root/drivers/scsi/hpsa.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. sdev_to_hba
  2. shost_to_hba
  3. hpsa_is_cmd_idle
  4. decode_sense_data
  5. check_for_unit_attention
  6. check_for_busy
  7. host_show_lockup_detected
  8. host_store_hp_ssd_smart_path_status
  9. host_store_raid_offload_debug
  10. host_store_rescan
  11. host_show_firmware_revision
  12. host_show_commands_outstanding
  13. host_show_transport_mode
  14. host_show_hp_ssd_smart_path_status
  15. board_id_in_array
  16. ctlr_is_hard_resettable
  17. ctlr_is_soft_resettable
  18. ctlr_is_resettable
  19. host_show_resettable
  20. is_logical_dev_addr_mode
  21. is_logical_device
  22. raid_level_show
  23. lunid_show
  24. unique_id_show
  25. sas_address_show
  26. host_show_hp_ssd_smart_path_enabled
  27. path_info_show
  28. host_show_ctlr_num
  29. host_show_legacy_board
  30. next_command
  31. set_performant_mode
  32. set_ioaccel1_performant_mode
  33. set_ioaccel2_tmf_performant_mode
  34. set_ioaccel2_performant_mode
  35. is_firmware_flash_cmd
  36. dial_down_lockup_detection_during_fw_flash
  37. dial_up_lockup_detection_on_fw_flash_complete
  38. __enqueue_cmd_and_start_io
  39. enqueue_cmd_and_start_io
  40. is_hba_lunid
  41. is_scsi_rev_5
  42. hpsa_find_target_lun
  43. hpsa_show_dev_msg
  44. hpsa_scsi_add_entry
  45. hpsa_scsi_update_entry
  46. hpsa_scsi_replace_entry
  47. hpsa_scsi_remove_entry
  48. fixup_botched_add
  49. device_is_the_same
  50. device_updated
  51. hpsa_scsi_find_entry
  52. hpsa_monitor_offline_device
  53. hpsa_show_volume_status
  54. hpsa_figure_phys_disk_ptrs
  55. hpsa_update_log_drive_phys_drive_ptrs
  56. hpsa_add_device
  57. hpsa_find_outstanding_commands_for_dev
  58. hpsa_wait_for_outstanding_commands_for_dev
  59. hpsa_remove_device
  60. adjust_hpsa_scsi_table
  61. lookup_hpsa_scsi_dev
  62. hpsa_slave_alloc
  63. hpsa_slave_configure
  64. hpsa_slave_destroy
  65. hpsa_free_ioaccel2_sg_chain_blocks
  66. hpsa_allocate_ioaccel2_sg_chain_blocks
  67. hpsa_free_sg_chain_blocks
  68. hpsa_alloc_sg_chain_blocks
  69. hpsa_map_ioaccel2_sg_chain_block
  70. hpsa_unmap_ioaccel2_sg_chain_block
  71. hpsa_map_sg_chain_block
  72. hpsa_unmap_sg_chain_block
  73. handle_ioaccel_mode2_error
  74. hpsa_cmd_resolve_events
  75. hpsa_cmd_resolve_and_free
  76. hpsa_cmd_free_and_done
  77. hpsa_retry_cmd
  78. process_ioaccel2_completion
  79. hpsa_evaluate_tmf_status
  80. complete_scsi_command
  81. hpsa_pci_unmap
  82. hpsa_map_one
  83. hpsa_scsi_do_simple_cmd_core
  84. hpsa_scsi_do_simple_cmd
  85. lockup_detected
  86. hpsa_scsi_do_simple_cmd_with_retry
  87. hpsa_print_cmd
  88. hpsa_scsi_interpret_error
  89. hpsa_do_receive_diagnostic
  90. hpsa_get_enclosure_logical_identifier
  91. hpsa_scsi_do_inquiry
  92. hpsa_send_reset
  93. hpsa_cmd_dev_match
  94. hpsa_do_reset
  95. hpsa_get_raid_level
  96. hpsa_debug_map_buff
  97. hpsa_debug_map_buff
  98. hpsa_get_raid_map
  99. hpsa_bmic_sense_subsystem_information
  100. hpsa_bmic_id_controller
  101. hpsa_bmic_id_physical_device
  102. hpsa_get_enclosure_info
  103. hpsa_get_sas_address_from_report_physical
  104. hpsa_get_sas_address
  105. hpsa_ext_ctrl_present
  106. hpsa_vpd_page_supported
  107. hpsa_get_ioaccel_status
  108. hpsa_get_device_id
  109. hpsa_scsi_do_report_luns
  110. hpsa_scsi_do_report_phys_luns
  111. hpsa_scsi_do_report_log_luns
  112. hpsa_set_bus_target_lun
  113. hpsa_get_volume_status
  114. hpsa_volume_offline
  115. hpsa_update_device_info
  116. figure_bus_target_lun
  117. figure_external_status
  118. hpsa_gather_lun_info
  119. figure_lunaddrbytes
  120. hpsa_get_ioaccel_drive_info
  121. hpsa_get_path_info
  122. hpsa_set_local_logical_count
  123. hpsa_is_disk_spare
  124. hpsa_skip_device
  125. hpsa_update_scsi_devices
  126. hpsa_set_sg_descriptor
  127. hpsa_scatter_gather
  128. warn_zero_length_transfer
  129. is_zero_length_transfer
  130. fixup_ioaccel_cdb
  131. hpsa_scsi_ioaccel1_queue_command
  132. hpsa_scsi_ioaccel_direct_map
  133. set_encrypt_ioaccel2
  134. hpsa_scsi_ioaccel2_queue_command
  135. hpsa_scsi_ioaccel_queue_command
  136. raid_map_helper
  137. hpsa_scsi_ioaccel_raid_map
  138. hpsa_ciss_submit
  139. hpsa_cmd_init
  140. hpsa_preinitialize_commands
  141. hpsa_cmd_partial_init
  142. hpsa_ioaccel_submit
  143. hpsa_command_resubmit_worker
  144. hpsa_scsi_queue_command
  145. hpsa_scan_complete
  146. hpsa_scan_start
  147. hpsa_change_queue_depth
  148. hpsa_scan_finished
  149. hpsa_scsi_host_alloc
  150. hpsa_scsi_add_host
  151. hpsa_get_cmd_index
  152. hpsa_send_test_unit_ready
  153. hpsa_wait_for_test_unit_ready
  154. wait_for_device_to_become_ready
  155. hpsa_eh_device_reset_handler
  156. cmd_tagged_alloc
  157. cmd_tagged_free
  158. cmd_alloc
  159. cmd_free
  160. hpsa_ioctl32_passthru
  161. hpsa_ioctl32_big_passthru
  162. hpsa_compat_ioctl
  163. hpsa_getpciinfo_ioctl
  164. hpsa_getdrivver_ioctl
  165. hpsa_passthru_ioctl
  166. hpsa_big_passthru_ioctl
  167. check_ioctl_unit_attention
  168. hpsa_ioctl
  169. hpsa_send_host_reset
  170. fill_cmd
  171. remap_pci_mem
  172. get_next_completion
  173. interrupt_pending
  174. interrupt_not_for_us
  175. bad_tag
  176. finish_cmd
  177. process_indexed_cmd
  178. ignore_bogus_interrupt
  179. queue_to_hba
  180. hpsa_intx_discard_completions
  181. hpsa_msix_discard_completions
  182. do_hpsa_intr_intx
  183. do_hpsa_intr_msi
  184. hpsa_message
  185. hpsa_controller_hard_reset
  186. init_driver_version
  187. write_driver_ver_to_cfgtable
  188. read_driver_ver_from_cfgtable
  189. controller_reset_failed
  190. hpsa_kdump_hard_reset_controller
  191. print_cfg_table
  192. find_PCI_BAR_index
  193. hpsa_disable_interrupt_mode
  194. hpsa_setup_reply_map
  195. hpsa_interrupt_mode
  196. hpsa_lookup_board_id
  197. hpsa_pci_find_memory_BAR
  198. hpsa_wait_for_board_state
  199. hpsa_find_cfg_addrs
  200. hpsa_free_cfgtables
  201. hpsa_find_cfgtables
  202. hpsa_get_max_perf_mode_cmds
  203. hpsa_supports_chained_sg_blocks
  204. hpsa_find_board_params
  205. hpsa_CISS_signature_present
  206. hpsa_set_driver_support_bits
  207. hpsa_p600_dma_prefetch_quirk
  208. hpsa_wait_for_clear_event_notify_ack
  209. hpsa_wait_for_mode_change_ack
  210. hpsa_enter_simple_mode
  211. hpsa_free_pci_init
  212. hpsa_pci_init
  213. hpsa_hba_inquiry
  214. hpsa_init_reset_devices
  215. hpsa_free_cmd_pool
  216. hpsa_alloc_cmd_pool
  217. hpsa_free_irqs
  218. hpsa_request_irqs
  219. hpsa_kdump_soft_reset
  220. hpsa_free_reply_queues
  221. hpsa_undo_allocations_after_kdump_soft_reset
  222. fail_all_outstanding_cmds
  223. set_lockup_detected_for_all_cpus
  224. controller_lockup_detected
  225. detect_controller_lockup
  226. hpsa_set_ioaccel_status
  227. hpsa_ack_ctlr_events
  228. hpsa_ctlr_needs_rescan
  229. hpsa_offline_devices_ready
  230. hpsa_luns_changed
  231. hpsa_perform_rescan
  232. hpsa_event_monitor_worker
  233. hpsa_rescan_ctlr_worker
  234. hpsa_monitor_ctlr_worker
  235. hpsa_create_controller_wq
  236. hpda_free_ctlr_info
  237. hpda_alloc_ctlr_info
  238. hpsa_init_one
  239. hpsa_flush_cache
  240. hpsa_disable_rld_caching
  241. __hpsa_shutdown
  242. hpsa_shutdown
  243. hpsa_free_device_info
  244. hpsa_remove_one
  245. hpsa_suspend
  246. hpsa_resume
  247. calc_bucket_map
  248. hpsa_enter_performant_mode
  249. hpsa_free_ioaccel1_cmd_and_bft
  250. hpsa_alloc_ioaccel1_cmd_and_bft
  251. hpsa_free_ioaccel2_cmd_and_bft
  252. hpsa_alloc_ioaccel2_cmd_and_bft
  253. hpsa_free_performant_mode
  254. hpsa_put_ctlr_into_performant_mode
  255. is_accelerated_cmd
  256. hpsa_drain_accel_commands
  257. hpsa_alloc_sas_phy
  258. hpsa_free_sas_phy
  259. hpsa_sas_port_add_phy
  260. hpsa_sas_port_add_rphy
  261. hpsa_alloc_sas_port
  262. hpsa_free_sas_port
  263. hpsa_alloc_sas_node
  264. hpsa_free_sas_node
  265. hpsa_find_device_by_sas_rphy
  266. hpsa_add_sas_host
  267. hpsa_delete_sas_host
  268. hpsa_add_sas_device
  269. hpsa_remove_sas_device
  270. hpsa_sas_get_linkerrors
  271. hpsa_sas_get_enclosure_identifier
  272. hpsa_sas_get_bay_identifier
  273. hpsa_sas_phy_reset
  274. hpsa_sas_phy_enable
  275. hpsa_sas_phy_setup
  276. hpsa_sas_phy_release
  277. hpsa_sas_phy_speed
  278. hpsa_init
  279. hpsa_cleanup
  280. verify_offsets

   1 /*
   2  *    Disk Array driver for HP Smart Array SAS controllers
   3  *    Copyright 2016 Microsemi Corporation
   4  *    Copyright 2014-2015 PMC-Sierra, Inc.
   5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
   6  *
   7  *    This program is free software; you can redistribute it and/or modify
   8  *    it under the terms of the GNU General Public License as published by
   9  *    the Free Software Foundation; version 2 of the License.
  10  *
  11  *    This program is distributed in the hope that it will be useful,
  12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
  13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
  15  *
  16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
  17  *
  18  */
  19 
  20 #include <linux/module.h>
  21 #include <linux/interrupt.h>
  22 #include <linux/types.h>
  23 #include <linux/pci.h>
  24 #include <linux/kernel.h>
  25 #include <linux/slab.h>
  26 #include <linux/delay.h>
  27 #include <linux/fs.h>
  28 #include <linux/timer.h>
  29 #include <linux/init.h>
  30 #include <linux/spinlock.h>
  31 #include <linux/compat.h>
  32 #include <linux/blktrace_api.h>
  33 #include <linux/uaccess.h>
  34 #include <linux/io.h>
  35 #include <linux/dma-mapping.h>
  36 #include <linux/completion.h>
  37 #include <linux/moduleparam.h>
  38 #include <scsi/scsi.h>
  39 #include <scsi/scsi_cmnd.h>
  40 #include <scsi/scsi_device.h>
  41 #include <scsi/scsi_host.h>
  42 #include <scsi/scsi_tcq.h>
  43 #include <scsi/scsi_eh.h>
  44 #include <scsi/scsi_transport_sas.h>
  45 #include <scsi/scsi_dbg.h>
  46 #include <linux/cciss_ioctl.h>
  47 #include <linux/string.h>
  48 #include <linux/bitmap.h>
  49 #include <linux/atomic.h>
  50 #include <linux/jiffies.h>
  51 #include <linux/percpu-defs.h>
  52 #include <linux/percpu.h>
  53 #include <asm/unaligned.h>
  54 #include <asm/div64.h>
  55 #include "hpsa_cmd.h"
  56 #include "hpsa.h"
  57 
  58 /*
  59  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
  60  * with an optional trailing '-' followed by a byte value (0-255).
  61  */
  62 #define HPSA_DRIVER_VERSION "3.4.20-170"
  63 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
  64 #define HPSA "hpsa"
  65 
  66 /* How long to wait for CISS doorbell communication */
  67 #define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
  68 #define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
  69 #define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
  70 #define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
  71 #define MAX_IOCTL_CONFIG_WAIT 1000
  72 
  73 /*define how many times we will try a command because of bus resets */
  74 #define MAX_CMD_RETRIES 3
  75 /* How long to wait before giving up on a command */
  76 #define HPSA_EH_PTRAID_TIMEOUT (240 * HZ)
  77 
  78 /* Embedded module documentation macros - see modules.h */
  79 MODULE_AUTHOR("Hewlett-Packard Company");
  80 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
  81         HPSA_DRIVER_VERSION);
  82 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
  83 MODULE_VERSION(HPSA_DRIVER_VERSION);
  84 MODULE_LICENSE("GPL");
  85 MODULE_ALIAS("cciss");
  86 
  87 static int hpsa_simple_mode;
  88 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
  89 MODULE_PARM_DESC(hpsa_simple_mode,
  90         "Use 'simple mode' rather than 'performant mode'");
  91 
  92 /* define the PCI info for the cards we can control */
  93 static const struct pci_device_id hpsa_pci_device_id[] = {
  94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
  95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
  96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
  97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
  98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
  99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
 100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
 101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
 102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
 103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
 104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
 105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
 106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
 107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
 108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
 109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
 110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
 111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
 112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
 113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
 114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
 115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
 116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
 117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
 118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
 119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
 120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
 121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
 122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
 123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
 124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
 125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
 126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
 127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
 128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
 129         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
 130         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
 131         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
 132         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
 133         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
 134         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
 135         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
 136         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
 137         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
 138         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
 139         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
 140         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
 141         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
 142         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
 143         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
 144         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
 145         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
 146         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
 147         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
 148                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
 149         {PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,  PCI_ANY_ID, PCI_ANY_ID,
 150                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
 151         {0,}
 152 };
 153 
 154 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
 155 
 156 /*  board_id = Subsystem Device ID & Vendor ID
 157  *  product = Marketing Name for the board
 158  *  access = Address of the struct of function pointers
 159  */
 160 static struct board_type products[] = {
 161         {0x40700E11, "Smart Array 5300", &SA5A_access},
 162         {0x40800E11, "Smart Array 5i", &SA5B_access},
 163         {0x40820E11, "Smart Array 532", &SA5B_access},
 164         {0x40830E11, "Smart Array 5312", &SA5B_access},
 165         {0x409A0E11, "Smart Array 641", &SA5A_access},
 166         {0x409B0E11, "Smart Array 642", &SA5A_access},
 167         {0x409C0E11, "Smart Array 6400", &SA5A_access},
 168         {0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
 169         {0x40910E11, "Smart Array 6i", &SA5A_access},
 170         {0x3225103C, "Smart Array P600", &SA5A_access},
 171         {0x3223103C, "Smart Array P800", &SA5A_access},
 172         {0x3234103C, "Smart Array P400", &SA5A_access},
 173         {0x3235103C, "Smart Array P400i", &SA5A_access},
 174         {0x3211103C, "Smart Array E200i", &SA5A_access},
 175         {0x3212103C, "Smart Array E200", &SA5A_access},
 176         {0x3213103C, "Smart Array E200i", &SA5A_access},
 177         {0x3214103C, "Smart Array E200i", &SA5A_access},
 178         {0x3215103C, "Smart Array E200i", &SA5A_access},
 179         {0x3237103C, "Smart Array E500", &SA5A_access},
 180         {0x323D103C, "Smart Array P700m", &SA5A_access},
 181         {0x3241103C, "Smart Array P212", &SA5_access},
 182         {0x3243103C, "Smart Array P410", &SA5_access},
 183         {0x3245103C, "Smart Array P410i", &SA5_access},
 184         {0x3247103C, "Smart Array P411", &SA5_access},
 185         {0x3249103C, "Smart Array P812", &SA5_access},
 186         {0x324A103C, "Smart Array P712m", &SA5_access},
 187         {0x324B103C, "Smart Array P711m", &SA5_access},
 188         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
 189         {0x3350103C, "Smart Array P222", &SA5_access},
 190         {0x3351103C, "Smart Array P420", &SA5_access},
 191         {0x3352103C, "Smart Array P421", &SA5_access},
 192         {0x3353103C, "Smart Array P822", &SA5_access},
 193         {0x3354103C, "Smart Array P420i", &SA5_access},
 194         {0x3355103C, "Smart Array P220i", &SA5_access},
 195         {0x3356103C, "Smart Array P721m", &SA5_access},
 196         {0x1920103C, "Smart Array P430i", &SA5_access},
 197         {0x1921103C, "Smart Array P830i", &SA5_access},
 198         {0x1922103C, "Smart Array P430", &SA5_access},
 199         {0x1923103C, "Smart Array P431", &SA5_access},
 200         {0x1924103C, "Smart Array P830", &SA5_access},
 201         {0x1925103C, "Smart Array P831", &SA5_access},
 202         {0x1926103C, "Smart Array P731m", &SA5_access},
 203         {0x1928103C, "Smart Array P230i", &SA5_access},
 204         {0x1929103C, "Smart Array P530", &SA5_access},
 205         {0x21BD103C, "Smart Array P244br", &SA5_access},
 206         {0x21BE103C, "Smart Array P741m", &SA5_access},
 207         {0x21BF103C, "Smart HBA H240ar", &SA5_access},
 208         {0x21C0103C, "Smart Array P440ar", &SA5_access},
 209         {0x21C1103C, "Smart Array P840ar", &SA5_access},
 210         {0x21C2103C, "Smart Array P440", &SA5_access},
 211         {0x21C3103C, "Smart Array P441", &SA5_access},
 212         {0x21C4103C, "Smart Array", &SA5_access},
 213         {0x21C5103C, "Smart Array P841", &SA5_access},
 214         {0x21C6103C, "Smart HBA H244br", &SA5_access},
 215         {0x21C7103C, "Smart HBA H240", &SA5_access},
 216         {0x21C8103C, "Smart HBA H241", &SA5_access},
 217         {0x21C9103C, "Smart Array", &SA5_access},
 218         {0x21CA103C, "Smart Array P246br", &SA5_access},
 219         {0x21CB103C, "Smart Array P840", &SA5_access},
 220         {0x21CC103C, "Smart Array", &SA5_access},
 221         {0x21CD103C, "Smart Array", &SA5_access},
 222         {0x21CE103C, "Smart HBA", &SA5_access},
 223         {0x05809005, "SmartHBA-SA", &SA5_access},
 224         {0x05819005, "SmartHBA-SA 8i", &SA5_access},
 225         {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
 226         {0x05839005, "SmartHBA-SA 8e", &SA5_access},
 227         {0x05849005, "SmartHBA-SA 16i", &SA5_access},
 228         {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
 229         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
 230         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
 231         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
 232         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
 233         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
 234         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
 235 };
 236 
 237 static struct scsi_transport_template *hpsa_sas_transport_template;
 238 static int hpsa_add_sas_host(struct ctlr_info *h);
 239 static void hpsa_delete_sas_host(struct ctlr_info *h);
 240 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
 241                         struct hpsa_scsi_dev_t *device);
 242 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
 243 static struct hpsa_scsi_dev_t
 244         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
 245                 struct sas_rphy *rphy);
 246 
 247 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
 248 static const struct scsi_cmnd hpsa_cmd_busy;
 249 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
 250 static const struct scsi_cmnd hpsa_cmd_idle;
 251 static int number_of_controllers;
 252 
 253 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
 254 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
 255 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
 256                       void __user *arg);
 257 
 258 #ifdef CONFIG_COMPAT
 259 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
 260         void __user *arg);
 261 #endif
 262 
 263 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
 264 static struct CommandList *cmd_alloc(struct ctlr_info *h);
 265 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
 266 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
 267                                             struct scsi_cmnd *scmd);
 268 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
 269         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
 270         int cmd_type);
 271 static void hpsa_free_cmd_pool(struct ctlr_info *h);
 272 #define VPD_PAGE (1 << 8)
 273 #define HPSA_SIMPLE_ERROR_BITS 0x03
 274 
 275 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
 276 static void hpsa_scan_start(struct Scsi_Host *);
 277 static int hpsa_scan_finished(struct Scsi_Host *sh,
 278         unsigned long elapsed_time);
 279 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
 280 
 281 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
 282 static int hpsa_slave_alloc(struct scsi_device *sdev);
 283 static int hpsa_slave_configure(struct scsi_device *sdev);
 284 static void hpsa_slave_destroy(struct scsi_device *sdev);
 285 
 286 static void hpsa_update_scsi_devices(struct ctlr_info *h);
 287 static int check_for_unit_attention(struct ctlr_info *h,
 288         struct CommandList *c);
 289 static void check_ioctl_unit_attention(struct ctlr_info *h,
 290         struct CommandList *c);
 291 /* performant mode helper functions */
 292 static void calc_bucket_map(int *bucket, int num_buckets,
 293         int nsgs, int min_blocks, u32 *bucket_map);
 294 static void hpsa_free_performant_mode(struct ctlr_info *h);
 295 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
 296 static inline u32 next_command(struct ctlr_info *h, u8 q);
 297 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
 298                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
 299                                u64 *cfg_offset);
 300 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
 301                                     unsigned long *memory_bar);
 302 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
 303                                 bool *legacy_board);
 304 static int wait_for_device_to_become_ready(struct ctlr_info *h,
 305                                            unsigned char lunaddr[],
 306                                            int reply_queue);
 307 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
 308                                      int wait_for_ready);
 309 static inline void finish_cmd(struct CommandList *c);
 310 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
 311 #define BOARD_NOT_READY 0
 312 #define BOARD_READY 1
 313 static void hpsa_drain_accel_commands(struct ctlr_info *h);
 314 static void hpsa_flush_cache(struct ctlr_info *h);
 315 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
 316         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
 317         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
 318 static void hpsa_command_resubmit_worker(struct work_struct *work);
 319 static u32 lockup_detected(struct ctlr_info *h);
 320 static int detect_controller_lockup(struct ctlr_info *h);
 321 static void hpsa_disable_rld_caching(struct ctlr_info *h);
 322 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
 323         struct ReportExtendedLUNdata *buf, int bufsize);
 324 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
 325         unsigned char scsi3addr[], u8 page);
 326 static int hpsa_luns_changed(struct ctlr_info *h);
 327 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
 328                                struct hpsa_scsi_dev_t *dev,
 329                                unsigned char *scsi3addr);
 330 
 331 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
 332 {
 333         unsigned long *priv = shost_priv(sdev->host);
 334         return (struct ctlr_info *) *priv;
 335 }
 336 
 337 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
 338 {
 339         unsigned long *priv = shost_priv(sh);
 340         return (struct ctlr_info *) *priv;
 341 }
 342 
 343 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
 344 {
 345         return c->scsi_cmd == SCSI_CMD_IDLE;
 346 }
 347 
 348 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
 349 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
 350                         u8 *sense_key, u8 *asc, u8 *ascq)
 351 {
 352         struct scsi_sense_hdr sshdr;
 353         bool rc;
 354 
 355         *sense_key = -1;
 356         *asc = -1;
 357         *ascq = -1;
 358 
 359         if (sense_data_len < 1)
 360                 return;
 361 
 362         rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
 363         if (rc) {
 364                 *sense_key = sshdr.sense_key;
 365                 *asc = sshdr.asc;
 366                 *ascq = sshdr.ascq;
 367         }
 368 }
 369 
 370 static int check_for_unit_attention(struct ctlr_info *h,
 371         struct CommandList *c)
 372 {
 373         u8 sense_key, asc, ascq;
 374         int sense_len;
 375 
 376         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
 377                 sense_len = sizeof(c->err_info->SenseInfo);
 378         else
 379                 sense_len = c->err_info->SenseLen;
 380 
 381         decode_sense_data(c->err_info->SenseInfo, sense_len,
 382                                 &sense_key, &asc, &ascq);
 383         if (sense_key != UNIT_ATTENTION || asc == 0xff)
 384                 return 0;
 385 
 386         switch (asc) {
 387         case STATE_CHANGED:
 388                 dev_warn(&h->pdev->dev,
 389                         "%s: a state change detected, command retried\n",
 390                         h->devname);
 391                 break;
 392         case LUN_FAILED:
 393                 dev_warn(&h->pdev->dev,
 394                         "%s: LUN failure detected\n", h->devname);
 395                 break;
 396         case REPORT_LUNS_CHANGED:
 397                 dev_warn(&h->pdev->dev,
 398                         "%s: report LUN data changed\n", h->devname);
 399         /*
 400          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
 401          * target (array) devices.
