960         mpi_request.PortNumber = port;
5961         r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
5962             (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
5963 
5964         if (r != 0) {
5965                 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
5966                 return r;
5967         }
5968 
5969         pfacts = &ioc->pfacts[port];
5970         memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
5971         pfacts->PortNumber = mpi_reply.PortNumber;
5972         pfacts->VP_ID = mpi_reply.VP_ID;
5973         pfacts->VF_ID = mpi_reply.VF_ID;
5974         pfacts->MaxPostedCmdBuffers =
5975             le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
5976 
5977         return 0;
5978 }
5979 
5980 /**
5981  * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
5982  * @ioc: per adapter object
5983  * @timeout:
5984  *
5985  * Return: 0 for success, non-zero for failure.
5986  */
5987 static int
5988 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
5989 {
5990         u32 ioc_state;
5991         int rc;
5992 
5993         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5994 
5995         if (ioc->pci_error_recovery) {
5996                 dfailprintk(ioc,
5997                             ioc_info(ioc, "%s: host in pci error recovery\n",
5998                                      __func__));
5999                 return -EFAULT;
6000         }
6001 
6002         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6003         dhsprintk(ioc,
6004                   ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
6005                            __func__, ioc_state));
6006 
6007         if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
6008             (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
6009                 return 0;
6010 
6011         if (ioc_state & MPI2_DOORBELL_USED) {
6012                 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n"));
6013                 goto issue_diag_reset;
6014         }
6015 
6016         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
6017                 mpt3sas_base_fault_info(ioc, ioc_state &
6018                     MPI2_DOORBELL_DATA_MASK);
6019                 goto issue_diag_reset;
6020         }
6021 
6022         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
6023         if (ioc_state) {
6024                 dfailprintk(ioc,
6025                             ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6026                                      __func__, ioc_state));
6027                 return -EFAULT;
6028         }
6029 
6030  issue_diag_reset:
6031         rc = _base_diag_reset(ioc);
6032         return rc;
6033 }
6034 
6035 /**
6036  * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
6037  * @ioc: per adapter object
6038  *
6039  * Return: 0 for success, non-zero for failure.
6040  */
6041 static int
6042 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
6043 {
6044         Mpi2IOCFactsRequest_t mpi_request;
6045         Mpi2IOCFactsReply_t mpi_reply;
6046         struct mpt3sas_facts *facts;
6047         int mpi_reply_sz, mpi_request_sz, r;
6048 
6049         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6050 
6051         r = _base_wait_for_iocstate(ioc, 10);
6052         if (r) {
6053                 dfailprintk(ioc,
6054                             ioc_info(ioc, "%s: failed getting to correct state\n",
6055                                      __func__));
6056                 return r;
6057         }
6058         mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
6059         mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
6060         memset(&mpi_request, 0, mpi_request_sz);
6061         mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
6062         r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
6063             (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
6064 
6065         if (r != 0) {
6066                 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
6067                 return r;
6068         }
6069 
6070         facts = &ioc->facts;
6071         memset(facts, 0, sizeof(struct mpt3sas_facts));
6072         facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
6073         facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
6074         facts->VP_ID = mpi_reply.VP_ID;
6075         facts->VF_ID = mpi_reply.VF_ID;
6076         facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
6077         facts->MaxChainDepth = mpi_reply.MaxChainDepth;
6078         facts->WhoInit = mpi_reply.WhoInit;
6079         facts->NumberOfPorts = mpi_reply.NumberOfPorts;
6080         facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
6081         if (ioc->msix_enable && (facts->MaxMSIxVectors <=
6082             MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc)))
6083                 ioc->combined_reply_queue = 0;
6084         facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
6085         facts->MaxReplyDescriptorPostQueueDepth =
6086             le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
6087         facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
6088         facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
6089         if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
6090                 ioc->ir_firmware = 1;
6091         if ((facts->IOCCapabilities &
6092               MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
6093                 ioc->rdpq_array_capable = 1;
6094         if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
6095             && ioc->is_aero_ioc)
6096                 ioc->atomic_desc_capable = 1;
6097         facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
6098         facts->IOCRequestFrameSize =
6099             le16_to_cpu(mpi_reply.IOCRequestFrameSize);
6100         if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
6101                 facts->IOCMaxChainSegmentSize =
6102                         le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
6103         }
6104         facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
6105         facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
6106         ioc->shost->max_id = -1;
6107         facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
6108         facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
6109         facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
6110         facts->HighPriorityCredit =
6111             le16_to_cpu(mpi_reply.HighPriorityCredit);
6112         facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
6113         facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
6114         facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
6115 
6116         /*
6117          * Get the Page Size from IOC Facts. If it's 0, default to 4k.
6118          */
6119         ioc->page_size = 1 << facts->CurrentHostPageSize;
6120         if (ioc->page_size == 1) {
6121                 ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n");
6122                 ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
6123         }
6124         dinitprintk(ioc,
6125                     ioc_info(ioc, "CurrentHostPageSize(%d)\n",
6126                              facts->CurrentHostPageSize));
6127 
6128         dinitprintk(ioc,
6129                     ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n",
6130                              facts->RequestCredit, facts->MaxChainDepth));
6131         dinitprintk(ioc,
6132                     ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n",
6133                              facts->IOCRequestFrameSize * 4,
6134                              facts->ReplyFrameSize * 4));
6135         return 0;
6136 }
6137 
6138 /**
6139  * _base_send_ioc_init - send ioc_init to firmware
6140  * @ioc: per adapter object
6141  *
6142  * Return: 0 for success, non-zero for failure.
