root/drivers/scsi/isci/host.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. sci_init_sm
  2. sci_change_state
  3. sci_controller_completion_queue_has_entries
  4. sci_controller_isr
  5. isci_msix_isr
  6. sci_controller_error_isr
  7. sci_controller_task_completion
  8. sci_controller_sdma_completion
  9. sci_controller_unsolicited_frame
  10. sci_controller_event_completion
  11. sci_controller_process_completions
  12. sci_controller_error_handler
  13. isci_intx_isr
  14. isci_error_isr
  15. isci_host_start_complete
  16. isci_host_scan_finished
  17. sci_controller_get_suggested_start_timeout
  18. sci_controller_enable_interrupts
  19. sci_controller_disable_interrupts
  20. sci_controller_enable_port_task_scheduler
  21. sci_controller_assign_task_entries
  22. sci_controller_initialize_completion_queue
  23. sci_controller_initialize_unsolicited_frame_queue
  24. sci_controller_transition_to_ready
  25. is_phy_starting
  26. is_controller_start_complete
  27. sci_controller_start_next_phy
  28. phy_startup_timeout
  29. isci_tci_active
  30. sci_controller_start
  31. isci_host_start
  32. isci_host_stop_complete
  33. sci_controller_completion_handler
  34. ireq_done
  35. isci_host_completion_routine
  36. sci_controller_stop
  37. sci_controller_reset
  38. sci_controller_stop_phys
  39. isci_host_deinit
  40. scu_base
  41. smu_base
  42. sci_controller_initial_state_enter
  43. sci_controller_starting_state_exit
  44. sci_controller_set_interrupt_coalescence
  45. sci_controller_ready_state_enter
  46. sci_controller_ready_state_exit
  47. sci_controller_stop_ports
  48. sci_controller_stop_devices
  49. sci_controller_stopping_state_enter
  50. sci_controller_stopping_state_exit
  51. sci_controller_reset_hardware
  52. sci_controller_resetting_state_enter
  53. controller_timeout
  54. sci_controller_construct
  55. sci_oem_parameters_validate
  56. max_spin_up
  57. power_control_timeout
  58. sci_controller_power_control_queue_insert
  59. sci_controller_power_control_queue_remove
  60. is_long_cable
  61. is_medium_cable
  62. decode_selection_byte
  63. to_cable_select
  64. decode_cable_selection
  65. lookup_cable_names
  66. sci_controller_afe_initialization
  67. sci_controller_initialize_power_control
  68. sci_controller_initialize
  69. sci_controller_dma_alloc
  70. sci_controller_mem_init
  71. isci_host_init
  72. sci_controller_link_up
  73. sci_controller_link_down
  74. sci_controller_has_remote_devices_stopping
  75. sci_controller_remote_device_stopped
  76. sci_controller_post_request
  77. sci_request_by_tag
  78. sci_controller_allocate_remote_node_context
  79. sci_controller_free_remote_node_context
  80. sci_controller_copy_sata_response
  81. sci_controller_release_frame
  82. isci_tci_free
  83. isci_tci_alloc
  84. isci_tci_space
  85. isci_alloc_tag
  86. isci_free_tag
  87. sci_controller_start_io
  88. sci_controller_terminate_request
  89. sci_controller_complete_io
  90. sci_controller_continue_io
  91. sci_controller_start_task
  92. sci_write_gpio_tx_gp
  93. isci_gpio_write

   1 /*
   2  * This file is provided under a dual BSD/GPLv2 license.  When using or
   3  * redistributing this file, you may do so under either license.
   4  *
   5  * GPL LICENSE SUMMARY
   6  *
   7  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
   8  *
   9  * This program is free software; you can redistribute it and/or modify
  10  * it under the terms of version 2 of the GNU General Public License as
  11  * published by the Free Software Foundation.
  12  *
  13  * This program is distributed in the hope that it will be useful, but
  14  * WITHOUT ANY WARRANTY; without even the implied warranty of
  15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16  * General Public License for more details.
  17  *
  18  * You should have received a copy of the GNU General Public License
  19  * along with this program; if not, write to the Free Software
  20  * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  21  * The full GNU General Public License is included in this distribution
  22  * in the file called LICENSE.GPL.
  23  *
  24  * BSD LICENSE
  25  *
  26  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
  27  * All rights reserved.
  28  *
  29  * Redistribution and use in source and binary forms, with or without
  30  * modification, are permitted provided that the following conditions
  31  * are met:
  32  *
  33  *   * Redistributions of source code must retain the above copyright
  34  *     notice, this list of conditions and the following disclaimer.
  35  *   * Redistributions in binary form must reproduce the above copyright
  36  *     notice, this list of conditions and the following disclaimer in
  37  *     the documentation and/or other materials provided with the
  38  *     distribution.
  39  *   * Neither the name of Intel Corporation nor the names of its
  40  *     contributors may be used to endorse or promote products derived
  41  *     from this software without specific prior written permission.
  42  *
  43  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  44  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  45  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  46  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  47  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  48  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  49  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  50  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  51  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  52  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  53  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  54  */
  55 #include <linux/circ_buf.h>
  56 #include <linux/device.h>
  57 #include <scsi/sas.h>
  58 #include "host.h"
  59 #include "isci.h"
  60 #include "port.h"
  61 #include "probe_roms.h"
  62 #include "remote_device.h"
  63 #include "request.h"
  64 #include "scu_completion_codes.h"
  65 #include "scu_event_codes.h"
  66 #include "registers.h"
  67 #include "scu_remote_node_context.h"
  68 #include "scu_task_context.h"
  69 
  70 #define SCU_CONTEXT_RAM_INIT_STALL_TIME      200
  71 
  72 #define smu_max_ports(dcc_value) \
  73         (\
  74                 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \
  75                  >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \
  76         )
  77 
  78 #define smu_max_task_contexts(dcc_value)        \
  79         (\
  80                 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \
  81                  >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \
  82         )
  83 
  84 #define smu_max_rncs(dcc_value) \
  85         (\
  86                 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \
  87                  >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \
  88         )
  89 
  90 #define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT      100
  91 
  92 /**
  93  *
  94  *
  95  * The number of milliseconds to wait while a given phy is consuming power
  96  * before allowing another set of phys to consume power. Ultimately, this will
  97  * be specified by OEM parameter.
  98  */
  99 #define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500
 100 
 101 /**
 102  * NORMALIZE_PUT_POINTER() -
 103  *
 104  * This macro will normalize the completion queue put pointer so its value can
 105  * be used as an array inde
 106  */
 107 #define NORMALIZE_PUT_POINTER(x) \
 108         ((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK)
 109 
 110 
 111 /**
 112  * NORMALIZE_EVENT_POINTER() -
 113  *
 114  * This macro will normalize the completion queue event entry so its value can
 115  * be used as an index.
 116  */
 117 #define NORMALIZE_EVENT_POINTER(x) \
 118         (\
 119                 ((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \
 120                 >> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT \
 121         )
 122 
 123 /**
 124  * NORMALIZE_GET_POINTER() -
 125  *
 126  * This macro will normalize the completion queue get pointer so its value can
 127  * be used as an index into an array
 128  */
 129 #define NORMALIZE_GET_POINTER(x) \
 130         ((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK)
 131 
 132 /**
 133  * NORMALIZE_GET_POINTER_CYCLE_BIT() -
 134  *
 135  * This macro will normalize the completion queue cycle pointer so it matches
 136  * the completion queue cycle bit
 137  */
 138 #define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \
 139         ((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT))
 140 
 141 /**
 142  * COMPLETION_QUEUE_CYCLE_BIT() -
 143  *
 144  * This macro will return the cycle bit of the completion queue entry
 145  */
 146 #define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000)
 147 
 148 /* Init the state machine and call the state entry function (if any) */
 149 void sci_init_sm(struct sci_base_state_machine *sm,
 150                  const struct sci_base_state *state_table, u32 initial_state)
 151 {
 152         sci_state_transition_t handler;
 153 
 154         sm->initial_state_id    = initial_state;
 155         sm->previous_state_id   = initial_state;
 156         sm->current_state_id    = initial_state;
 157         sm->state_table         = state_table;
 158 
 159         handler = sm->state_table[initial_state].enter_state;
 160         if (handler)
 161                 handler(sm);
 162 }
 163 
 164 /* Call the state exit fn, update the current state, call the state entry fn */
 165 void sci_change_state(struct sci_base_state_machine *sm, u32 next_state)
 166 {
 167         sci_state_transition_t handler;
 168 
 169         handler = sm->state_table[sm->current_state_id].exit_state;
 170         if (handler)
 171                 handler(sm);
 172 
 173         sm->previous_state_id = sm->current_state_id;
 174         sm->current_state_id = next_state;
 175 
 176         handler = sm->state_table[sm->current_state_id].enter_state;
 177         if (handler)
 178                 handler(sm);
 179 }
 180 
 181 static bool sci_controller_completion_queue_has_entries(struct isci_host *ihost)
 182 {
 183         u32 get_value = ihost->completion_queue_get;
 184         u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK;
 185 
 186         if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) ==
 187             COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index]))
 188                 return true;
 189 
 190         return false;
 191 }
 192 
 193 static bool sci_controller_isr(struct isci_host *ihost)
 194 {
 195         if (sci_controller_completion_queue_has_entries(ihost))
 196                 return true;
 197 
 198         /* we have a spurious interrupt it could be that we have already
 199          * emptied the completion queue from a previous interrupt
 200          * FIXME: really!?
 201          */
 202         writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
 203 
 204         /* There is a race in the hardware that could cause us not to be
 205          * notified of an interrupt completion if we do not take this
 206          * step.  We will mask then unmask the interrupts so if there is
 207          * another interrupt pending the clearing of the interrupt
 208          * source we get the next interrupt message.
 209          */
 210         spin_lock(&ihost->scic_lock);
 211         if (test_bit(IHOST_IRQ_ENABLED, &ihost->flags)) {
 212                 writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
 213                 writel(0, &ihost->smu_registers->interrupt_mask);
 214         }
 215         spin_unlock(&ihost->scic_lock);
 216 
 217         return false;
 218 }
 219 
 220 irqreturn_t isci_msix_isr(int vec, void *data)
 221 {
 222         struct isci_host *ihost = data;
 223 
 224         if (sci_controller_isr(ihost))
 225                 tasklet_schedule(&ihost->completion_tasklet);
 226 
 227         return IRQ_HANDLED;
 228 }
 229 
 230 static bool sci_controller_error_isr(struct isci_host *ihost)
 231 {
 232         u32 interrupt_status;
 233 
 234         interrupt_status =
 235                 readl(&ihost->smu_registers->interrupt_status);
 236         interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND);
 237 
 238         if (interrupt_status != 0) {
 239                 /*
 240                  * There is an error interrupt pending so let it through and handle
 241                  * in the callback */
 242                 return true;
 243         }
 244 
 245         /*
 246          * There is a race in the hardware that could cause us not to be notified
 247          * of an interrupt completion if we do not take this step.  We will mask
 248          * then unmask the error interrupts so if there was another interrupt
 249          * pending we will be notified.