 402          */
 403                 break;
 404         case POWER_OR_RESET:
 405                 dev_warn(&h->pdev->dev,
 406                         "%s: a power on or device reset detected\n",
 407                         h->devname);
 408                 break;
 409         case UNIT_ATTENTION_CLEARED:
 410                 dev_warn(&h->pdev->dev,
 411                         "%s: unit attention cleared by another initiator\n",
 412                         h->devname);
 413                 break;
 414         default:
 415                 dev_warn(&h->pdev->dev,
 416                         "%s: unknown unit attention detected\n",
 417                         h->devname);
 418                 break;
 419         }
 420         return 1;
 421 }
 422 
 423 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
 424 {
 425         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
 426                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
 427                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
 428                 return 0;
 429         dev_warn(&h->pdev->dev, HPSA "device busy");
 430         return 1;
 431 }
 432 
 433 static u32 lockup_detected(struct ctlr_info *h);
 434 static ssize_t host_show_lockup_detected(struct device *dev,
 435                 struct device_attribute *attr, char *buf)
 436 {
 437         int ld;
 438         struct ctlr_info *h;
 439         struct Scsi_Host *shost = class_to_shost(dev);
 440 
 441         h = shost_to_hba(shost);
 442         ld = lockup_detected(h);
 443 
 444         return sprintf(buf, "ld=%d\n", ld);
 445 }
 446 
 447 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
 448                                          struct device_attribute *attr,
 449                                          const char *buf, size_t count)
 450 {
 451         int status, len;
 452         struct ctlr_info *h;
 453         struct Scsi_Host *shost = class_to_shost(dev);
 454         char tmpbuf[10];
 455 
 456         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
 457                 return -EACCES;
 458         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
 459         strncpy(tmpbuf, buf, len);
 460         tmpbuf[len] = '\0';
 461         if (sscanf(tmpbuf, "%d", &status) != 1)
 462                 return -EINVAL;
 463         h = shost_to_hba(shost);
 464         h->acciopath_status = !!status;
 465         dev_warn(&h->pdev->dev,
 466                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
 467                 h->acciopath_status ? "enabled" : "disabled");
 468         return count;
 469 }
 470 
 471 static ssize_t host_store_raid_offload_debug(struct device *dev,
 472                                          struct device_attribute *attr,
 473                                          const char *buf, size_t count)
 474 {
 475         int debug_level, len;
 476         struct ctlr_info *h;
 477         struct Scsi_Host *shost = class_to_shost(dev);
 478         char tmpbuf[10];
 479 
 480         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
 481                 return -EACCES;
 482         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
 483         strncpy(tmpbuf, buf, len);
 484         tmpbuf[len] = '\0';
 485         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
 486                 return -EINVAL;
 487         if (debug_level < 0)
 488                 debug_level = 0;
 489         h = shost_to_hba(shost);
 490         h->raid_offload_debug = debug_level;
 491         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
 492                 h->raid_offload_debug);
 493         return count;
 494 }
 495 
 496 static ssize_t host_store_rescan(struct device *dev,
 497                                  struct device_attribute *attr,
 498                                  const char *buf, size_t count)
 499 {
 500         struct ctlr_info *h;
 501         struct Scsi_Host *shost = class_to_shost(dev);
 502         h = shost_to_hba(shost);
 503         hpsa_scan_start(h->scsi_host);
 504         return count;
 505 }
 506 
 507 static ssize_t host_show_firmware_revision(struct device *dev,
 508              struct device_attribute *attr, char *buf)
 509 {
 510         struct ctlr_info *h;
 511         struct Scsi_Host *shost = class_to_shost(dev);
 512         unsigned char *fwrev;
 513 
 514         h = shost_to_hba(shost);
 515         if (!h->hba_inquiry_data)
 516                 return 0;
 517         fwrev = &h->hba_inquiry_data[32];
 518         return snprintf(buf, 20, "%c%c%c%c\n",
 519                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
 520 }
 521 
 522 static ssize_t host_show_commands_outstanding(struct device *dev,
 523              struct device_attribute *attr, char *buf)
 524 {
 525         struct Scsi_Host *shost = class_to_shost(dev);
 526         struct ctlr_info *h = shost_to_hba(shost);
 527 
 528         return snprintf(buf, 20, "%d\n",
 529                         atomic_read(&h->commands_outstanding));
 530 }
 531 
 532 static ssize_t host_show_transport_mode(struct device *dev,
 533         struct device_attribute *attr, char *buf)
 534 {
 535         struct ctlr_info *h;
 536         struct Scsi_Host *shost = class_to_shost(dev);
 537 
 538         h = shost_to_hba(shost);
 539         return snprintf(buf, 20, "%s\n",
 540                 h->transMethod & CFGTBL_Trans_Performant ?
 541                         "performant" : "simple");
 542 }
 543 
 544 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
 545         struct device_attribute *attr, char *buf)
 546 {
 547         struct ctlr_info *h;
 548         struct Scsi_Host *shost = class_to_shost(dev);
 549 
 550         h = shost_to_hba(shost);
 551         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
 552                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
 553 }
 554 
 555 /* List of controllers which cannot be hard reset on kexec with reset_devices */
 556 static u32 unresettable_controller[] = {
 557         0x324a103C, /* Smart Array P712m */
 558         0x324b103C, /* Smart Array P711m */
 559         0x3223103C, /* Smart Array P800 */
 560         0x3234103C, /* Smart Array P400 */
 561         0x3235103C, /* Smart Array P400i */
 562         0x3211103C, /* Smart Array E200i */
 563         0x3212103C, /* Smart Array E200 */
 564         0x3213103C, /* Smart Array E200i */
 565         0x3214103C, /* Smart Array E200i */
 566         0x3215103C, /* Smart Array E200i */
 567         0x3237103C, /* Smart Array E500 */
 568         0x323D103C, /* Smart Array P700m */
 569         0x40800E11, /* Smart Array 5i */
 570         0x409C0E11, /* Smart Array 6400 */
 571         0x409D0E11, /* Smart Array 6400 EM */
 572         0x40700E11, /* Smart Array 5300 */
 573         0x40820E11, /* Smart Array 532 */
 574         0x40830E11, /* Smart Array 5312 */
 575         0x409A0E11, /* Smart Array 641 */
 576         0x409B0E11, /* Smart Array 642 */
 577         0x40910E11, /* Smart Array 6i */
 578 };
 579 
 580 /* List of controllers which cannot even be soft reset */
 581 static u32 soft_unresettable_controller[] = {
 582         0x40800E11, /* Smart Array 5i */
 583         0x40700E11, /* Smart Array 5300 */
 584         0x40820E11, /* Smart Array 532 */
 585         0x40830E11, /* Smart Array 5312 */
 586         0x409A0E11, /* Smart Array 641 */
 587         0x409B0E11, /* Smart Array 642 */
 588         0x40910E11, /* Smart Array 6i */
 589         /* Exclude 640x boards.  These are two pci devices in one slot
 590          * which share a battery backed cache module.  One controls the
 591          * cache, the other accesses the cache through the one that controls
 592          * it.  If we reset the one controlling the cache, the other will
 593          * likely not be happy.  Just forbid resetting this conjoined mess.
 594          * The 640x isn't really supported by hpsa anyway.
 595          */
 596         0x409C0E11, /* Smart Array 6400 */
 597         0x409D0E11, /* Smart Array 6400 EM */
 598 };
 599 
 600 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
 601 {
 602         int i;
 603 
 604         for (i = 0; i < nelems; i++)
 605                 if (a[i] == board_id)
 606                         return 1;
 607         return 0;
 608 }
 609 
 610 static int ctlr_is_hard_resettable(u32 board_id)
 611 {
 612         return !board_id_in_array(unresettable_controller,
 613                         ARRAY_SIZE(unresettable_controller), board_id);
 614 }
 615 
 616 static int ctlr_is_soft_resettable(u32 board_id)
 617 {
 618         return !board_id_in_array(soft_unresettable_controller,
 619                         ARRAY_SIZE(soft_unresettable_controller), board_id);
 620 }
 621 
 622 static int ctlr_is_resettable(u32 board_id)
 623 {
 624         return ctlr_is_hard_resettable(board_id) ||
 625                 ctlr_is_soft_resettable(board_id);
 626 }
 627 
 628 static ssize_t host_show_resettable(struct device *dev,
 629         struct device_attribute *attr, char *buf)
 630 {
 631         struct ctlr_info *h;
 632         struct Scsi_Host *shost = class_to_shost(dev);
 633 
 634         h = shost_to_hba(shost);
 635         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
 636 }
 637 
 638 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
 639 {
 640         return (scsi3addr[3] & 0xC0) == 0x40;
 641 }
 642 
 643 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
 644         "1(+0)ADM", "UNKNOWN", "PHYS DRV"
 645 };
 646 #define HPSA_RAID_0     0
 647 #define HPSA_RAID_4     1
 648 #define HPSA_RAID_1     2       /* also used for RAID 10 */
 649 #define HPSA_RAID_5     3       /* also used for RAID 50 */
 650 #define HPSA_RAID_51    4
 651 #define HPSA_RAID_6     5       /* also used for RAID 60 */
 652 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
 653 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
 654 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
 655 
 656 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
 657 {
 658         return !device->physical_device;
 659 }
 660 
 661 static ssize_t raid_level_show(struct device *dev,
 662              struct device_attribute *attr, char *buf)
 663 {
 664         ssize_t l = 0;
 665         unsigned char rlevel;
 666         struct ctlr_info *h;
 667         struct scsi_device *sdev;
 668         struct hpsa_scsi_dev_t *hdev;
 669         unsigned long flags;
 670 
 671         sdev = to_scsi_device(dev);
 672         h = sdev_to_hba(sdev);
 673         spin_lock_irqsave(&h->lock, flags);
 674         hdev = sdev->hostdata;
 675         if (!hdev) {
 676                 spin_unlock_irqrestore(&h->lock, flags);
 677                 return -ENODEV;
 678         }
 679 
 680         /* Is this even a logical drive? */
 681         if (!is_logical_device(hdev)) {
 682                 spin_unlock_irqrestore(&h->lock, flags);
 683                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
 684                 return l;
 685         }
 686 
 687         rlevel = hdev->raid_level;
 688         spin_unlock_irqrestore(&h->lock, flags);
 689         if (rlevel > RAID_UNKNOWN)
 690                 rlevel = RAID_UNKNOWN;
 691         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
 692         return l;
 693 }
 694 
 695 static ssize_t lunid_show(struct device *dev,
 696              struct device_attribute *attr, char *buf)
 697 {
 698         struct ctlr_info *h;
 699         struct scsi_device *sdev;
 700         struct hpsa_scsi_dev_t *hdev;
 701         unsigned long flags;
 702         unsigned char lunid[8];
 703 
 704         sdev = to_scsi_device(dev);
 705         h = sdev_to_hba(sdev);
 706         spin_lock_irqsave(&h->lock, flags);
 707         hdev = sdev->hostdata;
 708         if (!hdev) {
 709                 spin_unlock_irqrestore(&h->lock, flags);
 710                 return -ENODEV;
 711         }
 712         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
 713         spin_unlock_irqrestore(&h->lock, flags);
 714         return snprintf(buf, 20, "0x%8phN\n", lunid);
 715 }
 716 
 717 static ssize_t unique_id_show(struct device *dev,
 718              struct device_attribute *attr, char *buf)
 719 {
 720         struct ctlr_info *h;
 721         struct scsi_device *sdev;
 722         struct hpsa_scsi_dev_t *hdev;
 723         unsigned long flags;
 724         unsigned char sn[16];
 725 
 726         sdev = to_scsi_device(dev);
 727         h = sdev_to_hba(sdev);
 728         spin_lock_irqsave(&h->lock, flags);
 729         hdev = sdev->hostdata;
 730         if (!hdev) {
 731                 spin_unlock_irqrestore(&h->lock, flags);
 732                 return -ENODEV;
 733         }
 734         memcpy(sn, hdev->device_id, sizeof(sn));
 735         spin_unlock_irqrestore(&h->lock, flags);
 736         return snprintf(buf, 16 * 2 + 2,
 737                         "%02X%02X%02X%02X%02X%02X%02X%02X"
 738                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
 739                         sn[0], sn[1], sn[2], sn[3],
 740                         sn[4], sn[5], sn[6], sn[7],
 741                         sn[8], sn[9], sn[10], sn[11],
 742                         sn[12], sn[13], sn[14], sn[15]);
 743 }
 744 
 745 static ssize_t sas_address_show(struct device *dev,
 746               struct device_attribute *attr, char *buf)
 747 {
 748         struct ctlr_info *h;
 749         struct scsi_device *sdev;
 750         struct hpsa_scsi_dev_t *hdev;
 751         unsigned long flags;
 752         u64 sas_address;
 753 
 754         sdev = to_scsi_device(dev);
 755         h = sdev_to_hba(sdev);
 756         spin_lock_irqsave(&h->lock, flags);
 757         hdev = sdev->hostdata;
 758         if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
 759                 spin_unlock_irqrestore(&h->lock, flags);
 760                 return -ENODEV;
 761         }
 762         sas_address = hdev->sas_address;
 763         spin_unlock_irqrestore(&h->lock, flags);
 764 
 765         return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
 766 }
 767 
 768 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
 769              struct device_attribute *attr, char *buf)
 770 {
 771         struct ctlr_info *h;
 772         struct scsi_device *sdev;
 773         struct hpsa_scsi_dev_t *hdev;
 774         unsigned long flags;
 775         int offload_enabled;
 776 
 777         sdev = to_scsi_device(dev);
 778         h = sdev_to_hba(sdev);
 779         spin_lock_irqsave(&h->lock, flags);
 780         hdev = sdev->hostdata;
 781         if (!hdev) {
 782                 spin_unlock_irqrestore(&h->lock, flags);
 783                 return -ENODEV;
 784         }
 785         offload_enabled = hdev->offload_enabled;
 786         spin_unlock_irqrestore(&h->lock, flags);
 787 
 788         if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
 789                 return snprintf(buf, 20, "%d\n", offload_enabled);
 790         else
 791                 return snprintf(buf, 40, "%s\n",
 792                                 "Not applicable for a controller");
 793 }
 794 
 795 #define MAX_PATHS 8
 796 static ssize_t path_info_show(struct device *dev,
 797              struct device_attribute *attr, char *buf)
 798 {
 799         struct ctlr_info *h;
 800         struct scsi_device *sdev;
 801         struct hpsa_scsi_dev_t *hdev;
 802         unsigned long flags;
 803         int i;
 804         int output_len = 0;
 805         u8 box;
 806         u8 bay;
 807         u8 path_map_index = 0;
 808         char *active;
 809         unsigned char phys_connector[2];
 810 
 811         sdev = to_scsi_device(dev);
 812         h = sdev_to_hba(sdev);
 813         spin_lock_irqsave(&h->devlock, flags);
 814         hdev = sdev->hostdata;
 815         if (!hdev) {
 816                 spin_unlock_irqrestore(&h->devlock, flags);
 817                 return -ENODEV;
 818         }
 819 
 820         bay = hdev->bay;
 821         for (i = 0; i < MAX_PATHS; i++) {
 822                 path_map_index = 1<<i;
 823                 if (i == hdev->active_path_index)
 824                         active = "Active";
 825                 else if (hdev->path_map & path_map_index)
 826                         active = "Inactive";
 827                 else
 828                         continue;
 829 
 830                 output_len += scnprintf(buf + output_len,
 831                                 PAGE_SIZE - output_len,
 832                                 "[%d:%d:%d:%d] %20.20s ",
 833                                 h->scsi_host->host_no,
 834                                 hdev->bus, hdev->target, hdev->lun,
 835                                 scsi_device_type(hdev->devtype));
 836 
 837                 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
 838                         output_len += scnprintf(buf + output_len,
 839                                                 PAGE_SIZE - output_len,
 840                                                 "%s\n", active);
 841                         continue;
 842                 }
 843 
 844                 box = hdev->box[i];
 845                 memcpy(&phys_connector, &hdev->phys_connector[i],
 846                         sizeof(phys_connector));
 847                 if (phys_connector[0] < '0')
 848                         phys_connector[0] = '0';
 849                 if (phys_connector[1] < '0')
 850                         phys_connector[1] = '0';
 851                 output_len += scnprintf(buf + output_len,
 852                                 PAGE_SIZE - output_len,
 853                                 "PORT: %.2s ",
 854                                 phys_connector);
 855                 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
 856                         hdev->expose_device) {
 857                         if (box == 0 || box == 0xFF) {
 858                                 output_len += scnprintf(buf + output_len,
 859                                         PAGE_SIZE - output_len,
 860                                         "BAY: %hhu %s\n",
 861                                         bay, active);
 862                         } else {
 863                                 output_len += scnprintf(buf + output_len,
 864                                         PAGE_SIZE - output_len,
 865                                         "BOX: %hhu BAY: %hhu %s\n",
 866                                         box, bay, active);
 867                         }
 868                 } else if (box != 0 && box != 0xFF) {
 869                         output_len += scnprintf(buf + output_len,
 870                                 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
 871                                 box, active);
 872                 } else
 873                         output_len += scnprintf(buf + output_len,
 874                                 PAGE_SIZE - output_len, "%s\n", active);
 875         }
 876 
 877         spin_unlock_irqrestore(&h->devlock, flags);
 878         return output_len;
 879 }
 880 
 881 static ssize_t host_show_ctlr_num(struct device *dev,
 882         struct device_attribute *attr, char *buf)
 883 {
 884         struct ctlr_info *h;
 885         struct Scsi_Host *shost = class_to_shost(dev);
 886 
 887         h = shost_to_hba(shost);
 888         return snprintf(buf, 20, "%d\n", h->ctlr);
 889 }
 890 
 891 static ssize_t host_show_legacy_board(struct device *dev,
 892         struct device_attribute *attr, char *buf)
 893 {
 894         struct ctlr_info *h;
 895         struct Scsi_Host *shost = class_to_shost(dev);
 896 
 897         h = shost_to_hba(shost);
 898         return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
 899 }
 900 
 901 static DEVICE_ATTR_RO(raid_level);
 902 static DEVICE_ATTR_RO(lunid);