6143  */
6144 static int
6145 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
6146 {
6147         Mpi2IOCInitRequest_t mpi_request;
6148         Mpi2IOCInitReply_t mpi_reply;
6149         int i, r = 0;
6150         ktime_t current_time;
6151         u16 ioc_status;
6152         u32 reply_post_free_array_sz = 0;
6153 
6154         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6155 
6156         memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
6157         mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
6158         mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
6159         mpi_request.VF_ID = 0; /* TODO */
6160         mpi_request.VP_ID = 0;
6161         mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
6162         mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
6163         mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
6164 
6165         if (_base_is_controller_msix_enabled(ioc))
6166                 mpi_request.HostMSIxVectors = ioc->reply_queue_count;
6167         mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
6168         mpi_request.ReplyDescriptorPostQueueDepth =
6169             cpu_to_le16(ioc->reply_post_queue_depth);
6170         mpi_request.ReplyFreeQueueDepth =
6171             cpu_to_le16(ioc->reply_free_queue_depth);
6172 
6173         mpi_request.SenseBufferAddressHigh =
6174             cpu_to_le32((u64)ioc->sense_dma >> 32);
6175         mpi_request.SystemReplyAddressHigh =
6176             cpu_to_le32((u64)ioc->reply_dma >> 32);
6177         mpi_request.SystemRequestFrameBaseAddress =
6178             cpu_to_le64((u64)ioc->request_dma);
6179         mpi_request.ReplyFreeQueueAddress =
6180             cpu_to_le64((u64)ioc->reply_free_dma);
6181 
6182         if (ioc->rdpq_array_enable) {
6183                 reply_post_free_array_sz = ioc->reply_queue_count *
6184                     sizeof(Mpi2IOCInitRDPQArrayEntry);
6185                 memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz);
6186                 for (i = 0; i < ioc->reply_queue_count; i++)
6187                         ioc->reply_post_free_array[i].RDPQBaseAddress =
6188                             cpu_to_le64(
6189                                 (u64)ioc->reply_post[i].reply_post_free_dma);
6190                 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
6191                 mpi_request.ReplyDescriptorPostQueueAddress =
6192                     cpu_to_le64((u64)ioc->reply_post_free_array_dma);
6193         } else {
6194                 mpi_request.ReplyDescriptorPostQueueAddress =
6195                     cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
6196         }
6197 
6198         /* This time stamp specifies number of milliseconds
6199          * since epoch ~ midnight January 1, 1970.
6200          */
6201         current_time = ktime_get_real();
6202         mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
6203 
6204         if (ioc->logging_level & MPT_DEBUG_INIT) {
6205                 __le32 *mfp;
6206                 int i;
6207 
6208                 mfp = (__le32 *)&mpi_request;
6209                 pr_info("\toffset:data\n");
6210                 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
6211                         pr_info("\t[0x%02x]:%08x\n", i*4,
6212                             le32_to_cpu(mfp[i]));
6213         }
6214 
6215         r = _base_handshake_req_reply_wait(ioc,
6216             sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
6217             sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10);
6218 
6219         if (r != 0) {
6220                 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
6221                 return r;
6222         }
6223 
6224         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
6225         if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
6226             mpi_reply.IOCLogInfo) {
6227                 ioc_err(ioc, "%s: failed\n", __func__);
6228                 r = -EIO;
6229         }
6230 
6231         return r;
6232 }
6233 
6234 /**
6235  * mpt3sas_port_enable_done - command completion routine for port enable
6236  * @ioc: per adapter object
6237  * @smid: system request message index
6238  * @msix_index: MSIX table index supplied by the OS
6239  * @reply: reply message frame(lower 32bit addr)
6240  *
6241  * Return: 1 meaning mf should be freed from _base_interrupt
6242  *          0 means the mf is freed from this function.
6243  */
6244 u8
6245 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
6246         u32 reply)
6247 {
6248         MPI2DefaultReply_t *mpi_reply;
6249         u16 ioc_status;
6250 
6251         if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
6252                 return 1;
6253 
6254         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
6255         if (!mpi_reply)
6256                 return 1;
6257 
6258         if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
6259                 return 1;
6260 
6261         ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
6262         ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
6263         ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
6264         memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
6265         ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
6266         if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
6267                 ioc->port_enable_failed = 1;
6268 
6269         if (ioc->is_driver_loading) {
6270                 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
6271                         mpt3sas_port_enable_complete(ioc);
6272                         return 1;
6273                 } else {
6274                         ioc->start_scan_failed = ioc_status;
6275                         ioc->start_scan = 0;
6276                         return 1;
6277                 }
6278         }
6279         complete(&ioc->port_enable_cmds.done);
6280         return 1;
6281 }
6282 
6283 /**
6284  * _base_send_port_enable - send port_enable(discovery stuff) to firmware
6285  * @ioc: per adapter object
6286  *
6287  * Return: 0 for success, non-zero for failure.
6288  */
6289 static int
6290 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
6291 {
6292         Mpi2PortEnableRequest_t *mpi_request;
6293         Mpi2PortEnableReply_t *mpi_reply;
6294         int r = 0;
6295         u16 smid;
6296         u16 ioc_status;
6297 
6298         ioc_info(ioc, "sending port enable !!\n");
6299 
6300         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
6301                 ioc_err(ioc, "%s: internal command already in use\n", __func__);
6302                 return -EAGAIN;
6303         }
6304 
6305         smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
6306         if (!smid) {
6307                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6308                 return -EAGAIN;
6309         }
6310 
6311         ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
6312         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
6313         ioc->port_enable_cmds.smid = smid;
6314         memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
6315         mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
6316 
6317         init_completion(&ioc->port_enable_cmds.done);
6318         ioc->put_smid_default(ioc, smid);
6319         wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
6320         if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
6321                 ioc_err(ioc, "%s: timeout\n", __func__);
6322                 _debug_dump_mf(mpi_request,
6323                     sizeof(Mpi2PortEnableRequest_t)/4);
6324                 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
6325                         r = -EFAULT;
6326                 else
6327                         r = -ETIME;
6328                 goto out;
6329         }
6330 
6331         mpi_reply = ioc->port_enable_cmds.reply;
6332         ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
6333         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
6334                 ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n",
6335                         __func__, ioc_status);
6336                 r = -EFAULT;
6337                 goto out;
6338         }
6339 
6340  out:
6341         ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
6342         ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED");
6343         return r;
6344 }
6345 
6346 /**
6347  * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
6348  * @ioc: per adapter object
6349  *
6350  * Return: 0 for success, non-zero for failure.
6351  */
6352 int
6353 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
6354 {
6355         Mpi2PortEnableRequest_t *mpi_request;
6356         u16 smid;
6357 
6358         ioc_info(ioc, "sending port enable !!\n");
6359 
6360         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
6361                 ioc_err(ioc, "%s: internal command already in use\n", __func__);
6362                 return -EAGAIN;
6363         }
6364 
6365         smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
6366         if (!smid) {
6367                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6368                 return -EAGAIN;
6369         }
6370 
6371         ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
6372         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
6373         ioc->port_enable_cmds.smid = smid;
6374         memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
6375         mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
6376 
6377         ioc->put_smid_default(ioc, smid);
6378         return 0;
6379 }
6380 
6381 /**
6382  * _base_determine_wait_on_discovery - desposition
6383  * @ioc: per adapter object
6384  *
6385  * Decide whether to wait on discovery to complete. Used to either
6386  * locate boot device, or report volumes ahead of physical devices.
