root/drivers/scsi/libsas/sas_expander.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. smp_task_timedout
  2. smp_task_done
  3. smp_execute_task_sg
  4. smp_execute_task
  5. alloc_smp_req
  6. alloc_smp_resp
  7. sas_route_char
  8. to_dev_type
  9. sas_set_ex_phy
  10. sas_ex_to_ata
  11. sas_ex_phy_discover_helper
  12. sas_ex_phy_discover
  13. sas_expander_discover
  14. ex_assign_report_general
  15. sas_ex_general
  16. ex_assign_manuf_info
  17. sas_ex_manuf_info
  18. sas_smp_phy_control
  19. sas_ex_disable_phy
  20. sas_ex_disable_port
  21. sas_dev_present_in_domain
  22. sas_smp_get_phy_events
  23. sas_get_report_phy_sata
  24. sas_ex_get_linkrate
  25. sas_ex_discover_end_dev
  26. sas_ex_join_wide_port
  27. sas_ex_discover_expander
  28. sas_ex_discover_dev
  29. sas_find_sub_addr
  30. sas_check_level_subtractive_boundary
  31. sas_ex_discover_devices
  32. sas_check_ex_subtractive_boundary
  33. sas_print_parent_topology_bug
  34. sas_check_eeds
  35. sas_check_parent_topology
  36. sas_configure_present
  37. sas_configure_set
  38. sas_configure_phy
  39. sas_configure_parent
  40. sas_configure_routing
  41. sas_disable_routing
  42. sas_discover_expander
  43. sas_ex_level_discovery
  44. sas_ex_bfs_disc
  45. sas_discover_root_expander
  46. sas_get_phy_discover
  47. sas_get_phy_change_count
  48. sas_get_phy_attached_dev
  49. sas_find_bcast_phy
  50. sas_get_ex_change_count
  51. sas_find_bcast_dev
  52. sas_unregister_ex_tree
  53. sas_unregister_devs_sas_addr
  54. sas_discover_bfs_by_root_level
  55. sas_discover_bfs_by_root
  56. sas_discover_new
  57. dev_type_flutter
  58. sas_rediscover_dev
  59. sas_rediscover
  60. sas_ex_revalidate_domain
  61. sas_smp_handler

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * Serial Attached SCSI (SAS) Expander discovery and configuration
   4  *
   5  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
   6  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
   7  *
   8  * This file is licensed under GPLv2.
   9  */
  10 
  11 #include <linux/scatterlist.h>
  12 #include <linux/blkdev.h>
  13 #include <linux/slab.h>
  14 #include <asm/unaligned.h>
  15 
  16 #include "sas_internal.h"
  17 
  18 #include <scsi/sas_ata.h>
  19 #include <scsi/scsi_transport.h>
  20 #include <scsi/scsi_transport_sas.h>
  21 #include "../scsi_sas_internal.h"
  22 
  23 static int sas_discover_expander(struct domain_device *dev);
  24 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
  25 static int sas_configure_phy(struct domain_device *dev, int phy_id,
  26                              u8 *sas_addr, int include);
  27 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
  28 
  29 /* ---------- SMP task management ---------- */
  30 
  31 static void smp_task_timedout(struct timer_list *t)
  32 {
  33         struct sas_task_slow *slow = from_timer(slow, t, timer);
  34         struct sas_task *task = slow->task;
  35         unsigned long flags;
  36 
  37         spin_lock_irqsave(&task->task_state_lock, flags);
  38         if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
  39                 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
  40                 complete(&task->slow_task->completion);
  41         }
  42         spin_unlock_irqrestore(&task->task_state_lock, flags);
  43 }
  44 
  45 static void smp_task_done(struct sas_task *task)
  46 {
  47         del_timer(&task->slow_task->timer);
  48         complete(&task->slow_task->completion);
  49 }
  50 
  51 /* Give it some long enough timeout. In seconds. */
  52 #define SMP_TIMEOUT 10
  53 
  54 static int smp_execute_task_sg(struct domain_device *dev,
  55                 struct scatterlist *req, struct scatterlist *resp)
  56 {
  57         int res, retry;
  58         struct sas_task *task = NULL;
  59         struct sas_internal *i =
  60                 to_sas_internal(dev->port->ha->core.shost->transportt);
  61 
  62         mutex_lock(&dev->ex_dev.cmd_mutex);
  63         for (retry = 0; retry < 3; retry++) {
  64                 if (test_bit(SAS_DEV_GONE, &dev->state)) {
  65                         res = -ECOMM;
  66                         break;
  67                 }
  68 
  69                 task = sas_alloc_slow_task(GFP_KERNEL);
  70                 if (!task) {
  71                         res = -ENOMEM;
  72                         break;
  73                 }
  74                 task->dev = dev;
  75                 task->task_proto = dev->tproto;
  76                 task->smp_task.smp_req = *req;
  77                 task->smp_task.smp_resp = *resp;
  78 
  79                 task->task_done = smp_task_done;
  80 
  81                 task->slow_task->timer.function = smp_task_timedout;
  82                 task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
  83                 add_timer(&task->slow_task->timer);
  84 
  85                 res = i->dft->lldd_execute_task(task, GFP_KERNEL);
  86 
  87                 if (res) {
  88                         del_timer(&task->slow_task->timer);
  89                         pr_notice("executing SMP task failed:%d\n", res);
  90                         break;
  91                 }
  92 
  93                 wait_for_completion(&task->slow_task->completion);
  94                 res = -ECOMM;
  95                 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
  96                         pr_notice("smp task timed out or aborted\n");
  97                         i->dft->lldd_abort_task(task);
  98                         if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
  99                                 pr_notice("SMP task aborted and not done\n");
 100                                 break;
 101                         }
 102                 }
 103                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
 104                     task->task_status.stat == SAM_STAT_GOOD) {
 105                         res = 0;
 106                         break;
 107                 }
 108                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
 109                     task->task_status.stat == SAS_DATA_UNDERRUN) {
 110                         /* no error, but return the number of bytes of
 111                          * underrun */
 112                         res = task->task_status.residual;
 113                         break;
 114                 }
 115                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
 116                     task->task_status.stat == SAS_DATA_OVERRUN) {
 117                         res = -EMSGSIZE;
 118                         break;
 119                 }
 120                 if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
 121                     task->task_status.stat == SAS_DEVICE_UNKNOWN)
 122                         break;
 123                 else {
 124                         pr_notice("%s: task to dev %016llx response: 0x%x status 0x%x\n",
 125                                   __func__,
 126                                   SAS_ADDR(dev->sas_addr),
 127                                   task->task_status.resp,
 128                                   task->task_status.stat);
 129                         sas_free_task(task);
 130                         task = NULL;
 131                 }
 132         }
 133         mutex_unlock(&dev->ex_dev.cmd_mutex);
 134 
 135         BUG_ON(retry == 3 && task != NULL);
 136         sas_free_task(task);
 137         return res;
 138 }
 139 
 140 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
 141                             void *resp, int resp_size)
 142 {
 143         struct scatterlist req_sg;
 144         struct scatterlist resp_sg;
 145 
 146         sg_init_one(&req_sg, req, req_size);
 147         sg_init_one(&resp_sg, resp, resp_size);
 148         return smp_execute_task_sg(dev, &req_sg, &resp_sg);
 149 }
 150 
 151 /* ---------- Allocations ---------- */
 152 
 153 static inline void *alloc_smp_req(int size)
 154 {
 155         u8 *p = kzalloc(size, GFP_KERNEL);
 156         if (p)
 157                 p[0] = SMP_REQUEST;
 158         return p;
 159 }
 160 
 161 static inline void *alloc_smp_resp(int size)
 162 {
 163         return kzalloc(size, GFP_KERNEL);
 164 }
 165 
 166 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
 167 {
 168         switch (phy->routing_attr) {
 169         case TABLE_ROUTING:
 170                 if (dev->ex_dev.t2t_supp)
 171                         return 'U';
 172                 else
 173                         return 'T';
 174         case DIRECT_ROUTING:
 175                 return 'D';
 176         case SUBTRACTIVE_ROUTING:
 177                 return 'S';
 178         default:
 179                 return '?';
 180         }
 181 }
 182 
 183 static enum sas_device_type to_dev_type(struct discover_resp *dr)
 184 {
 185         /* This is detecting a failure to transmit initial dev to host
 186          * FIS as described in section J.5 of sas-2 r16
 187          */
 188         if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
 189             dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
 190                 return SAS_SATA_PENDING;
 191         else
 192                 return dr->attached_dev_type;
 193 }
 194 
 195 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
 196 {
 197         enum sas_device_type dev_type;
 198         enum sas_linkrate linkrate;
 199         u8 sas_addr[SAS_ADDR_SIZE];
 200         struct smp_resp *resp = rsp;
 201         struct discover_resp *dr = &resp->disc;
 202         struct sas_ha_struct *ha = dev->port->ha;
 203         struct expander_device *ex = &dev->ex_dev;
 204         struct ex_phy *phy = &ex->ex_phy[phy_id];
 205         struct sas_rphy *rphy = dev->rphy;
 206         bool new_phy = !phy->phy;
 207         char *type;
 208 
 209         if (new_phy) {
 210                 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
 211                         return;
 212                 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
 213 
 214                 /* FIXME: error_handling */
 215                 BUG_ON(!phy->phy);
 216         }
 217 
 218         switch (resp->result) {
 219         case SMP_RESP_PHY_VACANT:
 220                 phy->phy_state = PHY_VACANT;
 221                 break;
 222         default:
 223                 phy->phy_state = PHY_NOT_PRESENT;
 224                 break;
 225         case SMP_RESP_FUNC_ACC:
 226                 phy->phy_state = PHY_EMPTY; /* do not know yet */
 227                 break;
 228         }
 229 
 230         /* check if anything important changed to squelch debug */
 231         dev_type = phy->attached_dev_type;
 232         linkrate  = phy->linkrate;
 233         memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 234 
 235         /* Handle vacant phy - rest of dr data is not valid so skip it */
 236         if (phy->phy_state == PHY_VACANT) {