 903 static DEVICE_ATTR_RO(unique_id);
 904 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
 905 static DEVICE_ATTR_RO(sas_address);
 906 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
 907                         host_show_hp_ssd_smart_path_enabled, NULL);
 908 static DEVICE_ATTR_RO(path_info);
 909 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
 910                 host_show_hp_ssd_smart_path_status,
 911                 host_store_hp_ssd_smart_path_status);
 912 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
 913                         host_store_raid_offload_debug);
 914 static DEVICE_ATTR(firmware_revision, S_IRUGO,
 915         host_show_firmware_revision, NULL);
 916 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
 917         host_show_commands_outstanding, NULL);
 918 static DEVICE_ATTR(transport_mode, S_IRUGO,
 919         host_show_transport_mode, NULL);
 920 static DEVICE_ATTR(resettable, S_IRUGO,
 921         host_show_resettable, NULL);
 922 static DEVICE_ATTR(lockup_detected, S_IRUGO,
 923         host_show_lockup_detected, NULL);
 924 static DEVICE_ATTR(ctlr_num, S_IRUGO,
 925         host_show_ctlr_num, NULL);
 926 static DEVICE_ATTR(legacy_board, S_IRUGO,
 927         host_show_legacy_board, NULL);
 928 
 929 static struct device_attribute *hpsa_sdev_attrs[] = {
 930         &dev_attr_raid_level,
 931         &dev_attr_lunid,
 932         &dev_attr_unique_id,
 933         &dev_attr_hp_ssd_smart_path_enabled,
 934         &dev_attr_path_info,
 935         &dev_attr_sas_address,
 936         NULL,
 937 };
 938 
 939 static struct device_attribute *hpsa_shost_attrs[] = {
 940         &dev_attr_rescan,
 941         &dev_attr_firmware_revision,
 942         &dev_attr_commands_outstanding,
 943         &dev_attr_transport_mode,
 944         &dev_attr_resettable,
 945         &dev_attr_hp_ssd_smart_path_status,
 946         &dev_attr_raid_offload_debug,
 947         &dev_attr_lockup_detected,
 948         &dev_attr_ctlr_num,
 949         &dev_attr_legacy_board,
 950         NULL,
 951 };
 952 
 953 #define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_DRIVER +\
 954                                  HPSA_MAX_CONCURRENT_PASSTHRUS)
 955 
 956 static struct scsi_host_template hpsa_driver_template = {
 957         .module                 = THIS_MODULE,
 958         .name                   = HPSA,
 959         .proc_name              = HPSA,
 960         .queuecommand           = hpsa_scsi_queue_command,
 961         .scan_start             = hpsa_scan_start,
 962         .scan_finished          = hpsa_scan_finished,
 963         .change_queue_depth     = hpsa_change_queue_depth,
 964         .this_id                = -1,
 965         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
 966         .ioctl                  = hpsa_ioctl,
 967         .slave_alloc            = hpsa_slave_alloc,
 968         .slave_configure        = hpsa_slave_configure,
 969         .slave_destroy          = hpsa_slave_destroy,
 970 #ifdef CONFIG_COMPAT
 971         .compat_ioctl           = hpsa_compat_ioctl,
 972 #endif
 973         .sdev_attrs = hpsa_sdev_attrs,
 974         .shost_attrs = hpsa_shost_attrs,
 975         .max_sectors = 2048,
 976         .no_write_same = 1,
 977 };
 978 
 979 static inline u32 next_command(struct ctlr_info *h, u8 q)
 980 {
 981         u32 a;
 982         struct reply_queue_buffer *rq = &h->reply_queue[q];
 983 
 984         if (h->transMethod & CFGTBL_Trans_io_accel1)
 985                 return h->access.command_completed(h, q);
 986 
 987         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
 988                 return h->access.command_completed(h, q);
 989 
 990         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
 991                 a = rq->head[rq->current_entry];
 992                 rq->current_entry++;
 993                 atomic_dec(&h->commands_outstanding);
 994         } else {
 995                 a = FIFO_EMPTY;
 996         }
 997         /* Check for wraparound */
 998         if (rq->current_entry == h->max_commands) {
 999                 rq->current_entry = 0;
1000                 rq->wraparound ^= 1;
1001         }
1002         return a;
1003 }
1004 
1005 /*
1006  * There are some special bits in the bus address of the
1007  * command that we have to set for the controller to know
1008  * how to process the command:
1009  *
1010  * Normal performant mode:
1011  * bit 0: 1 means performant mode, 0 means simple mode.
1012  * bits 1-3 = block fetch table entry
1013  * bits 4-6 = command type (== 0)
1014  *
1015  * ioaccel1 mode:
1016  * bit 0 = "performant mode" bit.
1017  * bits 1-3 = block fetch table entry
1018  * bits 4-6 = command type (== 110)
1019  * (command type is needed because ioaccel1 mode
1020  * commands are submitted through the same register as normal
1021  * mode commands, so this is how the controller knows whether
1022  * the command is normal mode or ioaccel1 mode.)
1023  *
1024  * ioaccel2 mode:
1025  * bit 0 = "performant mode" bit.
1026  * bits 1-4 = block fetch table entry (note extra bit)
1027  * bits 4-6 = not needed, because ioaccel2 mode has
1028  * a separate special register for submitting commands.
1029  */
1030 
1031 /*
1032  * set_performant_mode: Modify the tag for cciss performant
1033  * set bit 0 for pull model, bits 3-1 for block fetch
1034  * register number
1035  */
1036 #define DEFAULT_REPLY_QUEUE (-1)
1037 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1038                                         int reply_queue)
1039 {
1040         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1041                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1042                 if (unlikely(!h->msix_vectors))
1043                         return;
1044                 c->Header.ReplyQueue = reply_queue;
1045         }
1046 }
1047 
1048 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1049                                                 struct CommandList *c,
1050                                                 int reply_queue)
1051 {
1052         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1053 
1054         /*
1055          * Tell the controller to post the reply to the queue for this
1056          * processor.  This seems to give the best I/O throughput.
1057          */
1058         cp->ReplyQueue = reply_queue;
1059         /*
1060          * Set the bits in the address sent down to include:
1061          *  - performant mode bit (bit 0)
1062          *  - pull count (bits 1-3)
1063          *  - command type (bits 4-6)
1064          */
1065         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1066                                         IOACCEL1_BUSADDR_CMDTYPE;
1067 }
1068 
1069 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1070                                                 struct CommandList *c,
1071                                                 int reply_queue)
1072 {
1073         struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1074                 &h->ioaccel2_cmd_pool[c->cmdindex];
1075 
1076         /* Tell the controller to post the reply to the queue for this
1077          * processor.  This seems to give the best I/O throughput.
1078          */
1079         cp->reply_queue = reply_queue;
1080         /* Set the bits in the address sent down to include:
1081          *  - performant mode bit not used in ioaccel mode 2
1082          *  - pull count (bits 0-3)
1083          *  - command type isn't needed for ioaccel2
1084          */
1085         c->busaddr |= h->ioaccel2_blockFetchTable[0];
1086 }
1087 
1088 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1089                                                 struct CommandList *c,
1090                                                 int reply_queue)
1091 {
1092         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1093 
1094         /*
1095          * Tell the controller to post the reply to the queue for this
1096          * processor.  This seems to give the best I/O throughput.
1097          */
1098         cp->reply_queue = reply_queue;
1099         /*
1100          * Set the bits in the address sent down to include:
1101          *  - performant mode bit not used in ioaccel mode 2
1102          *  - pull count (bits 0-3)
1103          *  - command type isn't needed for ioaccel2
1104          */
1105         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1106 }
1107 
1108 static int is_firmware_flash_cmd(u8 *cdb)
1109 {
1110         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1111 }
1112 
1113 /*
1114  * During firmware flash, the heartbeat register may not update as frequently
1115  * as it should.  So we dial down lockup detection during firmware flash. and
1116  * dial it back up when firmware flash completes.
1117  */
1118 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1119 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1120 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1121 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1122                 struct CommandList *c)
1123 {
1124         if (!is_firmware_flash_cmd(c->Request.CDB))
1125                 return;
1126         atomic_inc(&h->firmware_flash_in_progress);
1127         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1128 }
1129 
1130 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1131                 struct CommandList *c)
1132 {
1133         if (is_firmware_flash_cmd(c->Request.CDB) &&
1134                 atomic_dec_and_test(&h->firmware_flash_in_progress))
1135                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1136 }
1137 
1138 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1139         struct CommandList *c, int reply_queue)
1140 {
1141         dial_down_lockup_detection_during_fw_flash(h, c);
1142         atomic_inc(&h->commands_outstanding);
1143         if (c->device)
1144                 atomic_inc(&c->device->commands_outstanding);
1145 
1146         reply_queue = h->reply_map[raw_smp_processor_id()];
1147         switch (c->cmd_type) {
1148         case CMD_IOACCEL1:
1149                 set_ioaccel1_performant_mode(h, c, reply_queue);
1150                 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1151                 break;
1152         case CMD_IOACCEL2:
1153                 set_ioaccel2_performant_mode(h, c, reply_queue);
1154                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1155                 break;
1156         case IOACCEL2_TMF:
1157                 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1158                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1159                 break;
1160         default:
1161                 set_performant_mode(h, c, reply_queue);
1162                 h->access.submit_command(h, c);
1163         }
1164 }
1165 
1166 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1167 {
1168         __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1169 }
1170 
1171 static inline int is_hba_lunid(unsigned char scsi3addr[])
1172 {
1173         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1174 }
1175 
1176 static inline int is_scsi_rev_5(struct ctlr_info *h)
1177 {
1178         if (!h->hba_inquiry_data)
1179                 return 0;
1180         if ((h->hba_inquiry_data[2] & 0x07) == 5)
1181                 return 1;
1182         return 0;
1183 }
1184 
1185 static int hpsa_find_target_lun(struct ctlr_info *h,
1186         unsigned char scsi3addr[], int bus, int *target, int *lun)
1187 {
1188         /* finds an unused bus, target, lun for a new physical device
1189          * assumes h->devlock is held
1190          */
1191         int i, found = 0;
1192         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1193 
1194         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1195 
1196         for (i = 0; i < h->ndevices; i++) {
1197                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1198                         __set_bit(h->dev[i]->target, lun_taken);
1199         }
1200 
1201         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1202         if (i < HPSA_MAX_DEVICES) {
1203                 /* *bus = 1; */
1204                 *target = i;
1205                 *lun = 0;
1206                 found = 1;
1207         }
1208         return !found;
1209 }
1210 
1211 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1212         struct hpsa_scsi_dev_t *dev, char *description)
1213 {
1214 #define LABEL_SIZE 25
1215         char label[LABEL_SIZE];
1216 
1217         if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1218                 return;
1219 
1220         switch (dev->devtype) {
1221         case TYPE_RAID:
1222                 snprintf(label, LABEL_SIZE, "controller");
1223                 break;
1224         case TYPE_ENCLOSURE:
1225                 snprintf(label, LABEL_SIZE, "enclosure");
1226                 break;
1227         case TYPE_DISK:
1228         case TYPE_ZBC:
1229                 if (dev->external)
1230                         snprintf(label, LABEL_SIZE, "external");
1231                 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1232                         snprintf(label, LABEL_SIZE, "%s",
1233                                 raid_label[PHYSICAL_DRIVE]);
1234                 else
1235                         snprintf(label, LABEL_SIZE, "RAID-%s",
1236                                 dev->raid_level > RAID_UNKNOWN ? "?" :
1237                                 raid_label[dev->raid_level]);
1238                 break;
1239         case TYPE_ROM:
1240                 snprintf(label, LABEL_SIZE, "rom");
1241                 break;
1242         case TYPE_TAPE:
1243                 snprintf(label, LABEL_SIZE, "tape");
1244                 break;
1245         case TYPE_MEDIUM_CHANGER:
1246                 snprintf(label, LABEL_SIZE, "changer");
1247                 break;
1248         default:
1249                 snprintf(label, LABEL_SIZE, "UNKNOWN");
1250                 break;
1251         }
1252 
1253         dev_printk(level, &h->pdev->dev,
1254                         "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1255                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1256                         description,
1257                         scsi_device_type(dev->devtype),
1258                         dev->vendor,
1259                         dev->model,
1260                         label,
1261                         dev->offload_config ? '+' : '-',
1262                         dev->offload_to_be_enabled ? '+' : '-',
1263                         dev->expose_device);
1264 }
1265 
1266 /* Add an entry into h->dev[] array. */
1267 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1268                 struct hpsa_scsi_dev_t *device,
1269                 struct hpsa_scsi_dev_t *added[], int *nadded)
1270 {
1271         /* assumes h->devlock is held */
1272         int n = h->ndevices;
1273         int i;
1274         unsigned char addr1[8], addr2[8];
1275         struct hpsa_scsi_dev_t *sd;
1276 
1277         if (n >= HPSA_MAX_DEVICES) {
1278                 dev_err(&h->pdev->dev, "too many devices, some will be "
1279                         "inaccessible.\n");
1280                 return -1;
1281         }
1282 
1283         /* physical devices do not have lun or target assigned until now. */
1284         if (device->lun != -1)
1285                 /* Logical device, lun is already assigned. */
1286                 goto lun_assigned;
1287 
1288         /* If this device a non-zero lun of a multi-lun device
1289          * byte 4 of the 8-byte LUN addr will contain the logical
1290          * unit no, zero otherwise.
1291          */
1292         if (device->scsi3addr[4] == 0) {
1293                 /* This is not a non-zero lun of a multi-lun device */
1294                 if (hpsa_find_target_lun(h, device->scsi3addr,
1295                         device->bus, &device->target, &device->lun) != 0)
1296                         return -1;
1297                 goto lun_assigned;
1298         }
1299 
1300         /* This is a non-zero lun of a multi-lun device.
1301          * Search through our list and find the device which
1302          * has the same 8 byte LUN address, excepting byte 4 and 5.
1303          * Assign the same bus and target for this new LUN.
1304          * Use the logical unit number from the firmware.
1305          */
1306         memcpy(addr1, device->scsi3addr, 8);
1307         addr1[4] = 0;
1308         addr1[5] = 0;
1309         for (i = 0; i < n; i++) {
1310                 sd = h->dev[i];
1311                 memcpy(addr2, sd->scsi3addr, 8);
1312                 addr2[4] = 0;
1313                 addr2[5] = 0;
1314                 /* differ only in byte 4 and 5? */
1315                 if (memcmp(addr1, addr2, 8) == 0) {
1316                         device->bus = sd->bus;
1317                         device->target = sd->target;
1318                         device->lun = device->scsi3addr[4];
1319                         break;
1320                 }
1321         }
1322         if (device->lun == -1) {
1323                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1324                         " suspect firmware bug or unsupported hardware "
1325                         "configuration.\n");
1326                 return -1;
1327         }
1328 
1329 lun_assigned:
1330 
1331         h->dev[n] = device;
1332         h->ndevices++;
1333         added[*nadded] = device;
1334         (*nadded)++;
1335         hpsa_show_dev_msg(KERN_INFO, h, device,
1336                 device->expose_device ? "added" : "masked");
1337         return 0;
1338 }
1339 
1340 /*
1341  * Called during a scan operation.
1342  *
1343  * Update an entry in h->dev[] array.
1344  */
1345 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1346         int entry, struct hpsa_scsi_dev_t *new_entry)
1347 {
1348         /* assumes h->devlock is held */
1349         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1350 
1351         /* Raid level changed. */
1352         h->dev[entry]->raid_level = new_entry->raid_level;
1353 
1354         /*
1355          * ioacccel_handle may have changed for a dual domain disk
1356          */
1357         h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1358 
1359         /* Raid offload parameters changed.  Careful about the ordering. */
1360         if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1361                 /*
1362                  * if drive is newly offload_enabled, we want to copy the
1363                  * raid map data first.  If previously offload_enabled and
1364                  * offload_config were set, raid map data had better be
1365                  * the same as it was before. If raid map data has changed
1366                  * then it had better be the case that
1367                  * h->dev[entry]->offload_enabled is currently 0.
1368                  */
1369                 h->dev[entry]->raid_map = new_entry->raid_map;
1370                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1371         }
1372         if (new_entry->offload_to_be_enabled) {
1373                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1374                 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1375         }
1376         h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1377         h->dev[entry]->offload_config = new_entry->offload_config;
1378         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1379         h->dev[entry]->queue_depth = new_entry->queue_depth;
1380 
1381         /*
1382          * We can turn off ioaccel offload now, but need to delay turning
1383          * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1384          * can't do that until all the devices are updated.