6387  *
6388  * Return: 1 for wait, 0 for don't wait.
6389  */
6390 static int
6391 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
6392 {
6393         /* We wait for discovery to complete if IR firmware is loaded.
6394          * The sas topology events arrive before PD events, so we need time to
6395          * turn on the bit in ioc->pd_handles to indicate PD
6396          * Also, it maybe required to report Volumes ahead of physical
6397          * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
6398          */
6399         if (ioc->ir_firmware)
6400                 return 1;
6401 
6402         /* if no Bios, then we don't need to wait */
6403         if (!ioc->bios_pg3.BiosVersion)
6404                 return 0;
6405 
6406         /* Bios is present, then we drop down here.
6407          *
6408          * If there any entries in the Bios Page 2, then we wait
6409          * for discovery to complete.
6410          */
6411 
6412         /* Current Boot Device */
6413         if ((ioc->bios_pg2.CurrentBootDeviceForm &
6414             MPI2_BIOSPAGE2_FORM_MASK) ==
6415             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
6416         /* Request Boot Device */
6417            (ioc->bios_pg2.ReqBootDeviceForm &
6418             MPI2_BIOSPAGE2_FORM_MASK) ==
6419             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
6420         /* Alternate Request Boot Device */
6421            (ioc->bios_pg2.ReqAltBootDeviceForm &
6422             MPI2_BIOSPAGE2_FORM_MASK) ==
6423             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
6424                 return 0;
6425 
6426         return 1;
6427 }
6428 
6429 /**
6430  * _base_unmask_events - turn on notification for this event
6431  * @ioc: per adapter object
6432  * @event: firmware event
6433  *
6434  * The mask is stored in ioc->event_masks.
6435  */
6436 static void
6437 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
6438 {
6439         u32 desired_event;
6440 
6441         if (event >= 128)
6442                 return;
6443 
6444         desired_event = (1 << (event % 32));
6445 
6446         if (event < 32)
6447                 ioc->event_masks[0] &= ~desired_event;
6448         else if (event < 64)
6449                 ioc->event_masks[1] &= ~desired_event;
6450         else if (event < 96)
6451                 ioc->event_masks[2] &= ~desired_event;
6452         else if (event < 128)
6453                 ioc->event_masks[3] &= ~desired_event;
6454 }
6455 
6456 /**
6457  * _base_event_notification - send event notification
6458  * @ioc: per adapter object
6459  *
6460  * Return: 0 for success, non-zero for failure.
6461  */
6462 static int
6463 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
6464 {
6465         Mpi2EventNotificationRequest_t *mpi_request;
6466         u16 smid;
6467         int r = 0;
6468         int i;
6469 
6470         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6471 
6472         if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
6473                 ioc_err(ioc, "%s: internal command already in use\n", __func__);
6474                 return -EAGAIN;
6475         }
6476 
6477         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
6478         if (!smid) {
6479                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6480                 return -EAGAIN;
6481         }
6482         ioc->base_cmds.status = MPT3_CMD_PENDING;
6483         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
6484         ioc->base_cmds.smid = smid;
6485         memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
6486         mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
6487         mpi_request->VF_ID = 0; /* TODO */
6488         mpi_request->VP_ID = 0;
6489         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
6490                 mpi_request->EventMasks[i] =
6491                     cpu_to_le32(ioc->event_masks[i]);
6492         init_completion(&ioc->base_cmds.done);
6493         ioc->put_smid_default(ioc, smid);
6494         wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
6495         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
6496                 ioc_err(ioc, "%s: timeout\n", __func__);
6497                 _debug_dump_mf(mpi_request,
6498                     sizeof(Mpi2EventNotificationRequest_t)/4);
6499                 if (ioc->base_cmds.status & MPT3_CMD_RESET)
6500                         r = -EFAULT;
6501                 else
6502                         r = -ETIME;
6503         } else
6504                 dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__));
6505         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6506         return r;
6507 }
6508 
6509 /**
6510  * mpt3sas_base_validate_event_type - validating event types
6511  * @ioc: per adapter object
6512  * @event_type: firmware event
6513  *
6514  * This will turn on firmware event notification when application
6515  * ask for that event. We don't mask events that are already enabled.
6516  */
6517 void
6518 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
6519 {
6520         int i, j;
6521         u32 event_mask, desired_event;
6522         u8 send_update_to_fw;
6523 
6524         for (i = 0, send_update_to_fw = 0; i <
6525             MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
6526                 event_mask = ~event_type[i];
6527                 desired_event = 1;
6528                 for (j = 0; j < 32; j++) {
6529                         if (!(event_mask & desired_event) &&
6530                             (ioc->event_masks[i] & desired_event)) {
6531                                 ioc->event_masks[i] &= ~desired_event;
6532                                 send_update_to_fw = 1;
6533                         }
6534                         desired_event = (desired_event << 1);
6535                 }
6536         }
6537 
6538         if (!send_update_to_fw)
6539                 return;
6540 
6541         mutex_lock(&ioc->base_cmds.mutex);
6542         _base_event_notification(ioc);
6543         mutex_unlock(&ioc->base_cmds.mutex);
6544 }
6545 
6546 /**
6547  * _base_diag_reset - the "big hammer" start of day reset
6548  * @ioc: per adapter object
6549  *
6550  * Return: 0 for success, non-zero for failure.