 237                 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 238                 phy->attached_dev_type = SAS_PHY_UNUSED;
 239                 if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
 240                         phy->phy_id = phy_id;
 241                         goto skip;
 242                 } else
 243                         goto out;
 244         }
 245 
 246         phy->attached_dev_type = to_dev_type(dr);
 247         if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
 248                 goto out;
 249         phy->phy_id = phy_id;
 250         phy->linkrate = dr->linkrate;
 251         phy->attached_sata_host = dr->attached_sata_host;
 252         phy->attached_sata_dev  = dr->attached_sata_dev;
 253         phy->attached_sata_ps   = dr->attached_sata_ps;
 254         phy->attached_iproto = dr->iproto << 1;
 255         phy->attached_tproto = dr->tproto << 1;
 256         /* help some expanders that fail to zero sas_address in the 'no
 257          * device' case
 258          */
 259         if (phy->attached_dev_type == SAS_PHY_UNUSED ||
 260             phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
 261                 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 262         else
 263                 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
 264         phy->attached_phy_id = dr->attached_phy_id;
 265         phy->phy_change_count = dr->change_count;
 266         phy->routing_attr = dr->routing_attr;
 267         phy->virtual = dr->virtual;
 268         phy->last_da_index = -1;
 269 
 270         phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
 271         phy->phy->identify.device_type = dr->attached_dev_type;
 272         phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
 273         phy->phy->identify.target_port_protocols = phy->attached_tproto;
 274         if (!phy->attached_tproto && dr->attached_sata_dev)
 275                 phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
 276         phy->phy->identify.phy_identifier = phy_id;
 277         phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
 278         phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
 279         phy->phy->minimum_linkrate = dr->pmin_linkrate;
 280         phy->phy->maximum_linkrate = dr->pmax_linkrate;
 281         phy->phy->negotiated_linkrate = phy->linkrate;
 282         phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
 283 
 284  skip:
 285         if (new_phy)
 286                 if (sas_phy_add(phy->phy)) {
 287                         sas_phy_free(phy->phy);
 288                         return;
 289                 }
 290 
 291  out:
 292         switch (phy->attached_dev_type) {
 293         case SAS_SATA_PENDING:
 294                 type = "stp pending";
 295                 break;
 296         case SAS_PHY_UNUSED:
 297                 type = "no device";
 298                 break;
 299         case SAS_END_DEVICE:
 300                 if (phy->attached_iproto) {
 301                         if (phy->attached_tproto)
 302                                 type = "host+target";
 303                         else
 304                                 type = "host";
 305                 } else {
 306                         if (dr->attached_sata_dev)
 307                                 type = "stp";
 308                         else
 309                                 type = "ssp";
 310                 }
 311                 break;
 312         case SAS_EDGE_EXPANDER_DEVICE:
 313         case SAS_FANOUT_EXPANDER_DEVICE:
 314                 type = "smp";
 315                 break;
 316         default:
 317                 type = "unknown";
 318         }
 319 
 320         /* this routine is polled by libata error recovery so filter
 321          * unimportant messages
 322          */
 323         if (new_phy || phy->attached_dev_type != dev_type ||
 324             phy->linkrate != linkrate ||
 325             SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
 326                 /* pass */;
 327         else
 328                 return;
 329 
 330         /* if the attached device type changed and ata_eh is active,
 331          * make sure we run revalidation when eh completes (see:
 332          * sas_enable_revalidation)
 333          */
 334         if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
 335                 set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
 336 
 337         pr_debug("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
 338                  test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
 339                  SAS_ADDR(dev->sas_addr), phy->phy_id,
 340                  sas_route_char(dev, phy), phy->linkrate,
 341                  SAS_ADDR(phy->attached_sas_addr), type);
 342 }
 343 
 344 /* check if we have an existing attached ata device on this expander phy */
 345 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
 346 {
 347         struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
 348         struct domain_device *dev;
 349         struct sas_rphy *rphy;
 350 
 351         if (!ex_phy->port)
 352                 return NULL;
 353 
 354         rphy = ex_phy->port->rphy;
 355         if (!rphy)
 356                 return NULL;
 357 
 358         dev = sas_find_dev_by_rphy(rphy);
 359 
 360         if (dev && dev_is_sata(dev))
 361                 return dev;
 362 
 363         return NULL;
 364 }
 365 
 366 #define DISCOVER_REQ_SIZE  16
 367 #define DISCOVER_RESP_SIZE 56
 368 
 369 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
 370                                       u8 *disc_resp, int single)
 371 {
 372         struct discover_resp *dr;
 373         int res;
 374 
 375         disc_req[9] = single;
 376 
 377         res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
 378                                disc_resp, DISCOVER_RESP_SIZE);
 379         if (res)
 380                 return res;
 381         dr = &((struct smp_resp *)disc_resp)->disc;
 382         if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
 383                 pr_notice("Found loopback topology, just ignore it!\n");
 384                 return 0;
 385         }
 386         sas_set_ex_phy(dev, single, disc_resp);
 387         return 0;
 388 }
 389 
 390 int sas_ex_phy_discover(struct domain_device *dev, int single)
 391 {
 392         struct expander_device *ex = &dev->ex_dev;
 393         int  res = 0;
 394         u8   *disc_req;
 395         u8   *disc_resp;
 396 
 397         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
 398         if (!disc_req)
 399                 return -ENOMEM;
 400 
 401         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
 402         if (!disc_resp) {
 403                 kfree(disc_req);
 404                 return -ENOMEM;
 405         }
 406 
 407         disc_req[1] = SMP_DISCOVER;
 408 
 409         if (0 <= single && single < ex->num_phys) {
 410                 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
 411         } else {
 412                 int i;
 413 
 414                 for (i = 0; i < ex->num_phys; i++) {
 415                         res = sas_ex_phy_discover_helper(dev, disc_req,
 416                                                          disc_resp, i);
 417                         if (res)
 418                                 goto out_err;
 419                 }
 420         }
 421 out_err:
 422         kfree(disc_resp);
 423         kfree(disc_req);
 424         return res;
 425 }
 426 
 427 static int sas_expander_discover(struct domain_device *dev)
 428 {
 429         struct expander_device *ex = &dev->ex_dev;
 430         int res = -ENOMEM;
 431 
 432         ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL);
 433         if (!ex->ex_phy)
 434                 return -ENOMEM;
 435 
 436         res = sas_ex_phy_discover(dev, -1);
 437         if (res)
 438                 goto out_err;
 439 
 440         return 0;
 441  out_err:
 442         kfree(ex->ex_phy);
 443         ex->ex_phy = NULL;
 444         return res;
 445 }
 446 
 447 #define MAX_EXPANDER_PHYS 128
 448 
 449 static void ex_assign_report_general(struct domain_device *dev,
 450                                             struct smp_resp *resp)
 451 {
 452         struct report_general_resp *rg = &resp->rg;
 453 
 454         dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
 455         dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
 456         dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
 457         dev->ex_dev.t2t_supp = rg->t2t_supp;
 458         dev->ex_dev.conf_route_table = rg->conf_route_table;
 459         dev->ex_dev.configuring = rg->configuring;
 460         memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
 461 }
 462 
 463 #define RG_REQ_SIZE   8
 464 #define RG_RESP_SIZE 32
 465 
 466 static int sas_ex_general(struct domain_device *dev)
 467 {
 468         u8 *rg_req;
 469         struct smp_resp *rg_resp;
 470         int res;
 471         int i;
 472 
 473         rg_req = alloc_smp_req(RG_REQ_SIZE);
 474         if (!rg_req)
 475                 return -ENOMEM;
 476 
 477         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
 478         if (!rg_resp) {
 479                 kfree(rg_req);
 480                 return -ENOMEM;
 481         }
 482 
 483         rg_req[1] = SMP_REPORT_GENERAL;
 484 
 485         for (i = 0; i < 5; i++) {
 486                 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
 487                                        RG_RESP_SIZE);
 488 
 489                 if (res) {
 490                         pr_notice("RG to ex %016llx failed:0x%x\n",
 491                                   SAS_ADDR(dev->sas_addr), res);
 492                         goto out;
 493                 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
 494                         pr_debug("RG:ex %016llx returned SMP result:0x%x\n",
 495                                  SAS_ADDR(dev->sas_addr), rg_resp->result);
 496                         res = rg_resp->result;
 497                         goto out;
 498                 }
 499 
 500                 ex_assign_report_general(dev, rg_resp);
 501 
 502                 if (dev->ex_dev.configuring) {
 503                         pr_debug("RG: ex %llx self-configuring...\n",
 504                                  SAS_ADDR(dev->sas_addr));
 505                         schedule_timeout_interruptible(5*HZ);
 506                 } else
 507                         break;
 508         }
 509 out:
 510         kfree(rg_req);
 511         kfree(rg_resp);
 512         return res;
 513 }
 514 
 515 static void ex_assign_manuf_info(struct domain_device *dev, void
 516                                         *_mi_resp)
 517 {
 518         u8 *mi_resp = _mi_resp;
 519         struct sas_rphy *rphy = dev->rphy;
 520         struct sas_expander_device *edev = rphy_to_expander_device(rphy);
 521 