1385          */
1386         h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1387 
1388         /*
1389          * turn ioaccel off immediately if told to do so.
1390          */
1391         if (!new_entry->offload_to_be_enabled)
1392                 h->dev[entry]->offload_enabled = 0;
1393 
1394         hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1395 }
1396 
1397 /* Replace an entry from h->dev[] array. */
1398 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1399         int entry, struct hpsa_scsi_dev_t *new_entry,
1400         struct hpsa_scsi_dev_t *added[], int *nadded,
1401         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1402 {
1403         /* assumes h->devlock is held */
1404         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1405         removed[*nremoved] = h->dev[entry];
1406         (*nremoved)++;
1407 
1408         /*
1409          * New physical devices won't have target/lun assigned yet
1410          * so we need to preserve the values in the slot we are replacing.
1411          */
1412         if (new_entry->target == -1) {
1413                 new_entry->target = h->dev[entry]->target;
1414                 new_entry->lun = h->dev[entry]->lun;
1415         }
1416 
1417         h->dev[entry] = new_entry;
1418         added[*nadded] = new_entry;
1419         (*nadded)++;
1420 
1421         hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1422 }
1423 
1424 /* Remove an entry from h->dev[] array. */
1425 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1426         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1427 {
1428         /* assumes h->devlock is held */
1429         int i;
1430         struct hpsa_scsi_dev_t *sd;
1431 
1432         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1433 
1434         sd = h->dev[entry];
1435         removed[*nremoved] = h->dev[entry];
1436         (*nremoved)++;
1437 
1438         for (i = entry; i < h->ndevices-1; i++)
1439                 h->dev[i] = h->dev[i+1];
1440         h->ndevices--;
1441         hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1442 }
1443 
1444 #define SCSI3ADDR_EQ(a, b) ( \
1445         (a)[7] == (b)[7] && \
1446         (a)[6] == (b)[6] && \
1447         (a)[5] == (b)[5] && \
1448         (a)[4] == (b)[4] && \
1449         (a)[3] == (b)[3] && \
1450         (a)[2] == (b)[2] && \
1451         (a)[1] == (b)[1] && \
1452         (a)[0] == (b)[0])
1453 
1454 static void fixup_botched_add(struct ctlr_info *h,
1455         struct hpsa_scsi_dev_t *added)
1456 {
1457         /* called when scsi_add_device fails in order to re-adjust
1458          * h->dev[] to match the mid layer's view.
1459          */
1460         unsigned long flags;
1461         int i, j;
1462 
1463         spin_lock_irqsave(&h->lock, flags);
1464         for (i = 0; i < h->ndevices; i++) {
1465                 if (h->dev[i] == added) {
1466                         for (j = i; j < h->ndevices-1; j++)
1467                                 h->dev[j] = h->dev[j+1];
1468                         h->ndevices--;
1469                         break;
1470                 }
1471         }
1472         spin_unlock_irqrestore(&h->lock, flags);
1473         kfree(added);
1474 }
1475 
1476 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1477         struct hpsa_scsi_dev_t *dev2)
1478 {
1479         /* we compare everything except lun and target as these
1480          * are not yet assigned.  Compare parts likely
1481          * to differ first
1482          */
1483         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1484                 sizeof(dev1->scsi3addr)) != 0)
1485                 return 0;
1486         if (memcmp(dev1->device_id, dev2->device_id,
1487                 sizeof(dev1->device_id)) != 0)
1488                 return 0;
1489         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1490                 return 0;
1491         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1492                 return 0;
1493         if (dev1->devtype != dev2->devtype)
1494                 return 0;
1495         if (dev1->bus != dev2->bus)
1496                 return 0;
1497         return 1;
1498 }
1499 
1500 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1501         struct hpsa_scsi_dev_t *dev2)
1502 {
1503         /* Device attributes that can change, but don't mean
1504          * that the device is a different device, nor that the OS
1505          * needs to be told anything about the change.
1506          */
1507         if (dev1->raid_level != dev2->raid_level)
1508                 return 1;
1509         if (dev1->offload_config != dev2->offload_config)
1510                 return 1;
1511         if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1512                 return 1;
1513         if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1514                 if (dev1->queue_depth != dev2->queue_depth)
1515                         return 1;
1516         /*
1517          * This can happen for dual domain devices. An active
1518          * path change causes the ioaccel handle to change
1519          *
1520          * for example note the handle differences between p0 and p1
1521          * Device                    WWN               ,WWN hash,Handle
1522          * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1523          *      p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1524          */
1525         if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1526                 return 1;
1527         return 0;
1528 }
1529 
1530 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1531  * and return needle location in *index.  If scsi3addr matches, but not
1532  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1533  * location in *index.
1534  * In the case of a minor device attribute change, such as RAID level, just
1535  * return DEVICE_UPDATED, along with the updated device's location in index.
1536  * If needle not found, return DEVICE_NOT_FOUND.
1537  */
1538 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1539         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1540         int *index)
1541 {
1542         int i;
1543 #define DEVICE_NOT_FOUND 0
1544 #define DEVICE_CHANGED 1
1545 #define DEVICE_SAME 2
1546 #define DEVICE_UPDATED 3
1547         if (needle == NULL)
1548                 return DEVICE_NOT_FOUND;
1549 
1550         for (i = 0; i < haystack_size; i++) {
1551                 if (haystack[i] == NULL) /* previously removed. */
1552                         continue;
1553                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1554                         *index = i;
1555                         if (device_is_the_same(needle, haystack[i])) {
1556                                 if (device_updated(needle, haystack[i]))
1557                                         return DEVICE_UPDATED;
1558                                 return DEVICE_SAME;
1559                         } else {
1560                                 /* Keep offline devices offline */
1561                                 if (needle->volume_offline)
1562                                         return DEVICE_NOT_FOUND;
1563                                 return DEVICE_CHANGED;
1564                         }
1565                 }
1566         }
1567         *index = -1;
1568         return DEVICE_NOT_FOUND;
1569 }
1570 
1571 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1572                                         unsigned char scsi3addr[])
1573 {
1574         struct offline_device_entry *device;
1575         unsigned long flags;
1576 
1577         /* Check to see if device is already on the list */
1578         spin_lock_irqsave(&h->offline_device_lock, flags);
1579         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1580                 if (memcmp(device->scsi3addr, scsi3addr,
1581                         sizeof(device->scsi3addr)) == 0) {
1582                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1583                         return;
1584                 }
1585         }
1586         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1587 
1588         /* Device is not on the list, add it. */
1589         device = kmalloc(sizeof(*device), GFP_KERNEL);
1590         if (!device)
1591                 return;
1592 
1593         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1594         spin_lock_irqsave(&h->offline_device_lock, flags);
1595         list_add_tail(&device->offline_list, &h->offline_device_list);
1596         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1597 }
1598 
1599 /* Print a message explaining various offline volume states */
1600 static void hpsa_show_volume_status(struct ctlr_info *h,
1601         struct hpsa_scsi_dev_t *sd)
1602 {
1603         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1604                 dev_info(&h->pdev->dev,
1605                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1606                         h->scsi_host->host_no,
1607                         sd->bus, sd->target, sd->lun);
1608         switch (sd->volume_offline) {
1609         case HPSA_LV_OK:
1610                 break;
1611         case HPSA_LV_UNDERGOING_ERASE:
1612                 dev_info(&h->pdev->dev,
1613                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1614                         h->scsi_host->host_no,
1615                         sd->bus, sd->target, sd->lun);
1616                 break;
1617         case HPSA_LV_NOT_AVAILABLE:
1618                 dev_info(&h->pdev->dev,
1619                         "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1620                         h->scsi_host->host_no,
1621                         sd->bus, sd->target, sd->lun);
1622                 break;
1623         case HPSA_LV_UNDERGOING_RPI:
1624                 dev_info(&h->pdev->dev,
1625                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1626                         h->scsi_host->host_no,
1627                         sd->bus, sd->target, sd->lun);
1628                 break;
1629         case HPSA_LV_PENDING_RPI:
1630                 dev_info(&h->pdev->dev,
1631                         "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1632                         h->scsi_host->host_no,
1633                         sd->bus, sd->target, sd->lun);
1634                 break;
1635         case HPSA_LV_ENCRYPTED_NO_KEY:
1636                 dev_info(&h->pdev->dev,
1637                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1638                         h->scsi_host->host_no,
1639                         sd->bus, sd->target, sd->lun);
1640                 break;
1641         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1642                 dev_info(&h->pdev->dev,
1643                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1644                         h->scsi_host->host_no,
1645                         sd->bus, sd->target, sd->lun);
1646                 break;
1647         case HPSA_LV_UNDERGOING_ENCRYPTION:
1648                 dev_info(&h->pdev->dev,
1649                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1650                         h->scsi_host->host_no,
1651                         sd->bus, sd->target, sd->lun);
1652                 break;
1653         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1654                 dev_info(&h->pdev->dev,
1655                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1656                         h->scsi_host->host_no,
1657                         sd->bus, sd->target, sd->lun);
1658                 break;
1659         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1660                 dev_info(&h->pdev->dev,
1661                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1662                         h->scsi_host->host_no,
1663                         sd->bus, sd->target, sd->lun);
1664                 break;
1665         case HPSA_LV_PENDING_ENCRYPTION:
1666                 dev_info(&h->pdev->dev,
1667                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1668                         h->scsi_host->host_no,
1669                         sd->bus, sd->target, sd->lun);
1670                 break;
1671         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1672                 dev_info(&h->pdev->dev,
1673                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1674                         h->scsi_host->host_no,
1675                         sd->bus, sd->target, sd->lun);
1676                 break;
1677         }
1678 }
1679 
1680 /*
1681  * Figure the list of physical drive pointers for a logical drive with
1682  * raid offload configured.
1683  */
1684 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1685                                 struct hpsa_scsi_dev_t *dev[], int ndevices,
1686                                 struct hpsa_scsi_dev_t *logical_drive)
1687 {
1688         struct raid_map_data *map = &logical_drive->raid_map;
1689         struct raid_map_disk_data *dd = &map->data[0];
1690         int i, j;
1691         int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1692                                 le16_to_cpu(map->metadata_disks_per_row);
1693         int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1694                                 le16_to_cpu(map->layout_map_count) *
1695                                 total_disks_per_row;
1696         int nphys_disk = le16_to_cpu(map->layout_map_count) *
1697                                 total_disks_per_row;
1698         int qdepth;
1699 
1700         if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1701                 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1702 
1703         logical_drive->nphysical_disks = nraid_map_entries;
1704 
1705         qdepth = 0;
1706         for (i = 0; i < nraid_map_entries; i++) {
1707                 logical_drive->phys_disk[i] = NULL;
1708                 if (!logical_drive->offload_config)
1709                         continue;
1710                 for (j = 0; j < ndevices; j++) {
1711                         if (dev[j] == NULL)
1712                                 continue;
1713                         if (dev[j]->devtype != TYPE_DISK &&
1714                             dev[j]->devtype != TYPE_ZBC)
1715                                 continue;
1716                         if (is_logical_device(dev[j]))
1717                                 continue;
1718                         if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1719                                 continue;
1720 
1721                         logical_drive->phys_disk[i] = dev[j];
1722                         if (i < nphys_disk)
1723                                 qdepth = min(h->nr_cmds, qdepth +
1724                                     logical_drive->phys_disk[i]->queue_depth);
1725                         break;
1726                 }
1727 
1728                 /*
1729                  * This can happen if a physical drive is removed and
1730                  * the logical drive is degraded.  In that case, the RAID
1731                  * map data will refer to a physical disk which isn't actually
1732                  * present.  And in that case offload_enabled should already
1733                  * be 0, but we'll turn it off here just in case
1734                  */
1735                 if (!logical_drive->phys_disk[i]) {
1736                         dev_warn(&h->pdev->dev,
1737                                 "%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1738                                 __func__,
1739                                 h->scsi_host->host_no, logical_drive->bus,
1740                                 logical_drive->target, logical_drive->lun);
1741                         logical_drive->offload_enabled = 0;
1742                         logical_drive->offload_to_be_enabled = 0;
1743                         logical_drive->queue_depth = 8;
1744                 }
1745         }
1746         if (nraid_map_entries)
1747                 /*
1748                  * This is correct for reads, too high for full stripe writes,
1749                  * way too high for partial stripe writes
1750                  */
1751                 logical_drive->queue_depth = qdepth;
1752         else {
1753                 if (logical_drive->external)
1754                         logical_drive->queue_depth = EXTERNAL_QD;
1755                 else
1756                         logical_drive->queue_depth = h->nr_cmds;
1757         }
1758 }
1759 
1760 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1761                                 struct hpsa_scsi_dev_t *dev[], int ndevices)
1762 {
1763         int i;
1764 
1765         for (i = 0; i < ndevices; i++) {
1766                 if (dev[i] == NULL)
1767                         continue;
1768                 if (dev[i]->devtype != TYPE_DISK &&
1769                     dev[i]->devtype != TYPE_ZBC)
1770                         continue;
1771                 if (!is_logical_device(dev[i]))
1772                         continue;
1773 
1774                 /*
1775                  * If offload is currently enabled, the RAID map and
1776                  * phys_disk[] assignment *better* not be changing
1777                  * because we would be changing ioaccel phsy_disk[] pointers
1778                  * on a ioaccel volume processing I/O requests.
1779                  *
1780                  * If an ioaccel volume status changed, initially because it was
1781                  * re-configured and thus underwent a transformation, or
1782                  * a drive failed, we would have received a state change
1783                  * request and ioaccel should have been turned off. When the
1784                  * transformation completes, we get another state change
1785                  * request to turn ioaccel back on. In this case, we need
1786                  * to update the ioaccel information.
1787                  *
1788                  * Thus: If it is not currently enabled, but will be after
1789                  * the scan completes, make sure the ioaccel pointers
1790                  * are up to date.
1791                  */
1792 
1793                 if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1794                         hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1795         }
1796 }
1797 
1798 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1799 {
1800         int rc = 0;
1801 
1802         if (!h->scsi_host)
1803                 return 1;
1804 
1805         if (is_logical_device(device)) /* RAID */
1806                 rc = scsi_add_device(h->scsi_host, device->bus,
1807                                         device->target, device->lun);
1808         else /* HBA */
1809                 rc = hpsa_add_sas_device(h->sas_host, device);
1810 
1811         return rc;
1812 }
1813 
1814 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1815                                                 struct hpsa_scsi_dev_t *dev)
1816 {
1817         int i;
1818         int count = 0;
1819 
1820         for (i = 0; i < h->nr_cmds; i++) {
1821                 struct CommandList *c = h->cmd_pool + i;
1822                 int refcount = atomic_inc_return(&c->refcount);
1823 
1824                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1825                                 dev->scsi3addr)) {
1826                         unsigned long flags;
1827 
1828                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
1829                         if (!hpsa_is_cmd_idle(c))
1830                                 ++count;
1831                         spin_unlock_irqrestore(&h->lock, flags);
1832                 }
1833 
1834                 cmd_free(h, c);
1835         }
1836 
1837         return count;
1838 }
1839 
1840 #define NUM_WAIT 20
1841 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1842                                                 struct hpsa_scsi_dev_t *device)
1843 {
1844         int cmds = 0;
1845         int waits = 0;
1846         int num_wait = NUM_WAIT;
1847 
1848         if (device->external)
1849                 num_wait = HPSA_EH_PTRAID_TIMEOUT;
1850 
1851         while (1) {
1852                 cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1853                 if (cmds == 0)
1854                         break;
1855                 if (++waits > num_wait)
1856                         break;
1857                 msleep(1000);
1858         }
1859 
1860         if (waits > num_wait) {
1861                 dev_warn(&h->pdev->dev,
1862                         "%s: removing device [%d:%d:%d:%d] with %d outstanding commands!\n",
1863                         __func__,
1864                         h->scsi_host->host_no,
1865                         device->bus, device->target, device->lun, cmds);
1866         }
1867 }
1868 
1869 static void hpsa_remove_device(struct ctlr_info *h,
1870                         struct hpsa_scsi_dev_t *device)
1871 {
1872         struct scsi_device *sdev = NULL;
1873 
1874         if (!h->scsi_host)
1875                 return;
1876 
1877         /*
1878          * Allow for commands to drain
1879          */
1880         device->removed = 1;
1881         hpsa_wait_for_outstanding_commands_for_dev(h, device);
1882 
1883         if (is_logical_device(device)) { /* RAID */
1884                 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1885                                                 device->target, device->lun);
1886                 if (sdev) {
1887                         scsi_remove_device(sdev);
1888                         scsi_device_put(sdev);
1889                 } else {
1890                         /*
1891                          * We don't expect to get here.  Future commands
1892                          * to this device will get a selection timeout as
1893                          * if the device were gone.
1894                          */
1895                         hpsa_show_dev_msg(KERN_WARNING, h, device,
1896                                         "didn't find device for removal.");
1897                 }
1898         } else { /* HBA */
1899 
1900                 hpsa_remove_sas_device(device);
1901         }
1902 }
1903 
1904 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1905         struct hpsa_scsi_dev_t *sd[], int nsds)
1906 {
1907         /* sd contains scsi3 addresses and devtypes, and inquiry
1908          * data.  This function takes what's in sd to be the current
1909          * reality and updates h->dev[] to reflect that reality.
1910          */
1911         int i, entry, device_change, changes = 0;
1912         struct hpsa_scsi_dev_t *csd;
1913         unsigned long flags;
1914         struct hpsa_scsi_dev_t **added, **removed;
1915         int nadded, nremoved;
1916 
1917         /*
1918          * A reset can cause a device status to change
1919          * re-schedule the scan to see what happened.
1920          */
1921         spin_lock_irqsave(&h->reset_lock, flags);
1922         if (h->reset_in_progress) {
1923                 h->drv_req_rescan = 1;
1924                 spin_unlock_irqrestore(&h->reset_lock, flags);
1925                 return;
1926         }
1927         spin_unlock_irqrestore(&h->reset_lock, flags);
1928 
1929         added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1930         removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1931 
1932         if (!added || !removed) {
1933                 dev_warn(&h->pdev->dev, "out of memory in "
1934                         "adjust_hpsa_scsi_table\n");
1935                 goto free_and_out;
1936         }
1937 
1938         spin_lock_irqsave(&h->devlock, flags);
1939 
1940         /* find any devices in h->dev[] that are not in
1941          * sd[] and remove them from h->dev[], and for any
1942          * devices which have changed, remove the old device
1943          * info and add the new device info.
1944          * If minor device attributes change, just update
1945          * the existing device structure.
1946          */
1947         i = 0;
1948         nremoved = 0;
1949         nadded = 0;
1950         while (i < h->ndevices) {
1951                 csd = h->dev[i];
1952                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1953                 if (device_change == DEVICE_NOT_FOUND) {
1954                         changes++;
1955                         hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1956                         continue; /* remove ^^^, hence i not incremented */
1957                 } else if (device_change == DEVICE_CHANGED) {
1958                         changes++;
1959                         hpsa_scsi_replace_entry(h, i, sd[entry],
1960                                 added, &nadded, removed, &nremoved);
1961                         /* Set it to NULL to prevent it from being freed
1962                          * at the bottom of hpsa_update_scsi_devices()
1963                          */
1964                         sd[entry] = NULL;
1965                 } else if (device_change == DEVICE_UPDATED) {
1966                         hpsa_scsi_update_entry(h, i, sd[entry]);
1967                 }
1968                 i++;
1969         }
1970 
1971         /* Now, make sure every device listed in sd[] is also
1972          * listed in h->dev[], adding them if they aren't found
1973          */
1974 
1975         for (i = 0; i < nsds; i++) {
1976                 if (!sd[i]) /* if already added above. */
1977                         continue;
1978 
1979                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1980                  * as the SCSI mid-layer does not handle such devices well.
1981                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1982                  * at 160Hz, and prevents the system from coming up.
1983                  */
1984                 if (sd[i]->volume_offline) {
1985                         hpsa_show_volume_status(h, sd[i]);
1986                         hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1987                         continue;
1988                 }
1989 
1990                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1991                                         h->ndevices, &entry);
1992                 if (device_change == DEVICE_NOT_FOUND) {
1993                         changes++;
1994                         if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1995                                 break;
1996                         sd[i] = NULL; /* prevent from being freed later. */
1997                 } else if (device_change == DEVICE_CHANGED) {
1998                         /* should never happen... */
1999                         changes++;
2000                         dev_warn(&h->pdev->dev,
2001                                 "device unexpectedly changed.\n");
2002                         /* but if it does happen, we just ignore that device */
2003                 }
2004         }
2005         hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2006 
2007         /*
2008          * Now that h->dev[]->phys_disk[] is coherent, we can enable
2009          * any logical drives that need it enabled.