6551  */
6552 static int
6553 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
6554 {
6555         u32 host_diagnostic;
6556         u32 ioc_state;
6557         u32 count;
6558         u32 hcb_size;
6559 
6560         ioc_info(ioc, "sending diag reset !!\n");
6561 
6562         drsprintk(ioc, ioc_info(ioc, "clear interrupts\n"));
6563 
6564         count = 0;
6565         do {
6566                 /* Write magic sequence to WriteSequence register
6567                  * Loop until in diagnostic mode
6568                  */
6569                 drsprintk(ioc, ioc_info(ioc, "write magic sequence\n"));
6570                 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
6571                 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
6572                 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
6573                 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
6574                 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
6575                 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
6576                 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
6577 
6578                 /* wait 100 msec */
6579                 msleep(100);
6580 
6581                 if (count++ > 20)
6582                         goto out;
6583 
6584                 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
6585                 drsprintk(ioc,
6586                           ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
6587                                    count, host_diagnostic));
6588 
6589         } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
6590 
6591         hcb_size = ioc->base_readl(&ioc->chip->HCBSize);
6592 
6593         drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n"));
6594         writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
6595              &ioc->chip->HostDiagnostic);
6596 
6597         /*This delay allows the chip PCIe hardware time to finish reset tasks*/
6598         msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
6599 
6600         /* Approximately 300 second max wait */
6601         for (count = 0; count < (300000000 /
6602                 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
6603 
6604                 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
6605 
6606                 if (host_diagnostic == 0xFFFFFFFF)
6607                         goto out;
6608                 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
6609                         break;
6610 
6611                 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
6612         }
6613 
6614         if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
6615 
6616                 drsprintk(ioc,
6617                           ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n"));
6618                 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
6619                 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
6620                 writel(host_diagnostic, &ioc->chip->HostDiagnostic);
6621 
6622                 drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n"));
6623                 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
6624                     &ioc->chip->HCBSize);
6625         }
6626 
6627         drsprintk(ioc, ioc_info(ioc, "restart the adapter\n"));
6628         writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
6629             &ioc->chip->HostDiagnostic);
6630 
6631         drsprintk(ioc,
6632                   ioc_info(ioc, "disable writes to the diagnostic register\n"));
6633         writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
6634 
6635         drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n"));
6636         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
6637         if (ioc_state) {
6638                 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6639                         __func__, ioc_state);
6640                 goto out;
6641         }
6642 
6643         ioc_info(ioc, "diag reset: SUCCESS\n");
6644         return 0;
6645 
6646  out:
6647         ioc_err(ioc, "diag reset: FAILED\n");
6648         return -EFAULT;
6649 }
6650 
6651 /**
6652  * _base_make_ioc_ready - put controller in READY state
6653  * @ioc: per adapter object
6654  * @type: FORCE_BIG_HAMMER or SOFT_RESET
6655  *
6656  * Return: 0 for success, non-zero for failure.
6657  */
6658 static int
6659 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
6660 {
6661         u32 ioc_state;
6662         int rc;
6663         int count;
6664 
6665         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6666 
6667         if (ioc->pci_error_recovery)
6668                 return 0;
6669 
6670         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6671         dhsprintk(ioc,
6672                   ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
6673                            __func__, ioc_state));
6674 
6675         /* if in RESET state, it should move to READY state shortly */
6676         count = 0;
6677         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
6678                 while ((ioc_state & MPI2_IOC_STATE_MASK) !=
6679                     MPI2_IOC_STATE_READY) {
6680                         if (count++ == 10) {
6681                                 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6682                                         __func__, ioc_state);
6683                                 return -EFAULT;
6684                         }
6685                         ssleep(1);
6686                         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6687                 }
6688         }
6689 
6690         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
6691                 return 0;
6692 
6693         if (ioc_state & MPI2_DOORBELL_USED) {
6694                 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n"));
6695                 goto issue_diag_reset;
6696         }
6697 
6698         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
6699                 mpt3sas_base_fault_info(ioc, ioc_state &
6700                     MPI2_DOORBELL_DATA_MASK);
6701                 goto issue_diag_reset;
6702         }
6703 
6704         if (type == FORCE_BIG_HAMMER)
6705                 goto issue_diag_reset;
6706 
6707         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
6708                 if (!(_base_send_ioc_reset(ioc,
6709                     MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
6710                         return 0;
6711         }
6712 
6713  issue_diag_reset:
6714         rc = _base_diag_reset(ioc);
6715         return rc;
6716 }
6717 
6718 /**
6719  * _base_make_ioc_operational - put controller in OPERATIONAL state
6720  * @ioc: per adapter object
6721  *
6722  * Return: 0 for success, non-zero for failure.
6723  */
6724 static int
6725 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
6726 {
6727         int r, i, index, rc;
6728         unsigned long   flags;
6729         u32 reply_address;
6730         u16 smid;
6731         struct _tr_list *delayed_tr, *delayed_tr_next;
6732         struct _sc_list *delayed_sc, *delayed_sc_next;
6733         struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
6734         u8 hide_flag;
6735         struct adapter_reply_queue *reply_q;
6736         Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
6737 
6738         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6739 
6740         /* clean the delayed target reset list */
6741         list_for_each_entry_safe(delayed_tr, delayed_tr_next,
6742             &ioc->delayed_tr_list, list) {
6743                 list_del(&delayed_tr->list);
6744                 kfree(delayed_tr);
6745         }
6746 
6747 
6748         list_for_each_entry_safe(delayed_tr, delayed_tr_next,
6749             &ioc->delayed_tr_volume_list, list) {
6750                 list_del(&delayed_tr->list);
6751                 kfree(delayed_tr);
6752         }
6753 
6754         list_for_each_entry_safe(delayed_sc, delayed_sc_next,
6755             &ioc->delayed_sc_list, list) {
6756                 list_del(&delayed_sc->list);
6757                 kfree(delayed_sc);
6758         }
6759 
6760         list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
6761             &ioc->delayed_event_ack_list, list) {
6762                 list_del(&delayed_event_ack->list);
6763                 kfree(delayed_event_ack);
6764         }
6765 
6766         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
6767 
6768         /* hi-priority queue */
6769         INIT_LIST_HEAD(&ioc->hpr_free_list);
6770         smid = ioc->hi_priority_smid;
6771         for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
6772                 ioc->hpr_lookup[i].cb_idx = 0xFF;
6773                 ioc->hpr_lookup[i].smid = smid;
6774                 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
6775                     &ioc->hpr_free_list);
6776         }
6777 
6778         /* internal queue */
6779         INIT_LIST_HEAD(&ioc->internal_free_list);
6780         smid = ioc->internal_smid;
6781         for (i = 0; i < ioc->internal_depth; i++, smid++) {
6782                 ioc->internal_lookup[i].cb_idx = 0xFF;
6783                 ioc->internal_lookup[i].smid = smid;
6784                 list_add_tail(&ioc->internal_lookup[i].tracker_list,
6785                     &ioc->internal_free_list);
6786         }
6787 
6788         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
6789 
6790         /* initialize Reply Free Queue */
6791         for (i = 0, reply_address = (u32)ioc->reply_dma ;
6792             i < ioc->reply_free_queue_depth ; i++, reply_address +=
6793             ioc->reply_sz) {
6794                 ioc->reply_free[i] = cpu_to_le32(reply_address);
6795                 if (ioc->is_mcpu_endpoint)
6796                         _base_clone_reply_to_sys_mem(ioc,
6797                                         reply_address, i);
6798         }
6799 
6800         /* initialize reply queues */
6801         if (ioc->is_driver_loading)
6802                 _base_assign_reply_queues(ioc);
6803 
6804         /* initialize Reply Post Free Queue */
6805         index = 0;
6806         reply_post_free_contig = ioc->reply_post[0].reply_post_free;
6807         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
6808                 /*
6809                  * If RDPQ is enabled, switch to the next allocation.