 522         memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
 523         memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
 524         memcpy(edev->product_rev, mi_resp + 36,
 525                SAS_EXPANDER_PRODUCT_REV_LEN);
 526 
 527         if (mi_resp[8] & 1) {
 528                 memcpy(edev->component_vendor_id, mi_resp + 40,
 529                        SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
 530                 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
 531                 edev->component_revision_id = mi_resp[50];
 532         }
 533 }
 534 
 535 #define MI_REQ_SIZE   8
 536 #define MI_RESP_SIZE 64
 537 
 538 static int sas_ex_manuf_info(struct domain_device *dev)
 539 {
 540         u8 *mi_req;
 541         u8 *mi_resp;
 542         int res;
 543 
 544         mi_req = alloc_smp_req(MI_REQ_SIZE);
 545         if (!mi_req)
 546                 return -ENOMEM;
 547 
 548         mi_resp = alloc_smp_resp(MI_RESP_SIZE);
 549         if (!mi_resp) {
 550                 kfree(mi_req);
 551                 return -ENOMEM;
 552         }
 553 
 554         mi_req[1] = SMP_REPORT_MANUF_INFO;
 555 
 556         res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
 557         if (res) {
 558                 pr_notice("MI: ex %016llx failed:0x%x\n",
 559                           SAS_ADDR(dev->sas_addr), res);
 560                 goto out;
 561         } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
 562                 pr_debug("MI ex %016llx returned SMP result:0x%x\n",
 563                          SAS_ADDR(dev->sas_addr), mi_resp[2]);
 564                 goto out;
 565         }
 566 
 567         ex_assign_manuf_info(dev, mi_resp);
 568 out:
 569         kfree(mi_req);
 570         kfree(mi_resp);
 571         return res;
 572 }
 573 
 574 #define PC_REQ_SIZE  44
 575 #define PC_RESP_SIZE 8
 576 
 577 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
 578                         enum phy_func phy_func,
 579                         struct sas_phy_linkrates *rates)
 580 {
 581         u8 *pc_req;
 582         u8 *pc_resp;
 583         int res;
 584 
 585         pc_req = alloc_smp_req(PC_REQ_SIZE);
 586         if (!pc_req)
 587                 return -ENOMEM;
 588 
 589         pc_resp = alloc_smp_resp(PC_RESP_SIZE);
 590         if (!pc_resp) {
 591                 kfree(pc_req);
 592                 return -ENOMEM;
 593         }
 594 
 595         pc_req[1] = SMP_PHY_CONTROL;
 596         pc_req[9] = phy_id;
 597         pc_req[10]= phy_func;
 598         if (rates) {
 599                 pc_req[32] = rates->minimum_linkrate << 4;
 600                 pc_req[33] = rates->maximum_linkrate << 4;
 601         }
 602 
 603         res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
 604         if (res) {
 605                 pr_err("ex %016llx phy%02d PHY control failed: %d\n",
 606                        SAS_ADDR(dev->sas_addr), phy_id, res);
 607         } else if (pc_resp[2] != SMP_RESP_FUNC_ACC) {
 608                 pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n",
 609                        SAS_ADDR(dev->sas_addr), phy_id, pc_resp[2]);
 610                 res = pc_resp[2];
 611         }
 612         kfree(pc_resp);
 613         kfree(pc_req);
 614         return res;
 615 }
 616 
 617 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
 618 {
 619         struct expander_device *ex = &dev->ex_dev;
 620         struct ex_phy *phy = &ex->ex_phy[phy_id];
 621 
 622         sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
 623         phy->linkrate = SAS_PHY_DISABLED;
 624 }
 625 
 626 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
 627 {
 628         struct expander_device *ex = &dev->ex_dev;
 629         int i;
 630 
 631         for (i = 0; i < ex->num_phys; i++) {
 632                 struct ex_phy *phy = &ex->ex_phy[i];
 633 
 634                 if (phy->phy_state == PHY_VACANT ||
 635                     phy->phy_state == PHY_NOT_PRESENT)
 636                         continue;
 637 
 638                 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
 639                         sas_ex_disable_phy(dev, i);
 640         }
 641 }
 642 
 643 static int sas_dev_present_in_domain(struct asd_sas_port *port,
 644                                             u8 *sas_addr)
 645 {
 646         struct domain_device *dev;
 647 
 648         if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
 649                 return 1;
 650         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
 651                 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
 652                         return 1;
 653         }
 654         return 0;
 655 }
 656 
 657 #define RPEL_REQ_SIZE   16
 658 #define RPEL_RESP_SIZE  32
 659 int sas_smp_get_phy_events(struct sas_phy *phy)
 660 {
 661         int res;
 662         u8 *req;
 663         u8 *resp;
 664         struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
 665         struct domain_device *dev = sas_find_dev_by_rphy(rphy);
 666 
 667         req = alloc_smp_req(RPEL_REQ_SIZE);
 668         if (!req)
 669                 return -ENOMEM;
 670 
 671         resp = alloc_smp_resp(RPEL_RESP_SIZE);
 672         if (!resp) {
 673                 kfree(req);
 674                 return -ENOMEM;
 675         }
 676 
 677         req[1] = SMP_REPORT_PHY_ERR_LOG;
 678         req[9] = phy->number;
 679 
 680         res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
 681                                     resp, RPEL_RESP_SIZE);
 682 
 683         if (res)
 684                 goto out;
 685 
 686         phy->invalid_dword_count = get_unaligned_be32(&resp[12]);
 687         phy->running_disparity_error_count = get_unaligned_be32(&resp[16]);
 688         phy->loss_of_dword_sync_count = get_unaligned_be32(&resp[20]);
 689         phy->phy_reset_problem_count = get_unaligned_be32(&resp[24]);
 690 
 691  out:
 692         kfree(req);
 693         kfree(resp);
 694         return res;
 695 
 696 }
 697 
 698 #ifdef CONFIG_SCSI_SAS_ATA
 699 
 700 #define RPS_REQ_SIZE  16
 701 #define RPS_RESP_SIZE 60
 702 
 703 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
 704                             struct smp_resp *rps_resp)
 705 {
 706         int res;
 707         u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
 708         u8 *resp = (u8 *)rps_resp;
 709 
 710         if (!rps_req)
 711                 return -ENOMEM;
 712 
 713         rps_req[1] = SMP_REPORT_PHY_SATA;
 714         rps_req[9] = phy_id;
 715 
 716         res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
 717                                     rps_resp, RPS_RESP_SIZE);
 718 
 719         /* 0x34 is the FIS type for the D2H fis.  There's a potential
 720          * standards cockup here.  sas-2 explicitly specifies the FIS
 721          * should be encoded so that FIS type is in resp[24].
 722          * However, some expanders endian reverse this.  Undo the
 723          * reversal here */
 724         if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
 725                 int i;
 726 
 727                 for (i = 0; i < 5; i++) {
 728                         int j = 24 + (i*4);
 729                         u8 a, b;
 730                         a = resp[j + 0];
 731                         b = resp[j + 1];
 732                         resp[j + 0] = resp[j + 3];
 733                         resp[j + 1] = resp[j + 2];
 734                         resp[j + 2] = b;
 735                         resp[j + 3] = a;
 736                 }
 737         }
 738 
 739         kfree(rps_req);
 740         return res;
 741 }
 742 #endif
 743 
 744 static void sas_ex_get_linkrate(struct domain_device *parent,
 745                                        struct domain_device *child,
 746                                        struct ex_phy *parent_phy)
 747 {
 748         struct expander_device *parent_ex = &parent->ex_dev;
 749         struct sas_port *port;
 750         int i;
 751 
 752         child->pathways = 0;
 753 
 754         port = parent_phy->port;
 755 
 756         for (i = 0; i < parent_ex->num_phys; i++) {
 757                 struct ex_phy *phy = &parent_ex->ex_phy[i];
 758 
 759                 if (phy->phy_state == PHY_VACANT ||
 760                     phy->phy_state == PHY_NOT_PRESENT)
 761                         continue;
 762 
 763                 if (SAS_ADDR(phy->attached_sas_addr) ==
 764                     SAS_ADDR(child->sas_addr)) {
 765 
 766                         child->min_linkrate = min(parent->min_linkrate,
 767                                                   phy->linkrate);
 768                         child->max_linkrate = max(parent->max_linkrate,
 769                                                   phy->linkrate);
 770                         child->pathways++;
 771                         sas_port_add_phy(port, phy->phy);
 772                 }
 773         }
 774         child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
 775         child->pathways = min(child->pathways, parent->pathways);
 776 }
 777 
 778 static struct domain_device *sas_ex_discover_end_dev(
 779         struct domain_device *parent, int phy_id)
 780 {
 781         struct expander_device *parent_ex = &parent->ex_dev;
 782         struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
 783         struct domain_device *child = NULL;
 784         struct sas_rphy *rphy;
 785         int res;
 786 
 787         if (phy->attached_sata_host || phy->attached_sata_ps)
 788                 return NULL;
 789 
 790         child = sas_alloc_device();
 791         if (!child)
 792                 return NULL;
 793 
 794         kref_get(&parent->kref);
 795         child->parent = parent;
 796         child->port   = parent->port;
 797         child->iproto = phy->attached_iproto;
 798         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 799         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 800         if (!phy->port) {
 801                 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 802                 if (unlikely(!phy->port))
 803                         goto out_err;
 804                 if (unlikely(sas_port_add(phy->port) != 0)) {
 805                         sas_port_free(phy->port);
 806                         goto out_err;
 807                 }
 808         }
 809         sas_ex_get_linkrate(parent, child, phy);
 810         sas_device_set_phy(child, phy->port);
 811 
 812 #ifdef CONFIG_SCSI_SAS_ATA
 813         if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
 814                 if (child->linkrate > parent->min_linkrate) {
 815                         struct sas_phy *cphy = child->phy;
 816                         enum sas_linkrate min_prate = cphy->minimum_linkrate,
 817                                 parent_min_lrate = parent->min_linkrate,
 818                                 min_linkrate = (min_prate > parent_min_lrate) ?