2010          *
2011          * The raid map should be current by now.
2012          *
2013          * We are updating the device list used for I/O requests.
2014          */
2015         for (i = 0; i < h->ndevices; i++) {
2016                 if (h->dev[i] == NULL)
2017                         continue;
2018                 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2019         }
2020 
2021         spin_unlock_irqrestore(&h->devlock, flags);
2022 
2023         /* Monitor devices which are in one of several NOT READY states to be
2024          * brought online later. This must be done without holding h->devlock,
2025          * so don't touch h->dev[]
2026          */
2027         for (i = 0; i < nsds; i++) {
2028                 if (!sd[i]) /* if already added above. */
2029                         continue;
2030                 if (sd[i]->volume_offline)
2031                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2032         }
2033 
2034         /* Don't notify scsi mid layer of any changes the first time through
2035          * (or if there are no changes) scsi_scan_host will do it later the
2036          * first time through.
2037          */
2038         if (!changes)
2039                 goto free_and_out;
2040 
2041         /* Notify scsi mid layer of any removed devices */
2042         for (i = 0; i < nremoved; i++) {
2043                 if (removed[i] == NULL)
2044                         continue;
2045                 if (removed[i]->expose_device)
2046                         hpsa_remove_device(h, removed[i]);
2047                 kfree(removed[i]);
2048                 removed[i] = NULL;
2049         }
2050 
2051         /* Notify scsi mid layer of any added devices */
2052         for (i = 0; i < nadded; i++) {
2053                 int rc = 0;
2054 
2055                 if (added[i] == NULL)
2056                         continue;
2057                 if (!(added[i]->expose_device))
2058                         continue;
2059                 rc = hpsa_add_device(h, added[i]);
2060                 if (!rc)
2061                         continue;
2062                 dev_warn(&h->pdev->dev,
2063                         "addition failed %d, device not added.", rc);
2064                 /* now we have to remove it from h->dev,
2065                  * since it didn't get added to scsi mid layer
2066                  */
2067                 fixup_botched_add(h, added[i]);
2068                 h->drv_req_rescan = 1;
2069         }
2070 
2071 free_and_out:
2072         kfree(added);
2073         kfree(removed);
2074 }
2075 
2076 /*
2077  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2078  * Assume's h->devlock is held.
2079  */
2080 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2081         int bus, int target, int lun)
2082 {
2083         int i;
2084         struct hpsa_scsi_dev_t *sd;
2085 
2086         for (i = 0; i < h->ndevices; i++) {
2087                 sd = h->dev[i];
2088                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
2089                         return sd;
2090         }
2091         return NULL;
2092 }
2093 
2094 static int hpsa_slave_alloc(struct scsi_device *sdev)
2095 {
2096         struct hpsa_scsi_dev_t *sd = NULL;
2097         unsigned long flags;
2098         struct ctlr_info *h;
2099 
2100         h = sdev_to_hba(sdev);
2101         spin_lock_irqsave(&h->devlock, flags);
2102         if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2103                 struct scsi_target *starget;
2104                 struct sas_rphy *rphy;
2105 
2106                 starget = scsi_target(sdev);
2107                 rphy = target_to_rphy(starget);
2108                 sd = hpsa_find_device_by_sas_rphy(h, rphy);
2109                 if (sd) {
2110                         sd->target = sdev_id(sdev);
2111                         sd->lun = sdev->lun;
2112                 }
2113         }
2114         if (!sd)
2115                 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2116                                         sdev_id(sdev), sdev->lun);
2117 
2118         if (sd && sd->expose_device) {
2119                 atomic_set(&sd->ioaccel_cmds_out, 0);
2120                 sdev->hostdata = sd;
2121         } else
2122                 sdev->hostdata = NULL;
2123         spin_unlock_irqrestore(&h->devlock, flags);
2124         return 0;
2125 }
2126 
2127 /* configure scsi device based on internal per-device structure */
2128 static int hpsa_slave_configure(struct scsi_device *sdev)
2129 {
2130         struct hpsa_scsi_dev_t *sd;
2131         int queue_depth;
2132 
2133         sd = sdev->hostdata;
2134         sdev->no_uld_attach = !sd || !sd->expose_device;
2135 
2136         if (sd) {
2137                 sd->was_removed = 0;
2138                 if (sd->external) {
2139                         queue_depth = EXTERNAL_QD;
2140                         sdev->eh_timeout = HPSA_EH_PTRAID_TIMEOUT;
2141                         blk_queue_rq_timeout(sdev->request_queue,
2142                                                 HPSA_EH_PTRAID_TIMEOUT);
2143                 } else {
2144                         queue_depth = sd->queue_depth != 0 ?
2145                                         sd->queue_depth : sdev->host->can_queue;
2146                 }
2147         } else
2148                 queue_depth = sdev->host->can_queue;
2149 
2150         scsi_change_queue_depth(sdev, queue_depth);
2151 
2152         return 0;
2153 }
2154 
2155 static void hpsa_slave_destroy(struct scsi_device *sdev)
2156 {
2157         struct hpsa_scsi_dev_t *hdev = NULL;
2158 
2159         hdev = sdev->hostdata;
2160 
2161         if (hdev)
2162                 hdev->was_removed = 1;
2163 }
2164 
2165 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2166 {
2167         int i;
2168 
2169         if (!h->ioaccel2_cmd_sg_list)
2170                 return;
2171         for (i = 0; i < h->nr_cmds; i++) {
2172                 kfree(h->ioaccel2_cmd_sg_list[i]);
2173                 h->ioaccel2_cmd_sg_list[i] = NULL;
2174         }
2175         kfree(h->ioaccel2_cmd_sg_list);
2176         h->ioaccel2_cmd_sg_list = NULL;
2177 }
2178 
2179 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2180 {
2181         int i;
2182 
2183         if (h->chainsize <= 0)
2184                 return 0;
2185 
2186         h->ioaccel2_cmd_sg_list =
2187                 kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2188                                         GFP_KERNEL);
2189         if (!h->ioaccel2_cmd_sg_list)
2190                 return -ENOMEM;
2191         for (i = 0; i < h->nr_cmds; i++) {
2192                 h->ioaccel2_cmd_sg_list[i] =
2193                         kmalloc_array(h->maxsgentries,
2194                                       sizeof(*h->ioaccel2_cmd_sg_list[i]),
2195                                       GFP_KERNEL);
2196                 if (!h->ioaccel2_cmd_sg_list[i])
2197                         goto clean;
2198         }
2199         return 0;
2200 
2201 clean:
2202         hpsa_free_ioaccel2_sg_chain_blocks(h);
2203         return -ENOMEM;
2204 }
2205 
2206 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2207 {
2208         int i;
2209 
2210         if (!h->cmd_sg_list)
2211                 return;
2212         for (i = 0; i < h->nr_cmds; i++) {
2213                 kfree(h->cmd_sg_list[i]);
2214                 h->cmd_sg_list[i] = NULL;
2215         }
2216         kfree(h->cmd_sg_list);
2217         h->cmd_sg_list = NULL;
2218 }
2219 
2220 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2221 {
2222         int i;
2223 
2224         if (h->chainsize <= 0)
2225                 return 0;
2226 
2227         h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2228                                  GFP_KERNEL);
2229         if (!h->cmd_sg_list)
2230                 return -ENOMEM;
2231 
2232         for (i = 0; i < h->nr_cmds; i++) {
2233                 h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2234                                                   sizeof(*h->cmd_sg_list[i]),
2235                                                   GFP_KERNEL);
2236                 if (!h->cmd_sg_list[i])
2237                         goto clean;
2238 
2239         }
2240         return 0;
2241 
2242 clean:
2243         hpsa_free_sg_chain_blocks(h);
2244         return -ENOMEM;
2245 }
2246 
2247 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2248         struct io_accel2_cmd *cp, struct CommandList *c)
2249 {
2250         struct ioaccel2_sg_element *chain_block;
2251         u64 temp64;
2252         u32 chain_size;
2253 
2254         chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2255         chain_size = le32_to_cpu(cp->sg[0].length);
2256         temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
2257                                 DMA_TO_DEVICE);
2258         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2259                 /* prevent subsequent unmapping */
2260                 cp->sg->address = 0;
2261                 return -1;
2262         }
2263         cp->sg->address = cpu_to_le64(temp64);
2264         return 0;
2265 }
2266 
2267 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2268         struct io_accel2_cmd *cp)
2269 {
2270         struct ioaccel2_sg_element *chain_sg;
2271         u64 temp64;
2272         u32 chain_size;
2273 
2274         chain_sg = cp->sg;
2275         temp64 = le64_to_cpu(chain_sg->address);
2276         chain_size = le32_to_cpu(cp->sg[0].length);
2277         dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
2278 }
2279 
2280 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2281         struct CommandList *c)
2282 {
2283         struct SGDescriptor *chain_sg, *chain_block;
2284         u64 temp64;
2285         u32 chain_len;
2286 
2287         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2288         chain_block = h->cmd_sg_list[c->cmdindex];
2289         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2290         chain_len = sizeof(*chain_sg) *
2291                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2292         chain_sg->Len = cpu_to_le32(chain_len);
2293         temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
2294                                 DMA_TO_DEVICE);
2295         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2296                 /* prevent subsequent unmapping */
2297                 chain_sg->Addr = cpu_to_le64(0);
2298                 return -1;
2299         }
2300         chain_sg->Addr = cpu_to_le64(temp64);
2301         return 0;
2302 }
2303 
2304 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2305         struct CommandList *c)
2306 {
2307         struct SGDescriptor *chain_sg;
2308 
2309         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2310                 return;
2311 
2312         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2313         dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
2314                         le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
2315 }
2316 
2317 
2318 /* Decode the various types of errors on ioaccel2 path.
2319  * Return 1 for any error that should generate a RAID path retry.
2320  * Return 0 for errors that don't require a RAID path retry.
2321  */
2322 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2323                                         struct CommandList *c,
2324                                         struct scsi_cmnd *cmd,
2325                                         struct io_accel2_cmd *c2,
2326                                         struct hpsa_scsi_dev_t *dev)
2327 {
2328         int data_len;
2329         int retry = 0;
2330         u32 ioaccel2_resid = 0;
2331 
2332         switch (c2->error_data.serv_response) {
2333         case IOACCEL2_SERV_RESPONSE_COMPLETE:
2334                 switch (c2->error_data.status) {
2335                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2336                         if (cmd)
2337                                 cmd->result = 0;
2338                         break;
2339                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2340                         cmd->result |= SAM_STAT_CHECK_CONDITION;
2341                         if (c2->error_data.data_present !=
2342                                         IOACCEL2_SENSE_DATA_PRESENT) {
2343                                 memset(cmd->sense_buffer, 0,
2344                                         SCSI_SENSE_BUFFERSIZE);
2345                                 break;
2346                         }
2347                         /* copy the sense data */
2348                         data_len = c2->error_data.sense_data_len;
2349                         if (data_len > SCSI_SENSE_BUFFERSIZE)
2350                                 data_len = SCSI_SENSE_BUFFERSIZE;
2351                         if (data_len > sizeof(c2->error_data.sense_data_buff))
2352                                 data_len =
2353                                         sizeof(c2->error_data.sense_data_buff);
2354                         memcpy(cmd->sense_buffer,
2355                                 c2->error_data.sense_data_buff, data_len);
2356                         retry = 1;
2357                         break;
2358                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2359                         retry = 1;
2360                         break;
2361                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2362                         retry = 1;
2363                         break;
2364                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2365                         retry = 1;
2366                         break;
2367                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2368                         retry = 1;
2369                         break;
2370                 default:
2371                         retry = 1;
2372                         break;
2373                 }
2374                 break;
2375         case IOACCEL2_SERV_RESPONSE_FAILURE:
2376                 switch (c2->error_data.status) {
2377                 case IOACCEL2_STATUS_SR_IO_ERROR:
2378                 case IOACCEL2_STATUS_SR_IO_ABORTED:
2379                 case IOACCEL2_STATUS_SR_OVERRUN:
2380                         retry = 1;
2381                         break;
2382                 case IOACCEL2_STATUS_SR_UNDERRUN:
2383                         cmd->result = (DID_OK << 16);           /* host byte */
2384                         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2385                         ioaccel2_resid = get_unaligned_le32(
2386                                                 &c2->error_data.resid_cnt[0]);
2387                         scsi_set_resid(cmd, ioaccel2_resid);
2388                         break;
2389                 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2390                 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2391                 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2392                         /*
2393                          * Did an HBA disk disappear? We will eventually
2394                          * get a state change event from the controller but
2395                          * in the meantime, we need to tell the OS that the
2396                          * HBA disk is no longer there and stop I/O
2397                          * from going down. This allows the potential re-insert
2398                          * of the disk to get the same device node.
2399                          */
2400                         if (dev->physical_device && dev->expose_device) {
2401                                 cmd->result = DID_NO_CONNECT << 16;
2402                                 dev->removed = 1;
2403                                 h->drv_req_rescan = 1;
2404                                 dev_warn(&h->pdev->dev,
2405                                         "%s: device is gone!\n", __func__);
2406                         } else
2407                                 /*
2408                                  * Retry by sending down the RAID path.
2409                                  * We will get an event from ctlr to
2410                                  * trigger rescan regardless.
2411                                  */
2412                                 retry = 1;
2413                         break;
2414                 default:
2415                         retry = 1;
2416                 }
2417                 break;
2418         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2419                 break;
2420         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2421                 break;
2422         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2423                 retry = 1;
2424                 break;
2425         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2426                 break;
2427         default:
2428                 retry = 1;
2429                 break;
2430         }
2431 
2432         if (dev->in_reset)
2433                 retry = 0;
2434 
2435         return retry;   /* retry on raid path? */
2436 }
2437 
2438 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2439                 struct CommandList *c)
2440 {
2441         struct hpsa_scsi_dev_t *dev = c->device;
2442 
2443         /*
2444          * Reset c->scsi_cmd here so that the reset handler will know
2445          * this command has completed.  Then, check to see if the handler is
2446          * waiting for this command, and, if so, wake it.
2447          */
2448         c->scsi_cmd = SCSI_CMD_IDLE;
2449         mb();   /* Declare command idle before checking for pending events. */
2450         if (dev) {
2451                 atomic_dec(&dev->commands_outstanding);
2452                 if (dev->in_reset &&
2453                         atomic_read(&dev->commands_outstanding) <= 0)
2454                         wake_up_all(&h->event_sync_wait_queue);
2455         }
2456 }
2457 
2458 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2459                                       struct CommandList *c)
2460 {
2461         hpsa_cmd_resolve_events(h, c);
2462         cmd_tagged_free(h, c);
2463 }
2464 
2465 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2466                 struct CommandList *c, struct scsi_cmnd *cmd)
2467 {
2468         hpsa_cmd_resolve_and_free(h, c);
2469         if (cmd && cmd->scsi_done)
2470                 cmd->scsi_done(cmd);
2471 }
2472 
2473 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2474 {
2475         INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2476         queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2477 }
2478 
2479 static void process_ioaccel2_completion(struct ctlr_info *h,
2480                 struct CommandList *c, struct scsi_cmnd *cmd,
2481                 struct hpsa_scsi_dev_t *dev)
2482 {
2483         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2484 
2485         /* check for good status */
2486         if (likely(c2->error_data.serv_response == 0 &&
2487                         c2->error_data.status == 0)) {
2488                 cmd->result = 0;
2489                 return hpsa_cmd_free_and_done(h, c, cmd);
2490         }
2491 
2492         /*
2493          * Any RAID offload error results in retry which will use
2494          * the normal I/O path so the controller can handle whatever is
2495          * wrong.
2496          */
2497         if (is_logical_device(dev) &&
2498                 c2->error_data.serv_response ==
2499                         IOACCEL2_SERV_RESPONSE_FAILURE) {
2500                 if (c2->error_data.status ==
2501                         IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2502                         dev->offload_enabled = 0;
2503                         dev->offload_to_be_enabled = 0;
2504                 }
2505 
2506                 if (dev->in_reset) {
2507                         cmd->result = DID_RESET << 16;
2508                         return hpsa_cmd_free_and_done(h, c, cmd);
2509                 }
2510 
2511                 return hpsa_retry_cmd(h, c);
2512         }
2513 
2514         if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2515                 return hpsa_retry_cmd(h, c);
2516 
2517         return hpsa_cmd_free_and_done(h, c, cmd);
2518 }
2519 
2520 /* Returns 0 on success, < 0 otherwise. */
2521 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2522                                         struct CommandList *cp)
2523 {
2524         u8 tmf_status = cp->err_info->ScsiStatus;
2525 
2526         switch (tmf_status) {
2527         case CISS_TMF_COMPLETE:
2528                 /*
2529                  * CISS_TMF_COMPLETE never happens, instead,
2530                  * ei->CommandStatus == 0 for this case.
2531                  */
2532         case CISS_TMF_SUCCESS:
2533                 return 0;
2534         case CISS_TMF_INVALID_FRAME:
2535         case CISS_TMF_NOT_SUPPORTED:
2536         case CISS_TMF_FAILED:
2537         case CISS_TMF_WRONG_LUN:
2538         case CISS_TMF_OVERLAPPED_TAG:
2539                 break;
2540         default:
2541                 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2542                                 tmf_status);
2543                 break;
2544         }
2545         return -tmf_status;
2546 }
2547 
2548 static void complete_scsi_command(struct CommandList *cp)
2549 {
2550         struct scsi_cmnd *cmd;
2551         struct ctlr_info *h;
2552         struct ErrorInfo *ei;
2553         struct hpsa_scsi_dev_t *dev;
2554         struct io_accel2_cmd *c2;
2555 
2556         u8 sense_key;
2557         u8 asc;      /* additional sense code */
2558         u8 ascq;     /* additional sense code qualifier */
2559         unsigned long sense_data_size;
2560 
2561         ei = cp->err_info;
2562         cmd = cp->scsi_cmd;
2563         h = cp->h;
2564 
2565         if (!cmd->device) {
2566                 cmd->result = DID_NO_CONNECT << 16;
2567                 return hpsa_cmd_free_and_done(h, cp, cmd);
2568         }
2569 
2570         dev = cmd->device->hostdata;
2571         if (!dev) {
2572                 cmd->result = DID_NO_CONNECT << 16;
2573                 return hpsa_cmd_free_and_done(h, cp, cmd);
2574         }
2575         c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2576 
2577         scsi_dma_unmap(cmd); /* undo the DMA mappings */
2578         if ((cp->cmd_type == CMD_SCSI) &&
2579                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2580                 hpsa_unmap_sg_chain_block(h, cp);
2581 
2582         if ((cp->cmd_type == CMD_IOACCEL2) &&
2583                 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2584                 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2585 
2586         cmd->result = (DID_OK << 16);           /* host byte */
2587         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2588 
2589         /* SCSI command has already been cleaned up in SML */
2590         if (dev->was_removed) {
2591                 hpsa_cmd_resolve_and_free(h, cp);
2592                 return;
2593         }
2594 
2595         if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2596                 if (dev->physical_device && dev->expose_device &&
2597                         dev->removed) {
2598                         cmd->result = DID_NO_CONNECT << 16;
2599                         return hpsa_cmd_free_and_done(h, cp, cmd);
2600                 }
2601                 if (likely(cp->phys_disk != NULL))
2602                         atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2603         }
2604 
2605         /*
2606          * We check for lockup status here as it may be set for
2607          * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2608          * fail_all_oustanding_cmds()
2609          */
2610         if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2611                 /* DID_NO_CONNECT will prevent a retry */
2612                 cmd->result = DID_NO_CONNECT << 16;
2613                 return hpsa_cmd_free_and_done(h, cp, cmd);
2614         }
2615 
2616         if (cp->cmd_type == CMD_IOACCEL2)
2617                 return process_ioaccel2_completion(h, cp, cmd, dev);
2618 
2619         scsi_set_resid(cmd, ei->ResidualCnt);
2620         if (ei->CommandStatus == 0)
2621                 return hpsa_cmd_free_and_done(h, cp, cmd);
2622 
2623         /* For I/O accelerator commands, copy over some fields to the normal
2624          * CISS header used below for error handling.