6810                  * Otherwise advance within the contiguous region.
6811                  */
6812                 if (ioc->rdpq_array_enable) {
6813                         reply_q->reply_post_free =
6814                                 ioc->reply_post[index++].reply_post_free;
6815                 } else {
6816                         reply_q->reply_post_free = reply_post_free_contig;
6817                         reply_post_free_contig += ioc->reply_post_queue_depth;
6818                 }
6819 
6820                 reply_q->reply_post_host_index = 0;
6821                 for (i = 0; i < ioc->reply_post_queue_depth; i++)
6822                         reply_q->reply_post_free[i].Words =
6823                             cpu_to_le64(ULLONG_MAX);
6824                 if (!_base_is_controller_msix_enabled(ioc))
6825                         goto skip_init_reply_post_free_queue;
6826         }
6827  skip_init_reply_post_free_queue:
6828 
6829         r = _base_send_ioc_init(ioc);
6830         if (r) {
6831                 /*
6832                  * No need to check IOC state for fault state & issue
6833                  * diag reset during host reset. This check is need
6834                  * only during driver load time.
6835                  */
6836                 if (!ioc->is_driver_loading)
6837                         return r;
6838 
6839                 rc = _base_check_for_fault_and_issue_reset(ioc);
6840                 if (rc || (_base_send_ioc_init(ioc)))
6841                         return r;
6842         }
6843 
6844         /* initialize reply free host index */
6845         ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
6846         writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
6847 
6848         /* initialize reply post host index */
6849         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
6850                 if (ioc->combined_reply_queue)
6851                         writel((reply_q->msix_index & 7)<<
6852                            MPI2_RPHI_MSIX_INDEX_SHIFT,
6853                            ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
6854                 else
6855                         writel(reply_q->msix_index <<
6856                                 MPI2_RPHI_MSIX_INDEX_SHIFT,
6857                                 &ioc->chip->ReplyPostHostIndex);
6858 
6859                 if (!_base_is_controller_msix_enabled(ioc))
6860                         goto skip_init_reply_post_host_index;
6861         }
6862 
6863  skip_init_reply_post_host_index:
6864 
6865         _base_unmask_interrupts(ioc);
6866 
6867         if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
6868                 r = _base_display_fwpkg_version(ioc);
6869                 if (r)
6870                         return r;
6871         }
6872 
6873         _base_static_config_pages(ioc);
6874         r = _base_event_notification(ioc);
6875         if (r)
6876                 return r;
6877 
6878         if (ioc->is_driver_loading) {
6879 
6880                 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
6881                     == 0x80) {
6882                         hide_flag = (u8) (
6883                             le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
6884                             MFG_PAGE10_HIDE_SSDS_MASK);
6885                         if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
6886                                 ioc->mfg_pg10_hide_flag = hide_flag;
6887                 }
6888 
6889                 ioc->wait_for_discovery_to_complete =
6890                     _base_determine_wait_on_discovery(ioc);
6891 
6892                 return r; /* scan_start and scan_finished support */
6893         }
6894 
6895         r = _base_send_port_enable(ioc);
6896         if (r)
6897                 return r;
6898 
6899         return r;
6900 }
6901 
6902 /**
6903  * mpt3sas_base_free_resources - free resources controller resources
6904  * @ioc: per adapter object
6905  */
6906 void
6907 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
6908 {
6909         dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6910 
6911         /* synchronizing freeing resource with pci_access_mutex lock */
6912         mutex_lock(&ioc->pci_access_mutex);
6913         if (ioc->chip_phys && ioc->chip) {
6914                 _base_mask_interrupts(ioc);
6915                 ioc->shost_recovery = 1;
6916                 _base_make_ioc_ready(ioc, SOFT_RESET);
6917                 ioc->shost_recovery = 0;
6918         }
6919 
6920         mpt3sas_base_unmap_resources(ioc);
6921         mutex_unlock(&ioc->pci_access_mutex);
6922         return;
6923 }
6924 
6925 /**
6926  * mpt3sas_base_attach - attach controller instance
6927  * @ioc: per adapter object
6928  *
6929  * Return: 0 for success, non-zero for failure.
6930  */
6931 int
6932 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
6933 {
6934         int r, i, rc;
6935         int cpu_id, last_cpu_id = 0;
6936 
6937         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6938 
6939         /* setup cpu_msix_table */
6940         ioc->cpu_count = num_online_cpus();
6941         for_each_online_cpu(cpu_id)
6942                 last_cpu_id = cpu_id;
6943         ioc->cpu_msix_table_sz = last_cpu_id + 1;
6944         ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
6945         ioc->reply_queue_count = 1;
6946         if (!ioc->cpu_msix_table) {
6947                 dfailprintk(ioc,
6948                             ioc_info(ioc, "allocation for cpu_msix_table failed!!!\n"));
6949                 r = -ENOMEM;
6950                 goto out_free_resources;
6951         }
6952 
6953         if (ioc->is_warpdrive) {
6954                 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
6955                     sizeof(resource_size_t *), GFP_KERNEL);
6956                 if (!ioc->reply_post_host_index) {
6957                         dfailprintk(ioc,
6958                                     ioc_info(ioc, "allocation for reply_post_host_index failed!!!\n"));
6959                         r = -ENOMEM;
6960                         goto out_free_resources;
6961                 }
6962         }
6963 
6964         ioc->smp_affinity_enable = smp_affinity_enable;
6965 
6966         ioc->rdpq_array_enable_assigned = 0;
6967         ioc->dma_mask = 0;
6968         if (ioc->is_aero_ioc)
6969                 ioc->base_readl = &_base_readl_aero;
6970         else
6971                 ioc->base_readl = &_base_readl;
6972         r = mpt3sas_base_map_resources(ioc);
6973         if (r)
6974                 goto out_free_resources;
6975 
6976         pci_set_drvdata(ioc->pdev, ioc->shost);
6977         r = _base_get_ioc_facts(ioc);
6978         if (r) {
6979                 rc = _base_check_for_fault_and_issue_reset(ioc);
6980                 if (rc || (_base_get_ioc_facts(ioc)))
6981                         goto out_free_resources;
6982         }
6983 
6984         switch (ioc->hba_mpi_version_belonged) {
6985         case MPI2_VERSION:
6986                 ioc->build_sg_scmd = &_base_build_sg_scmd;
6987                 ioc->build_sg = &_base_build_sg;
6988                 ioc->build_zero_len_sge = &_base_build_zero_len_sge;
6989                 ioc->get_msix_index_for_smlio = &_base_get_msix_index;
6990                 break;
6991         case MPI25_VERSION:
6992         case MPI26_VERSION:
6993                 /*
6994                  * In SAS3.0,
6995                  * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
6996                  * Target Status - all require the IEEE formated scatter gather
6997                  * elements.