 819                                                parent_min_lrate : 0;
 820                         struct sas_phy_linkrates rates = {
 821                                 .maximum_linkrate = parent->min_linkrate,
 822                                 .minimum_linkrate = min_linkrate,
 823                         };
 824                         int ret;
 825 
 826                         pr_notice("ex %016llx phy%02d SATA device linkrate > min pathway connection rate, attempting to lower device linkrate\n",
 827                                    SAS_ADDR(child->sas_addr), phy_id);
 828                         ret = sas_smp_phy_control(parent, phy_id,
 829                                                   PHY_FUNC_LINK_RESET, &rates);
 830                         if (ret) {
 831                                 pr_err("ex %016llx phy%02d SATA device could not set linkrate (%d)\n",
 832                                        SAS_ADDR(child->sas_addr), phy_id, ret);
 833                                 goto out_free;
 834                         }
 835                         pr_notice("ex %016llx phy%02d SATA device set linkrate successfully\n",
 836                                   SAS_ADDR(child->sas_addr), phy_id);
 837                         child->linkrate = child->min_linkrate;
 838                 }
 839                 res = sas_get_ata_info(child, phy);
 840                 if (res)
 841                         goto out_free;
 842 
 843                 sas_init_dev(child);
 844                 res = sas_ata_init(child);
 845                 if (res)
 846                         goto out_free;
 847                 rphy = sas_end_device_alloc(phy->port);
 848                 if (!rphy)
 849                         goto out_free;
 850                 rphy->identify.phy_identifier = phy_id;
 851 
 852                 child->rphy = rphy;
 853                 get_device(&rphy->dev);
 854 
 855                 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
 856 
 857                 res = sas_discover_sata(child);
 858                 if (res) {
 859                         pr_notice("sas_discover_sata() for device %16llx at %016llx:%02d returned 0x%x\n",
 860                                   SAS_ADDR(child->sas_addr),
 861                                   SAS_ADDR(parent->sas_addr), phy_id, res);
 862                         goto out_list_del;
 863                 }
 864         } else
 865 #endif
 866           if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
 867                 child->dev_type = SAS_END_DEVICE;
 868                 rphy = sas_end_device_alloc(phy->port);
 869                 /* FIXME: error handling */
 870                 if (unlikely(!rphy))
 871                         goto out_free;
 872                 child->tproto = phy->attached_tproto;
 873                 sas_init_dev(child);
 874 
 875                 child->rphy = rphy;
 876                 get_device(&rphy->dev);
 877                 rphy->identify.phy_identifier = phy_id;
 878                 sas_fill_in_rphy(child, rphy);
 879 
 880                 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
 881 
 882                 res = sas_discover_end_dev(child);
 883                 if (res) {
 884                         pr_notice("sas_discover_end_dev() for device %16llx at %016llx:%02d returned 0x%x\n",
 885                                   SAS_ADDR(child->sas_addr),
 886                                   SAS_ADDR(parent->sas_addr), phy_id, res);
 887                         goto out_list_del;
 888                 }
 889         } else {
 890                 pr_notice("target proto 0x%x at %016llx:0x%x not handled\n",
 891                           phy->attached_tproto, SAS_ADDR(parent->sas_addr),
 892                           phy_id);
 893                 goto out_free;
 894         }
 895 
 896         list_add_tail(&child->siblings, &parent_ex->children);
 897         return child;
 898 
 899  out_list_del:
 900         sas_rphy_free(child->rphy);
 901         list_del(&child->disco_list_node);
 902         spin_lock_irq(&parent->port->dev_list_lock);
 903         list_del(&child->dev_list_node);
 904         spin_unlock_irq(&parent->port->dev_list_lock);
 905  out_free:
 906         sas_port_delete(phy->port);
 907  out_err:
 908         phy->port = NULL;
 909         sas_put_device(child);
 910         return NULL;
 911 }
 912 
 913 /* See if this phy is part of a wide port */
 914 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
 915 {
 916         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 917         int i;
 918 
 919         for (i = 0; i < parent->ex_dev.num_phys; i++) {
 920                 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
 921 
 922                 if (ephy == phy)
 923                         continue;
 924 
 925                 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
 926                             SAS_ADDR_SIZE) && ephy->port) {
 927                         sas_port_add_phy(ephy->port, phy->phy);
 928                         phy->port = ephy->port;
 929                         phy->phy_state = PHY_DEVICE_DISCOVERED;
 930                         return true;
 931                 }
 932         }
 933 
 934         return false;
 935 }
 936 
 937 static struct domain_device *sas_ex_discover_expander(
 938         struct domain_device *parent, int phy_id)
 939 {
 940         struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
 941         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 942         struct domain_device *child = NULL;
 943         struct sas_rphy *rphy;
 944         struct sas_expander_device *edev;
 945         struct asd_sas_port *port;
 946         int res;
 947 
 948         if (phy->routing_attr == DIRECT_ROUTING) {
 949                 pr_warn("ex %016llx:%02d:D <--> ex %016llx:0x%x is not allowed\n",
 950                         SAS_ADDR(parent->sas_addr), phy_id,
 951                         SAS_ADDR(phy->attached_sas_addr),
 952                         phy->attached_phy_id);
 953                 return NULL;
 954         }
 955         child = sas_alloc_device();
 956         if (!child)
 957                 return NULL;
 958 
 959         phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 960         /* FIXME: better error handling */
 961         BUG_ON(sas_port_add(phy->port) != 0);
 962 
 963 
 964         switch (phy->attached_dev_type) {
 965         case SAS_EDGE_EXPANDER_DEVICE:
 966                 rphy = sas_expander_alloc(phy->port,
 967                                           SAS_EDGE_EXPANDER_DEVICE);
 968                 break;
 969         case SAS_FANOUT_EXPANDER_DEVICE:
 970                 rphy = sas_expander_alloc(phy->port,
 971                                           SAS_FANOUT_EXPANDER_DEVICE);
 972                 break;
 973         default:
 974                 rphy = NULL;    /* shut gcc up */
 975                 BUG();
 976         }
 977         port = parent->port;
 978         child->rphy = rphy;
 979         get_device(&rphy->dev);
 980         edev = rphy_to_expander_device(rphy);
 981         child->dev_type = phy->attached_dev_type;
 982         kref_get(&parent->kref);
 983         child->parent = parent;
 984         child->port = port;
 985         child->iproto = phy->attached_iproto;
 986         child->tproto = phy->attached_tproto;
 987         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 988         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 989         sas_ex_get_linkrate(parent, child, phy);
 990         edev->level = parent_ex->level + 1;
 991         parent->port->disc.max_level = max(parent->port->disc.max_level,
 992                                            edev->level);
 993         sas_init_dev(child);
 994         sas_fill_in_rphy(child, rphy);
 995         sas_rphy_add(rphy);
 996 
 997         spin_lock_irq(&parent->port->dev_list_lock);
 998         list_add_tail(&child->dev_list_node, &parent->port->dev_list);
 999         spin_unlock_irq(&parent->port->dev_list_lock);
1000 
1001         res = sas_discover_expander(child);
1002         if (res) {
1003                 sas_rphy_delete(rphy);
1004                 spin_lock_irq(&parent->port->dev_list_lock);
1005                 list_del(&child->dev_list_node);
1006                 spin_unlock_irq(&parent->port->dev_list_lock);
1007                 sas_put_device(child);
1008                 sas_port_delete(phy->port);
1009                 phy->port = NULL;
1010                 return NULL;
1011         }
1012         list_add_tail(&child->siblings, &parent->ex_dev.children);
1013         return child;
1014 }
1015 
1016 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
1017 {
1018         struct expander_device *ex = &dev->ex_dev;
1019         struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
1020         struct domain_device *child = NULL;
1021         int res = 0;
1022 
1023         /* Phy state */
1024         if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
1025                 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
1026                         res = sas_ex_phy_discover(dev, phy_id);
1027                 if (res)
1028                         return res;
1029         }
1030 
1031         /* Parent and domain coherency */
1032         if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1033                              SAS_ADDR(dev->port->sas_addr))) {
1034                 sas_add_parent_port(dev, phy_id);
1035                 return 0;
1036         }
1037         if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1038                             SAS_ADDR(dev->parent->sas_addr))) {
1039                 sas_add_parent_port(dev, phy_id);
1040                 if (ex_phy->routing_attr == TABLE_ROUTING)
1041                         sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1042                 return 0;
1043         }
1044 
1045         if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1046                 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1047 
1048         if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1049                 if (ex_phy->routing_attr == DIRECT_ROUTING) {
1050                         memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1051                         sas_configure_routing(dev, ex_phy->attached_sas_addr);
1052                 }
1053                 return 0;
1054         } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1055                 return 0;
1056 
1057         if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1058             ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1059             ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1060             ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1061                 pr_warn("unknown device type(0x%x) attached to ex %016llx phy%02d\n",