2625          */
2626         if (cp->cmd_type == CMD_IOACCEL1) {
2627                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2628                 cp->Header.SGList = scsi_sg_count(cmd);
2629                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2630                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2631                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
2632                 cp->Header.tag = c->tag;
2633                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2634                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2635 
2636                 /* Any RAID offload error results in retry which will use
2637                  * the normal I/O path so the controller can handle whatever's
2638                  * wrong.
2639                  */
2640                 if (is_logical_device(dev)) {
2641                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2642                                 dev->offload_enabled = 0;
2643                         return hpsa_retry_cmd(h, cp);
2644                 }
2645         }
2646 
2647         /* an error has occurred */
2648         switch (ei->CommandStatus) {
2649 
2650         case CMD_TARGET_STATUS:
2651                 cmd->result |= ei->ScsiStatus;
2652                 /* copy the sense data */
2653                 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2654                         sense_data_size = SCSI_SENSE_BUFFERSIZE;
2655                 else
2656                         sense_data_size = sizeof(ei->SenseInfo);
2657                 if (ei->SenseLen < sense_data_size)
2658                         sense_data_size = ei->SenseLen;
2659                 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2660                 if (ei->ScsiStatus)
2661                         decode_sense_data(ei->SenseInfo, sense_data_size,
2662                                 &sense_key, &asc, &ascq);
2663                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2664                         switch (sense_key) {
2665                         case ABORTED_COMMAND:
2666                                 cmd->result |= DID_SOFT_ERROR << 16;
2667                                 break;
2668                         case UNIT_ATTENTION:
2669                                 if (asc == 0x3F && ascq == 0x0E)
2670                                         h->drv_req_rescan = 1;
2671                                 break;
2672                         case ILLEGAL_REQUEST:
2673                                 if (asc == 0x25 && ascq == 0x00) {
2674                                         dev->removed = 1;
2675                                         cmd->result = DID_NO_CONNECT << 16;
2676                                 }
2677                                 break;
2678                         }
2679                         break;
2680                 }
2681                 /* Problem was not a check condition
2682                  * Pass it up to the upper layers...
2683                  */
2684                 if (ei->ScsiStatus) {
2685                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2686                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2687                                 "Returning result: 0x%x\n",
2688                                 cp, ei->ScsiStatus,
2689                                 sense_key, asc, ascq,
2690                                 cmd->result);
2691                 } else {  /* scsi status is zero??? How??? */
2692                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2693                                 "Returning no connection.\n", cp),
2694 
2695                         /* Ordinarily, this case should never happen,
2696                          * but there is a bug in some released firmware
2697                          * revisions that allows it to happen if, for
2698                          * example, a 4100 backplane loses power and
2699                          * the tape drive is in it.  We assume that
2700                          * it's a fatal error of some kind because we
2701                          * can't show that it wasn't. We will make it
2702                          * look like selection timeout since that is
2703                          * the most common reason for this to occur,
2704                          * and it's severe enough.
2705                          */
2706 
2707                         cmd->result = DID_NO_CONNECT << 16;
2708                 }
2709                 break;
2710 
2711         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2712                 break;
2713         case CMD_DATA_OVERRUN:
2714                 dev_warn(&h->pdev->dev,
2715                         "CDB %16phN data overrun\n", cp->Request.CDB);
2716                 break;
2717         case CMD_INVALID: {
2718                 /* print_bytes(cp, sizeof(*cp), 1, 0);
2719                 print_cmd(cp); */
2720                 /* We get CMD_INVALID if you address a non-existent device
2721                  * instead of a selection timeout (no response).  You will
2722                  * see this if you yank out a drive, then try to access it.
2723                  * This is kind of a shame because it means that any other
2724                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
2725                  * missing target. */
2726                 cmd->result = DID_NO_CONNECT << 16;
2727         }
2728                 break;
2729         case CMD_PROTOCOL_ERR:
2730                 cmd->result = DID_ERROR << 16;
2731                 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2732                                 cp->Request.CDB);
2733                 break;
2734         case CMD_HARDWARE_ERR:
2735                 cmd->result = DID_ERROR << 16;
2736                 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2737                         cp->Request.CDB);
2738                 break;
2739         case CMD_CONNECTION_LOST:
2740                 cmd->result = DID_ERROR << 16;
2741                 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2742                         cp->Request.CDB);
2743                 break;
2744         case CMD_ABORTED:
2745                 cmd->result = DID_ABORT << 16;
2746                 break;
2747         case CMD_ABORT_FAILED:
2748                 cmd->result = DID_ERROR << 16;
2749                 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2750                         cp->Request.CDB);
2751                 break;
2752         case CMD_UNSOLICITED_ABORT:
2753                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2754                 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2755                         cp->Request.CDB);
2756                 break;
2757         case CMD_TIMEOUT:
2758                 cmd->result = DID_TIME_OUT << 16;
2759                 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2760                         cp->Request.CDB);
2761                 break;
2762         case CMD_UNABORTABLE:
2763                 cmd->result = DID_ERROR << 16;
2764                 dev_warn(&h->pdev->dev, "Command unabortable\n");
2765                 break;
2766         case CMD_TMF_STATUS:
2767                 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2768                         cmd->result = DID_ERROR << 16;
2769                 break;
2770         case CMD_IOACCEL_DISABLED:
2771                 /* This only handles the direct pass-through case since RAID
2772                  * offload is handled above.  Just attempt a retry.
2773                  */
2774                 cmd->result = DID_SOFT_ERROR << 16;
2775                 dev_warn(&h->pdev->dev,
2776                                 "cp %p had HP SSD Smart Path error\n", cp);
2777                 break;
2778         default:
2779                 cmd->result = DID_ERROR << 16;
2780                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2781                                 cp, ei->CommandStatus);
2782         }
2783 
2784         return hpsa_cmd_free_and_done(h, cp, cmd);
2785 }
2786 
2787 static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
2788                 int sg_used, enum dma_data_direction data_direction)
2789 {
2790         int i;
2791 
2792         for (i = 0; i < sg_used; i++)
2793                 dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
2794                                 le32_to_cpu(c->SG[i].Len),
2795                                 data_direction);
2796 }
2797 
2798 static int hpsa_map_one(struct pci_dev *pdev,
2799                 struct CommandList *cp,
2800                 unsigned char *buf,
2801                 size_t buflen,
2802                 enum dma_data_direction data_direction)
2803 {
2804         u64 addr64;
2805 
2806         if (buflen == 0 || data_direction == DMA_NONE) {
2807                 cp->Header.SGList = 0;
2808                 cp->Header.SGTotal = cpu_to_le16(0);
2809                 return 0;
2810         }
2811 
2812         addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
2813         if (dma_mapping_error(&pdev->dev, addr64)) {
2814                 /* Prevent subsequent unmap of something never mapped */
2815                 cp->Header.SGList = 0;
2816                 cp->Header.SGTotal = cpu_to_le16(0);
2817                 return -1;
2818         }
2819         cp->SG[0].Addr = cpu_to_le64(addr64);
2820         cp->SG[0].Len = cpu_to_le32(buflen);
2821         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2822         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2823         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2824         return 0;
2825 }
2826 
2827 #define NO_TIMEOUT ((unsigned long) -1)
2828 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2829 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2830         struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2831 {
2832         DECLARE_COMPLETION_ONSTACK(wait);
2833 
2834         c->waiting = &wait;
2835         __enqueue_cmd_and_start_io(h, c, reply_queue);
2836         if (timeout_msecs == NO_TIMEOUT) {
2837                 /* TODO: get rid of this no-timeout thing */
2838                 wait_for_completion_io(&wait);
2839                 return IO_OK;
2840         }
2841         if (!wait_for_completion_io_timeout(&wait,
2842                                         msecs_to_jiffies(timeout_msecs))) {
2843                 dev_warn(&h->pdev->dev, "Command timed out.\n");
2844                 return -ETIMEDOUT;
2845         }
2846         return IO_OK;
2847 }
2848 
2849 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2850                                    int reply_queue, unsigned long timeout_msecs)
2851 {
2852         if (unlikely(lockup_detected(h))) {
2853                 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2854                 return IO_OK;
2855         }
2856         return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2857 }
2858 
2859 static u32 lockup_detected(struct ctlr_info *h)
2860 {
2861         int cpu;
2862         u32 rc, *lockup_detected;
2863 
2864         cpu = get_cpu();
2865         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2866         rc = *lockup_detected;
2867         put_cpu();
2868         return rc;
2869 }
2870 
2871 #define MAX_DRIVER_CMD_RETRIES 25
2872 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2873                 struct CommandList *c, enum dma_data_direction data_direction,
2874                 unsigned long timeout_msecs)
2875 {
2876         int backoff_time = 10, retry_count = 0;
2877         int rc;
2878 
2879         do {
2880                 memset(c->err_info, 0, sizeof(*c->err_info));
2881                 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2882                                                   timeout_msecs);
2883                 if (rc)
2884                         break;
2885                 retry_count++;
2886                 if (retry_count > 3) {
2887                         msleep(backoff_time);
2888                         if (backoff_time < 1000)
2889                                 backoff_time *= 2;
2890                 }
2891         } while ((check_for_unit_attention(h, c) ||
2892                         check_for_busy(h, c)) &&
2893                         retry_count <= MAX_DRIVER_CMD_RETRIES);
2894         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2895         if (retry_count > MAX_DRIVER_CMD_RETRIES)
2896                 rc = -EIO;
2897         return rc;
2898 }
2899 
2900 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2901                                 struct CommandList *c)
2902 {
2903         const u8 *cdb = c->Request.CDB;
2904         const u8 *lun = c->Header.LUN.LunAddrBytes;
2905 
2906         dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2907                  txt, lun, cdb);
2908 }
2909 
2910 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2911                         struct CommandList *cp)
2912 {
2913         const struct ErrorInfo *ei = cp->err_info;
2914         struct device *d = &cp->h->pdev->dev;
2915         u8 sense_key, asc, ascq;
2916         int sense_len;
2917 
2918         switch (ei->CommandStatus) {
2919         case CMD_TARGET_STATUS:
2920                 if (ei->SenseLen > sizeof(ei->SenseInfo))
2921                         sense_len = sizeof(ei->SenseInfo);
2922                 else
2923                         sense_len = ei->SenseLen;
2924                 decode_sense_data(ei->SenseInfo, sense_len,
2925                                         &sense_key, &asc, &ascq);
2926                 hpsa_print_cmd(h, "SCSI status", cp);
2927                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2928                         dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2929                                 sense_key, asc, ascq);
2930                 else
2931                         dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2932                 if (ei->ScsiStatus == 0)
2933                         dev_warn(d, "SCSI status is abnormally zero.  "
2934                         "(probably indicates selection timeout "
2935                         "reported incorrectly due to a known "
2936                         "firmware bug, circa July, 2001.)\n");
2937                 break;
2938         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2939                 break;
2940         case CMD_DATA_OVERRUN:
2941                 hpsa_print_cmd(h, "overrun condition", cp);
2942                 break;
2943         case CMD_INVALID: {
2944                 /* controller unfortunately reports SCSI passthru's
2945                  * to non-existent targets as invalid commands.
2946                  */
2947                 hpsa_print_cmd(h, "invalid command", cp);
2948                 dev_warn(d, "probably means device no longer present\n");
2949                 }
2950                 break;
2951         case CMD_PROTOCOL_ERR:
2952                 hpsa_print_cmd(h, "protocol error", cp);
2953                 break;
2954         case CMD_HARDWARE_ERR:
2955                 hpsa_print_cmd(h, "hardware error", cp);
2956                 break;
2957         case CMD_CONNECTION_LOST:
2958                 hpsa_print_cmd(h, "connection lost", cp);
2959                 break;
2960         case CMD_ABORTED:
2961                 hpsa_print_cmd(h, "aborted", cp);
2962                 break;
2963         case CMD_ABORT_FAILED:
2964                 hpsa_print_cmd(h, "abort failed", cp);
2965                 break;
2966         case CMD_UNSOLICITED_ABORT:
2967                 hpsa_print_cmd(h, "unsolicited abort", cp);
2968                 break;
2969         case CMD_TIMEOUT:
2970                 hpsa_print_cmd(h, "timed out", cp);
2971                 break;
2972         case CMD_UNABORTABLE:
2973                 hpsa_print_cmd(h, "unabortable", cp);
2974                 break;
2975         case CMD_CTLR_LOCKUP:
2976                 hpsa_print_cmd(h, "controller lockup detected", cp);
2977                 break;
2978         default:
2979                 hpsa_print_cmd(h, "unknown status", cp);
2980                 dev_warn(d, "Unknown command status %x\n",
2981                                 ei->CommandStatus);
2982         }
2983 }
2984 
2985 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
2986                                         u8 page, u8 *buf, size_t bufsize)
2987 {
2988         int rc = IO_OK;
2989         struct CommandList *c;
2990         struct ErrorInfo *ei;
2991 
2992         c = cmd_alloc(h);
2993         if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
2994                         page, scsi3addr, TYPE_CMD)) {
2995                 rc = -1;
2996                 goto out;
2997         }
2998         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
2999                         NO_TIMEOUT);
3000         if (rc)
3001                 goto out;
3002         ei = c->err_info;
3003         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3004                 hpsa_scsi_interpret_error(h, c);
3005                 rc = -1;
3006         }
3007 out:
3008         cmd_free(h, c);
3009         return rc;
3010 }
3011 
3012 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
3013                                                 u8 *scsi3addr)
3014 {
3015         u8 *buf;
3016         u64 sa = 0;
3017         int rc = 0;
3018 
3019         buf = kzalloc(1024, GFP_KERNEL);
3020         if (!buf)
3021                 return 0;
3022 
3023         rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
3024                                         buf, 1024);
3025 
3026         if (rc)
3027                 goto out;
3028 
3029         sa = get_unaligned_be64(buf+12);
3030 
3031 out:
3032         kfree(buf);
3033         return sa;
3034 }
3035 
3036 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3037                         u16 page, unsigned char *buf,
3038                         unsigned char bufsize)
3039 {
3040         int rc = IO_OK;
3041         struct CommandList *c;
3042         struct ErrorInfo *ei;
3043 
3044         c = cmd_alloc(h);
3045 
3046         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3047                         page, scsi3addr, TYPE_CMD)) {
3048                 rc = -1;
3049                 goto out;
3050         }
3051         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3052                         NO_TIMEOUT);
3053         if (rc)
3054                 goto out;
3055         ei = c->err_info;
3056         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3057                 hpsa_scsi_interpret_error(h, c);
3058                 rc = -1;
3059         }
3060 out:
3061         cmd_free(h, c);
3062         return rc;
3063 }
3064 
3065 static int hpsa_send_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3066         u8 reset_type, int reply_queue)
3067 {
3068         int rc = IO_OK;
3069         struct CommandList *c;
3070         struct ErrorInfo *ei;
3071 
3072         c = cmd_alloc(h);
3073         c->device = dev;
3074 
3075         /* fill_cmd can't fail here, no data buffer to map. */
3076         (void) fill_cmd(c, reset_type, h, NULL, 0, 0, dev->scsi3addr, TYPE_MSG);
3077         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3078         if (rc) {
3079                 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3080                 goto out;
3081         }
3082         /* no unmap needed here because no data xfer. */
3083 
3084         ei = c->err_info;
3085         if (ei->CommandStatus != 0) {
3086                 hpsa_scsi_interpret_error(h, c);
3087                 rc = -1;
3088         }
3089 out:
3090         cmd_free(h, c);
3091         return rc;
3092 }
3093 
3094 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3095                                struct hpsa_scsi_dev_t *dev,
3096                                unsigned char *scsi3addr)
3097 {
3098         int i;
3099         bool match = false;
3100         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3101         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3102 
3103         if (hpsa_is_cmd_idle(c))
3104                 return false;
3105 
3106         switch (c->cmd_type) {
3107         case CMD_SCSI:
3108         case CMD_IOCTL_PEND:
3109                 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3110                                 sizeof(c->Header.LUN.LunAddrBytes));
3111                 break;
3112 
3113         case CMD_IOACCEL1:
3114         case CMD_IOACCEL2:
3115                 if (c->phys_disk == dev) {
3116                         /* HBA mode match */
3117                         match = true;
3118                 } else {
3119                         /* Possible RAID mode -- check each phys dev. */
3120                         /* FIXME:  Do we need to take out a lock here?  If
3121                          * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3122                          * instead. */
3123                         for (i = 0; i < dev->nphysical_disks && !match; i++) {
3124                                 /* FIXME: an alternate test might be
3125                                  *
3126                                  * match = dev->phys_disk[i]->ioaccel_handle
3127                                  *              == c2->scsi_nexus;      */
3128                                 match = dev->phys_disk[i] == c->phys_disk;
3129                         }
3130                 }
3131                 break;
3132 
3133         case IOACCEL2_TMF:
3134                 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3135                         match = dev->phys_disk[i]->ioaccel_handle ==
3136                                         le32_to_cpu(ac->it_nexus);
3137                 }
3138                 break;
3139 
3140         case 0:         /* The command is in the middle of being initialized. */
3141                 match = false;
3142                 break;
3143 
3144         default:
3145                 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3146                         c->cmd_type);
3147                 BUG();
3148         }
3149 
3150         return match;
3151 }
3152 
3153 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3154         u8 reset_type, int reply_queue)
3155 {
3156         int rc = 0;
3157 
3158         /* We can really only handle one reset at a time */
3159         if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3160                 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3161                 return -EINTR;
3162         }
3163 
3164         rc = hpsa_send_reset(h, dev, reset_type, reply_queue);
3165         if (!rc) {
3166                 /* incremented by sending the reset request */
3167                 atomic_dec(&dev->commands_outstanding);
3168                 wait_event(h->event_sync_wait_queue,
3169                         atomic_read(&dev->commands_outstanding) <= 0 ||
3170                         lockup_detected(h));
3171         }
3172 
3173         if (unlikely(lockup_detected(h))) {
3174                 dev_warn(&h->pdev->dev,
3175                          "Controller lockup detected during reset wait\n");
3176                 rc = -ENODEV;
3177         }
3178 
3179         if (!rc)
3180                 rc = wait_for_device_to_become_ready(h, dev->scsi3addr, 0);
3181 
3182         mutex_unlock(&h->reset_mutex);
3183         return rc;
3184 }
3185 
3186 static void hpsa_get_raid_level(struct ctlr_info *h,
3187         unsigned char *scsi3addr, unsigned char *raid_level)
3188 {
3189         int rc;
3190         unsigned char *buf;
3191 
3192         *raid_level = RAID_UNKNOWN;
3193         buf = kzalloc(64, GFP_KERNEL);
3194         if (!buf)
3195                 return;
3196 
3197         if (!hpsa_vpd_page_supported(h, scsi3addr,
3198                 HPSA_VPD_LV_DEVICE_GEOMETRY))
3199                 goto exit;
3200 
3201         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3202                 HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3203 
3204         if (rc == 0)
3205                 *raid_level = buf[8];
3206         if (*raid_level > RAID_UNKNOWN)
3207                 *raid_level = RAID_UNKNOWN;
3208 exit:
3209         kfree(buf);
3210         return;
3211 }
3212 
3213 #define HPSA_MAP_DEBUG
3214 #ifdef HPSA_MAP_DEBUG
3215 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3216                                 struct raid_map_data *map_buff)
3217 {
3218         struct raid_map_disk_data *dd = &map_buff->data[0];
3219         int map, row, col;
3220         u16 map_cnt, row_cnt, disks_per_row;
3221 
3222         if (rc != 0)
3223                 return;
3224 
3225         /* Show details only if debugging has been activated. */
3226         if (h->raid_offload_debug < 2)
3227                 return;
3228 
3229         dev_info(&h->pdev->dev, "structure_size = %u\n",
3230                                 le32_to_cpu(map_buff->structure_size));
3231         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3232                         le32_to_cpu(map_buff->volume_blk_size));
3233         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3234                         le64_to_cpu(map_buff->volume_blk_cnt));
3235         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3236                         map_buff->phys_blk_shift);
3237         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3238                         map_buff->parity_rotation_shift);
3239         dev_info(&h->pdev->dev, "strip_size = %u\n",
3240                         le16_to_cpu(map_buff->strip_size));
3241         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3242                         le64_to_cpu(map_buff->disk_starting_blk));
3243         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3244                         le64_to_cpu(map_buff->disk_blk_cnt));
3245         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3246                         le16_to_cpu(map_buff->data_disks_per_row));
3247         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3248                         le16_to_cpu(map_buff->metadata_disks_per_row));
3249         dev_info(&h->pdev->dev, "row_cnt = %u\n",
3250                         le16_to_cpu(map_buff->row_cnt));
3251         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3252                         le16_to_cpu(map_buff->layout_map_count));
3253         dev_info(&h->pdev->dev, "flags = 0x%x\n",
3254                         le16_to_cpu(map_buff->flags));
3255         dev_info(&h->pdev->dev, "encryption = %s\n",
3256                         le16_to_cpu(map_buff->flags) &
3257                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3258         dev_info(&h->pdev->dev, "dekindex = %u\n",
3259                         le16_to_cpu(map_buff->dekindex));
3260         map_cnt = le16_to_cpu(map_buff->layout_map_count);
3261         for (map = 0; map < map_cnt; map++) {
3262                 dev_info(&h->pdev->dev, "Map%u:\n", map);
3263                 row_cnt = le16_to_cpu(map_buff->row_cnt);
3264                 for (row = 0; row < row_cnt; row++) {
3265                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
3266                         disks_per_row =
3267                                 le16_to_cpu(map_buff->data_disks_per_row);
3268                         for (col = 0; col < disks_per_row; col++, dd++)
3269                                 dev_info(&h->pdev->dev,
3270                                         "    D%02u: h=0x%04x xor=%u,%u\n",
3271                                         col, dd->ioaccel_handle,
3272                                         dd->xor_mult[0], dd->xor_mult[1]);
3273                         disks_per_row =
3274                                 le16_to_cpu(map_buff->metadata_disks_per_row);
3275                         for (col = 0; col < disks_per_row; col++, dd++)
3276                                 dev_info(&h->pdev->dev,
3277                                         "    M%02u: h=0x%04x xor=%u,%u\n",
3278                                         col, dd->ioaccel_handle,
3279                                         dd->xor_mult[0], dd->xor_mult[1]);
3280                 }
3281         }
3282 }
3283 #else
3284 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3285                         __attribute__((unused)) int rc,
3286                         __attribute__((unused)) struct raid_map_data *map_buff)
3287 {
3288 }
3289 #endif
3290 
3291 static int hpsa_get_raid_map(struct ctlr_info *h,
3292         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3293 {
3294         int rc = 0;
3295         struct CommandList *c;
3296         struct ErrorInfo *ei;
3297 
3298         c = cmd_alloc(h);
3299 
3300         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3301                         sizeof(this_device->raid_map), 0,
3302                         scsi3addr, TYPE_CMD)) {
3303                 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3304                 cmd_free(h, c);
3305                 return -1;
3306         }
3307         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3308                         NO_TIMEOUT);
3309         if (rc)
3310                 goto out;
3311         ei = c->err_info;
3312         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3313                 hpsa_scsi_interpret_error(h, c);
3314                 rc = -1;
3315                 goto out;
3316         }
3317         cmd_free(h, c);
3318 
3319         /* @todo in the future, dynamically allocate RAID map memory */
3320         if (le32_to_cpu(this_device->raid_map.structure_size) >
3321                                 sizeof(this_device->raid_map)) {
3322                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3323                 rc = -1;
3324         }
3325         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3326         return rc;
3327 out:
3328         cmd_free(h, c);
3329         return rc;
3330 }
3331 
3332 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3333                 unsigned char scsi3addr[], u16 bmic_device_index,
3334                 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3335 {
3336         int rc = IO_OK;
3337         struct CommandList *c;
3338         struct ErrorInfo *ei;
3339 
3340         c = cmd_alloc(h);
3341 
3342         rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3343                 0, RAID_CTLR_LUNID, TYPE_CMD);
3344         if (rc)
3345                 goto out;
3346 
3347         c->Request.CDB[2] = bmic_device_index & 0xff;
3348         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3349 
3350         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3351                         NO_TIMEOUT);
3352         if (rc)
3353                 goto out;
3354         ei = c->err_info;
3355         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3356                 hpsa_scsi_interpret_error(h, c);
3357                 rc = -1;
3358         }
3359 out:
3360         cmd_free(h, c);
3361         return rc;
3362 }
3363 
3364 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3365         struct bmic_identify_controller *buf, size_t bufsize)
3366 {
3367         int rc = IO_OK;
3368         struct CommandList *c;
3369         struct ErrorInfo *ei;
3370 
3371         c = cmd_alloc(h);
3372 
3373         rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3374                 0, RAID_CTLR_LUNID, TYPE_CMD);
3375         if (rc)
3376                 goto out;
3377 
3378         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3379                         NO_TIMEOUT);
3380         if (rc)
3381                 goto out;
3382         ei = c->err_info;
3383         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3384                 hpsa_scsi_interpret_error(h, c);
3385                 rc = -1;
3386         }
3387 out:
3388         cmd_free(h, c);
3389         return rc;
3390 }
3391 
3392 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3393                 unsigned char scsi3addr[], u16 bmic_device_index,
3394                 struct bmic_identify_physical_device *buf, size_t bufsize)
3395 {
3396         int rc = IO_OK;
3397         struct CommandList *c;
3398         struct ErrorInfo *ei;
3399 
3400         c = cmd_alloc(h);
3401         rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3402                 0, RAID_CTLR_LUNID, TYPE_CMD);
3403         if (rc)
3404                 goto out;
3405 
3406         c->Request.CDB[2] = bmic_device_index & 0xff;
3407         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3408 
3409         hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3410                                                 NO_TIMEOUT);
3411         ei = c->err_info;
3412         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3413                 hpsa_scsi_interpret_error(h, c);
3414                 rc = -1;
3415         }
3416 out:
3417         cmd_free(h, c);
3418 
3419         return rc;
3420 }
3421 
3422 /*
3423  * get enclosure information
3424  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3425  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3426  * Uses id_physical_device to determine the box_index.