6998                  */
6999                 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
7000                 ioc->build_sg = &_base_build_sg_ieee;
7001                 ioc->build_nvme_prp = &_base_build_nvme_prp;
7002                 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
7003                 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
7004                 if (ioc->high_iops_queues)
7005                         ioc->get_msix_index_for_smlio =
7006                                         &_base_get_high_iops_msix_index;
7007                 else
7008                         ioc->get_msix_index_for_smlio = &_base_get_msix_index;
7009                 break;
7010         }
7011         if (ioc->atomic_desc_capable) {
7012                 ioc->put_smid_default = &_base_put_smid_default_atomic;
7013                 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic;
7014                 ioc->put_smid_fast_path =
7015                                 &_base_put_smid_fast_path_atomic;
7016                 ioc->put_smid_hi_priority =
7017                                 &_base_put_smid_hi_priority_atomic;
7018         } else {
7019                 ioc->put_smid_default = &_base_put_smid_default;
7020                 ioc->put_smid_fast_path = &_base_put_smid_fast_path;
7021                 ioc->put_smid_hi_priority = &_base_put_smid_hi_priority;
7022                 if (ioc->is_mcpu_endpoint)
7023                         ioc->put_smid_scsi_io =
7024                                 &_base_put_smid_mpi_ep_scsi_io;
7025                 else
7026                         ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
7027         }
7028         /*
7029          * These function pointers for other requests that don't
7030          * the require IEEE scatter gather elements.
7031          *
7032          * For example Configuration Pages and SAS IOUNIT Control don't.
7033          */
7034         ioc->build_sg_mpi = &_base_build_sg;
7035         ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
7036 
7037         r = _base_make_ioc_ready(ioc, SOFT_RESET);
7038         if (r)
7039                 goto out_free_resources;
7040 
7041         ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
7042             sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
7043         if (!ioc->pfacts) {
7044                 r = -ENOMEM;
7045                 goto out_free_resources;
7046         }
7047 
7048         for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
7049                 r = _base_get_port_facts(ioc, i);
7050                 if (r) {
7051                         rc = _base_check_for_fault_and_issue_reset(ioc);
7052                         if (rc || (_base_get_port_facts(ioc, i)))
7053                                 goto out_free_resources;
7054                 }
7055         }
7056 
7057         r = _base_allocate_memory_pools(ioc);
7058         if (r)
7059                 goto out_free_resources;
7060 
7061         if (irqpoll_weight > 0)
7062                 ioc->thresh_hold = irqpoll_weight;
7063         else
7064                 ioc->thresh_hold = ioc->hba_queue_depth/4;
7065 
7066         _base_init_irqpolls(ioc);
7067         init_waitqueue_head(&ioc->reset_wq);
7068 
7069         /* allocate memory pd handle bitmask list */
7070         ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
7071         if (ioc->facts.MaxDevHandle % 8)
7072                 ioc->pd_handles_sz++;
7073         ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
7074             GFP_KERNEL);
7075         if (!ioc->pd_handles) {
7076                 r = -ENOMEM;
7077                 goto out_free_resources;
7078         }
7079         ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
7080             GFP_KERNEL);
7081         if (!ioc->blocking_handles) {
7082                 r = -ENOMEM;
7083                 goto out_free_resources;
7084         }
7085 
7086         /* allocate memory for pending OS device add list */
7087         ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
7088         if (ioc->facts.MaxDevHandle % 8)
7089                 ioc->pend_os_device_add_sz++;
7090         ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
7091             GFP_KERNEL);
7092         if (!ioc->pend_os_device_add)
7093                 goto out_free_resources;
7094 
7095         ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
7096         ioc->device_remove_in_progress =
7097                 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
7098         if (!ioc->device_remove_in_progress)
7099                 goto out_free_resources;
7100 
7101         ioc->fwfault_debug = mpt3sas_fwfault_debug;
7102 
7103         /* base internal command bits */
7104         mutex_init(&ioc->base_cmds.mutex);
7105         ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7106         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7107 
7108         /* port_enable command bits */
7109         ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7110         ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
7111 
7112         /* transport internal command bits */
7113         ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7114         ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
7115         mutex_init(&ioc->transport_cmds.mutex);
7116 
7117         /* scsih internal command bits */
7118         ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7119         ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
7120         mutex_init(&ioc->scsih_cmds.mutex);
7121 
7122         /* task management internal command bits */
7123         ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7124         ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
7125         mutex_init(&ioc->tm_cmds.mutex);
7126 
7127         /* config page internal command bits */
7128         ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7129         ioc->config_cmds.status = MPT3_CMD_NOT_USED;
7130         mutex_init(&ioc->config_cmds.mutex);
7131 
7132         /* ctl module internal command bits */
7133         ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7134         ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
7135         ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
7136         mutex_init(&ioc->ctl_cmds.mutex);
7137 
7138         if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
7139             !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
7140             !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
7141             !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
7142                 r = -ENOMEM;
7143                 goto out_free_resources;
7144         }
7145 
7146         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
7147                 ioc->event_masks[i] = -1;
7148 
7149         /* here we enable the events we care about */
7150         _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
7151         _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
7152         _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
7153         _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
7154         _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
7155         _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
7156         _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
7157         _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
7158         _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
7159         _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
7160         _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
7161         _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
7162         _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR);
7163         if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
7164                 if (ioc->is_gen35_ioc) {
7165                         _base_unmask_events(ioc,
7166                                 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
7167                         _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
7168                         _base_unmask_events(ioc,
7169                                 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
7170                 }
7171         }
7172         r = _base_make_ioc_operational(ioc);
7173         if (r)
7174                 goto out_free_resources;
7175 
7176         /*
7177          * Copy current copy of IOCFacts in prev_fw_facts
7178          * and it will be used during online firmware upgrade.