 250          * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */
 251         writel(0xff, &ihost->smu_registers->interrupt_mask);
 252         writel(0, &ihost->smu_registers->interrupt_mask);
 253 
 254         return false;
 255 }
 256 
 257 static void sci_controller_task_completion(struct isci_host *ihost, u32 ent)
 258 {
 259         u32 index = SCU_GET_COMPLETION_INDEX(ent);
 260         struct isci_request *ireq = ihost->reqs[index];
 261 
 262         /* Make sure that we really want to process this IO request */
 263         if (test_bit(IREQ_ACTIVE, &ireq->flags) &&
 264             ireq->io_tag != SCI_CONTROLLER_INVALID_IO_TAG &&
 265             ISCI_TAG_SEQ(ireq->io_tag) == ihost->io_request_sequence[index])
 266                 /* Yep this is a valid io request pass it along to the
 267                  * io request handler
 268                  */
 269                 sci_io_request_tc_completion(ireq, ent);
 270 }
 271 
 272 static void sci_controller_sdma_completion(struct isci_host *ihost, u32 ent)
 273 {
 274         u32 index;
 275         struct isci_request *ireq;
 276         struct isci_remote_device *idev;
 277 
 278         index = SCU_GET_COMPLETION_INDEX(ent);
 279 
 280         switch (scu_get_command_request_type(ent)) {
 281         case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC:
 282         case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC:
 283                 ireq = ihost->reqs[index];
 284                 dev_warn(&ihost->pdev->dev, "%s: %x for io request %p\n",
 285                          __func__, ent, ireq);
 286                 /* @todo For a post TC operation we need to fail the IO
 287                  * request
 288                  */
 289                 break;
 290         case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC:
 291         case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC:
 292         case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC:
 293                 idev = ihost->device_table[index];
 294                 dev_warn(&ihost->pdev->dev, "%s: %x for device %p\n",
 295                          __func__, ent, idev);
 296                 /* @todo For a port RNC operation we need to fail the
 297                  * device
 298                  */
 299                 break;
 300         default:
 301                 dev_warn(&ihost->pdev->dev, "%s: unknown completion type %x\n",
 302                          __func__, ent);
 303                 break;
 304         }
 305 }
 306 
 307 static void sci_controller_unsolicited_frame(struct isci_host *ihost, u32 ent)
 308 {
 309         u32 index;
 310         u32 frame_index;
 311 
 312         struct scu_unsolicited_frame_header *frame_header;
 313         struct isci_phy *iphy;
 314         struct isci_remote_device *idev;
 315 
 316         enum sci_status result = SCI_FAILURE;
 317 
 318         frame_index = SCU_GET_FRAME_INDEX(ent);
 319 
 320         frame_header = ihost->uf_control.buffers.array[frame_index].header;
 321         ihost->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE;
 322 
 323         if (SCU_GET_FRAME_ERROR(ent)) {
 324                 /*
 325                  * / @todo If the IAF frame or SIGNATURE FIS frame has an error will
 326                  * /       this cause a problem? We expect the phy initialization will
 327                  * /       fail if there is an error in the frame. */
 328                 sci_controller_release_frame(ihost, frame_index);
 329                 return;
 330         }
 331 
 332         if (frame_header->is_address_frame) {
 333                 index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
 334                 iphy = &ihost->phys[index];
 335                 result = sci_phy_frame_handler(iphy, frame_index);
 336         } else {
 337 
 338                 index = SCU_GET_COMPLETION_INDEX(ent);
 339 
 340                 if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
 341                         /*
 342                          * This is a signature fis or a frame from a direct attached SATA
 343                          * device that has not yet been created.  In either case forwared
 344                          * the frame to the PE and let it take care of the frame data. */
 345                         index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
 346                         iphy = &ihost->phys[index];
 347                         result = sci_phy_frame_handler(iphy, frame_index);
 348                 } else {
 349                         if (index < ihost->remote_node_entries)
 350                                 idev = ihost->device_table[index];
 351                         else
 352                                 idev = NULL;
 353 
 354                         if (idev != NULL)
 355                                 result = sci_remote_device_frame_handler(idev, frame_index);
 356                         else
 357                                 sci_controller_release_frame(ihost, frame_index);
 358                 }
 359         }
 360 
 361         if (result != SCI_SUCCESS) {
 362                 /*
 363                  * / @todo Is there any reason to report some additional error message
 364                  * /       when we get this failure notifiction? */
 365         }
 366 }
 367 
 368 static void sci_controller_event_completion(struct isci_host *ihost, u32 ent)
 369 {
 370         struct isci_remote_device *idev;
 371         struct isci_request *ireq;
 372         struct isci_phy *iphy;
 373         u32 index;
 374 
 375         index = SCU_GET_COMPLETION_INDEX(ent);
 376 
 377         switch (scu_get_event_type(ent)) {
 378         case SCU_EVENT_TYPE_SMU_COMMAND_ERROR:
 379                 /* / @todo The driver did something wrong and we need to fix the condtion. */
 380                 dev_err(&ihost->pdev->dev,
 381                         "%s: SCIC Controller 0x%p received SMU command error "
 382                         "0x%x\n",
 383                         __func__,
 384                         ihost,
 385                         ent);
 386                 break;
 387 
 388         case SCU_EVENT_TYPE_SMU_PCQ_ERROR:
 389         case SCU_EVENT_TYPE_SMU_ERROR:
 390         case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR:
 391                 /*
 392                  * / @todo This is a hardware failure and its likely that we want to
 393                  * /       reset the controller. */
 394                 dev_err(&ihost->pdev->dev,
 395                         "%s: SCIC Controller 0x%p received fatal controller "
 396                         "event  0x%x\n",
 397                         __func__,
 398                         ihost,
 399                         ent);
 400                 break;
 401 
 402         case SCU_EVENT_TYPE_TRANSPORT_ERROR:
 403                 ireq = ihost->reqs[index];
 404                 sci_io_request_event_handler(ireq, ent);
 405                 break;
 406 
 407         case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT:
 408                 switch (scu_get_event_specifier(ent)) {
 409                 case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE:
 410                 case SCU_EVENT_SPECIFIC_TASK_TIMEOUT:
 411                         ireq = ihost->reqs[index];
 412                         if (ireq != NULL)
 413                                 sci_io_request_event_handler(ireq, ent);
 414                         else
 415                                 dev_warn(&ihost->pdev->dev,
 416                                          "%s: SCIC Controller 0x%p received "
 417                                          "event 0x%x for io request object "
 418                                          "that doesnt exist.\n",
 419                                          __func__,
 420                                          ihost,
 421                                          ent);
 422 
 423                         break;
 424 
 425                 case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT:
 426                         idev = ihost->device_table[index];
 427                         if (idev != NULL)
 428                                 sci_remote_device_event_handler(idev, ent);
 429                         else
 430                                 dev_warn(&ihost->pdev->dev,
 431                                          "%s: SCIC Controller 0x%p received "
 432                                          "event 0x%x for remote device object "
 433                                          "that doesnt exist.\n",
 434                                          __func__,
 435                                          ihost,
 436                                          ent);
 437 
 438                         break;
 439                 }
 440                 break;
 441 
 442         case SCU_EVENT_TYPE_BROADCAST_CHANGE:
 443         /*
 444          * direct the broadcast change event to the phy first and then let
 445          * the phy redirect the broadcast change to the port object */
 446         case SCU_EVENT_TYPE_ERR_CNT_EVENT:
 447         /*
 448          * direct error counter event to the phy object since that is where
 449          * we get the event notification.  This is a type 4 event. */
 450         case SCU_EVENT_TYPE_OSSP_EVENT:
 451                 index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
 452                 iphy = &ihost->phys[index];
 453                 sci_phy_event_handler(iphy, ent);
 454                 break;
 455 
 456         case SCU_EVENT_TYPE_RNC_SUSPEND_TX:
 457         case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX:
 458         case SCU_EVENT_TYPE_RNC_OPS_MISC:
 459                 if (index < ihost->remote_node_entries) {
 460                         idev = ihost->device_table[index];
 461 
 462                         if (idev != NULL)
 463                                 sci_remote_device_event_handler(idev, ent);
 464                 } else
 465                         dev_err(&ihost->pdev->dev,
 466                                 "%s: SCIC Controller 0x%p received event 0x%x "
 467                                 "for remote device object 0x%0x that doesnt "
 468                                 "exist.\n",
 469                                 __func__,
 470                                 ihost,
 471                                 ent,
 472                                 index);
 473 
 474                 break;
 475 
 476         default:
 477                 dev_warn(&ihost->pdev->dev,
 478                          "%s: SCIC Controller received unknown event code %x\n",
 479                          __func__,
 480                          ent);
 481                 break;
 482         }
 483 }
 484 
 485 static void sci_controller_process_completions(struct isci_host *ihost)
 486 {
 487         u32 completion_count = 0;
 488         u32 ent;
 489         u32 get_index;
 490         u32 get_cycle;
 491         u32 event_get;
 492         u32 event_cycle;
 493 
 494         dev_dbg(&ihost->pdev->dev,
 495                 "%s: completion queue beginning get:0x%08x\n",
 496                 __func__,
 497                 ihost->completion_queue_get);
 498 
 499         /* Get the component parts of the completion queue */
 500         get_index = NORMALIZE_GET_POINTER(ihost->completion_queue_get);
 501         get_cycle = SMU_CQGR_CYCLE_BIT & ihost->completion_queue_get;
 502 
 503         event_get = NORMALIZE_EVENT_POINTER(ihost->completion_queue_get);
 504         event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & ihost->completion_queue_get;
 505 
 506         while (
 507                 NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle)
 508                 == COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index])
 509                 ) {
 510                 completion_count++;
 511 
 512                 ent = ihost->completion_queue[get_index];
 513 
 514                 /* increment the get pointer and check for rollover to toggle the cycle bit */
 515                 get_cycle ^= ((get_index+1) & SCU_MAX_COMPLETION_QUEUE_ENTRIES) <<
 516                              (SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT - SCU_MAX_COMPLETION_QUEUE_SHIFT);
 517                 get_index = (get_index+1) & (SCU_MAX_COMPLETION_QUEUE_ENTRIES-1);
 518 
 519                 dev_dbg(&ihost->pdev->dev,
 520                         "%s: completion queue entry:0x%08x\n",
 521                         __func__,
 522                         ent);
 523 
 524                 switch (SCU_GET_COMPLETION_TYPE(ent)) {
 525                 case SCU_COMPLETION_TYPE_TASK:
 526                         sci_controller_task_completion(ihost, ent);
 527                         break;
 528 
 529                 case SCU_COMPLETION_TYPE_SDMA:
 530                         sci_controller_sdma_completion(ihost, ent);
 531                         break;
 532 
 533                 case SCU_COMPLETION_TYPE_UFI:
 534                         sci_controller_unsolicited_frame(ihost, ent);
 535                         break;
 536 
 537                 case SCU_COMPLETION_TYPE_EVENT:
 538                         sci_controller_event_completion(ihost, ent);
 539                         break;
 540 
 541                 case SCU_COMPLETION_TYPE_NOTIFY: {
 542                         event_cycle ^= ((event_get+1) & SCU_MAX_EVENTS) <<
 543                                        (SMU_COMPLETION_QUEUE_GET_EVENT_CYCLE_BIT_SHIFT - SCU_MAX_EVENTS_SHIFT);
 544                         event_get = (event_get+1) & (SCU_MAX_EVENTS-1);
 545 
 546                         sci_controller_event_completion(ihost, ent);
 547                         break;
 548                 }
 549                 default:
 550                         dev_warn(&ihost->pdev->dev,
 551                                  "%s: SCIC Controller received unknown "
 552                                  "completion type %x\n",
 553                                  __func__,
 554                                  ent);
 555                         break;
 556                 }
 557         }
 558 
 559         /* Update the get register if we completed one or more entries */
 560         if (completion_count > 0) {
 561                 ihost->completion_queue_get =
 562                         SMU_CQGR_GEN_BIT(ENABLE) |
 563                         SMU_CQGR_GEN_BIT(EVENT_ENABLE) |
 564                         event_cycle |
 565                         SMU_CQGR_GEN_VAL(EVENT_POINTER, event_get) |
 566                         get_cycle |
 567                         SMU_CQGR_GEN_VAL(POINTER, get_index);
 568 
 569                 writel(ihost->completion_queue_get,
 570                        &ihost->smu_registers->completion_queue_get);
 571 
 572         }
 573 
 574         dev_dbg(&ihost->pdev->dev,
 575                 "%s: completion queue ending get:0x%08x\n",
 576                 __func__,
 577                 ihost->completion_queue_get);
 578 
 579 }
 580 
 581 static void sci_controller_error_handler(struct isci_host *ihost)
 582 {
 583         u32 interrupt_status;
 584 
 585         interrupt_status =
 586                 readl(&ihost->smu_registers->interrupt_status);
 587 
 588         if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) &&
 589             sci_controller_completion_queue_has_entries(ihost)) {
 590 
 591                 sci_controller_process_completions(ihost);
 592                 writel(SMU_ISR_QUEUE_SUSPEND, &ihost->smu_registers->interrupt_status);
 593         } else {
 594                 dev_err(&ihost->pdev->dev, "%s: status: %#x\n", __func__,
 595                         interrupt_status);
 596 
 597                 sci_change_state(&ihost->sm, SCIC_FAILED);
 598 
 599                 return;
 600         }
 601 
 602         /* If we dont process any completions I am not sure that we want to do this.
 603          * We are in the middle of a hardware fault and should probably be reset.
 604          */
 605         writel(0, &ihost->smu_registers->interrupt_mask);
 606 }
 607 
 608 irqreturn_t isci_intx_isr(int vec, void *data)
 609 {
 610         irqreturn_t ret = IRQ_NONE;
 611         struct isci_host *ihost = data;
 612 
 613         if (sci_controller_isr(ihost)) {
 614                 writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
 615                 tasklet_schedule(&ihost->completion_tasklet);
 616                 ret = IRQ_HANDLED;
 617         } else if (sci_controller_error_isr(ihost)) {
 618                 spin_lock(&ihost->scic_lock);
 619                 sci_controller_error_handler(ihost);
 620                 spin_unlock(&ihost->scic_lock);
 621                 ret = IRQ_HANDLED;
 622         }
 623 
 624         return ret;
 625 }
 626 
 627 irqreturn_t isci_error_isr(int vec, void *data)
 628 {
 629         struct isci_host *ihost = data;
 630 
 631         if (sci_controller_error_isr(ihost))
 632                 sci_controller_error_handler(ihost);
 633 
 634         return IRQ_HANDLED;
 635 }
 636 
 637 /**
 638  * isci_host_start_complete() - This function is called by the core library,
 639  *    through the ISCI Module, to indicate controller start status.
 640  * @isci_host: This parameter specifies the ISCI host object
 641  * @completion_status: This parameter specifies the completion status from the
 642  *    core library.
 643  *
 644  */
 645 static void isci_host_start_complete(struct isci_host *ihost, enum sci_status completion_status)
 646 {
 647         if (completion_status != SCI_SUCCESS)
 648                 dev_info(&ihost->pdev->dev,
 649                         "controller start timed out, continuing...\n");
 650         clear_bit(IHOST_START_PENDING, &ihost->flags);
 651         wake_up(&ihost->eventq);
 652 }
 653 
 654 int isci_host_scan_finished(struct Scsi_Host *shost, unsigned long time)
 655 {
 656         struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost);
 657         struct isci_host *ihost = ha->lldd_ha;
 658 
 659         if (test_bit(IHOST_START_PENDING, &ihost->flags))
 660                 return 0;
 661 
 662         sas_drain_work(ha);
 663 
 664         return 1;
 665 }
 666 
 667 /**
 668  * sci_controller_get_suggested_start_timeout() - This method returns the
 669  *    suggested sci_controller_start() timeout amount.  The user is free to
 670  *    use any timeout value, but this method provides the suggested minimum
 671  *    start timeout value.  The returned value is based upon empirical
 672  *    information determined as a result of interoperability testing.
 673  * @controller: the handle to the controller object for which to return the
 674  *    suggested start timeout.
 675  *
 676  * This method returns the number of milliseconds for the suggested start
 677  * operation timeout.
 678  */
 679 static u32 sci_controller_get_suggested_start_timeout(struct isci_host *ihost)
 680 {
 681         /* Validate the user supplied parameters. */
 682         if (!ihost)
 683                 return 0;
 684 
 685         /*
 686          * The suggested minimum timeout value for a controller start operation:
 687          *
 688          *     Signature FIS Timeout
 689          *   + Phy Start Timeout
 690          *   + Number of Phy Spin Up Intervals
 691          *   ---------------------------------
 692          *   Number of milliseconds for the controller start operation.
 693          *
 694          * NOTE: The number of phy spin up intervals will be equivalent
 695          *       to the number of phys divided by the number phys allowed
 696          *       per interval - 1 (once OEM parameters are supported).