3427  */
3428 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3429                         unsigned char *scsi3addr,
3430                         struct ReportExtendedLUNdata *rlep, int rle_index,
3431                         struct hpsa_scsi_dev_t *encl_dev)
3432 {
3433         int rc = -1;
3434         struct CommandList *c = NULL;
3435         struct ErrorInfo *ei = NULL;
3436         struct bmic_sense_storage_box_params *bssbp = NULL;
3437         struct bmic_identify_physical_device *id_phys = NULL;
3438         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3439         u16 bmic_device_index = 0;
3440 
3441         encl_dev->eli =
3442                 hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3443 
3444         bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3445 
3446         if (encl_dev->target == -1 || encl_dev->lun == -1) {
3447                 rc = IO_OK;
3448                 goto out;
3449         }
3450 
3451         if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3452                 rc = IO_OK;
3453                 goto out;
3454         }
3455 
3456         bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3457         if (!bssbp)
3458                 goto out;
3459 
3460         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3461         if (!id_phys)
3462                 goto out;
3463 
3464         rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3465                                                 id_phys, sizeof(*id_phys));
3466         if (rc) {
3467                 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3468                         __func__, encl_dev->external, bmic_device_index);
3469                 goto out;
3470         }
3471 
3472         c = cmd_alloc(h);
3473 
3474         rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3475                         sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3476 
3477         if (rc)
3478                 goto out;
3479 
3480         if (id_phys->phys_connector[1] == 'E')
3481                 c->Request.CDB[5] = id_phys->box_index;
3482         else
3483                 c->Request.CDB[5] = 0;
3484 
3485         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3486                                                 NO_TIMEOUT);
3487         if (rc)
3488                 goto out;
3489 
3490         ei = c->err_info;
3491         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3492                 rc = -1;
3493                 goto out;
3494         }
3495 
3496         encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3497         memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3498                 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3499 
3500         rc = IO_OK;
3501 out:
3502         kfree(bssbp);
3503         kfree(id_phys);
3504 
3505         if (c)
3506                 cmd_free(h, c);
3507 
3508         if (rc != IO_OK)
3509                 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3510                         "Error, could not get enclosure information");
3511 }
3512 
3513 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3514                                                 unsigned char *scsi3addr)
3515 {
3516         struct ReportExtendedLUNdata *physdev;
3517         u32 nphysicals;
3518         u64 sa = 0;
3519         int i;
3520 
3521         physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3522         if (!physdev)
3523                 return 0;
3524 
3525         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3526                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3527                 kfree(physdev);
3528                 return 0;
3529         }
3530         nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3531 
3532         for (i = 0; i < nphysicals; i++)
3533                 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3534                         sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3535                         break;
3536                 }
3537 
3538         kfree(physdev);
3539 
3540         return sa;
3541 }
3542 
3543 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3544                                         struct hpsa_scsi_dev_t *dev)
3545 {
3546         int rc;
3547         u64 sa = 0;
3548 
3549         if (is_hba_lunid(scsi3addr)) {
3550                 struct bmic_sense_subsystem_info *ssi;
3551 
3552                 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3553                 if (!ssi)
3554                         return;
3555 
3556                 rc = hpsa_bmic_sense_subsystem_information(h,
3557                                         scsi3addr, 0, ssi, sizeof(*ssi));
3558                 if (rc == 0) {
3559                         sa = get_unaligned_be64(ssi->primary_world_wide_id);
3560                         h->sas_address = sa;
3561                 }
3562 
3563                 kfree(ssi);
3564         } else
3565                 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3566 
3567         dev->sas_address = sa;
3568 }
3569 
3570 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3571         struct ReportExtendedLUNdata *physdev)
3572 {
3573         u32 nphysicals;
3574         int i;
3575 
3576         if (h->discovery_polling)
3577                 return;
3578 
3579         nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3580 
3581         for (i = 0; i < nphysicals; i++) {
3582                 if (physdev->LUN[i].device_type ==
3583                         BMIC_DEVICE_TYPE_CONTROLLER
3584                         && !is_hba_lunid(physdev->LUN[i].lunid)) {
3585                         dev_info(&h->pdev->dev,
3586                                 "External controller present, activate discovery polling and disable rld caching\n");
3587                         hpsa_disable_rld_caching(h);
3588                         h->discovery_polling = 1;
3589                         break;
3590                 }
3591         }
3592 }
3593 
3594 /* Get a device id from inquiry page 0x83 */
3595 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3596         unsigned char scsi3addr[], u8 page)
3597 {
3598         int rc;
3599         int i;
3600         int pages;
3601         unsigned char *buf, bufsize;
3602 
3603         buf = kzalloc(256, GFP_KERNEL);
3604         if (!buf)
3605                 return false;
3606 
3607         /* Get the size of the page list first */
3608         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3609                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3610                                 buf, HPSA_VPD_HEADER_SZ);
3611         if (rc != 0)
3612                 goto exit_unsupported;
3613         pages = buf[3];
3614         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3615                 bufsize = pages + HPSA_VPD_HEADER_SZ;
3616         else
3617                 bufsize = 255;
3618 
3619         /* Get the whole VPD page list */
3620         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3621                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3622                                 buf, bufsize);
3623         if (rc != 0)
3624                 goto exit_unsupported;
3625 
3626         pages = buf[3];
3627         for (i = 1; i <= pages; i++)
3628                 if (buf[3 + i] == page)
3629                         goto exit_supported;
3630 exit_unsupported:
3631         kfree(buf);
3632         return false;
3633 exit_supported:
3634         kfree(buf);
3635         return true;
3636 }
3637 
3638 /*
3639  * Called during a scan operation.
3640  * Sets ioaccel status on the new device list, not the existing device list
3641  *
3642  * The device list used during I/O will be updated later in
3643  * adjust_hpsa_scsi_table.
3644  */
3645 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3646         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3647 {
3648         int rc;
3649         unsigned char *buf;
3650         u8 ioaccel_status;
3651 
3652         this_device->offload_config = 0;
3653         this_device->offload_enabled = 0;
3654         this_device->offload_to_be_enabled = 0;
3655 
3656         buf = kzalloc(64, GFP_KERNEL);
3657         if (!buf)
3658                 return;
3659         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3660                 goto out;
3661         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3662                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3663         if (rc != 0)
3664                 goto out;
3665 
3666 #define IOACCEL_STATUS_BYTE 4
3667 #define OFFLOAD_CONFIGURED_BIT 0x01
3668 #define OFFLOAD_ENABLED_BIT 0x02
3669         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3670         this_device->offload_config =
3671                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3672         if (this_device->offload_config) {
3673                 this_device->offload_to_be_enabled =
3674                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3675                 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3676                         this_device->offload_to_be_enabled = 0;
3677         }
3678 
3679 out:
3680         kfree(buf);
3681         return;
3682 }
3683 
3684 /* Get the device id from inquiry page 0x83 */
3685 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3686         unsigned char *device_id, int index, int buflen)
3687 {
3688         int rc;
3689         unsigned char *buf;
3690 
3691         /* Does controller have VPD for device id? */
3692         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3693                 return 1; /* not supported */
3694 
3695         buf = kzalloc(64, GFP_KERNEL);
3696         if (!buf)
3697                 return -ENOMEM;
3698 
3699         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3700                                         HPSA_VPD_LV_DEVICE_ID, buf, 64);
3701         if (rc == 0) {
3702                 if (buflen > 16)
3703                         buflen = 16;
3704                 memcpy(device_id, &buf[8], buflen);
3705         }
3706 
3707         kfree(buf);
3708 
3709         return rc; /*0 - got id,  otherwise, didn't */
3710 }
3711 
3712 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3713                 void *buf, int bufsize,
3714                 int extended_response)
3715 {
3716         int rc = IO_OK;
3717         struct CommandList *c;
3718         unsigned char scsi3addr[8];
3719         struct ErrorInfo *ei;
3720 
3721         c = cmd_alloc(h);
3722 
3723         /* address the controller */
3724         memset(scsi3addr, 0, sizeof(scsi3addr));
3725         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3726                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3727                 rc = -EAGAIN;
3728                 goto out;
3729         }
3730         if (extended_response)
3731                 c->Request.CDB[1] = extended_response;
3732         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3733                         NO_TIMEOUT);
3734         if (rc)
3735                 goto out;
3736         ei = c->err_info;
3737         if (ei->CommandStatus != 0 &&
3738             ei->CommandStatus != CMD_DATA_UNDERRUN) {
3739                 hpsa_scsi_interpret_error(h, c);
3740                 rc = -EIO;
3741         } else {
3742                 struct ReportLUNdata *rld = buf;
3743 
3744                 if (rld->extended_response_flag != extended_response) {
3745                         if (!h->legacy_board) {
3746                                 dev_err(&h->pdev->dev,
3747                                         "report luns requested format %u, got %u\n",
3748                                         extended_response,
3749                                         rld->extended_response_flag);
3750                                 rc = -EINVAL;
3751                         } else
3752                                 rc = -EOPNOTSUPP;
3753                 }
3754         }
3755 out:
3756         cmd_free(h, c);
3757         return rc;
3758 }
3759 
3760 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3761                 struct ReportExtendedLUNdata *buf, int bufsize)
3762 {
3763         int rc;
3764         struct ReportLUNdata *lbuf;
3765 
3766         rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3767                                       HPSA_REPORT_PHYS_EXTENDED);
3768         if (!rc || rc != -EOPNOTSUPP)
3769                 return rc;
3770 
3771         /* REPORT PHYS EXTENDED is not supported */
3772         lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3773         if (!lbuf)
3774                 return -ENOMEM;
3775 
3776         rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3777         if (!rc) {
3778                 int i;
3779                 u32 nphys;
3780 
3781                 /* Copy ReportLUNdata header */
3782                 memcpy(buf, lbuf, 8);
3783                 nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3784                 for (i = 0; i < nphys; i++)
3785                         memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3786         }
3787         kfree(lbuf);
3788         return rc;
3789 }
3790 
3791 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3792                 struct ReportLUNdata *buf, int bufsize)
3793 {
3794         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3795 }
3796 
3797 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3798         int bus, int target, int lun)
3799 {
3800         device->bus = bus;
3801         device->target = target;
3802         device->lun = lun;
3803 }
3804 
3805 /* Use VPD inquiry to get details of volume status */
3806 static int hpsa_get_volume_status(struct ctlr_info *h,
3807                                         unsigned char scsi3addr[])
3808 {
3809         int rc;
3810         int status;
3811         int size;
3812         unsigned char *buf;
3813 
3814         buf = kzalloc(64, GFP_KERNEL);
3815         if (!buf)
3816                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3817 
3818         /* Does controller have VPD for logical volume status? */
3819         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3820                 goto exit_failed;
3821 
3822         /* Get the size of the VPD return buffer */
3823         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3824                                         buf, HPSA_VPD_HEADER_SZ);
3825         if (rc != 0)
3826                 goto exit_failed;
3827         size = buf[3];
3828 
3829         /* Now get the whole VPD buffer */
3830         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3831                                         buf, size + HPSA_VPD_HEADER_SZ);
3832         if (rc != 0)
3833                 goto exit_failed;
3834         status = buf[4]; /* status byte */
3835 
3836         kfree(buf);
3837         return status;
3838 exit_failed:
3839         kfree(buf);
3840         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3841 }
3842 
3843 /* Determine offline status of a volume.
3844  * Return either:
3845  *  0 (not offline)
3846  *  0xff (offline for unknown reasons)
3847  *  # (integer code indicating one of several NOT READY states
3848  *     describing why a volume is to be kept offline)
3849  */
3850 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3851                                         unsigned char scsi3addr[])
3852 {
3853         struct CommandList *c;
3854         unsigned char *sense;
3855         u8 sense_key, asc, ascq;
3856         int sense_len;
3857         int rc, ldstat = 0;
3858         u16 cmd_status;
3859         u8 scsi_status;
3860 #define ASC_LUN_NOT_READY 0x04
3861 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3862 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3863 
3864         c = cmd_alloc(h);
3865 
3866         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3867         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3868                                         NO_TIMEOUT);
3869         if (rc) {
3870                 cmd_free(h, c);
3871                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3872         }
3873         sense = c->err_info->SenseInfo;
3874         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3875                 sense_len = sizeof(c->err_info->SenseInfo);
3876         else
3877                 sense_len = c->err_info->SenseLen;
3878         decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3879         cmd_status = c->err_info->CommandStatus;
3880         scsi_status = c->err_info->ScsiStatus;
3881         cmd_free(h, c);
3882 
3883         /* Determine the reason for not ready state */
3884         ldstat = hpsa_get_volume_status(h, scsi3addr);
3885 
3886         /* Keep volume offline in certain cases: */
3887         switch (ldstat) {
3888         case HPSA_LV_FAILED:
3889         case HPSA_LV_UNDERGOING_ERASE:
3890         case HPSA_LV_NOT_AVAILABLE:
3891         case HPSA_LV_UNDERGOING_RPI:
3892         case HPSA_LV_PENDING_RPI:
3893         case HPSA_LV_ENCRYPTED_NO_KEY:
3894         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3895         case HPSA_LV_UNDERGOING_ENCRYPTION:
3896         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3897         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3898                 return ldstat;
3899         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3900                 /* If VPD status page isn't available,
3901                  * use ASC/ASCQ to determine state
3902                  */
3903                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3904                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3905                         return ldstat;
3906                 break;
3907         default:
3908                 break;
3909         }
3910         return HPSA_LV_OK;
3911 }
3912 
3913 static int hpsa_update_device_info(struct ctlr_info *h,
3914         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3915         unsigned char *is_OBDR_device)
3916 {
3917 
3918 #define OBDR_SIG_OFFSET 43
3919 #define OBDR_TAPE_SIG "$DR-10"
3920 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3921 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3922 
3923         unsigned char *inq_buff;
3924         unsigned char *obdr_sig;
3925         int rc = 0;
3926 
3927         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3928         if (!inq_buff) {
3929                 rc = -ENOMEM;
3930                 goto bail_out;
3931         }
3932 
3933         /* Do an inquiry to the device to see what it is. */
3934         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3935                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3936                 dev_err(&h->pdev->dev,
3937                         "%s: inquiry failed, device will be skipped.\n",
3938                         __func__);
3939                 rc = HPSA_INQUIRY_FAILED;
3940                 goto bail_out;
3941         }
3942 
3943         scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3944         scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3945 
3946         this_device->devtype = (inq_buff[0] & 0x1f);
3947         memcpy(this_device->scsi3addr, scsi3addr, 8);
3948         memcpy(this_device->vendor, &inq_buff[8],
3949                 sizeof(this_device->vendor));
3950         memcpy(this_device->model, &inq_buff[16],
3951                 sizeof(this_device->model));
3952         this_device->rev = inq_buff[2];
3953         memset(this_device->device_id, 0,
3954                 sizeof(this_device->device_id));
3955         if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3956                 sizeof(this_device->device_id)) < 0) {
3957                 dev_err(&h->pdev->dev,
3958                         "hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n",
3959                         h->ctlr, __func__,
3960                         h->scsi_host->host_no,
3961                         this_device->bus, this_device->target,
3962                         this_device->lun,
3963                         scsi_device_type(this_device->devtype),
3964                         this_device->model);
3965                 rc = HPSA_LV_FAILED;
3966                 goto bail_out;
3967         }
3968 
3969         if ((this_device->devtype == TYPE_DISK ||
3970                 this_device->devtype == TYPE_ZBC) &&
3971                 is_logical_dev_addr_mode(scsi3addr)) {
3972                 unsigned char volume_offline;
3973 
3974                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3975                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3976                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3977                 volume_offline = hpsa_volume_offline(h, scsi3addr);
3978                 if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
3979                     h->legacy_board) {
3980                         /*
3981                          * Legacy boards might not support volume status
3982                          */
3983                         dev_info(&h->pdev->dev,
3984                                  "C0:T%d:L%d Volume status not available, assuming online.\n",
3985                                  this_device->target, this_device->lun);
3986                         volume_offline = 0;
3987                 }
3988                 this_device->volume_offline = volume_offline;
3989                 if (volume_offline == HPSA_LV_FAILED) {
3990                         rc = HPSA_LV_FAILED;
3991                         dev_err(&h->pdev->dev,
3992                                 "%s: LV failed, device will be skipped.\n",
3993                                 __func__);
3994                         goto bail_out;
3995                 }
3996         } else {
3997                 this_device->raid_level = RAID_UNKNOWN;
3998                 this_device->offload_config = 0;
3999                 this_device->offload_enabled = 0;
4000                 this_device->offload_to_be_enabled = 0;
4001                 this_device->hba_ioaccel_enabled = 0;
4002                 this_device->volume_offline = 0;
4003                 this_device->queue_depth = h->nr_cmds;
4004         }
4005 
4006         if (this_device->external)
4007                 this_device->queue_depth = EXTERNAL_QD;
4008 
4009         if (is_OBDR_device) {
4010                 /* See if this is a One-Button-Disaster-Recovery device
4011                  * by looking for "$DR-10" at offset 43 in inquiry data.