1062                         ex_phy->attached_dev_type,
1063                         SAS_ADDR(dev->sas_addr),
1064                         phy_id);
1065                 return 0;
1066         }
1067 
1068         res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1069         if (res) {
1070                 pr_notice("configure routing for dev %016llx reported 0x%x. Forgotten\n",
1071                           SAS_ADDR(ex_phy->attached_sas_addr), res);
1072                 sas_disable_routing(dev, ex_phy->attached_sas_addr);
1073                 return res;
1074         }
1075 
1076         if (sas_ex_join_wide_port(dev, phy_id)) {
1077                 pr_debug("Attaching ex phy%02d to wide port %016llx\n",
1078                          phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1079                 return res;
1080         }
1081 
1082         switch (ex_phy->attached_dev_type) {
1083         case SAS_END_DEVICE:
1084         case SAS_SATA_PENDING:
1085                 child = sas_ex_discover_end_dev(dev, phy_id);
1086                 break;
1087         case SAS_FANOUT_EXPANDER_DEVICE:
1088                 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1089                         pr_debug("second fanout expander %016llx phy%02d attached to ex %016llx phy%02d\n",
1090                                  SAS_ADDR(ex_phy->attached_sas_addr),
1091                                  ex_phy->attached_phy_id,
1092                                  SAS_ADDR(dev->sas_addr),
1093                                  phy_id);
1094                         sas_ex_disable_phy(dev, phy_id);
1095                         return res;
1096                 } else
1097                         memcpy(dev->port->disc.fanout_sas_addr,
1098                                ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1099                 /* fallthrough */
1100         case SAS_EDGE_EXPANDER_DEVICE:
1101                 child = sas_ex_discover_expander(dev, phy_id);
1102                 break;
1103         default:
1104                 break;
1105         }
1106 
1107         if (!child)
1108                 pr_notice("ex %016llx phy%02d failed to discover\n",
1109                           SAS_ADDR(dev->sas_addr), phy_id);
1110         return res;
1111 }
1112 
1113 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1114 {
1115         struct expander_device *ex = &dev->ex_dev;
1116         int i;
1117 
1118         for (i = 0; i < ex->num_phys; i++) {
1119                 struct ex_phy *phy = &ex->ex_phy[i];
1120 
1121                 if (phy->phy_state == PHY_VACANT ||
1122                     phy->phy_state == PHY_NOT_PRESENT)
1123                         continue;
1124 
1125                 if (dev_is_expander(phy->attached_dev_type) &&
1126                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
1127 
1128                         memcpy(sub_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
1129 
1130                         return 1;
1131                 }
1132         }
1133         return 0;
1134 }
1135 
1136 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1137 {
1138         struct expander_device *ex = &dev->ex_dev;
1139         struct domain_device *child;
1140         u8 sub_addr[SAS_ADDR_SIZE] = {0, };
1141 
1142         list_for_each_entry(child, &ex->children, siblings) {
1143                 if (!dev_is_expander(child->dev_type))
1144                         continue;
1145                 if (sub_addr[0] == 0) {
1146                         sas_find_sub_addr(child, sub_addr);
1147                         continue;
1148                 } else {
1149                         u8 s2[SAS_ADDR_SIZE];
1150 
1151                         if (sas_find_sub_addr(child, s2) &&
1152                             (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1153 
1154                                 pr_notice("ex %016llx->%016llx-?->%016llx diverges from subtractive boundary %016llx\n",
1155                                           SAS_ADDR(dev->sas_addr),
1156                                           SAS_ADDR(child->sas_addr),
1157                                           SAS_ADDR(s2),
1158                                           SAS_ADDR(sub_addr));
1159 
1160                                 sas_ex_disable_port(child, s2);
1161                         }
1162                 }
1163         }
1164         return 0;
1165 }
1166 /**
1167  * sas_ex_discover_devices - discover devices attached to this expander
1168  * @dev: pointer to the expander domain device
1169  * @single: if you want to do a single phy, else set to -1;
1170  *
1171  * Configure this expander for use with its devices and register the
1172  * devices of this expander.
1173  */
1174 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1175 {
1176         struct expander_device *ex = &dev->ex_dev;
1177         int i = 0, end = ex->num_phys;
1178         int res = 0;
1179 
1180         if (0 <= single && single < end) {
1181                 i = single;
1182                 end = i+1;
1183         }
1184 
1185         for ( ; i < end; i++) {
1186                 struct ex_phy *ex_phy = &ex->ex_phy[i];
1187 
1188                 if (ex_phy->phy_state == PHY_VACANT ||
1189                     ex_phy->phy_state == PHY_NOT_PRESENT ||
1190                     ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1191                         continue;
1192 
1193                 switch (ex_phy->linkrate) {
1194                 case SAS_PHY_DISABLED:
1195                 case SAS_PHY_RESET_PROBLEM:
1196                 case SAS_SATA_PORT_SELECTOR:
1197                         continue;
1198                 default:
1199                         res = sas_ex_discover_dev(dev, i);
1200                         if (res)
1201                                 break;
1202                         continue;
1203                 }
1204         }
1205 
1206         if (!res)
1207                 sas_check_level_subtractive_boundary(dev);
1208 
1209         return res;
1210 }
1211 
1212 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1213 {
1214         struct expander_device *ex = &dev->ex_dev;
1215         int i;
1216         u8  *sub_sas_addr = NULL;
1217 
1218         if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1219                 return 0;
1220 
1221         for (i = 0; i < ex->num_phys; i++) {
1222                 struct ex_phy *phy = &ex->ex_phy[i];
1223 
1224                 if (phy->phy_state == PHY_VACANT ||
1225                     phy->phy_state == PHY_NOT_PRESENT)
1226                         continue;
1227 
1228                 if (dev_is_expander(phy->attached_dev_type) &&
1229                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
1230 
1231                         if (!sub_sas_addr)
1232                                 sub_sas_addr = &phy->attached_sas_addr[0];
1233                         else if (SAS_ADDR(sub_sas_addr) !=
1234                                  SAS_ADDR(phy->attached_sas_addr)) {
1235 
1236                                 pr_notice("ex %016llx phy%02d diverges(%016llx) on subtractive boundary(%016llx). Disabled\n",
1237                                           SAS_ADDR(dev->sas_addr), i,
1238                                           SAS_ADDR(phy->attached_sas_addr),
1239                                           SAS_ADDR(sub_sas_addr));
1240                                 sas_ex_disable_phy(dev, i);
1241                         }
1242                 }
1243         }
1244         return 0;
1245 }
1246 
1247 static void sas_print_parent_topology_bug(struct domain_device *child,
1248                                                  struct ex_phy *parent_phy,
1249                                                  struct ex_phy *child_phy)
1250 {
1251         static const char *ex_type[] = {
1252                 [SAS_EDGE_EXPANDER_DEVICE] = "edge",
1253                 [SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1254         };
1255         struct domain_device *parent = child->parent;
1256 
1257         pr_notice("%s ex %016llx phy%02d <--> %s ex %016llx phy%02d has %c:%c routing link!\n",
1258                   ex_type[parent->dev_type],
1259                   SAS_ADDR(parent->sas_addr),
1260                   parent_phy->phy_id,
1261 
1262                   ex_type[child->dev_type],
1263                   SAS_ADDR(child->sas_addr),
1264                   child_phy->phy_id,
1265 
1266                   sas_route_char(parent, parent_phy),
1267                   sas_route_char(child, child_phy));
1268 }
1269 
1270 static int sas_check_eeds(struct domain_device *child,
1271                                  struct ex_phy *parent_phy,
1272                                  struct ex_phy *child_phy)
1273 {
1274         int res = 0;
1275         struct domain_device *parent = child->parent;
1276 
1277         if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1278                 res = -ENODEV;
1279                 pr_warn("edge ex %016llx phy S:%02d <--> edge ex %016llx phy S:%02d, while there is a fanout ex %016llx\n",
1280                         SAS_ADDR(parent->sas_addr),
1281                         parent_phy->phy_id,
1282                         SAS_ADDR(child->sas_addr),
1283                         child_phy->phy_id,
1284                         SAS_ADDR(parent->port->disc.fanout_sas_addr));
1285         } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1286                 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1287                        SAS_ADDR_SIZE);
1288                 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1289                        SAS_ADDR_SIZE);
1290         } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1291                     SAS_ADDR(parent->sas_addr)) ||
1292                    (SAS_ADDR(parent->port->disc.eeds_a) ==
1293                     SAS_ADDR(child->sas_addr)))
1294                    &&
1295                    ((SAS_ADDR(parent->port->disc.eeds_b) ==
1296                      SAS_ADDR(parent->sas_addr)) ||
1297                     (SAS_ADDR(parent->port->disc.eeds_b) ==
1298                      SAS_ADDR(child->sas_addr))))
1299                 ;
1300         else {
1301                 res = -ENODEV;
1302                 pr_warn("edge ex %016llx phy%02d <--> edge ex %016llx phy%02d link forms a third EEDS!\n",
1303                         SAS_ADDR(parent->sas_addr),
1304                         parent_phy->phy_id,
1305                         SAS_ADDR(child->sas_addr),
1306                         child_phy->phy_id);
1307         }
1308 
1309         return res;
1310 }
1311 
1312 /* Here we spill over 80 columns.  It is intentional.