 697          *       Currently we assume only 1 phy per interval. */
 698 
 699         return SCIC_SDS_SIGNATURE_FIS_TIMEOUT
 700                 + SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
 701                 + ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
 702 }
 703 
 704 static void sci_controller_enable_interrupts(struct isci_host *ihost)
 705 {
 706         set_bit(IHOST_IRQ_ENABLED, &ihost->flags);
 707         writel(0, &ihost->smu_registers->interrupt_mask);
 708 }
 709 
 710 void sci_controller_disable_interrupts(struct isci_host *ihost)
 711 {
 712         clear_bit(IHOST_IRQ_ENABLED, &ihost->flags);
 713         writel(0xffffffff, &ihost->smu_registers->interrupt_mask);
 714         readl(&ihost->smu_registers->interrupt_mask); /* flush */
 715 }
 716 
 717 static void sci_controller_enable_port_task_scheduler(struct isci_host *ihost)
 718 {
 719         u32 port_task_scheduler_value;
 720 
 721         port_task_scheduler_value =
 722                 readl(&ihost->scu_registers->peg0.ptsg.control);
 723         port_task_scheduler_value |=
 724                 (SCU_PTSGCR_GEN_BIT(ETM_ENABLE) |
 725                  SCU_PTSGCR_GEN_BIT(PTSG_ENABLE));
 726         writel(port_task_scheduler_value,
 727                &ihost->scu_registers->peg0.ptsg.control);
 728 }
 729 
 730 static void sci_controller_assign_task_entries(struct isci_host *ihost)
 731 {
 732         u32 task_assignment;
 733 
 734         /*
 735          * Assign all the TCs to function 0
 736          * TODO: Do we actually need to read this register to write it back?
 737          */
 738 
 739         task_assignment =
 740                 readl(&ihost->smu_registers->task_context_assignment[0]);
 741 
 742         task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) |
 743                 (SMU_TCA_GEN_VAL(ENDING,  ihost->task_context_entries - 1)) |
 744                 (SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE));
 745 
 746         writel(task_assignment,
 747                 &ihost->smu_registers->task_context_assignment[0]);
 748 
 749 }
 750 
 751 static void sci_controller_initialize_completion_queue(struct isci_host *ihost)
 752 {
 753         u32 index;
 754         u32 completion_queue_control_value;
 755         u32 completion_queue_get_value;
 756         u32 completion_queue_put_value;
 757 
 758         ihost->completion_queue_get = 0;
 759 
 760         completion_queue_control_value =
 761                 (SMU_CQC_QUEUE_LIMIT_SET(SCU_MAX_COMPLETION_QUEUE_ENTRIES - 1) |
 762                  SMU_CQC_EVENT_LIMIT_SET(SCU_MAX_EVENTS - 1));
 763 
 764         writel(completion_queue_control_value,
 765                &ihost->smu_registers->completion_queue_control);
 766 
 767 
 768         /* Set the completion queue get pointer and enable the queue */
 769         completion_queue_get_value = (
 770                 (SMU_CQGR_GEN_VAL(POINTER, 0))
 771                 | (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0))
 772                 | (SMU_CQGR_GEN_BIT(ENABLE))
 773                 | (SMU_CQGR_GEN_BIT(EVENT_ENABLE))
 774                 );
 775 
 776         writel(completion_queue_get_value,
 777                &ihost->smu_registers->completion_queue_get);
 778 
 779         /* Set the completion queue put pointer */
 780         completion_queue_put_value = (
 781                 (SMU_CQPR_GEN_VAL(POINTER, 0))
 782                 | (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0))
 783                 );
 784 
 785         writel(completion_queue_put_value,
 786                &ihost->smu_registers->completion_queue_put);
 787 
 788         /* Initialize the cycle bit of the completion queue entries */
 789         for (index = 0; index < SCU_MAX_COMPLETION_QUEUE_ENTRIES; index++) {
 790                 /*
 791                  * If get.cycle_bit != completion_queue.cycle_bit
 792                  * its not a valid completion queue entry
 793                  * so at system start all entries are invalid */
 794                 ihost->completion_queue[index] = 0x80000000;
 795         }
 796 }
 797 
 798 static void sci_controller_initialize_unsolicited_frame_queue(struct isci_host *ihost)
 799 {
 800         u32 frame_queue_control_value;
 801         u32 frame_queue_get_value;
 802         u32 frame_queue_put_value;
 803 
 804         /* Write the queue size */
 805         frame_queue_control_value =
 806                 SCU_UFQC_GEN_VAL(QUEUE_SIZE, SCU_MAX_UNSOLICITED_FRAMES);
 807 
 808         writel(frame_queue_control_value,
 809                &ihost->scu_registers->sdma.unsolicited_frame_queue_control);
 810 
 811         /* Setup the get pointer for the unsolicited frame queue */
 812         frame_queue_get_value = (
 813                 SCU_UFQGP_GEN_VAL(POINTER, 0)
 814                 |  SCU_UFQGP_GEN_BIT(ENABLE_BIT)
 815                 );
 816 
 817         writel(frame_queue_get_value,
 818                &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
 819         /* Setup the put pointer for the unsolicited frame queue */
 820         frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0);
 821         writel(frame_queue_put_value,
 822                &ihost->scu_registers->sdma.unsolicited_frame_put_pointer);
 823 }
 824 
 825 void sci_controller_transition_to_ready(struct isci_host *ihost, enum sci_status status)
 826 {
 827         if (ihost->sm.current_state_id == SCIC_STARTING) {
 828                 /*
 829                  * We move into the ready state, because some of the phys/ports
 830                  * may be up and operational.
 831                  */
 832                 sci_change_state(&ihost->sm, SCIC_READY);
 833 
 834                 isci_host_start_complete(ihost, status);
 835         }
 836 }
 837 
 838 static bool is_phy_starting(struct isci_phy *iphy)
 839 {
 840         enum sci_phy_states state;
 841 
 842         state = iphy->sm.current_state_id;
 843         switch (state) {
 844         case SCI_PHY_STARTING:
 845         case SCI_PHY_SUB_INITIAL:
 846         case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
 847         case SCI_PHY_SUB_AWAIT_IAF_UF:
 848         case SCI_PHY_SUB_AWAIT_SAS_POWER:
 849         case SCI_PHY_SUB_AWAIT_SATA_POWER:
 850         case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
 851         case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
 852         case SCI_PHY_SUB_AWAIT_OSSP_EN:
 853         case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
 854         case SCI_PHY_SUB_FINAL:
 855                 return true;
 856         default:
 857                 return false;
 858         }
 859 }
 860 
 861 bool is_controller_start_complete(struct isci_host *ihost)
 862 {
 863         int i;
 864 
 865         for (i = 0; i < SCI_MAX_PHYS; i++) {
 866                 struct isci_phy *iphy = &ihost->phys[i];
 867                 u32 state = iphy->sm.current_state_id;
 868 
 869                 /* in apc mode we need to check every phy, in
 870                  * mpc mode we only need to check phys that have
 871                  * been configured into a port
 872                  */
 873                 if (is_port_config_apc(ihost))
 874                         /* pass */;
 875                 else if (!phy_get_non_dummy_port(iphy))
 876                         continue;
 877 
 878                 /* The controller start operation is complete iff:
 879                  * - all links have been given an opportunity to start
 880                  * - have no indication of a connected device
 881                  * - have an indication of a connected device and it has
 882                  *   finished the link training process.
 883                  */
 884                 if ((iphy->is_in_link_training == false && state == SCI_PHY_INITIAL) ||
 885                     (iphy->is_in_link_training == false && state == SCI_PHY_STOPPED) ||
 886                     (iphy->is_in_link_training == true && is_phy_starting(iphy)) ||
 887                     (ihost->port_agent.phy_ready_mask != ihost->port_agent.phy_configured_mask))
 888                         return false;
 889         }
 890 
 891         return true;
 892 }
 893 
 894 /**
 895  * sci_controller_start_next_phy - start phy
 896  * @scic: controller
 897  *
 898  * If all the phys have been started, then attempt to transition the
 899  * controller to the READY state and inform the user
 900  * (sci_cb_controller_start_complete()).
 901  */
 902 static enum sci_status sci_controller_start_next_phy(struct isci_host *ihost)
 903 {
 904         struct sci_oem_params *oem = &ihost->oem_parameters;
 905         struct isci_phy *iphy;
 906         enum sci_status status;
 907 
 908         status = SCI_SUCCESS;
 909 
 910         if (ihost->phy_startup_timer_pending)
 911                 return status;
 912 
 913         if (ihost->next_phy_to_start >= SCI_MAX_PHYS) {
 914                 if (is_controller_start_complete(ihost)) {
 915                         sci_controller_transition_to_ready(ihost, SCI_SUCCESS);
 916                         sci_del_timer(&ihost->phy_timer);
 917                         ihost->phy_startup_timer_pending = false;
 918                 }
 919         } else {
 920                 iphy = &ihost->phys[ihost->next_phy_to_start];
 921 
 922                 if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
 923                         if (phy_get_non_dummy_port(iphy) == NULL) {
 924                                 ihost->next_phy_to_start++;
 925 
 926                                 /* Caution recursion ahead be forwarned
 927                                  *
 928                                  * The PHY was never added to a PORT in MPC mode
 929                                  * so start the next phy in sequence This phy
 930                                  * will never go link up and will not draw power
 931                                  * the OEM parameters either configured the phy
 932                                  * incorrectly for the PORT or it was never
 933                                  * assigned to a PORT
 934                                  */
 935                                 return sci_controller_start_next_phy(ihost);
 936                         }
 937                 }
 938 
 939                 status = sci_phy_start(iphy);
 940 
 941                 if (status == SCI_SUCCESS) {
 942                         sci_mod_timer(&ihost->phy_timer,
 943                                       SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT);
 944                         ihost->phy_startup_timer_pending = true;
 945                 } else {
 946                         dev_warn(&ihost->pdev->dev,
 947                                  "%s: Controller stop operation failed "
 948                                  "to stop phy %d because of status "
 949                                  "%d.\n",
 950                                  __func__,
 951                                  ihost->phys[ihost->next_phy_to_start].phy_index,
 952                                  status);
 953                 }
 954 
 955                 ihost->next_phy_to_start++;
 956         }
 957 
 958         return status;
 959 }
 960 
 961 static void phy_startup_timeout(struct timer_list *t)
 962 {
 963         struct sci_timer *tmr = from_timer(tmr, t, timer);
 964         struct isci_host *ihost = container_of(tmr, typeof(*ihost), phy_timer);
 965         unsigned long flags;
 966         enum sci_status status;
 967 
 968         spin_lock_irqsave(&ihost->scic_lock, flags);
 969 
 970         if (tmr->cancel)
 971                 goto done;
 972 
 973         ihost->phy_startup_timer_pending = false;
 974 
 975         do {
 976                 status = sci_controller_start_next_phy(ihost);
 977         } while (status != SCI_SUCCESS);
 978 
 979 done:
 980         spin_unlock_irqrestore(&ihost->scic_lock, flags);
 981 }
 982 
 983 static u16 isci_tci_active(struct isci_host *ihost)
 984 {
 985         return CIRC_CNT(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
 986 }
 987 
 988 static enum sci_status sci_controller_start(struct isci_host *ihost,
 989                                              u32 timeout)
 990 {
 991         enum sci_status result;
 992         u16 index;
 993 
 994         if (ihost->sm.current_state_id != SCIC_INITIALIZED) {
 995                 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
 996                          __func__, ihost->sm.current_state_id);
 997                 return SCI_FAILURE_INVALID_STATE;
 998         }
 999 
1000         /* Build the TCi free pool */
1001         BUILD_BUG_ON(SCI_MAX_IO_REQUESTS > 1 << sizeof(ihost->tci_pool[0]) * 8);
1002         ihost->tci_head = 0;
1003         ihost->tci_tail = 0;
1004         for (index = 0; index < ihost->task_context_entries; index++)
1005                 isci_tci_free(ihost, index);
1006 
1007         /* Build the RNi free pool */
1008         sci_remote_node_table_initialize(&ihost->available_remote_nodes,
1009                                          ihost->remote_node_entries);
1010 
1011         /*
1012          * Before anything else lets make sure we will not be
1013          * interrupted by the hardware.