7179          */
7180         memcpy(&ioc->prev_fw_facts, &ioc->facts,
7181             sizeof(struct mpt3sas_facts));
7182 
7183         ioc->non_operational_loop = 0;
7184         ioc->got_task_abort_from_ioctl = 0;
7185         return 0;
7186 
7187  out_free_resources:
7188 
7189         ioc->remove_host = 1;
7190 
7191         mpt3sas_base_free_resources(ioc);
7192         _base_release_memory_pools(ioc);
7193         pci_set_drvdata(ioc->pdev, NULL);
7194         kfree(ioc->cpu_msix_table);
7195         if (ioc->is_warpdrive)
7196                 kfree(ioc->reply_post_host_index);
7197         kfree(ioc->pd_handles);
7198         kfree(ioc->blocking_handles);
7199         kfree(ioc->device_remove_in_progress);
7200         kfree(ioc->pend_os_device_add);
7201         kfree(ioc->tm_cmds.reply);
7202         kfree(ioc->transport_cmds.reply);
7203         kfree(ioc->scsih_cmds.reply);
7204         kfree(ioc->config_cmds.reply);
7205         kfree(ioc->base_cmds.reply);
7206         kfree(ioc->port_enable_cmds.reply);
7207         kfree(ioc->ctl_cmds.reply);
7208         kfree(ioc->ctl_cmds.sense);
7209         kfree(ioc->pfacts);
7210         ioc->ctl_cmds.reply = NULL;
7211         ioc->base_cmds.reply = NULL;
7212         ioc->tm_cmds.reply = NULL;
7213         ioc->scsih_cmds.reply = NULL;
7214         ioc->transport_cmds.reply = NULL;
7215         ioc->config_cmds.reply = NULL;
7216         ioc->pfacts = NULL;
7217         return r;
7218 }
7219 
7220 
7221 /**
7222  * mpt3sas_base_detach - remove controller instance
7223  * @ioc: per adapter object
7224  */
7225 void
7226 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
7227 {
7228         dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7229 
7230         mpt3sas_base_stop_watchdog(ioc);
7231         mpt3sas_base_free_resources(ioc);
7232         _base_release_memory_pools(ioc);
7233         mpt3sas_free_enclosure_list(ioc);
7234         pci_set_drvdata(ioc->pdev, NULL);
7235         kfree(ioc->cpu_msix_table);
7236         if (ioc->is_warpdrive)
7237                 kfree(ioc->reply_post_host_index);
7238         kfree(ioc->pd_handles);
7239         kfree(ioc->blocking_handles);
7240         kfree(ioc->device_remove_in_progress);
7241         kfree(ioc->pend_os_device_add);
7242         kfree(ioc->pfacts);
7243         kfree(ioc->ctl_cmds.reply);
7244         kfree(ioc->ctl_cmds.sense);
7245         kfree(ioc->base_cmds.reply);
7246         kfree(ioc->port_enable_cmds.reply);
7247         kfree(ioc->tm_cmds.reply);
7248         kfree(ioc->transport_cmds.reply);
7249         kfree(ioc->scsih_cmds.reply);
7250         kfree(ioc->config_cmds.reply);
7251 }
7252 
7253 /**
7254  * _base_pre_reset_handler - pre reset handler
7255  * @ioc: per adapter object
7256  */
7257 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc)
7258 {
7259         mpt3sas_scsih_pre_reset_handler(ioc);
7260         mpt3sas_ctl_pre_reset_handler(ioc);
7261         dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__));
7262 }
7263 
7264 /**
7265  * _base_after_reset_handler - after reset handler
7266  * @ioc: per adapter object
7267  */
7268 static void _base_after_reset_handler(struct MPT3SAS_ADAPTER *ioc)
7269 {
7270         mpt3sas_scsih_after_reset_handler(ioc);
7271         mpt3sas_ctl_after_reset_handler(ioc);
7272         dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_AFTER_RESET\n", __func__));
7273         if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
7274                 ioc->transport_cmds.status |= MPT3_CMD_RESET;
7275                 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
7276                 complete(&ioc->transport_cmds.done);
7277         }
7278         if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
7279                 ioc->base_cmds.status |= MPT3_CMD_RESET;
7280                 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
7281                 complete(&ioc->base_cmds.done);
7282         }
7283         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7284                 ioc->port_enable_failed = 1;
7285                 ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
7286                 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
7287                 if (ioc->is_driver_loading) {
7288                         ioc->start_scan_failed =
7289                                 MPI2_IOCSTATUS_INTERNAL_ERROR;
7290                         ioc->start_scan = 0;
7291                         ioc->port_enable_cmds.status =
7292                                 MPT3_CMD_NOT_USED;
7293                 } else {
7294                         complete(&ioc->port_enable_cmds.done);
7295                 }
7296         }
7297         if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
7298                 ioc->config_cmds.status |= MPT3_CMD_RESET;
7299                 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
7300                 ioc->config_cmds.smid = USHRT_MAX;
7301                 complete(&ioc->config_cmds.done);
7302         }
7303 }
7304 
7305 /**
7306  * _base_reset_done_handler - reset done handler
7307  * @ioc: per adapter object
7308  */
7309 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc)
7310 {
7311         mpt3sas_scsih_reset_done_handler(ioc);
7312         mpt3sas_ctl_reset_done_handler(ioc);
7313         dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__));
7314 }
7315 
7316 /**
7317  * mpt3sas_wait_for_commands_to_complete - reset controller
7318  * @ioc: Pointer to MPT_ADAPTER structure
7319  *
7320  * This function is waiting 10s for all pending commands to complete
7321  * prior to putting controller in reset.
7322  */
7323 void
7324 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
7325 {
7326         u32 ioc_state;
7327 
7328         ioc->pending_io_count = 0;
7329 
7330         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7331         if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
7332                 return;
7333 
7334         /* pending command count */
7335         ioc->pending_io_count = scsi_host_busy(ioc->shost);
7336 
7337         if (!ioc->pending_io_count)
7338                 return;
7339 
7340         /* wait for pending commands to complete */
7341         wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
7342 }
7343 
7344 /**
7345  * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts
7346  *     attributes during online firmware upgrade and update the corresponding
7347  *     IOC variables accordingly.