1313  */
1314 static int sas_check_parent_topology(struct domain_device *child)
1315 {
1316         struct expander_device *child_ex = &child->ex_dev;
1317         struct expander_device *parent_ex;
1318         int i;
1319         int res = 0;
1320 
1321         if (!child->parent)
1322                 return 0;
1323 
1324         if (!dev_is_expander(child->parent->dev_type))
1325                 return 0;
1326 
1327         parent_ex = &child->parent->ex_dev;
1328 
1329         for (i = 0; i < parent_ex->num_phys; i++) {
1330                 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1331                 struct ex_phy *child_phy;
1332 
1333                 if (parent_phy->phy_state == PHY_VACANT ||
1334                     parent_phy->phy_state == PHY_NOT_PRESENT)
1335                         continue;
1336 
1337                 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1338                         continue;
1339 
1340                 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1341 
1342                 switch (child->parent->dev_type) {
1343                 case SAS_EDGE_EXPANDER_DEVICE:
1344                         if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1345                                 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1346                                     child_phy->routing_attr != TABLE_ROUTING) {
1347                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1348                                         res = -ENODEV;
1349                                 }
1350                         } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1351                                 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1352                                         res = sas_check_eeds(child, parent_phy, child_phy);
1353                                 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1354                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1355                                         res = -ENODEV;
1356                                 }
1357                         } else if (parent_phy->routing_attr == TABLE_ROUTING) {
1358                                 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1359                                     (child_phy->routing_attr == TABLE_ROUTING &&
1360                                      child_ex->t2t_supp && parent_ex->t2t_supp)) {
1361                                         /* All good */;
1362                                 } else {
1363                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1364                                         res = -ENODEV;
1365                                 }
1366                         }
1367                         break;
1368                 case SAS_FANOUT_EXPANDER_DEVICE:
1369                         if (parent_phy->routing_attr != TABLE_ROUTING ||
1370                             child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1371                                 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1372                                 res = -ENODEV;
1373                         }
1374                         break;
1375                 default:
1376                         break;
1377                 }
1378         }
1379 
1380         return res;
1381 }
1382 
1383 #define RRI_REQ_SIZE  16
1384 #define RRI_RESP_SIZE 44
1385 
1386 static int sas_configure_present(struct domain_device *dev, int phy_id,
1387                                  u8 *sas_addr, int *index, int *present)
1388 {
1389         int i, res = 0;
1390         struct expander_device *ex = &dev->ex_dev;
1391         struct ex_phy *phy = &ex->ex_phy[phy_id];
1392         u8 *rri_req;
1393         u8 *rri_resp;
1394 
1395         *present = 0;
1396         *index = 0;
1397 
1398         rri_req = alloc_smp_req(RRI_REQ_SIZE);
1399         if (!rri_req)
1400                 return -ENOMEM;
1401 
1402         rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1403         if (!rri_resp) {
1404                 kfree(rri_req);
1405                 return -ENOMEM;
1406         }
1407 
1408         rri_req[1] = SMP_REPORT_ROUTE_INFO;
1409         rri_req[9] = phy_id;
1410 
1411         for (i = 0; i < ex->max_route_indexes ; i++) {
1412                 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1413                 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1414                                        RRI_RESP_SIZE);
1415                 if (res)
1416                         goto out;
1417                 res = rri_resp[2];
1418                 if (res == SMP_RESP_NO_INDEX) {
1419                         pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1420                                 SAS_ADDR(dev->sas_addr), phy_id, i);
1421                         goto out;
1422                 } else if (res != SMP_RESP_FUNC_ACC) {
1423                         pr_notice("%s: dev %016llx phy%02d index 0x%x result 0x%x\n",
1424                                   __func__, SAS_ADDR(dev->sas_addr), phy_id,
1425                                   i, res);
1426                         goto out;
1427                 }
1428                 if (SAS_ADDR(sas_addr) != 0) {
1429                         if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1430                                 *index = i;
1431                                 if ((rri_resp[12] & 0x80) == 0x80)
1432                                         *present = 0;
1433                                 else
1434                                         *present = 1;
1435                                 goto out;
1436                         } else if (SAS_ADDR(rri_resp+16) == 0) {
1437                                 *index = i;
1438                                 *present = 0;
1439                                 goto out;
1440                         }
1441                 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1442                            phy->last_da_index < i) {
1443                         phy->last_da_index = i;
1444                         *index = i;
1445                         *present = 0;
1446                         goto out;
1447                 }
1448         }
1449         res = -1;
1450 out:
1451         kfree(rri_req);
1452         kfree(rri_resp);
1453         return res;
1454 }
1455 
1456 #define CRI_REQ_SIZE  44
1457 #define CRI_RESP_SIZE  8
1458 
1459 static int sas_configure_set(struct domain_device *dev, int phy_id,
1460                              u8 *sas_addr, int index, int include)
1461 {
1462         int res;
1463         u8 *cri_req;
1464         u8 *cri_resp;
1465 
1466         cri_req = alloc_smp_req(CRI_REQ_SIZE);
1467         if (!cri_req)
1468                 return -ENOMEM;
1469 
1470         cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1471         if (!cri_resp) {
1472                 kfree(cri_req);
1473                 return -ENOMEM;
1474         }
1475 
1476         cri_req[1] = SMP_CONF_ROUTE_INFO;
1477         *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1478         cri_req[9] = phy_id;
1479         if (SAS_ADDR(sas_addr) == 0 || !include)
1480                 cri_req[12] |= 0x80;
1481         memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1482 
1483         res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1484                                CRI_RESP_SIZE);
1485         if (res)
1486                 goto out;
1487         res = cri_resp[2];
1488         if (res == SMP_RESP_NO_INDEX) {
1489                 pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1490                         SAS_ADDR(dev->sas_addr), phy_id, index);
1491         }
1492 out:
1493         kfree(cri_req);
1494         kfree(cri_resp);
1495         return res;
1496 }
1497 
1498 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1499                                     u8 *sas_addr, int include)
1500 {
1501         int index;
1502         int present;
1503         int res;
1504 
1505         res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1506         if (res)
1507                 return res;
1508         if (include ^ present)
1509                 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1510 
1511         return res;
1512 }
1513 
1514 /**
1515  * sas_configure_parent - configure routing table of parent
1516  * @parent: parent expander
1517  * @child: child expander
1518  * @sas_addr: SAS port identifier of device directly attached to child
1519  * @include: whether or not to include @child in the expander routing table
1520  */
1521 static int sas_configure_parent(struct domain_device *parent,
1522                                 struct domain_device *child,
1523                                 u8 *sas_addr, int include)
1524 {
1525         struct expander_device *ex_parent = &parent->ex_dev;
1526         int res = 0;
1527         int i;
1528 
1529         if (parent->parent) {
1530                 res = sas_configure_parent(parent->parent, parent, sas_addr,
1531                                            include);
1532                 if (res)
1533                         return res;
1534         }
1535 
1536         if (ex_parent->conf_route_table == 0) {
1537                 pr_debug("ex %016llx has self-configuring routing table\n",
1538                          SAS_ADDR(parent->sas_addr));
1539                 return 0;
1540         }
1541 
1542         for (i = 0; i < ex_parent->num_phys; i++) {
1543                 struct ex_phy *phy = &ex_parent->ex_phy[i];
1544 
1545                 if ((phy->routing_attr == TABLE_ROUTING) &&
1546                     (SAS_ADDR(phy->attached_sas_addr) ==
1547                      SAS_ADDR(child->sas_addr))) {
1548                         res = sas_configure_phy(parent, i, sas_addr, include);
1549                         if (res)
1550                                 return res;
1551                 }
1552         }
1553 
1554         return res;
1555 }
1556 
1557 /**
1558  * sas_configure_routing - configure routing
1559  * @dev: expander device
1560  * @sas_addr: port identifier of device directly attached to the expander device
1561  */
1562 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1563 {
1564         if (dev->parent)
1565                 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1566         return 0;
1567 }
1568 
1569 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1570 {
1571         if (dev->parent)
1572                 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1573         return 0;
1574 }
1575 
1576 /**
1577  * sas_discover_expander - expander discovery
1578  * @dev: pointer to expander domain device
1579  *
1580  * See comment in sas_discover_sata().