1014          */
1015         sci_controller_disable_interrupts(ihost);
1016 
1017         /* Enable the port task scheduler */
1018         sci_controller_enable_port_task_scheduler(ihost);
1019 
1020         /* Assign all the task entries to ihost physical function */
1021         sci_controller_assign_task_entries(ihost);
1022 
1023         /* Now initialize the completion queue */
1024         sci_controller_initialize_completion_queue(ihost);
1025 
1026         /* Initialize the unsolicited frame queue for use */
1027         sci_controller_initialize_unsolicited_frame_queue(ihost);
1028 
1029         /* Start all of the ports on this controller */
1030         for (index = 0; index < ihost->logical_port_entries; index++) {
1031                 struct isci_port *iport = &ihost->ports[index];
1032 
1033                 result = sci_port_start(iport);
1034                 if (result)
1035                         return result;
1036         }
1037 
1038         sci_controller_start_next_phy(ihost);
1039 
1040         sci_mod_timer(&ihost->timer, timeout);
1041 
1042         sci_change_state(&ihost->sm, SCIC_STARTING);
1043 
1044         return SCI_SUCCESS;
1045 }
1046 
1047 void isci_host_start(struct Scsi_Host *shost)
1048 {
1049         struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
1050         unsigned long tmo = sci_controller_get_suggested_start_timeout(ihost);
1051 
1052         set_bit(IHOST_START_PENDING, &ihost->flags);
1053 
1054         spin_lock_irq(&ihost->scic_lock);
1055         sci_controller_start(ihost, tmo);
1056         sci_controller_enable_interrupts(ihost);
1057         spin_unlock_irq(&ihost->scic_lock);
1058 }
1059 
1060 static void isci_host_stop_complete(struct isci_host *ihost)
1061 {
1062         sci_controller_disable_interrupts(ihost);
1063         clear_bit(IHOST_STOP_PENDING, &ihost->flags);
1064         wake_up(&ihost->eventq);
1065 }
1066 
1067 static void sci_controller_completion_handler(struct isci_host *ihost)
1068 {
1069         /* Empty out the completion queue */
1070         if (sci_controller_completion_queue_has_entries(ihost))
1071                 sci_controller_process_completions(ihost);
1072 
1073         /* Clear the interrupt and enable all interrupts again */
1074         writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
1075         /* Could we write the value of SMU_ISR_COMPLETION? */
1076         writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
1077         writel(0, &ihost->smu_registers->interrupt_mask);
1078 }
1079 
1080 void ireq_done(struct isci_host *ihost, struct isci_request *ireq, struct sas_task *task)
1081 {
1082         if (!test_bit(IREQ_ABORT_PATH_ACTIVE, &ireq->flags) &&
1083             !(task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
1084                 if (test_bit(IREQ_COMPLETE_IN_TARGET, &ireq->flags)) {
1085                         /* Normal notification (task_done) */
1086                         dev_dbg(&ihost->pdev->dev,
1087                                 "%s: Normal - ireq/task = %p/%p\n",
1088                                 __func__, ireq, task);
1089                         task->lldd_task = NULL;
1090                         task->task_done(task);
1091                 } else {
1092                         dev_dbg(&ihost->pdev->dev,
1093                                 "%s: Error - ireq/task = %p/%p\n",
1094                                 __func__, ireq, task);
1095                         if (sas_protocol_ata(task->task_proto))
1096                                 task->lldd_task = NULL;
1097                         sas_task_abort(task);
1098                 }
1099         } else
1100                 task->lldd_task = NULL;
1101 
1102         if (test_and_clear_bit(IREQ_ABORT_PATH_ACTIVE, &ireq->flags))
1103                 wake_up_all(&ihost->eventq);
1104 
1105         if (!test_bit(IREQ_NO_AUTO_FREE_TAG, &ireq->flags))
1106                 isci_free_tag(ihost, ireq->io_tag);
1107 }
1108 /**
1109  * isci_host_completion_routine() - This function is the delayed service
1110  *    routine that calls the sci core library's completion handler. It's
1111  *    scheduled as a tasklet from the interrupt service routine when interrupts
1112  *    in use, or set as the timeout function in polled mode.
1113  * @data: This parameter specifies the ISCI host object
1114  *
1115  */
1116 void isci_host_completion_routine(unsigned long data)
1117 {
1118         struct isci_host *ihost = (struct isci_host *)data;
1119         u16 active;
1120 
1121         spin_lock_irq(&ihost->scic_lock);
1122         sci_controller_completion_handler(ihost);
1123         spin_unlock_irq(&ihost->scic_lock);
1124 
1125         /*
1126          * we subtract SCI_MAX_PORTS to account for the number of dummy TCs
1127          * issued for hardware issue workaround
1128          */
1129         active = isci_tci_active(ihost) - SCI_MAX_PORTS;
1130 
1131         /*
1132          * the coalesence timeout doubles at each encoding step, so
1133          * update it based on the ilog2 value of the outstanding requests
1134          */
1135         writel(SMU_ICC_GEN_VAL(NUMBER, active) |
1136                SMU_ICC_GEN_VAL(TIMER, ISCI_COALESCE_BASE + ilog2(active)),
1137                &ihost->smu_registers->interrupt_coalesce_control);
1138 }
1139 
1140 /**
1141  * sci_controller_stop() - This method will stop an individual controller
1142  *    object.This method will invoke the associated user callback upon
1143  *    completion.  The completion callback is called when the following
1144  *    conditions are met: -# the method return status is SCI_SUCCESS. -# the
1145  *    controller has been quiesced. This method will ensure that all IO
1146  *    requests are quiesced, phys are stopped, and all additional operation by
1147  *    the hardware is halted.
1148  * @controller: the handle to the controller object to stop.
1149  * @timeout: This parameter specifies the number of milliseconds in which the
1150  *    stop operation should complete.
1151  *
1152  * The controller must be in the STARTED or STOPPED state. Indicate if the
1153  * controller stop method succeeded or failed in some way. SCI_SUCCESS if the
1154  * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the
1155  * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the
1156  * controller is not either in the STARTED or STOPPED states.
1157  */
1158 static enum sci_status sci_controller_stop(struct isci_host *ihost, u32 timeout)
1159 {
1160         if (ihost->sm.current_state_id != SCIC_READY) {
1161                 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
1162                          __func__, ihost->sm.current_state_id);
1163                 return SCI_FAILURE_INVALID_STATE;
1164         }
1165 
1166         sci_mod_timer(&ihost->timer, timeout);
1167         sci_change_state(&ihost->sm, SCIC_STOPPING);
1168         return SCI_SUCCESS;
1169 }
1170 
1171 /**
1172  * sci_controller_reset() - This method will reset the supplied core
1173  *    controller regardless of the state of said controller.  This operation is
1174  *    considered destructive.  In other words, all current operations are wiped
1175  *    out.  No IO completions for outstanding devices occur.  Outstanding IO
1176  *    requests are not aborted or completed at the actual remote device.
1177  * @controller: the handle to the controller object to reset.
1178  *
1179  * Indicate if the controller reset method succeeded or failed in some way.
1180  * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if
1181  * the controller reset operation is unable to complete.
1182  */
1183 static enum sci_status sci_controller_reset(struct isci_host *ihost)
1184 {
1185         switch (ihost->sm.current_state_id) {
1186         case SCIC_RESET:
1187         case SCIC_READY:
1188         case SCIC_STOPPING:
1189         case SCIC_FAILED:
1190                 /*
1191                  * The reset operation is not a graceful cleanup, just
1192                  * perform the state transition.
1193                  */
1194                 sci_change_state(&ihost->sm, SCIC_RESETTING);
1195                 return SCI_SUCCESS;
1196         default:
1197                 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
1198                          __func__, ihost->sm.current_state_id);
1199                 return SCI_FAILURE_INVALID_STATE;
1200         }
1201 }
1202 
1203 static enum sci_status sci_controller_stop_phys(struct isci_host *ihost)
1204 {
1205         u32 index;
1206         enum sci_status status;
1207         enum sci_status phy_status;
1208 
1209         status = SCI_SUCCESS;
1210 
1211         for (index = 0; index < SCI_MAX_PHYS; index++) {
1212                 phy_status = sci_phy_stop(&ihost->phys[index]);
1213 
1214                 if (phy_status != SCI_SUCCESS &&
1215                     phy_status != SCI_FAILURE_INVALID_STATE) {
1216                         status = SCI_FAILURE;
1217 
1218                         dev_warn(&ihost->pdev->dev,
1219                                  "%s: Controller stop operation failed to stop "
1220                                  "phy %d because of status %d.\n",
1221                                  __func__,
1222                                  ihost->phys[index].phy_index, phy_status);
1223                 }
1224         }
1225 
1226         return status;
1227 }
1228 
1229 
1230 /**
1231  * isci_host_deinit - shutdown frame reception and dma
1232  * @ihost: host to take down
1233  *
1234  * This is called in either the driver shutdown or the suspend path.  In
1235  * the shutdown case libsas went through port teardown and normal device
1236  * removal (i.e. physical links stayed up to service scsi_device removal
1237  * commands).  In the suspend case we disable the hardware without
1238  * notifying libsas of the link down events since we want libsas to
1239  * remember the domain across the suspend/resume cycle
1240  */
1241 void isci_host_deinit(struct isci_host *ihost)
1242 {
1243         int i;
1244 
1245         /* disable output data selects */
1246         for (i = 0; i < isci_gpio_count(ihost); i++)
1247                 writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]);
1248 
1249         set_bit(IHOST_STOP_PENDING, &ihost->flags);
1250 
1251         spin_lock_irq(&ihost->scic_lock);
1252         sci_controller_stop(ihost, SCIC_CONTROLLER_STOP_TIMEOUT);
1253         spin_unlock_irq(&ihost->scic_lock);
1254 
1255         wait_for_stop(ihost);
1256 
1257         /* phy stop is after controller stop to allow port and device to
1258          * go idle before shutting down the phys, but the expectation is
1259          * that i/o has been shut off well before we reach this
1260          * function.
1261          */
1262         sci_controller_stop_phys(ihost);
1263 
1264         /* disable sgpio: where the above wait should give time for the
1265          * enclosure to sample the gpios going inactive
1266          */
1267         writel(0, &ihost->scu_registers->peg0.sgpio.interface_control);
1268 
1269         spin_lock_irq(&ihost->scic_lock);
1270         sci_controller_reset(ihost);
1271         spin_unlock_irq(&ihost->scic_lock);
1272 
1273         /* Cancel any/all outstanding port timers */
1274         for (i = 0; i < ihost->logical_port_entries; i++) {
1275                 struct isci_port *iport = &ihost->ports[i];
1276                 del_timer_sync(&iport->timer.timer);
1277         }
1278 
1279         /* Cancel any/all outstanding phy timers */
1280         for (i = 0; i < SCI_MAX_PHYS; i++) {
1281                 struct isci_phy *iphy = &ihost->phys[i];
1282                 del_timer_sync(&iphy->sata_timer.timer);
1283         }
1284 
1285         del_timer_sync(&ihost->port_agent.timer.timer);
1286 
1287         del_timer_sync(&ihost->power_control.timer.timer);
1288 
1289         del_timer_sync(&ihost->timer.timer);
1290 
1291         del_timer_sync(&ihost->phy_timer.timer);
1292 }
1293 
1294 static void __iomem *scu_base(struct isci_host *isci_host)
1295 {
1296         struct pci_dev *pdev = isci_host->pdev;
1297         int id = isci_host->id;
1298 
1299         return pcim_iomap_table(pdev)[SCI_SCU_BAR * 2] + SCI_SCU_BAR_SIZE * id;
1300 }
1301 
1302 static void __iomem *smu_base(struct isci_host *isci_host)
1303 {
1304         struct pci_dev *pdev = isci_host->pdev;
1305         int id = isci_host->id;
1306 
1307         return pcim_iomap_table(pdev)[SCI_SMU_BAR * 2] + SCI_SMU_BAR_SIZE * id;
1308 }
1309 
1310 static void sci_controller_initial_state_enter(struct sci_base_state_machine *sm)
1311 {
1312         struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1313 
1314         sci_change_state(&ihost->sm, SCIC_RESET);
1315 }
1316 
1317 static inline void sci_controller_starting_state_exit(struct sci_base_state_machine *sm)
1318 {
1319         struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1320 
1321         sci_del_timer(&ihost->timer);
1322 }
1323 
1324 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853
1325 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280
1326 #define INTERRUPT_COALESCE_TIMEOUT_MAX_US                    2700000
1327 #define INTERRUPT_COALESCE_NUMBER_MAX                        256
1328 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN                7
1329 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX                28
1330 
1331 /**
1332  * sci_controller_set_interrupt_coalescence() - This method allows the user to
1333  *    configure the interrupt coalescence.
1334  * @controller: This parameter represents the handle to the controller object
1335  *    for which its interrupt coalesce register is overridden.
1336  * @coalesce_number: Used to control the number of entries in the Completion
1337  *    Queue before an interrupt is generated. If the number of entries exceed
1338  *    this number, an interrupt will be generated. The valid range of the input
1339  *    is [0, 256]. A setting of 0 results in coalescing being disabled.
1340  * @coalesce_timeout: Timeout value in microseconds. The valid range of the
1341  *    input is [0, 2700000] . A setting of 0 is allowed and results in no
1342  *    interrupt coalescing timeout.
1343  *
1344  * Indicate if the user successfully set the interrupt coalesce parameters.
1345  * SCI_SUCCESS The user successfully updated the interrutp coalescence.
1346  * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range.