7348  *
7349  * @ioc: Pointer to MPT_ADAPTER structure
7350  */
7351 static int
7352 _base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc)
7353 {
7354         u16 pd_handles_sz;
7355         void *pd_handles = NULL, *blocking_handles = NULL;
7356         void *pend_os_device_add = NULL, *device_remove_in_progress = NULL;
7357         struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts;
7358 
7359         if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) {
7360                 pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
7361                 if (ioc->facts.MaxDevHandle % 8)
7362                         pd_handles_sz++;
7363 
7364                 pd_handles = krealloc(ioc->pd_handles, pd_handles_sz,
7365                     GFP_KERNEL);
7366                 if (!pd_handles) {
7367                         ioc_info(ioc,
7368                             "Unable to allocate the memory for pd_handles of sz: %d\n",
7369                             pd_handles_sz);
7370                         return -ENOMEM;
7371                 }
7372                 memset(pd_handles + ioc->pd_handles_sz, 0,
7373                     (pd_handles_sz - ioc->pd_handles_sz));
7374                 ioc->pd_handles = pd_handles;
7375 
7376                 blocking_handles = krealloc(ioc->blocking_handles,
7377                     pd_handles_sz, GFP_KERNEL);
7378                 if (!blocking_handles) {
7379                         ioc_info(ioc,
7380                             "Unable to allocate the memory for "
7381                             "blocking_handles of sz: %d\n",
7382                             pd_handles_sz);
7383                         return -ENOMEM;
7384                 }
7385                 memset(blocking_handles + ioc->pd_handles_sz, 0,
7386                     (pd_handles_sz - ioc->pd_handles_sz));
7387                 ioc->blocking_handles = blocking_handles;
7388                 ioc->pd_handles_sz = pd_handles_sz;
7389 
7390                 pend_os_device_add = krealloc(ioc->pend_os_device_add,
7391                     pd_handles_sz, GFP_KERNEL);
7392                 if (!pend_os_device_add) {
7393                         ioc_info(ioc,
7394                             "Unable to allocate the memory for pend_os_device_add of sz: %d\n",
7395                             pd_handles_sz);
7396                         return -ENOMEM;
7397                 }
7398                 memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0,
7399                     (pd_handles_sz - ioc->pend_os_device_add_sz));
7400                 ioc->pend_os_device_add = pend_os_device_add;
7401                 ioc->pend_os_device_add_sz = pd_handles_sz;
7402 
7403                 device_remove_in_progress = krealloc(
7404                     ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL);
7405                 if (!device_remove_in_progress) {
7406                         ioc_info(ioc,
7407                             "Unable to allocate the memory for "
7408                             "device_remove_in_progress of sz: %d\n "
7409                             , pd_handles_sz);
7410                         return -ENOMEM;
7411                 }
7412                 memset(device_remove_in_progress +
7413                     ioc->device_remove_in_progress_sz, 0,
7414                     (pd_handles_sz - ioc->device_remove_in_progress_sz));
7415                 ioc->device_remove_in_progress = device_remove_in_progress;
7416                 ioc->device_remove_in_progress_sz = pd_handles_sz;
7417         }
7418 
7419         memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts));
7420         return 0;
7421 }
7422 
7423 /**
7424  * mpt3sas_base_hard_reset_handler - reset controller
7425  * @ioc: Pointer to MPT_ADAPTER structure
7426  * @type: FORCE_BIG_HAMMER or SOFT_RESET
7427  *
7428  * Return: 0 for success, non-zero for failure.
7429  */
7430 int
7431 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
7432         enum reset_type type)
7433 {
7434         int r;
7435         unsigned long flags;
7436         u32 ioc_state;
7437         u8 is_fault = 0, is_trigger = 0;
7438 
7439         dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__));
7440 
7441         if (ioc->pci_error_recovery) {
7442                 ioc_err(ioc, "%s: pci error recovery reset\n", __func__);
7443                 r = 0;
7444                 goto out_unlocked;
7445         }
7446 
7447         if (mpt3sas_fwfault_debug)
7448                 mpt3sas_halt_firmware(ioc);
7449 
7450         /* wait for an active reset in progress to complete */
7451         mutex_lock(&ioc->reset_in_progress_mutex);
7452 
7453         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
7454         ioc->shost_recovery = 1;
7455         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
7456 
7457         if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
7458             MPT3_DIAG_BUFFER_IS_REGISTERED) &&
7459             (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
7460             MPT3_DIAG_BUFFER_IS_RELEASED))) {
7461                 is_trigger = 1;
7462                 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7463                 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
7464                         is_fault = 1;
7465         }
7466         _base_pre_reset_handler(ioc);
7467         mpt3sas_wait_for_commands_to_complete(ioc);
7468         _base_mask_interrupts(ioc);
7469         r = _base_make_ioc_ready(ioc, type);
7470         if (r)
7471                 goto out;
7472         _base_after_reset_handler(ioc);
7473 
7474         /* If this hard reset is called while port enable is active, then
7475          * there is no reason to call make_ioc_operational
7476          */
7477         if (ioc->is_driver_loading && ioc->port_enable_failed) {
7478                 ioc->remove_host = 1;
7479                 r = -EFAULT;
7480                 goto out;
7481         }
7482         r = _base_get_ioc_facts(ioc);
7483         if (r)
7484                 goto out;
7485 
7486         r = _base_check_ioc_facts_changes(ioc);
7487         if (r) {
7488                 ioc_info(ioc,
7489                     "Some of the parameters got changed in this new firmware"
7490                     " image and it requires system reboot\n");
7491                 goto out;
7492         }
7493         if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
7494                 panic("%s: Issue occurred with flashing controller firmware."
7495                       "Please reboot the system and ensure that the correct"
7496                       " firmware version is running\n", ioc->name);
7497 
7498         r = _base_make_ioc_operational(ioc);
7499         if (!r)
7500                 _base_reset_done_handler(ioc);
7501 
7502  out:
7503         dtmprintk(ioc,
7504                   ioc_info(ioc, "%s: %s\n",
7505                            __func__, r == 0 ? "SUCCESS" : "FAILED"));
7506 
7507         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
7508         ioc->shost_recovery = 0;
7509         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
7510         ioc->ioc_reset_count++;
7511         mutex_unlock(&ioc->reset_in_progress_mutex);
7512 
7513  out_unlocked:
7514         if ((r == 0) && is_trigger) {
7515                 if (is_fault)
7516                         mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
7517                 else
7518                         mpt3sas_trigger_master(ioc,
7519                             MASTER_TRIGGER_ADAPTER_RESET);
7520         }
7521         dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__));
7522         return r;
7523 }

/* [<][>][^][v][top][bottom][index][help] */