1581  */
1582 static int sas_discover_expander(struct domain_device *dev)
1583 {
1584         int res;
1585 
1586         res = sas_notify_lldd_dev_found(dev);
1587         if (res)
1588                 return res;
1589 
1590         res = sas_ex_general(dev);
1591         if (res)
1592                 goto out_err;
1593         res = sas_ex_manuf_info(dev);
1594         if (res)
1595                 goto out_err;
1596 
1597         res = sas_expander_discover(dev);
1598         if (res) {
1599                 pr_warn("expander %016llx discovery failed(0x%x)\n",
1600                         SAS_ADDR(dev->sas_addr), res);
1601                 goto out_err;
1602         }
1603 
1604         sas_check_ex_subtractive_boundary(dev);
1605         res = sas_check_parent_topology(dev);
1606         if (res)
1607                 goto out_err;
1608         return 0;
1609 out_err:
1610         sas_notify_lldd_dev_gone(dev);
1611         return res;
1612 }
1613 
1614 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1615 {
1616         int res = 0;
1617         struct domain_device *dev;
1618 
1619         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1620                 if (dev_is_expander(dev->dev_type)) {
1621                         struct sas_expander_device *ex =
1622                                 rphy_to_expander_device(dev->rphy);
1623 
1624                         if (level == ex->level)
1625                                 res = sas_ex_discover_devices(dev, -1);
1626                         else if (level > 0)
1627                                 res = sas_ex_discover_devices(port->port_dev, -1);
1628 
1629                 }
1630         }
1631 
1632         return res;
1633 }
1634 
1635 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1636 {
1637         int res;
1638         int level;
1639 
1640         do {
1641                 level = port->disc.max_level;
1642                 res = sas_ex_level_discovery(port, level);
1643                 mb();
1644         } while (level < port->disc.max_level);
1645 
1646         return res;
1647 }
1648 
1649 int sas_discover_root_expander(struct domain_device *dev)
1650 {
1651         int res;
1652         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1653 
1654         res = sas_rphy_add(dev->rphy);
1655         if (res)
1656                 goto out_err;
1657 
1658         ex->level = dev->port->disc.max_level; /* 0 */
1659         res = sas_discover_expander(dev);
1660         if (res)
1661                 goto out_err2;
1662 
1663         sas_ex_bfs_disc(dev->port);
1664 
1665         return res;
1666 
1667 out_err2:
1668         sas_rphy_remove(dev->rphy);
1669 out_err:
1670         return res;
1671 }
1672 
1673 /* ---------- Domain revalidation ---------- */
1674 
1675 static int sas_get_phy_discover(struct domain_device *dev,
1676                                 int phy_id, struct smp_resp *disc_resp)
1677 {
1678         int res;
1679         u8 *disc_req;
1680 
1681         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1682         if (!disc_req)
1683                 return -ENOMEM;
1684 
1685         disc_req[1] = SMP_DISCOVER;
1686         disc_req[9] = phy_id;
1687 
1688         res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1689                                disc_resp, DISCOVER_RESP_SIZE);
1690         if (res)
1691                 goto out;
1692         else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1693                 res = disc_resp->result;
1694                 goto out;
1695         }
1696 out:
1697         kfree(disc_req);
1698         return res;
1699 }
1700 
1701 static int sas_get_phy_change_count(struct domain_device *dev,
1702                                     int phy_id, int *pcc)
1703 {
1704         int res;
1705         struct smp_resp *disc_resp;
1706 
1707         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1708         if (!disc_resp)
1709                 return -ENOMEM;
1710 
1711         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1712         if (!res)
1713                 *pcc = disc_resp->disc.change_count;
1714 
1715         kfree(disc_resp);
1716         return res;
1717 }
1718 
1719 static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1720                                     u8 *sas_addr, enum sas_device_type *type)
1721 {
1722         int res;
1723         struct smp_resp *disc_resp;
1724         struct discover_resp *dr;
1725 
1726         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1727         if (!disc_resp)
1728                 return -ENOMEM;
1729         dr = &disc_resp->disc;
1730 
1731         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1732         if (res == 0) {
1733                 memcpy(sas_addr, disc_resp->disc.attached_sas_addr,
1734                        SAS_ADDR_SIZE);
1735                 *type = to_dev_type(dr);
1736                 if (*type == 0)
1737                         memset(sas_addr, 0, SAS_ADDR_SIZE);
1738         }
1739         kfree(disc_resp);
1740         return res;
1741 }
1742 
1743 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1744                               int from_phy, bool update)
1745 {
1746         struct expander_device *ex = &dev->ex_dev;
1747         int res = 0;
1748         int i;
1749 
1750         for (i = from_phy; i < ex->num_phys; i++) {
1751                 int phy_change_count = 0;
1752 
1753                 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1754                 switch (res) {
1755                 case SMP_RESP_PHY_VACANT:
1756                 case SMP_RESP_NO_PHY:
1757                         continue;
1758                 case SMP_RESP_FUNC_ACC:
1759                         break;
1760                 default:
1761                         return res;
1762                 }
1763 
1764                 if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1765                         if (update)
1766                                 ex->ex_phy[i].phy_change_count =
1767                                         phy_change_count;
1768                         *phy_id = i;
1769                         return 0;
1770                 }
1771         }
1772         return 0;
1773 }
1774 
1775 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1776 {
1777         int res;
1778         u8  *rg_req;
1779         struct smp_resp  *rg_resp;
1780 
1781         rg_req = alloc_smp_req(RG_REQ_SIZE);
1782         if (!rg_req)
1783                 return -ENOMEM;
1784 
1785         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1786         if (!rg_resp) {
1787                 kfree(rg_req);
1788                 return -ENOMEM;
1789         }
1790 
1791         rg_req[1] = SMP_REPORT_GENERAL;
1792 
1793         res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1794                                RG_RESP_SIZE);
1795         if (res)
1796                 goto out;
1797         if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1798                 res = rg_resp->result;
1799                 goto out;
1800         }
1801 
1802         *ecc = be16_to_cpu(rg_resp->rg.change_count);
1803 out:
1804         kfree(rg_resp);
1805         kfree(rg_req);
1806         return res;
1807 }
1808 /**
1809  * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1810  * @dev:domain device to be detect.
1811  * @src_dev: the device which originated BROADCAST(CHANGE).
1812  *
1813  * Add self-configuration expander support. Suppose two expander cascading,
1814  * when the first level expander is self-configuring, hotplug the disks in
1815  * second level expander, BROADCAST(CHANGE) will not only be originated
1816  * in the second level expander, but also be originated in the first level
1817  * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1818  * expander changed count in two level expanders will all increment at least
1819  * once, but the phy which chang count has changed is the source device which
1820  * we concerned.
1821  */
1822 
1823 static int sas_find_bcast_dev(struct domain_device *dev,
1824                               struct domain_device **src_dev)
1825 {
1826         struct expander_device *ex = &dev->ex_dev;
1827         int ex_change_count = -1;
1828         int phy_id = -1;
1829         int res;
1830         struct domain_device *ch;
1831 
1832         res = sas_get_ex_change_count(dev, &ex_change_count);
1833         if (res)
1834                 goto out;
1835         if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1836                 /* Just detect if this expander phys phy change count changed,
1837                 * in order to determine if this expander originate BROADCAST,
1838                 * and do not update phy change count field in our structure.
1839                 */
1840                 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1841                 if (phy_id != -1) {
1842                         *src_dev = dev;
1843                         ex->ex_change_count = ex_change_count;
1844                         pr_info("ex %016llx phy%02d change count has changed\n",
1845                                 SAS_ADDR(dev->sas_addr), phy_id);
1846                         return res;
1847                 } else
1848                         pr_info("ex %016llx phys DID NOT change\n",
1849                                 SAS_ADDR(dev->sas_addr));
1850         }
1851         list_for_each_entry(ch, &ex->children, siblings) {
1852                 if (dev_is_expander(ch->dev_type)) {
1853                         res = sas_find_bcast_dev(ch, src_dev);
1854                         if (*src_dev)
1855                                 return res;
1856                 }
1857         }
1858 out:
1859         return res;
1860 }
1861 
1862 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1863 {
1864         struct expander_device *ex = &dev->ex_dev;
1865         struct domain_device *child, *n;
1866 
1867         list_for_each_entry_safe(child, n, &ex->children, siblings) {
1868                 set_bit(SAS_DEV_GONE, &child->state);
1869                 if (dev_is_expander(child->dev_type))
1870                         sas_unregister_ex_tree(port, child);
1871                 else
1872                         sas_unregister_dev(port, child);
1873         }
1874         sas_unregister_dev(port, dev);
1875 }
1876 
1877 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1878                                          int phy_id, bool last)
1879 {
1880         struct expander_device *ex_dev = &parent->ex_dev;
1881         struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1882         struct domain_device *child, *n, *found = NULL;
1883         if (last) {
1884                 list_for_each_entry_safe(child, n,
1885                         &ex_dev->children, siblings) {
1886                         if (SAS_ADDR(child->sas_addr) ==
1887                             SAS_ADDR(phy->attached_sas_addr)) {
1888                                 set_bit(SAS_DEV_GONE, &child->state);
1889                                 if (dev_is_expander(child->dev_type))
1890                                         sas_unregister_ex_tree(parent->port, child);
1891                                 else
1892                                         sas_unregister_dev(parent->port, child);
1893                                 found = child;
1894                                 break;
1895                         }
1896                 }