1347  */
1348 static enum sci_status
1349 sci_controller_set_interrupt_coalescence(struct isci_host *ihost,
1350                                          u32 coalesce_number,
1351                                          u32 coalesce_timeout)
1352 {
1353         u8 timeout_encode = 0;
1354         u32 min = 0;
1355         u32 max = 0;
1356 
1357         /* Check if the input parameters fall in the range. */
1358         if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX)
1359                 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1360 
1361         /*
1362          *  Defined encoding for interrupt coalescing timeout:
1363          *              Value   Min      Max     Units
1364          *              -----   ---      ---     -----
1365          *              0       -        -       Disabled
1366          *              1       13.3     20.0    ns
1367          *              2       26.7     40.0
1368          *              3       53.3     80.0
1369          *              4       106.7    160.0
1370          *              5       213.3    320.0
1371          *              6       426.7    640.0
1372          *              7       853.3    1280.0
1373          *              8       1.7      2.6     us
1374          *              9       3.4      5.1
1375          *              10      6.8      10.2
1376          *              11      13.7     20.5
1377          *              12      27.3     41.0
1378          *              13      54.6     81.9
1379          *              14      109.2    163.8
1380          *              15      218.5    327.7
1381          *              16      436.9    655.4
1382          *              17      873.8    1310.7
1383          *              18      1.7      2.6     ms
1384          *              19      3.5      5.2
1385          *              20      7.0      10.5
1386          *              21      14.0     21.0
1387          *              22      28.0     41.9
1388          *              23      55.9     83.9
1389          *              24      111.8    167.8
1390          *              25      223.7    335.5
1391          *              26      447.4    671.1
1392          *              27      894.8    1342.2
1393          *              28      1.8      2.7     s
1394          *              Others Undefined */
1395 
1396         /*
1397          * Use the table above to decide the encode of interrupt coalescing timeout
1398          * value for register writing. */
1399         if (coalesce_timeout == 0)
1400                 timeout_encode = 0;
1401         else{
1402                 /* make the timeout value in unit of (10 ns). */
1403                 coalesce_timeout = coalesce_timeout * 100;
1404                 min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10;
1405                 max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10;
1406 
1407                 /* get the encode of timeout for register writing. */
1408                 for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN;
1409                       timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX;
1410                       timeout_encode++) {
1411                         if (min <= coalesce_timeout &&  max > coalesce_timeout)
1412                                 break;
1413                         else if (coalesce_timeout >= max && coalesce_timeout < min * 2
1414                                  && coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) {
1415                                 if ((coalesce_timeout - max) < (2 * min - coalesce_timeout))
1416                                         break;
1417                                 else{
1418                                         timeout_encode++;
1419                                         break;
1420                                 }
1421                         } else {
1422                                 max = max * 2;
1423                                 min = min * 2;
1424                         }
1425                 }
1426 
1427                 if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1)
1428                         /* the value is out of range. */
1429                         return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1430         }
1431 
1432         writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) |
1433                SMU_ICC_GEN_VAL(TIMER, timeout_encode),
1434                &ihost->smu_registers->interrupt_coalesce_control);
1435 
1436 
1437         ihost->interrupt_coalesce_number = (u16)coalesce_number;
1438         ihost->interrupt_coalesce_timeout = coalesce_timeout / 100;
1439 
1440         return SCI_SUCCESS;
1441 }
1442 
1443 
1444 static void sci_controller_ready_state_enter(struct sci_base_state_machine *sm)
1445 {
1446         struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1447         u32 val;
1448 
1449         /* enable clock gating for power control of the scu unit */
1450         val = readl(&ihost->smu_registers->clock_gating_control);
1451         val &= ~(SMU_CGUCR_GEN_BIT(REGCLK_ENABLE) |
1452                  SMU_CGUCR_GEN_BIT(TXCLK_ENABLE) |
1453                  SMU_CGUCR_GEN_BIT(XCLK_ENABLE));
1454         val |= SMU_CGUCR_GEN_BIT(IDLE_ENABLE);
1455         writel(val, &ihost->smu_registers->clock_gating_control);
1456 
1457         /* set the default interrupt coalescence number and timeout value. */
1458         sci_controller_set_interrupt_coalescence(ihost, 0, 0);
1459 }
1460 
1461 static void sci_controller_ready_state_exit(struct sci_base_state_machine *sm)
1462 {
1463         struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1464 
1465         /* disable interrupt coalescence. */
1466         sci_controller_set_interrupt_coalescence(ihost, 0, 0);
1467 }
1468 
1469 static enum sci_status sci_controller_stop_ports(struct isci_host *ihost)
1470 {
1471         u32 index;
1472         enum sci_status port_status;
1473         enum sci_status status = SCI_SUCCESS;
1474 
1475         for (index = 0; index < ihost->logical_port_entries; index++) {
1476                 struct isci_port *iport = &ihost->ports[index];
1477 
1478                 port_status = sci_port_stop(iport);
1479 
1480                 if ((port_status != SCI_SUCCESS) &&
1481                     (port_status != SCI_FAILURE_INVALID_STATE)) {
1482                         status = SCI_FAILURE;
1483 
1484                         dev_warn(&ihost->pdev->dev,
1485                                  "%s: Controller stop operation failed to "
1486                                  "stop port %d because of status %d.\n",
1487                                  __func__,
1488                                  iport->logical_port_index,
1489                                  port_status);
1490                 }
1491         }
1492 
1493         return status;
1494 }
1495 
1496 static enum sci_status sci_controller_stop_devices(struct isci_host *ihost)
1497 {
1498         u32 index;
1499         enum sci_status status;
1500         enum sci_status device_status;
1501 
1502         status = SCI_SUCCESS;
1503 
1504         for (index = 0; index < ihost->remote_node_entries; index++) {
1505                 if (ihost->device_table[index] != NULL) {
1506                         /* / @todo What timeout value do we want to provide to this request? */
1507                         device_status = sci_remote_device_stop(ihost->device_table[index], 0);
1508 
1509                         if ((device_status != SCI_SUCCESS) &&
1510                             (device_status != SCI_FAILURE_INVALID_STATE)) {
1511                                 dev_warn(&ihost->pdev->dev,
1512                                          "%s: Controller stop operation failed "
1513                                          "to stop device 0x%p because of "
1514                                          "status %d.\n",
1515                                          __func__,
1516                                          ihost->device_table[index], device_status);
1517                         }
1518                 }
1519         }
1520 
1521         return status;
1522 }
1523 
1524 static void sci_controller_stopping_state_enter(struct sci_base_state_machine *sm)
1525 {
1526         struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1527 
1528         sci_controller_stop_devices(ihost);
1529         sci_controller_stop_ports(ihost);
1530 
1531         if (!sci_controller_has_remote_devices_stopping(ihost))
1532                 isci_host_stop_complete(ihost);
1533 }
1534 
1535 static void sci_controller_stopping_state_exit(struct sci_base_state_machine *sm)
1536 {
1537         struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1538 
1539         sci_del_timer(&ihost->timer);
1540 }
1541 
1542 static void sci_controller_reset_hardware(struct isci_host *ihost)
1543 {
1544         /* Disable interrupts so we dont take any spurious interrupts */
1545         sci_controller_disable_interrupts(ihost);
1546 
1547         /* Reset the SCU */
1548         writel(0xFFFFFFFF, &ihost->smu_registers->soft_reset_control);
1549 
1550         /* Delay for 1ms to before clearing the CQP and UFQPR. */
1551         udelay(1000);
1552 
1553         /* The write to the CQGR clears the CQP */
1554         writel(0x00000000, &ihost->smu_registers->completion_queue_get);
1555 
1556         /* The write to the UFQGP clears the UFQPR */
1557         writel(0, &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
1558 
1559         /* clear all interrupts */
1560         writel(~SMU_INTERRUPT_STATUS_RESERVED_MASK, &ihost->smu_registers->interrupt_status);
1561 }
1562 
1563 static void sci_controller_resetting_state_enter(struct sci_base_state_machine *sm)
1564 {
1565         struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1566 
1567         sci_controller_reset_hardware(ihost);
1568         sci_change_state(&ihost->sm, SCIC_RESET);
1569 }
1570 
1571 static const struct sci_base_state sci_controller_state_table[] = {
1572         [SCIC_INITIAL] = {
1573                 .enter_state = sci_controller_initial_state_enter,
1574         },
1575         [SCIC_RESET] = {},
1576         [SCIC_INITIALIZING] = {},
1577         [SCIC_INITIALIZED] = {},
1578         [SCIC_STARTING] = {
1579                 .exit_state  = sci_controller_starting_state_exit,
1580         },
1581         [SCIC_READY] = {
1582                 .enter_state = sci_controller_ready_state_enter,
1583                 .exit_state  = sci_controller_ready_state_exit,
1584         },
1585         [SCIC_RESETTING] = {
1586                 .enter_state = sci_controller_resetting_state_enter,
1587         },
1588         [SCIC_STOPPING] = {
1589                 .enter_state = sci_controller_stopping_state_enter,
1590                 .exit_state = sci_controller_stopping_state_exit,
1591         },
1592         [SCIC_FAILED] = {}
1593 };
1594 
1595 static void controller_timeout(struct timer_list *t)
1596 {
1597         struct sci_timer *tmr = from_timer(tmr, t, timer);
1598         struct isci_host *ihost = container_of(tmr, typeof(*ihost), timer);
1599         struct sci_base_state_machine *sm = &ihost->sm;
1600         unsigned long flags;
1601 
1602         spin_lock_irqsave(&ihost->scic_lock, flags);
1603 
1604         if (tmr->cancel)
1605                 goto done;
1606 
1607         if (sm->current_state_id == SCIC_STARTING)
1608                 sci_controller_transition_to_ready(ihost, SCI_FAILURE_TIMEOUT);
1609         else if (sm->current_state_id == SCIC_STOPPING) {
1610                 sci_change_state(sm, SCIC_FAILED);
1611                 isci_host_stop_complete(ihost);
1612         } else  /* / @todo Now what do we want to do in this case? */
1613                 dev_err(&ihost->pdev->dev,
1614                         "%s: Controller timer fired when controller was not "
1615                         "in a state being timed.\n",
1616                         __func__);
1617 
1618 done:
1619         spin_unlock_irqrestore(&ihost->scic_lock, flags);
1620 }
1621 
1622 static enum sci_status sci_controller_construct(struct isci_host *ihost,
1623                                                 void __iomem *scu_base,
1624                                                 void __iomem *smu_base)
1625 {
1626         u8 i;
1627 
1628         sci_init_sm(&ihost->sm, sci_controller_state_table, SCIC_INITIAL);
1629 
1630         ihost->scu_registers = scu_base;
1631         ihost->smu_registers = smu_base;
1632 
1633         sci_port_configuration_agent_construct(&ihost->port_agent);
1634 
1635         /* Construct the ports for this controller */
1636         for (i = 0; i < SCI_MAX_PORTS; i++)
1637                 sci_port_construct(&ihost->ports[i], i, ihost);
1638         sci_port_construct(&ihost->ports[i], SCIC_SDS_DUMMY_PORT, ihost);
1639 
1640         /* Construct the phys for this controller */
1641         for (i = 0; i < SCI_MAX_PHYS; i++) {
1642                 /* Add all the PHYs to the dummy port */
1643                 sci_phy_construct(&ihost->phys[i],
1644                                   &ihost->ports[SCI_MAX_PORTS], i);
1645         }
1646 
1647         ihost->invalid_phy_mask = 0;
1648 
1649         sci_init_timer(&ihost->timer, controller_timeout);
1650 
1651         return sci_controller_reset(ihost);
1652 }
1653 
1654 int sci_oem_parameters_validate(struct sci_oem_params *oem, u8 version)
1655 {
1656         int i;
1657 
1658         for (i = 0; i < SCI_MAX_PORTS; i++)
1659                 if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX)
1660                         return -EINVAL;
1661 
1662         for (i = 0; i < SCI_MAX_PHYS; i++)
1663                 if (oem->phys[i].sas_address.high == 0 &&
1664                     oem->phys[i].sas_address.low == 0)
1665                         return -EINVAL;
1666 
1667         if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) {
1668                 for (i = 0; i < SCI_MAX_PHYS; i++)
1669                         if (oem->ports[i].phy_mask != 0)
1670                                 return -EINVAL;
1671         } else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
1672                 u8 phy_mask = 0;
1673 
1674                 for (i = 0; i < SCI_MAX_PHYS; i++)
1675                         phy_mask |= oem->ports[i].phy_mask;
1676 
1677                 if (phy_mask == 0)
1678                         return -EINVAL;
1679         } else
1680                 return -EINVAL;
1681 
1682         if (oem->controller.max_concurr_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT ||
1683             oem->controller.max_concurr_spin_up < 1)
1684                 return -EINVAL;
1685 
1686         if (oem->controller.do_enable_ssc) {
1687                 if (version < ISCI_ROM_VER_1_1 && oem->controller.do_enable_ssc != 1)
1688                         return -EINVAL;
1689 
1690                 if (version >= ISCI_ROM_VER_1_1) {
1691                         u8 test = oem->controller.ssc_sata_tx_spread_level;
1692 
1693                         switch (test) {
1694                         case 0:
1695                         case 2:
1696                         case 3:
1697                         case 6:
1698                         case 7:
1699                                 break;
1700                         default:
1701                                 return -EINVAL;
1702                         }
1703 
1704                         test = oem->controller.ssc_sas_tx_spread_level;
1705                         if (oem->controller.ssc_sas_tx_type == 0) {
1706                                 switch (test) {
1707                                 case 0:
1708                                 case 2:
1709                                 case 3:
1710                                         break;
1711                                 default:
1712                                         return -EINVAL;
1713                                 }
1714                         } else if (oem->controller.ssc_sas_tx_type == 1) {
1715                                 switch (test) {
1716                                 case 0:
1717                                 case 3:
1718                                 case 6:
1719                                         break;
1720                                 default:
1721                                         return -EINVAL;
1722                                 }
1723                         }
1724                 }
1725         }
1726 
1727         return 0;
1728 }
1729 
1730 static u8 max_spin_up(struct isci_host *ihost)
1731 {
1732         if (ihost->user_parameters.max_concurr_spinup)
1733                 return min_t(u8, ihost->user_parameters.max_concurr_spinup,
1734                              MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT);
1735         else
1736                 return min_t(u8, ihost->oem_parameters.controller.max_concurr_spin_up,
1737                              MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT);
1738 }
1739 
1740 static void power_control_timeout(struct timer_list *t)
1741 {
1742         struct sci_timer *tmr = from_timer(tmr, t, timer);
1743         struct isci_host *ihost = container_of(tmr, typeof(*ihost), power_control.timer);
1744         struct isci_phy *iphy;
1745         unsigned long flags;
1746         u8 i;
1747 
1748         spin_lock_irqsave(&ihost->scic_lock, flags);
1749 
1750         if (tmr->cancel)
1751                 goto done;
1752 
1753         ihost->power_control.phys_granted_power = 0;
1754 
1755         if (ihost->power_control.phys_waiting == 0) {
1756                 ihost->power_control.timer_started = false;
1757                 goto done;
1758         }
1759 
1760         for (i = 0; i < SCI_MAX_PHYS; i++) {
1761 
1762                 if (ihost->power_control.phys_waiting == 0)
1763                         break;
1764 
1765                 iphy = ihost->power_control.requesters[i];
1766                 if (iphy == NULL)
1767                         continue;
1768 
1769                 if (ihost->power_control.phys_granted_power >= max_spin_up(ihost))
1770                         break;
1771 
1772                 ihost->power_control.requesters[i] = NULL;
1773                 ihost->power_control.phys_waiting--;
1774                 ihost->power_control.phys_granted_power++;
1775                 sci_phy_consume_power_handler(iphy);
1776 
1777                 if (iphy->protocol == SAS_PROTOCOL_SSP) {
1778                         u8 j;
1779 
1780                         for (j = 0; j < SCI_MAX_PHYS; j++) {
1781                                 struct isci_phy *requester = ihost->power_control.requesters[j];
1782 
1783                                 /*
1784                                  * Search the power_control queue to see if there are other phys
1785                                  * attached to the same remote device. If found, take all of
1786                                  * them out of await_sas_power state.
1787                                  */
1788                                 if (requester != NULL && requester != iphy) {
1789                                         u8 other = memcmp(requester->frame_rcvd.iaf.sas_addr,
1790                                                           iphy->frame_rcvd.iaf.sas_addr,
1791                                                           sizeof(requester->frame_rcvd.iaf.sas_addr));
1792 
1793                                         if (other == 0) {
1794                                                 ihost->power_control.requesters[j] = NULL;
1795                                                 ihost->power_control.phys_waiting--;
1796                                                 sci_phy_consume_power_handler(requester);
1797                                         }
1798                                 }
1799                         }
1800                 }
1801         }
1802 
1803         /*
1804          * It doesn't matter if the power list is empty, we need to start the
1805          * timer in case another phy becomes ready.
1806          */
1807         sci_mod_timer(tmr, SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1808         ihost->power_control.timer_started = true;
1809 
1810 done:
1811         spin_unlock_irqrestore(&ihost->scic_lock, flags);
1812 }
1813 
1814 void sci_controller_power_control_queue_insert(struct isci_host *ihost,
1815                                                struct isci_phy *iphy)
1816 {
1817         BUG_ON(iphy == NULL);
1818 
1819         if (ihost->power_control.phys_granted_power < max_spin_up(ihost)) {
1820                 ihost->power_control.phys_granted_power++;
1821                 sci_phy_consume_power_handler(iphy);
1822 
1823                 /*
1824                  * stop and start the power_control timer. When the timer fires, the
1825                  * no_of_phys_granted_power will be set to 0
1826                  */
1827                 if (ihost->power_control.timer_started)
1828                         sci_del_timer(&ihost->power_control.timer);
1829 
1830                 sci_mod_timer(&ihost->power_control.timer,
1831                                  SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1832                 ihost->power_control.timer_started = true;
1833 
1834         } else {
1835                 /*
1836                  * There are phys, attached to the same sas address as this phy, are
1837                  * already in READY state, this phy don't need wait.
1838                  */
1839                 u8 i;
1840                 struct isci_phy *current_phy;
1841 
1842                 for (i = 0; i < SCI_MAX_PHYS; i++) {
1843                         u8 other;
1844                         current_phy = &ihost->phys[i];
1845 
1846                         other = memcmp(current_phy->frame_rcvd.iaf.sas_addr,
1847                                        iphy->frame_rcvd.iaf.sas_addr,
1848                                        sizeof(current_phy->frame_rcvd.iaf.sas_addr));
1849 
1850                         if (current_phy->sm.current_state_id == SCI_PHY_READY &&
1851                             current_phy->protocol == SAS_PROTOCOL_SSP &&
1852                             other == 0) {
1853                                 sci_phy_consume_power_handler(iphy);
1854                                 break;
1855                         }
1856                 }
1857 
1858                 if (i == SCI_MAX_PHYS) {
1859                         /* Add the phy in the waiting list */
1860                         ihost->power_control.requesters[iphy->phy_index] = iphy;
1861                         ihost->power_control.phys_waiting++;
1862                 }
1863         }
1864 }
1865 
1866 void sci_controller_power_control_queue_remove(struct isci_host *ihost,
1867                                                struct isci_phy *iphy)
1868 {
1869         BUG_ON(iphy == NULL);
1870 
1871         if (ihost->power_control.requesters[iphy->phy_index])
1872                 ihost->power_control.phys_waiting--;
1873 
1874         ihost->power_control.requesters[iphy->phy_index] = NULL;
1875 }
1876 
1877 static int is_long_cable(int phy, unsigned char selection_byte)
1878 {
1879         return !!(selection_byte & (1 << phy));
1880 }
1881 
1882 static int is_medium_cable(int phy, unsigned char selection_byte)
1883 {
1884         return !!(selection_byte & (1 << (phy + 4)));
1885 }
1886 
1887 static enum cable_selections decode_selection_byte(
1888         int phy,
1889         unsigned char selection_byte)
1890 {
1891         return ((selection_byte & (1 << phy)) ? 1 : 0)
1892                 + (selection_byte & (1 << (phy + 4)) ? 2 : 0);
1893 }
1894 
1895 static unsigned char *to_cable_select(struct isci_host *ihost)
1896 {
1897         if (is_cable_select_overridden())
1898                 return ((unsigned char *)&cable_selection_override)
1899                         + ihost->id;
1900         else
1901                 return &ihost->oem_parameters.controller.cable_selection_mask;
1902 }
1903 
1904 enum cable_selections decode_cable_selection(struct isci_host *ihost, int phy)
1905 {
1906         return decode_selection_byte(phy, *to_cable_select(ihost));
1907 }
1908 
1909 char *lookup_cable_names(enum cable_selections selection)
1910 {
1911         static char *cable_names[] = {
1912                 [short_cable]     = "short",
1913                 [long_cable]      = "long",
1914                 [medium_cable]    = "medium",
1915                 [undefined_cable] = "<undefined, assumed long>" /* bit 0==1 */
1916         };
1917         return (selection <= undefined_cable) ? cable_names[selection]
1918                                               : cable_names[undefined_cable];
1919 }
1920 
1921 #define AFE_REGISTER_WRITE_DELAY 10
1922 
1923 static void sci_controller_afe_initialization(struct isci_host *ihost)
1924 {
1925         struct scu_afe_registers __iomem *afe = &ihost->scu_registers->afe;
1926         const struct sci_oem_params *oem = &ihost->oem_parameters;
1927         struct pci_dev *pdev = ihost->pdev;
1928         u32 afe_status;
1929         u32 phy_id;
1930         unsigned char cable_selection_mask = *to_cable_select(ihost);
1931 
1932         /* Clear DFX Status registers */
1933         writel(0x0081000f, &afe->afe_dfx_master_control0);
1934         udelay(AFE_REGISTER_WRITE_DELAY);
1935 
1936         if (is_b0(pdev) || is_c0(pdev) || is_c1(pdev)) {
1937                 /* PM Rx Equalization Save, PM SPhy Rx Acknowledgement
1938                  * Timer, PM Stagger Timer
1939                  */
1940                 writel(0x0007FFFF, &afe->afe_pmsn_master_control2);
1941                 udelay(AFE_REGISTER_WRITE_DELAY);
1942         }
1943 
1944         /* Configure bias currents to normal */
1945         if (is_a2(pdev))
1946                 writel(0x00005A00, &afe->afe_bias_control);
1947         else if (is_b0(pdev) || is_c0(pdev))
1948                 writel(0x00005F00, &afe->afe_bias_control);
1949         else if (is_c1(pdev))
1950                 writel(0x00005500, &afe->afe_bias_control);
1951 
1952         udelay(AFE_REGISTER_WRITE_DELAY);
1953 
1954         /* Enable PLL */
1955         if (is_a2(pdev))
1956                 writel(0x80040908, &afe->afe_pll_control0);
1957         else if (is_b0(pdev) || is_c0(pdev))
1958                 writel(0x80040A08, &afe->afe_pll_control0);
1959         else if (is_c1(pdev)) {
1960                 writel(0x80000B08, &afe->afe_pll_control0);
1961                 udelay(AFE_REGISTER_WRITE_DELAY);
1962                 writel(0x00000B08, &afe->afe_pll_control0);
1963                 udelay(AFE_REGISTER_WRITE_DELAY);
1964                 writel(0x80000B08, &afe->afe_pll_control0);
1965         }
1966 
1967         udelay(AFE_REGISTER_WRITE_DELAY);
1968 
1969         /* Wait for the PLL to lock */
1970         do {
1971                 afe_status = readl(&afe->afe_common_block_status);
1972                 udelay(AFE_REGISTER_WRITE_DELAY);
1973         } while ((afe_status & 0x00001000) == 0);
1974 
1975         if (is_a2(pdev)) {
1976                 /* Shorten SAS SNW lock time (RxLock timer value from 76
1977                  * us to 50 us)
1978                  */
1979                 writel(0x7bcc96ad, &afe->afe_pmsn_master_control0);
1980                 udelay(AFE_REGISTER_WRITE_DELAY);
1981         }
1982 
1983         for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) {
1984                 struct scu_afe_transceiver __iomem *xcvr = &afe->scu_afe_xcvr[phy_id];
1985                 const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id];
1986                 int cable_length_long =
1987                         is_long_cable(phy_id, cable_selection_mask);
1988                 int cable_length_medium =
1989                         is_medium_cable(phy_id, cable_selection_mask);
1990 
1991                 if (is_a2(pdev)) {
1992                         /* All defaults, except the Receive Word
1993                          * Alignament/Comma Detect Enable....(0xe800)
1994                          */
1995                         writel(0x00004512, &xcvr->afe_xcvr_control0);
1996                         udelay(AFE_REGISTER_WRITE_DELAY);
1997 
1998                         writel(0x0050100F, &xcvr->afe_xcvr_control1);
1999                         udelay(AFE_REGISTER_WRITE_DELAY);
2000                 } else if (is_b0(pdev)) {
2001                         /* Configure transmitter SSC parameters */
2002                         writel(0x00030000, &xcvr->afe_tx_ssc_control);
2003                         udelay(AFE_REGISTER_WRITE_DELAY);
2004                 } else if (is_c0(pdev)) {
2005                         /* Configure transmitter SSC parameters */
2006                         writel(0x00010202, &xcvr->afe_tx_ssc_control);
2007                         udelay(AFE_REGISTER_WRITE_DELAY);
2008 
2009                         /* All defaults, except the Receive Word
2010                          * Alignament/Comma Detect Enable....(0xe800)
2011                          */
2012                         writel(0x00014500, &xcvr->afe_xcvr_control0);
2013                         udelay(AFE_REGISTER_WRITE_DELAY);
2014                 } else if (is_c1(pdev)) {
2015                         /* Configure transmitter SSC parameters */
2016                         writel(0x00010202, &xcvr->afe_tx_ssc_control);
2017                         udelay(AFE_REGISTER_WRITE_DELAY);
2018 
2019                         /* All defaults, except the Receive Word
2020                          * Alignament/Comma Detect Enable....(0xe800)
2021                          */
2022                         writel(0x0001C500, &xcvr->afe_xcvr_control0);
2023                         udelay(AFE_REGISTER_WRITE_DELAY);
2024                 }
2025 
2026                 /* Power up TX and RX out from power down (PWRDNTX and
2027                  * PWRDNRX) & increase TX int & ext bias 20%....(0xe85c)
2028                  */
2029                 if (is_a2(pdev))
2030                         writel(0x000003F0, &xcvr->afe_channel_control);
2031                 else if (is_b0(pdev)) {
2032                         writel(0x000003D7, &xcvr->afe_channel_control);
2033                         udelay(AFE_REGISTER_WRITE_DELAY);
2034 
2035                         writel(0x000003D4, &xcvr->afe_channel_control);
2036                 } else if (is_c0(pdev)) {
2037                         writel(0x000001E7, &xcvr->afe_channel_control);
2038                         udelay(AFE_REGISTER_WRITE_DELAY);
2039 
2040                         writel(0x000001E4, &xcvr->afe_channel_control);
2041                 } else if (is_c1(pdev)) {
2042                         writel(cable_length_long ? 0x000002F7 : 0x000001F7,
2043                                &xcvr->afe_channel_control);
2044                         udelay(AFE_REGISTER_WRITE_DELAY);
2045 
2046                         writel(cable_length_long ? 0x000002F4 : 0x000001F4,
2047                                &xcvr->afe_channel_control);
2048                 }
2049                 udelay(AFE_REGISTER_WRITE_DELAY);
2050 
2051                 if (is_a2(pdev)) {
2052                         /* Enable TX equalization (0xe824) */
2053                         writel(0x00040000, &xcvr->afe_tx_control);
2054                         udelay(AFE_REGISTER_WRITE_DELAY);
2055                 }
2056 
2057                 if (is_a2(pdev) || is_b0(pdev))
2058                         /* RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0,
2059                          * TPD=0x0(TX Power On), RDD=0x0(RX Detect
2060                          * Enabled) ....(0xe800)
2061                          */
2062                         writel(0x00004100, &xcvr->afe_xcvr_control0);
2063                 else if (is_c0(pdev))
2064                         writel(0x00014100, &xcvr->afe_xcvr_control0);
2065                 else if (is_c1(pdev))
2066                         writel(0x0001C100, &xcvr->afe_xcvr_control0);
2067                 udelay(AFE_REGISTER_WRITE_DELAY);
2068 
2069                 /* Leave DFE/FFE on */
2070                 if (is_a2(pdev))
2071                         writel(0x3F11103F, &xcvr->afe_rx_ssc_control0);
2072                 else if (is_b0(pdev)) {
2073                         writel(0x3F11103F, &xcvr->afe_rx_ssc_control0);
2074                         udelay(AFE_REGISTER_WRITE_DELAY);
2075                         /* Enable TX equalization (0xe824) */
2076                         writel(0x00040000, &xcvr->afe_tx_control);
2077                 } else if (is_c0(pdev)) {
2078                         writel(0x01400C0F, &xcvr->afe_rx_ssc_control1);
2079                         udelay(AFE_REGISTER_WRITE_DELAY);
2080 
2081                         writel(0x3F6F103F, &xcvr->afe_rx_ssc_control0);
2082                         udelay(AFE_REGISTER_WRITE_DELAY);
2083 
2084                         /* Enable TX equalization (0xe824) */
2085                         writel(0x00040000, &xcvr->afe_tx_control);
2086                 } else if (is_c1(pdev)) {
2087                         writel(cable_length_long ? 0x01500C0C :
2088                                cable_length_medium ? 0x01400C0D : 0x02400C0D,
2089                                &xcvr->afe_xcvr_control1);
2090                         udelay(AFE_REGISTER_WRITE_DELAY);
2091 
2092                         writel(0x000003E0, &xcvr->afe_dfx_rx_control1);
2093                         udelay(AFE_REGISTER_WRITE_DELAY);
2094 
2095                         writel(cable_length_long ? 0x33091C1F :
2096                                cable_length_medium ? 0x3315181F : 0x2B17161F,
2097                                &xcvr->afe_rx_ssc_control0);
2098                         udelay(AFE_REGISTER_WRITE_DELAY);
2099 
2100                         /* Enable TX equalization (0xe824) */
2101                         writel(0x00040000, &xcvr->afe_tx_control);
2102                 }
2103 
2104                 udelay(AFE_REGISTER_WRITE_DELAY);
2105 
2106                 writel(oem_phy->afe_tx_amp_control0, &xcvr->afe_tx_amp_control0);
2107                 udelay(AFE_REGISTER_WRITE_DELAY);
2108 
2109                 writel(oem_phy->afe_tx_amp_control1, &xcvr->afe_tx_amp_control1);
2110                 udelay(AFE_REGISTER_WRITE_DELAY);
2111 
2112                 writel(oem_phy->afe_tx_amp_control2, &xcvr->afe_tx_amp_control2);
2113                 udelay(AFE_REGISTER_WRITE_DELAY);
2114 
2115                 writel(oem_phy->afe_tx_amp_control3, &xcvr->afe_tx_amp_control3);
2116                 udelay(AFE_REGISTER_WRITE_DELAY);
2117         }
2118 
2119         /* Transfer control to the PEs */
2120         writel(0x00010f00, &afe->afe_dfx_master_control0);
2121         udelay(AFE_REGISTER_WRITE_DELAY);
2122 }
2123 
2124 static void sci_controller_initialize_power_control(struct isci_host *ihost)
2125 {
2126         sci_init_timer(&ihost->power_control.timer, power_control_timeout);
2127 
2128         memset(ihost->power_control.requesters, 0,
2129                sizeof(ihost->power_control.requesters));
2130 
2131         ihost->power_control.phys_waiting = 0;
2132         ihost->power_control.phys_granted_power = 0;
2133 }
2134 
2135 static enum sci_status sci_controller_initialize(struct isci_host *ihost)
2136 {
2137         struct sci_base_state_machine *sm = &ihost->sm;
2138         enum sci_status result = SCI_FAILURE;
2139         unsigned long i, state, val;
2140 
2141         if (ihost->sm.current_state_id != SCIC_RESET) {
2142                 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2143                          __func__, ihost->sm.current_state_id);
2144                 return SCI_FAILURE_INVALID_STATE;
2145         }
2146 
2147         sci_change_state(sm, SCIC_INITIALIZING);
2148 
2149         sci_init_timer(&ihost->phy_timer, phy_startup_timeout);
2150 
2151         ihost->next_phy_to_start = 0;
2152         ihost->phy_startup_timer_pending = false;
2153 
2154         sci_controller_initialize_power_control(ihost);
2155 
2156         /*
2157          * There is nothing to do here for B0 since we do not have to
2158          * program the AFE registers.