1897                 sas_disable_routing(parent, phy->attached_sas_addr);
1898         }
1899         memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1900         if (phy->port) {
1901                 sas_port_delete_phy(phy->port, phy->phy);
1902                 sas_device_set_phy(found, phy->port);
1903                 if (phy->port->num_phys == 0)
1904                         list_add_tail(&phy->port->del_list,
1905                                 &parent->port->sas_port_del_list);
1906                 phy->port = NULL;
1907         }
1908 }
1909 
1910 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1911                                           const int level)
1912 {
1913         struct expander_device *ex_root = &root->ex_dev;
1914         struct domain_device *child;
1915         int res = 0;
1916 
1917         list_for_each_entry(child, &ex_root->children, siblings) {
1918                 if (dev_is_expander(child->dev_type)) {
1919                         struct sas_expander_device *ex =
1920                                 rphy_to_expander_device(child->rphy);
1921 
1922                         if (level > ex->level)
1923                                 res = sas_discover_bfs_by_root_level(child,
1924                                                                      level);
1925                         else if (level == ex->level)
1926                                 res = sas_ex_discover_devices(child, -1);
1927                 }
1928         }
1929         return res;
1930 }
1931 
1932 static int sas_discover_bfs_by_root(struct domain_device *dev)
1933 {
1934         int res;
1935         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1936         int level = ex->level+1;
1937 
1938         res = sas_ex_discover_devices(dev, -1);
1939         if (res)
1940                 goto out;
1941         do {
1942                 res = sas_discover_bfs_by_root_level(dev, level);
1943                 mb();
1944                 level += 1;
1945         } while (level <= dev->port->disc.max_level);
1946 out:
1947         return res;
1948 }
1949 
1950 static int sas_discover_new(struct domain_device *dev, int phy_id)
1951 {
1952         struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1953         struct domain_device *child;
1954         int res;
1955 
1956         pr_debug("ex %016llx phy%02d new device attached\n",
1957                  SAS_ADDR(dev->sas_addr), phy_id);
1958         res = sas_ex_phy_discover(dev, phy_id);
1959         if (res)
1960                 return res;
1961 
1962         if (sas_ex_join_wide_port(dev, phy_id))
1963                 return 0;
1964 
1965         res = sas_ex_discover_devices(dev, phy_id);
1966         if (res)
1967                 return res;
1968         list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1969                 if (SAS_ADDR(child->sas_addr) ==
1970                     SAS_ADDR(ex_phy->attached_sas_addr)) {
1971                         if (dev_is_expander(child->dev_type))
1972                                 res = sas_discover_bfs_by_root(child);
1973                         break;
1974                 }
1975         }
1976         return res;
1977 }
1978 
1979 static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1980 {
1981         if (old == new)
1982                 return true;
1983 
1984         /* treat device directed resets as flutter, if we went
1985          * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
1986          */
1987         if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
1988             (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
1989                 return true;
1990 
1991         return false;
1992 }
1993 
1994 static int sas_rediscover_dev(struct domain_device *dev, int phy_id,
1995                               bool last, int sibling)
1996 {
1997         struct expander_device *ex = &dev->ex_dev;
1998         struct ex_phy *phy = &ex->ex_phy[phy_id];
1999         enum sas_device_type type = SAS_PHY_UNUSED;
2000         u8 sas_addr[SAS_ADDR_SIZE];
2001         char msg[80] = "";
2002         int res;
2003 
2004         if (!last)
2005                 sprintf(msg, ", part of a wide port with phy%02d", sibling);
2006 
2007         pr_debug("ex %016llx rediscovering phy%02d%s\n",
2008                  SAS_ADDR(dev->sas_addr), phy_id, msg);
2009 
2010         memset(sas_addr, 0, SAS_ADDR_SIZE);
2011         res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
2012         switch (res) {
2013         case SMP_RESP_NO_PHY:
2014                 phy->phy_state = PHY_NOT_PRESENT;
2015                 sas_unregister_devs_sas_addr(dev, phy_id, last);
2016                 return res;
2017         case SMP_RESP_PHY_VACANT:
2018                 phy->phy_state = PHY_VACANT;
2019                 sas_unregister_devs_sas_addr(dev, phy_id, last);
2020                 return res;
2021         case SMP_RESP_FUNC_ACC:
2022                 break;
2023         case -ECOMM:
2024                 break;
2025         default:
2026                 return res;
2027         }
2028 
2029         if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2030                 phy->phy_state = PHY_EMPTY;
2031                 sas_unregister_devs_sas_addr(dev, phy_id, last);
2032                 /*
2033                  * Even though the PHY is empty, for convenience we discover
2034                  * the PHY to update the PHY info, like negotiated linkrate.
2035                  */
2036                 sas_ex_phy_discover(dev, phy_id);
2037                 return res;
2038         } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2039                    dev_type_flutter(type, phy->attached_dev_type)) {
2040                 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2041                 char *action = "";
2042 
2043                 sas_ex_phy_discover(dev, phy_id);
2044 
2045                 if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2046                         action = ", needs recovery";
2047                 pr_debug("ex %016llx phy%02d broadcast flutter%s\n",
2048                          SAS_ADDR(dev->sas_addr), phy_id, action);
2049                 return res;
2050         }
2051 
2052         /* we always have to delete the old device when we went here */
2053         pr_info("ex %016llx phy%02d replace %016llx\n",
2054                 SAS_ADDR(dev->sas_addr), phy_id,
2055                 SAS_ADDR(phy->attached_sas_addr));
2056         sas_unregister_devs_sas_addr(dev, phy_id, last);
2057 
2058         return sas_discover_new(dev, phy_id);
2059 }
2060 
2061 /**
2062  * sas_rediscover - revalidate the domain.
2063  * @dev:domain device to be detect.
2064  * @phy_id: the phy id will be detected.
2065  *
2066  * NOTE: this process _must_ quit (return) as soon as any connection
2067  * errors are encountered.  Connection recovery is done elsewhere.
2068  * Discover process only interrogates devices in order to discover the
2069  * domain.For plugging out, we un-register the device only when it is
2070  * the last phy in the port, for other phys in this port, we just delete it
2071  * from the port.For inserting, we do discovery when it is the
2072  * first phy,for other phys in this port, we add it to the port to
2073  * forming the wide-port.
2074  */
2075 static int sas_rediscover(struct domain_device *dev, const int phy_id)
2076 {
2077         struct expander_device *ex = &dev->ex_dev;
2078         struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2079         int res = 0;
2080         int i;
2081         bool last = true;       /* is this the last phy of the port */
2082 
2083         pr_debug("ex %016llx phy%02d originated BROADCAST(CHANGE)\n",
2084                  SAS_ADDR(dev->sas_addr), phy_id);
2085 
2086         if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2087                 for (i = 0; i < ex->num_phys; i++) {
2088                         struct ex_phy *phy = &ex->ex_phy[i];
2089 
2090                         if (i == phy_id)
2091                                 continue;
2092                         if (SAS_ADDR(phy->attached_sas_addr) ==
2093                             SAS_ADDR(changed_phy->attached_sas_addr)) {
2094                                 last = false;
2095                                 break;
2096                         }
2097                 }
2098                 res = sas_rediscover_dev(dev, phy_id, last, i);
2099         } else
2100                 res = sas_discover_new(dev, phy_id);
2101         return res;
2102 }
2103 
2104 /**
2105  * sas_ex_revalidate_domain - revalidate the domain
2106  * @port_dev: port domain device.
2107  *
2108  * NOTE: this process _must_ quit (return) as soon as any connection
2109  * errors are encountered.  Connection recovery is done elsewhere.
2110  * Discover process only interrogates devices in order to discover the
2111  * domain.
2112  */
2113 int sas_ex_revalidate_domain(struct domain_device *port_dev)
2114 {
2115         int res;
2116         struct domain_device *dev = NULL;
2117 
2118         res = sas_find_bcast_dev(port_dev, &dev);
2119         if (res == 0 && dev) {
2120                 struct expander_device *ex = &dev->ex_dev;
2121                 int i = 0, phy_id;
2122 
2123                 do {
2124                         phy_id = -1;
2125                         res = sas_find_bcast_phy(dev, &phy_id, i, true);
2126                         if (phy_id == -1)
2127                                 break;
2128                         res = sas_rediscover(dev, phy_id);
2129                         i = phy_id + 1;
2130                 } while (i < ex->num_phys);
2131         }
2132         return res;
2133 }
2134 
2135 void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2136                 struct sas_rphy *rphy)
2137 {
2138         struct domain_device *dev;
2139         unsigned int rcvlen = 0;
2140         int ret = -EINVAL;
2141 
2142         /* no rphy means no smp target support (ie aic94xx host) */
2143         if (!rphy)
2144                 return sas_smp_host_handler(job, shost);
2145 
2146         switch (rphy->identify.device_type) {
2147         case SAS_EDGE_EXPANDER_DEVICE:
2148         case SAS_FANOUT_EXPANDER_DEVICE:
2149                 break;
2150         default:
2151                 pr_err("%s: can we send a smp request to a device?\n",
2152                        __func__);
2153                 goto out;
2154         }
2155 
2156         dev = sas_find_dev_by_rphy(rphy);
2157         if (!dev) {
2158                 pr_err("%s: fail to find a domain_device?\n", __func__);
2159                 goto out;
2160         }
2161 
2162         /* do we need to support multiple segments? */
2163         if (job->request_payload.sg_cnt > 1 ||
2164             job->reply_payload.sg_cnt > 1) {
2165                 pr_info("%s: multiple segments req %u, rsp %u\n",
2166                         __func__, job->request_payload.payload_len,
2167                         job->reply_payload.payload_len);
2168                 goto out;
2169         }
2170 
2171         ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2172                         job->reply_payload.sg_list);
2173         if (ret >= 0) {
2174                 /* bsg_job_done() requires the length received  */
2175                 rcvlen = job->reply_payload.payload_len - ret;
2176                 ret = 0;
2177         }
2178 
2179 out:
2180         bsg_job_done(job, ret, rcvlen);
2181 }

/* [<][>][^][v][top][bottom][index][help] */