2159          * / @todo The AFE settings are supposed to be correct for the B0 but
2160          * /       presently they seem to be wrong. */
2161         sci_controller_afe_initialization(ihost);
2162 
2163 
2164         /* Take the hardware out of reset */
2165         writel(0, &ihost->smu_registers->soft_reset_control);
2166 
2167         /*
2168          * / @todo Provide meaningfull error code for hardware failure
2169          * result = SCI_FAILURE_CONTROLLER_HARDWARE; */
2170         for (i = 100; i >= 1; i--) {
2171                 u32 status;
2172 
2173                 /* Loop until the hardware reports success */
2174                 udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME);
2175                 status = readl(&ihost->smu_registers->control_status);
2176 
2177                 if ((status & SCU_RAM_INIT_COMPLETED) == SCU_RAM_INIT_COMPLETED)
2178                         break;
2179         }
2180         if (i == 0)
2181                 goto out;
2182 
2183         /*
2184          * Determine what are the actaul device capacities that the
2185          * hardware will support */
2186         val = readl(&ihost->smu_registers->device_context_capacity);
2187 
2188         /* Record the smaller of the two capacity values */
2189         ihost->logical_port_entries = min(smu_max_ports(val), SCI_MAX_PORTS);
2190         ihost->task_context_entries = min(smu_max_task_contexts(val), SCI_MAX_IO_REQUESTS);
2191         ihost->remote_node_entries = min(smu_max_rncs(val), SCI_MAX_REMOTE_DEVICES);
2192 
2193         /*
2194          * Make all PEs that are unassigned match up with the
2195          * logical ports
2196          */
2197         for (i = 0; i < ihost->logical_port_entries; i++) {
2198                 struct scu_port_task_scheduler_group_registers __iomem
2199                         *ptsg = &ihost->scu_registers->peg0.ptsg;
2200 
2201                 writel(i, &ptsg->protocol_engine[i]);
2202         }
2203 
2204         /* Initialize hardware PCI Relaxed ordering in DMA engines */
2205         val = readl(&ihost->scu_registers->sdma.pdma_configuration);
2206         val |= SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2207         writel(val, &ihost->scu_registers->sdma.pdma_configuration);
2208 
2209         val = readl(&ihost->scu_registers->sdma.cdma_configuration);
2210         val |= SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2211         writel(val, &ihost->scu_registers->sdma.cdma_configuration);
2212 
2213         /*
2214          * Initialize the PHYs before the PORTs because the PHY registers
2215          * are accessed during the port initialization.
2216          */
2217         for (i = 0; i < SCI_MAX_PHYS; i++) {
2218                 result = sci_phy_initialize(&ihost->phys[i],
2219                                             &ihost->scu_registers->peg0.pe[i].tl,
2220                                             &ihost->scu_registers->peg0.pe[i].ll);
2221                 if (result != SCI_SUCCESS)
2222                         goto out;
2223         }
2224 
2225         for (i = 0; i < ihost->logical_port_entries; i++) {
2226                 struct isci_port *iport = &ihost->ports[i];
2227 
2228                 iport->port_task_scheduler_registers = &ihost->scu_registers->peg0.ptsg.port[i];
2229                 iport->port_pe_configuration_register = &ihost->scu_registers->peg0.ptsg.protocol_engine[0];
2230                 iport->viit_registers = &ihost->scu_registers->peg0.viit[i];
2231         }
2232 
2233         result = sci_port_configuration_agent_initialize(ihost, &ihost->port_agent);
2234 
2235  out:
2236         /* Advance the controller state machine */
2237         if (result == SCI_SUCCESS)
2238                 state = SCIC_INITIALIZED;
2239         else
2240                 state = SCIC_FAILED;
2241         sci_change_state(sm, state);
2242 
2243         return result;
2244 }
2245 
2246 static int sci_controller_dma_alloc(struct isci_host *ihost)
2247 {
2248         struct device *dev = &ihost->pdev->dev;
2249         size_t size;
2250         int i;
2251 
2252         /* detect re-initialization */
2253         if (ihost->completion_queue)
2254                 return 0;
2255 
2256         size = SCU_MAX_COMPLETION_QUEUE_ENTRIES * sizeof(u32);
2257         ihost->completion_queue = dmam_alloc_coherent(dev, size, &ihost->cq_dma,
2258                                                       GFP_KERNEL);
2259         if (!ihost->completion_queue)
2260                 return -ENOMEM;
2261 
2262         size = ihost->remote_node_entries * sizeof(union scu_remote_node_context);
2263         ihost->remote_node_context_table = dmam_alloc_coherent(dev, size, &ihost->rnc_dma,
2264                                                                GFP_KERNEL);
2265 
2266         if (!ihost->remote_node_context_table)
2267                 return -ENOMEM;
2268 
2269         size = ihost->task_context_entries * sizeof(struct scu_task_context),
2270         ihost->task_context_table = dmam_alloc_coherent(dev, size, &ihost->tc_dma,
2271                                                         GFP_KERNEL);
2272         if (!ihost->task_context_table)
2273                 return -ENOMEM;
2274 
2275         size = SCI_UFI_TOTAL_SIZE;
2276         ihost->ufi_buf = dmam_alloc_coherent(dev, size, &ihost->ufi_dma, GFP_KERNEL);
2277         if (!ihost->ufi_buf)
2278                 return -ENOMEM;
2279 
2280         for (i = 0; i < SCI_MAX_IO_REQUESTS; i++) {
2281                 struct isci_request *ireq;
2282                 dma_addr_t dma;
2283 
2284                 ireq = dmam_alloc_coherent(dev, sizeof(*ireq), &dma, GFP_KERNEL);
2285                 if (!ireq)
2286                         return -ENOMEM;
2287 
2288                 ireq->tc = &ihost->task_context_table[i];
2289                 ireq->owning_controller = ihost;
2290                 ireq->request_daddr = dma;
2291                 ireq->isci_host = ihost;
2292                 ihost->reqs[i] = ireq;
2293         }
2294 
2295         return 0;
2296 }
2297 
2298 static int sci_controller_mem_init(struct isci_host *ihost)
2299 {
2300         int err = sci_controller_dma_alloc(ihost);
2301 
2302         if (err)
2303                 return err;
2304 
2305         writel(lower_32_bits(ihost->cq_dma), &ihost->smu_registers->completion_queue_lower);
2306         writel(upper_32_bits(ihost->cq_dma), &ihost->smu_registers->completion_queue_upper);
2307 
2308         writel(lower_32_bits(ihost->rnc_dma), &ihost->smu_registers->remote_node_context_lower);
2309         writel(upper_32_bits(ihost->rnc_dma), &ihost->smu_registers->remote_node_context_upper);
2310 
2311         writel(lower_32_bits(ihost->tc_dma), &ihost->smu_registers->host_task_table_lower);
2312         writel(upper_32_bits(ihost->tc_dma), &ihost->smu_registers->host_task_table_upper);
2313 
2314         sci_unsolicited_frame_control_construct(ihost);
2315 
2316         /*
2317          * Inform the silicon as to the location of the UF headers and
2318          * address table.
2319          */
2320         writel(lower_32_bits(ihost->uf_control.headers.physical_address),
2321                 &ihost->scu_registers->sdma.uf_header_base_address_lower);
2322         writel(upper_32_bits(ihost->uf_control.headers.physical_address),
2323                 &ihost->scu_registers->sdma.uf_header_base_address_upper);
2324 
2325         writel(lower_32_bits(ihost->uf_control.address_table.physical_address),
2326                 &ihost->scu_registers->sdma.uf_address_table_lower);
2327         writel(upper_32_bits(ihost->uf_control.address_table.physical_address),
2328                 &ihost->scu_registers->sdma.uf_address_table_upper);
2329 
2330         return 0;
2331 }
2332 
2333 /**
2334  * isci_host_init - (re-)initialize hardware and internal (private) state
2335  * @ihost: host to init
2336  *
2337  * Any public facing objects (like asd_sas_port, and asd_sas_phys), or
2338  * one-time initialization objects like locks and waitqueues, are
2339  * not touched (they are initialized in isci_host_alloc)
2340  */
2341 int isci_host_init(struct isci_host *ihost)
2342 {
2343         int i, err;
2344         enum sci_status status;
2345 
2346         spin_lock_irq(&ihost->scic_lock);
2347         status = sci_controller_construct(ihost, scu_base(ihost), smu_base(ihost));
2348         spin_unlock_irq(&ihost->scic_lock);
2349         if (status != SCI_SUCCESS) {
2350                 dev_err(&ihost->pdev->dev,
2351                         "%s: sci_controller_construct failed - status = %x\n",
2352                         __func__,
2353                         status);
2354                 return -ENODEV;
2355         }
2356 
2357         spin_lock_irq(&ihost->scic_lock);
2358         status = sci_controller_initialize(ihost);
2359         spin_unlock_irq(&ihost->scic_lock);
2360         if (status != SCI_SUCCESS) {
2361                 dev_warn(&ihost->pdev->dev,
2362                          "%s: sci_controller_initialize failed -"
2363                          " status = 0x%x\n",
2364                          __func__, status);
2365                 return -ENODEV;
2366         }
2367 
2368         err = sci_controller_mem_init(ihost);
2369         if (err)
2370                 return err;
2371 
2372         /* enable sgpio */
2373         writel(1, &ihost->scu_registers->peg0.sgpio.interface_control);
2374         for (i = 0; i < isci_gpio_count(ihost); i++)
2375                 writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]);
2376         writel(0, &ihost->scu_registers->peg0.sgpio.vendor_specific_code);
2377 
2378         return 0;
2379 }
2380 
2381 void sci_controller_link_up(struct isci_host *ihost, struct isci_port *iport,
2382                             struct isci_phy *iphy)
2383 {
2384         switch (ihost->sm.current_state_id) {
2385         case SCIC_STARTING:
2386                 sci_del_timer(&ihost->phy_timer);
2387                 ihost->phy_startup_timer_pending = false;
2388                 ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2389                                                   iport, iphy);
2390                 sci_controller_start_next_phy(ihost);
2391                 break;
2392         case SCIC_READY:
2393                 ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2394                                                   iport, iphy);
2395                 break;
2396         default:
2397                 dev_dbg(&ihost->pdev->dev,
2398                         "%s: SCIC Controller linkup event from phy %d in "
2399                         "unexpected state %d\n", __func__, iphy->phy_index,
2400                         ihost->sm.current_state_id);
2401         }
2402 }
2403 
2404 void sci_controller_link_down(struct isci_host *ihost, struct isci_port *iport,
2405                               struct isci_phy *iphy)
2406 {
2407         switch (ihost->sm.current_state_id) {
2408         case SCIC_STARTING:
2409         case SCIC_READY:
2410                 ihost->port_agent.link_down_handler(ihost, &ihost->port_agent,
2411                                                    iport, iphy);
2412                 break;
2413         default:
2414                 dev_dbg(&ihost->pdev->dev,
2415                         "%s: SCIC Controller linkdown event from phy %d in "
2416                         "unexpected state %d\n",
2417                         __func__,
2418                         iphy->phy_index,
2419                         ihost->sm.current_state_id);
2420         }
2421 }
2422 
2423 bool sci_controller_has_remote_devices_stopping(struct isci_host *ihost)
2424 {
2425         u32 index;
2426 
2427         for (index = 0; index < ihost->remote_node_entries; index++) {
2428                 if ((ihost->device_table[index] != NULL) &&
2429                    (ihost->device_table[index]->sm.current_state_id == SCI_DEV_STOPPING))
2430                         return true;
2431         }
2432 
2433         return false;
2434 }
2435 
2436 void sci_controller_remote_device_stopped(struct isci_host *ihost,
2437                                           struct isci_remote_device *idev)
2438 {
2439         if (ihost->sm.current_state_id != SCIC_STOPPING) {
2440                 dev_dbg(&ihost->pdev->dev,
2441                         "SCIC Controller 0x%p remote device stopped event "
2442                         "from device 0x%p in unexpected state %d\n",
2443                         ihost, idev,
2444                         ihost->sm.current_state_id);
2445                 return;
2446         }
2447 
2448         if (!sci_controller_has_remote_devices_stopping(ihost))
2449                 isci_host_stop_complete(ihost);
2450 }
2451 
2452 void sci_controller_post_request(struct isci_host *ihost, u32 request)
2453 {
2454         dev_dbg(&ihost->pdev->dev, "%s[%d]: %#x\n",
2455                 __func__, ihost->id, request);
2456 
2457         writel(request, &ihost->smu_registers->post_context_port);
2458 }
2459 
2460 struct isci_request *sci_request_by_tag(struct isci_host *ihost, u16 io_tag)
2461 {
2462         u16 task_index;
2463         u16 task_sequence;
2464 
2465         task_index = ISCI_TAG_TCI(io_tag);
2466 
2467         if (task_index < ihost->task_context_entries) {
2468                 struct isci_request *ireq = ihost->reqs[task_index];
2469 
2470                 if (test_bit(IREQ_ACTIVE, &ireq->flags)) {
2471                         task_sequence = ISCI_TAG_SEQ(io_tag);
2472 
2473                         if (task_sequence == ihost->io_request_sequence[task_index])
2474                                 return ireq;
2475                 }
2476         }
2477 
2478         return NULL;
2479 }
2480 
2481 /**
2482  * This method allocates remote node index and the reserves the remote node
2483  *    context space for use. This method can fail if there are no more remote
2484  *    node index available.
2485  * @scic: This is the controller object which contains the set of
2486  *    free remote node ids
2487  * @sci_dev: This is the device object which is requesting the a remote node
2488  *    id
2489  * @node_id: This is the remote node id that is assinged to the device if one
2490  *    is available
2491  *
2492  * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote
2493  * node index available.
2494  */
2495 enum sci_status sci_controller_allocate_remote_node_context(struct isci_host *ihost,
2496                                                             struct isci_remote_device *idev,
2497                                                             u16 *node_id)
2498 {
2499         u16 node_index;
2500         u32 remote_node_count = sci_remote_device_node_count(idev);
2501 
2502         node_index = sci_remote_node_table_allocate_remote_node(
2503                 &ihost->available_remote_nodes, remote_node_count
2504                 );
2505 
2506         if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
2507                 ihost->device_table[node_index] = idev;
2508 
2509                 *node_id = node_index;
2510 
2511                 return SCI_SUCCESS;
2512         }
2513 
2514         return SCI_FAILURE_INSUFFICIENT_RESOURCES;
2515 }
2516 
2517 void sci_controller_free_remote_node_context(struct isci_host *ihost,
2518                                              struct isci_remote_device *idev,
2519                                              u16 node_id)
2520 {
2521         u32 remote_node_count = sci_remote_device_node_count(idev);
2522 
2523         if (ihost->device_table[node_id] == idev) {
2524                 ihost->device_table[node_id] = NULL;
2525 
2526                 sci_remote_node_table_release_remote_node_index(
2527                         &ihost->available_remote_nodes, remote_node_count, node_id
2528                         );
2529         }
2530 }
2531 
2532 void sci_controller_copy_sata_response(void *response_buffer,
2533                                        void *frame_header,
2534                                        void *frame_buffer)
2535 {
2536         /* XXX type safety? */
2537         memcpy(response_buffer, frame_header, sizeof(u32));
2538 
2539         memcpy(response_buffer + sizeof(u32),
2540                frame_buffer,
2541                sizeof(struct dev_to_host_fis) - sizeof(u32));
2542 }
2543 
2544 void sci_controller_release_frame(struct isci_host *ihost, u32 frame_index)
2545 {
2546         if (sci_unsolicited_frame_control_release_frame(&ihost->uf_control, frame_index))
2547                 writel(ihost->uf_control.get,
2548                         &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
2549 }
2550 
2551 void isci_tci_free(struct isci_host *ihost, u16 tci)
2552 {
2553         u16 tail = ihost->tci_tail & (SCI_MAX_IO_REQUESTS-1);
2554 
2555         ihost->tci_pool[tail] = tci;
2556         ihost->tci_tail = tail + 1;
2557 }
2558 
2559 static u16 isci_tci_alloc(struct isci_host *ihost)
2560 {
2561         u16 head = ihost->tci_head & (SCI_MAX_IO_REQUESTS-1);
2562         u16 tci = ihost->tci_pool[head];
2563 
2564         ihost->tci_head = head + 1;
2565         return tci;
2566 }
2567 
2568 static u16 isci_tci_space(struct isci_host *ihost)
2569 {
2570         return CIRC_SPACE(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
2571 }
2572 
2573 u16 isci_alloc_tag(struct isci_host *ihost)
2574 {
2575         if (isci_tci_space(ihost)) {
2576                 u16 tci = isci_tci_alloc(ihost);
2577                 u8 seq = ihost->io_request_sequence[tci];
2578 
2579                 return ISCI_TAG(seq, tci);
2580         }
2581 
2582         return SCI_CONTROLLER_INVALID_IO_TAG;
2583 }
2584 
2585 enum sci_status isci_free_tag(struct isci_host *ihost, u16 io_tag)
2586 {
2587         u16 tci = ISCI_TAG_TCI(io_tag);
2588         u16 seq = ISCI_TAG_SEQ(io_tag);
2589 
2590         /* prevent tail from passing head */
2591         if (isci_tci_active(ihost) == 0)
2592                 return SCI_FAILURE_INVALID_IO_TAG;
2593 
2594         if (seq == ihost->io_request_sequence[tci]) {
2595                 ihost->io_request_sequence[tci] = (seq+1) & (SCI_MAX_SEQ-1);
2596 
2597                 isci_tci_free(ihost, tci);
2598 
2599                 return SCI_SUCCESS;
2600         }
2601         return SCI_FAILURE_INVALID_IO_TAG;
2602 }
2603 
2604 enum sci_status sci_controller_start_io(struct isci_host *ihost,
2605                                         struct isci_remote_device *idev,
2606                                         struct isci_request *ireq)
2607 {
2608         enum sci_status status;
2609 
2610         if (ihost->sm.current_state_id != SCIC_READY) {
2611                 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2612                          __func__, ihost->sm.current_state_id);
2613                 return SCI_FAILURE_INVALID_STATE;
2614         }
2615 
2616         status = sci_remote_device_start_io(ihost, idev, ireq);
2617         if (status != SCI_SUCCESS)
2618                 return status;
2619 
2620         set_bit(IREQ_ACTIVE, &ireq->flags);
2621         sci_controller_post_request(ihost, ireq->post_context);
2622         return SCI_SUCCESS;
2623 }
2624 
2625 enum sci_status sci_controller_terminate_request(struct isci_host *ihost,
2626                                                  struct isci_remote_device *idev,
2627                                                  struct isci_request *ireq)
2628 {
2629         /* terminate an ongoing (i.e. started) core IO request.  This does not
2630          * abort the IO request at the target, but rather removes the IO
2631          * request from the host controller.
2632          */
2633         enum sci_status status;
2634 
2635         if (ihost->sm.current_state_id != SCIC_READY) {
2636                 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2637                          __func__, ihost->sm.current_state_id);
2638                 return SCI_FAILURE_INVALID_STATE;
2639         }
2640         status = sci_io_request_terminate(ireq);
2641 
2642         dev_dbg(&ihost->pdev->dev, "%s: status=%d; ireq=%p; flags=%lx\n",
2643                 __func__, status, ireq, ireq->flags);
2644 
2645         if ((status == SCI_SUCCESS) &&
2646             !test_bit(IREQ_PENDING_ABORT, &ireq->flags) &&
2647             !test_and_set_bit(IREQ_TC_ABORT_POSTED, &ireq->flags)) {
2648                 /* Utilize the original post context command and or in the
2649                  * POST_TC_ABORT request sub-type.
2650                  */
2651                 sci_controller_post_request(
2652                         ihost, ireq->post_context |
2653                                 SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT);
2654         }
2655         return status;
2656 }
2657 
2658 /**
2659  * sci_controller_complete_io() - This method will perform core specific
2660  *    completion operations for an IO request.  After this method is invoked,
2661  *    the user should consider the IO request as invalid until it is properly
2662  *    reused (i.e. re-constructed).
2663  * @ihost: The handle to the controller object for which to complete the
2664  *    IO request.
2665  * @idev: The handle to the remote device object for which to complete
2666  *    the IO request.
2667  * @ireq: the handle to the io request object to complete.
2668  */
2669 enum sci_status sci_controller_complete_io(struct isci_host *ihost,
2670                                            struct isci_remote_device *idev,
2671                                            struct isci_request *ireq)
2672 {
2673         enum sci_status status;
2674         u16 index;
2675 
2676         switch (ihost->sm.current_state_id) {
2677         case SCIC_STOPPING:
2678                 /* XXX: Implement this function */
2679                 return SCI_FAILURE;
2680         case SCIC_READY:
2681                 status = sci_remote_device_complete_io(ihost, idev, ireq);
2682                 if (status != SCI_SUCCESS)
2683                         return status;
2684 
2685                 index = ISCI_TAG_TCI(ireq->io_tag);
2686                 clear_bit(IREQ_ACTIVE, &ireq->flags);
2687                 return SCI_SUCCESS;
2688         default:
2689                 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2690                          __func__, ihost->sm.current_state_id);
2691                 return SCI_FAILURE_INVALID_STATE;
2692         }
2693 
2694 }
2695 
2696 enum sci_status sci_controller_continue_io(struct isci_request *ireq)
2697 {
2698         struct isci_host *ihost = ireq->owning_controller;
2699 
2700         if (ihost->sm.current_state_id != SCIC_READY) {
2701                 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2702                          __func__, ihost->sm.current_state_id);
2703                 return SCI_FAILURE_INVALID_STATE;
2704         }
2705 
2706         set_bit(IREQ_ACTIVE, &ireq->flags);
2707         sci_controller_post_request(ihost, ireq->post_context);
2708         return SCI_SUCCESS;
2709 }
2710 
2711 /**
2712  * sci_controller_start_task() - This method is called by the SCIC user to
2713  *    send/start a framework task management request.
2714  * @controller: the handle to the controller object for which to start the task
2715  *    management request.
2716  * @remote_device: the handle to the remote device object for which to start
2717  *    the task management request.
2718  * @task_request: the handle to the task request object to start.
2719  */
2720 enum sci_status sci_controller_start_task(struct isci_host *ihost,
2721                                           struct isci_remote_device *idev,
2722                                           struct isci_request *ireq)
2723 {
2724         enum sci_status status;
2725 
2726         if (ihost->sm.current_state_id != SCIC_READY) {
2727                 dev_warn(&ihost->pdev->dev,
2728                          "%s: SCIC Controller starting task from invalid "
2729                          "state\n",
2730                          __func__);
2731                 return SCI_FAILURE_INVALID_STATE;
2732         }
2733 
2734         status = sci_remote_device_start_task(ihost, idev, ireq);
2735         switch (status) {
2736         case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS:
2737                 set_bit(IREQ_ACTIVE, &ireq->flags);
2738 
2739                 /*
2740                  * We will let framework know this task request started successfully,
2741                  * although core is still woring on starting the request (to post tc when
2742                  * RNC is resumed.)
2743                  */
2744                 return SCI_SUCCESS;
2745         case SCI_SUCCESS:
2746                 set_bit(IREQ_ACTIVE, &ireq->flags);
2747                 sci_controller_post_request(ihost, ireq->post_context);
2748                 break;
2749         default:
2750                 break;
2751         }
2752 
2753         return status;
2754 }
2755 
2756 static int sci_write_gpio_tx_gp(struct isci_host *ihost, u8 reg_index, u8 reg_count, u8 *write_data)
2757 {
2758         int d;
2759 
2760         /* no support for TX_GP_CFG */
2761         if (reg_index == 0)
2762                 return -EINVAL;
2763 
2764         for (d = 0; d < isci_gpio_count(ihost); d++) {
2765                 u32 val = 0x444; /* all ODx.n clear */
2766                 int i;
2767 
2768                 for (i = 0; i < 3; i++) {
2769                         int bit;
2770 
2771                         bit = try_test_sas_gpio_gp_bit(to_sas_gpio_od(d, i),
2772                                                        write_data, reg_index,
2773                                                        reg_count);
2774                         if (bit < 0)
2775                                 break;
2776 
2777                         /* if od is set, clear the 'invert' bit */
2778                         val &= ~(bit << ((i << 2) + 2));
2779                 }
2780 
2781                 if (i < 3)
2782                         break;
2783                 writel(val, &ihost->scu_registers->peg0.sgpio.output_data_select[d]);
2784         }
2785 
2786         /* unless reg_index is > 1, we should always be able to write at
2787          * least one register
2788          */
2789         return d > 0;
2790 }
2791 
2792 int isci_gpio_write(struct sas_ha_struct *sas_ha, u8 reg_type, u8 reg_index,
2793                     u8 reg_count, u8 *write_data)
2794 {
2795         struct isci_host *ihost = sas_ha->lldd_ha;
2796         int written;
2797 
2798         switch (reg_type) {
2799         case SAS_GPIO_REG_TX_GP:
2800                 written = sci_write_gpio_tx_gp(ihost, reg_index, reg_count, write_data);
2801                 break;
2802         default:
2803                 written = -EINVAL;
2804         }
2805 
2806         return written;
2807 }

/* [<][>][^][v][top][bottom][index][help] */