4012                  */
4013                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4014                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4015                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
4016                                                 OBDR_SIG_LEN) == 0);
4017         }
4018         kfree(inq_buff);
4019         return 0;
4020 
4021 bail_out:
4022         kfree(inq_buff);
4023         return rc;
4024 }
4025 
4026 /*
4027  * Helper function to assign bus, target, lun mapping of devices.
4028  * Logical drive target and lun are assigned at this time, but
4029  * physical device lun and target assignment are deferred (assigned
4030  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4031 */
4032 static void figure_bus_target_lun(struct ctlr_info *h,
4033         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4034 {
4035         u32 lunid = get_unaligned_le32(lunaddrbytes);
4036 
4037         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4038                 /* physical device, target and lun filled in later */
4039                 if (is_hba_lunid(lunaddrbytes)) {
4040                         int bus = HPSA_HBA_BUS;
4041 
4042                         if (!device->rev)
4043                                 bus = HPSA_LEGACY_HBA_BUS;
4044                         hpsa_set_bus_target_lun(device,
4045                                         bus, 0, lunid & 0x3fff);
4046                 } else
4047                         /* defer target, lun assignment for physical devices */
4048                         hpsa_set_bus_target_lun(device,
4049                                         HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4050                 return;
4051         }
4052         /* It's a logical device */
4053         if (device->external) {
4054                 hpsa_set_bus_target_lun(device,
4055                         HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4056                         lunid & 0x00ff);
4057                 return;
4058         }
4059         hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4060                                 0, lunid & 0x3fff);
4061 }
4062 
4063 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4064         int i, int nphysicals, int nlocal_logicals)
4065 {
4066         /* In report logicals, local logicals are listed first,
4067         * then any externals.
4068         */
4069         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4070 
4071         if (i == raid_ctlr_position)
4072                 return 0;
4073 
4074         if (i < logicals_start)
4075                 return 0;
4076 
4077         /* i is in logicals range, but still within local logicals */
4078         if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4079                 return 0;
4080 
4081         return 1; /* it's an external lun */
4082 }
4083 
4084 /*
4085  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4086  * logdev.  The number of luns in physdev and logdev are returned in
4087  * *nphysicals and *nlogicals, respectively.
4088  * Returns 0 on success, -1 otherwise.
4089  */
4090 static int hpsa_gather_lun_info(struct ctlr_info *h,
4091         struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4092         struct ReportLUNdata *logdev, u32 *nlogicals)
4093 {
4094         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4095                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4096                 return -1;
4097         }
4098         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4099         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4100                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4101                         HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4102                 *nphysicals = HPSA_MAX_PHYS_LUN;
4103         }
4104         if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4105                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4106                 return -1;
4107         }
4108         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4109         /* Reject Logicals in excess of our max capability. */
4110         if (*nlogicals > HPSA_MAX_LUN) {
4111                 dev_warn(&h->pdev->dev,
4112                         "maximum logical LUNs (%d) exceeded.  "
4113                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
4114                         *nlogicals - HPSA_MAX_LUN);
4115                 *nlogicals = HPSA_MAX_LUN;
4116         }
4117         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4118                 dev_warn(&h->pdev->dev,
4119                         "maximum logical + physical LUNs (%d) exceeded. "
4120                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4121                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4122                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4123         }
4124         return 0;
4125 }
4126 
4127 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4128         int i, int nphysicals, int nlogicals,
4129         struct ReportExtendedLUNdata *physdev_list,
4130         struct ReportLUNdata *logdev_list)
4131 {
4132         /* Helper function, figure out where the LUN ID info is coming from
4133          * given index i, lists of physical and logical devices, where in
4134          * the list the raid controller is supposed to appear (first or last)
4135          */
4136 
4137         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4138         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4139 
4140         if (i == raid_ctlr_position)
4141                 return RAID_CTLR_LUNID;
4142 
4143         if (i < logicals_start)
4144                 return &physdev_list->LUN[i -
4145                                 (raid_ctlr_position == 0)].lunid[0];
4146 
4147         if (i < last_device)
4148                 return &logdev_list->LUN[i - nphysicals -
4149                         (raid_ctlr_position == 0)][0];
4150         BUG();
4151         return NULL;
4152 }
4153 
4154 /* get physical drive ioaccel handle and queue depth */
4155 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4156                 struct hpsa_scsi_dev_t *dev,
4157                 struct ReportExtendedLUNdata *rlep, int rle_index,
4158                 struct bmic_identify_physical_device *id_phys)
4159 {
4160         int rc;
4161         struct ext_report_lun_entry *rle;
4162 
4163         rle = &rlep->LUN[rle_index];
4164 
4165         dev->ioaccel_handle = rle->ioaccel_handle;
4166         if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4167                 dev->hba_ioaccel_enabled = 1;
4168         memset(id_phys, 0, sizeof(*id_phys));
4169         rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4170                         GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4171                         sizeof(*id_phys));
4172         if (!rc)
4173                 /* Reserve space for FW operations */
4174 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4175 #define DRIVE_QUEUE_DEPTH 7
4176                 dev->queue_depth =
4177                         le16_to_cpu(id_phys->current_queue_depth_limit) -
4178                                 DRIVE_CMDS_RESERVED_FOR_FW;
4179         else
4180                 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4181 }
4182 
4183 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4184         struct ReportExtendedLUNdata *rlep, int rle_index,
4185         struct bmic_identify_physical_device *id_phys)
4186 {
4187         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4188 
4189         if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4190                 this_device->hba_ioaccel_enabled = 1;
4191 
4192         memcpy(&this_device->active_path_index,
4193                 &id_phys->active_path_number,
4194                 sizeof(this_device->active_path_index));
4195         memcpy(&this_device->path_map,
4196                 &id_phys->redundant_path_present_map,
4197                 sizeof(this_device->path_map));
4198         memcpy(&this_device->box,
4199                 &id_phys->alternate_paths_phys_box_on_port,
4200                 sizeof(this_device->box));
4201         memcpy(&this_device->phys_connector,
4202                 &id_phys->alternate_paths_phys_connector,
4203                 sizeof(this_device->phys_connector));
4204         memcpy(&this_device->bay,
4205                 &id_phys->phys_bay_in_box,
4206                 sizeof(this_device->bay));
4207 }
4208 
4209 /* get number of local logical disks. */
4210 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4211         struct bmic_identify_controller *id_ctlr,
4212         u32 *nlocals)
4213 {
4214         int rc;
4215 
4216         if (!id_ctlr) {
4217                 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4218                         __func__);
4219                 return -ENOMEM;
4220         }
4221         memset(id_ctlr, 0, sizeof(*id_ctlr));
4222         rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4223         if (!rc)
4224                 if (id_ctlr->configured_logical_drive_count < 255)
4225                         *nlocals = id_ctlr->configured_logical_drive_count;
4226                 else
4227                         *nlocals = le16_to_cpu(
4228                                         id_ctlr->extended_logical_unit_count);
4229         else
4230                 *nlocals = -1;
4231         return rc;
4232 }
4233 
4234 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4235 {
4236         struct bmic_identify_physical_device *id_phys;
4237         bool is_spare = false;
4238         int rc;
4239 
4240         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4241         if (!id_phys)
4242                 return false;
4243 
4244         rc = hpsa_bmic_id_physical_device(h,
4245                                         lunaddrbytes,
4246                                         GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4247                                         id_phys, sizeof(*id_phys));
4248         if (rc == 0)
4249                 is_spare = (id_phys->more_flags >> 6) & 0x01;
4250 
4251         kfree(id_phys);
4252         return is_spare;
4253 }
4254 
4255 #define RPL_DEV_FLAG_NON_DISK                           0x1
4256 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4257 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4258 
4259 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4260 
4261 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4262                                 struct ext_report_lun_entry *rle)
4263 {
4264         u8 device_flags;
4265         u8 device_type;
4266 
4267         if (!MASKED_DEVICE(lunaddrbytes))
4268                 return false;
4269 
4270         device_flags = rle->device_flags;
4271         device_type = rle->device_type;
4272 
4273         if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4274                 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4275                         return false;
4276                 return true;
4277         }
4278 
4279         if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4280                 return false;
4281 
4282         if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4283                 return false;
4284 
4285         /*
4286          * Spares may be spun down, we do not want to
4287          * do an Inquiry to a RAID set spare drive as
4288          * that would have them spun up, that is a
4289          * performance hit because I/O to the RAID device
4290          * stops while the spin up occurs which can take
4291          * over 50 seconds.
4292          */
4293         if (hpsa_is_disk_spare(h, lunaddrbytes))
4294                 return true;
4295 
4296         return false;
4297 }
4298 
4299 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4300 {
4301         /* the idea here is we could get notified
4302          * that some devices have changed, so we do a report
4303          * physical luns and report logical luns cmd, and adjust
4304          * our list of devices accordingly.
4305          *
4306          * The scsi3addr's of devices won't change so long as the
4307          * adapter is not reset.  That means we can rescan and
4308          * tell which devices we already know about, vs. new
4309          * devices, vs.  disappearing devices.
4310          */
4311         struct ReportExtendedLUNdata *physdev_list = NULL;
4312         struct ReportLUNdata *logdev_list = NULL;
4313         struct bmic_identify_physical_device *id_phys = NULL;
4314         struct bmic_identify_controller *id_ctlr = NULL;
4315         u32 nphysicals = 0;
4316         u32 nlogicals = 0;
4317         u32 nlocal_logicals = 0;
4318         u32 ndev_allocated = 0;
4319         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4320         int ncurrent = 0;
4321         int i, n_ext_target_devs, ndevs_to_allocate;
4322         int raid_ctlr_position;
4323         bool physical_device;
4324         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4325 
4326         currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4327         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4328         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4329         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4330         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4331         id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4332 
4333         if (!currentsd || !physdev_list || !logdev_list ||
4334                 !tmpdevice || !id_phys || !id_ctlr) {
4335                 dev_err(&h->pdev->dev, "out of memory\n");
4336                 goto out;
4337         }
4338         memset(lunzerobits, 0, sizeof(lunzerobits));
4339 
4340         h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4341 
4342         if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4343                         logdev_list, &nlogicals)) {
4344                 h->drv_req_rescan = 1;
4345                 goto out;
4346         }
4347 
4348         /* Set number of local logicals (non PTRAID) */
4349         if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4350                 dev_warn(&h->pdev->dev,
4351                         "%s: Can't determine number of local logical devices.\n",
4352                         __func__);
4353         }
4354 
4355         /* We might see up to the maximum number of logical and physical disks
4356          * plus external target devices, and a device for the local RAID
4357          * controller.
4358          */
4359         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4360 
4361         hpsa_ext_ctrl_present(h, physdev_list);
4362 
4363         /* Allocate the per device structures */
4364         for (i = 0; i < ndevs_to_allocate; i++) {
4365                 if (i >= HPSA_MAX_DEVICES) {
4366                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4367                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
4368                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
4369                         break;
4370                 }
4371 
4372                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4373                 if (!currentsd[i]) {
4374                         h->drv_req_rescan = 1;
4375                         goto out;
4376                 }
4377                 ndev_allocated++;
4378         }
4379 
4380         if (is_scsi_rev_5(h))
4381                 raid_ctlr_position = 0;
4382         else
4383                 raid_ctlr_position = nphysicals + nlogicals;
4384 
4385         /* adjust our table of devices */
4386         n_ext_target_devs = 0;
4387         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4388                 u8 *lunaddrbytes, is_OBDR = 0;
4389                 int rc = 0;
4390                 int phys_dev_index = i - (raid_ctlr_position == 0);
4391                 bool skip_device = false;
4392 
4393                 memset(tmpdevice, 0, sizeof(*tmpdevice));
4394 
4395                 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4396 
4397                 /* Figure out where the LUN ID info is coming from */
4398                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4399                         i, nphysicals, nlogicals, physdev_list, logdev_list);
4400 
4401                 /* Determine if this is a lun from an external target array */
4402                 tmpdevice->external =
4403                         figure_external_status(h, raid_ctlr_position, i,
4404                                                 nphysicals, nlocal_logicals);
4405 
4406                 /*
4407                  * Skip over some devices such as a spare.
4408                  */
4409                 if (!tmpdevice->external && physical_device) {
4410                         skip_device = hpsa_skip_device(h, lunaddrbytes,
4411                                         &physdev_list->LUN[phys_dev_index]);
4412                         if (skip_device)
4413                                 continue;
4414                 }
4415 
4416                 /* Get device type, vendor, model, device id, raid_map */
4417                 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4418                                                         &is_OBDR);
4419                 if (rc == -ENOMEM) {
4420                         dev_warn(&h->pdev->dev,
4421                                 "Out of memory, rescan deferred.\n");
4422                         h->drv_req_rescan = 1;
4423                         goto out;
4424                 }
4425                 if (rc) {
4426                         h->drv_req_rescan = 1;
4427                         continue;
4428                 }
4429 
4430                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4431                 this_device = currentsd[ncurrent];
4432 
4433                 *this_device = *tmpdevice;
4434                 this_device->physical_device = physical_device;
4435 
4436                 /*
4437                  * Expose all devices except for physical devices that
4438                  * are masked.
4439                  */
4440                 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4441                         this_device->expose_device = 0;
4442                 else
4443                         this_device->expose_device = 1;
4444 
4445 
4446                 /*
4447                  * Get the SAS address for physical devices that are exposed.
4448                  */
4449                 if (this_device->physical_device && this_device->expose_device)
4450                         hpsa_get_sas_address(h, lunaddrbytes, this_device);
4451 
4452                 switch (this_device->devtype) {
4453                 case TYPE_ROM:
4454                         /* We don't *really* support actual CD-ROM devices,
4455                          * just "One Button Disaster Recovery" tape drive
4456                          * which temporarily pretends to be a CD-ROM drive.
4457                          * So we check that the device is really an OBDR tape
4458                          * device by checking for "$DR-10" in bytes 43-48 of
4459                          * the inquiry data.
4460                          */
4461                         if (is_OBDR)
4462                                 ncurrent++;
4463                         break;
4464                 case TYPE_DISK:
4465                 case TYPE_ZBC:
4466                         if (this_device->physical_device) {
4467                                 /* The disk is in HBA mode. */
4468                                 /* Never use RAID mapper in HBA mode. */
4469                                 this_device->offload_enabled = 0;
4470                                 hpsa_get_ioaccel_drive_info(h, this_device,
4471                                         physdev_list, phys_dev_index, id_phys);
4472                                 hpsa_get_path_info(this_device,
4473                                         physdev_list, phys_dev_index, id_phys);
4474                         }
4475                         ncurrent++;
4476                         break;
4477                 case TYPE_TAPE:
4478                 case TYPE_MEDIUM_CHANGER:
4479                         ncurrent++;
4480                         break;
4481                 case TYPE_ENCLOSURE:
4482                         if (!this_device->external)
4483                                 hpsa_get_enclosure_info(h, lunaddrbytes,
4484                                                 physdev_list, phys_dev_index,
4485                                                 this_device);
4486                         ncurrent++;
4487                         break;
4488                 case TYPE_RAID:
4489                         /* Only present the Smartarray HBA as a RAID controller.
4490                          * If it's a RAID controller other than the HBA itself
4491                          * (an external RAID controller, MSA500 or similar)
4492                          * don't present it.
4493                          */
4494                         if (!is_hba_lunid(lunaddrbytes))
4495                                 break;
4496                         ncurrent++;
4497                         break;
4498                 default:
4499                         break;
4500                 }
4501                 if (ncurrent >= HPSA_MAX_DEVICES)
4502                         break;
4503         }
4504 
4505         if (h->sas_host == NULL) {
4506                 int rc = 0;
4507 
4508                 rc = hpsa_add_sas_host(h);
4509                 if (rc) {
4510                         dev_warn(&h->pdev->dev,
4511                                 "Could not add sas host %d\n", rc);
4512                         goto out;
4513                 }
4514         }
4515 
4516         adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4517 out:
4518         kfree(tmpdevice);
4519         for (i = 0; i < ndev_allocated; i++)
4520                 kfree(currentsd[i]);
4521         kfree(currentsd);
4522         kfree(physdev_list);
4523         kfree(logdev_list);
4524         kfree(id_ctlr);
4525         kfree(id_phys);
4526 }
4527 
4528 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4529                                    struct scatterlist *sg)
4530 {
4531         u64 addr64 = (u64) sg_dma_address(sg);
4532         unsigned int len = sg_dma_len(sg);
4533 
4534         desc->Addr = cpu_to_le64(addr64);
4535         desc->Len = cpu_to_le32(len);
4536         desc->Ext = 0;
4537 }
4538 
4539 /*
4540  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4541  * dma mapping  and fills in the scatter gather entries of the
4542  * hpsa command, cp.
4543  */
4544 static int hpsa_scatter_gather(struct ctlr_info *h,
4545                 struct CommandList *cp,
4546                 struct scsi_cmnd *cmd)
4547 {
4548         struct scatterlist *sg;
4549         int use_sg, i, sg_limit, chained, last_sg;
4550         struct SGDescriptor *curr_sg;
4551 
4552         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4553 
4554         use_sg = scsi_dma_map(cmd);
4555         if (use_sg < 0)
4556                 return use_sg;
4557 
4558         if (!use_sg)
4559                 goto sglist_finished;
4560 
4561         /*
4562          * If the number of entries is greater than the max for a single list,
4563          * then we have a chained list; we will set up all but one entry in the
4564          * first list (the last entry is saved for link information);
4565          * otherwise, we don't have a chained list and we'll set up at each of
4566          * the entries in the one list.
4567          */
4568         curr_sg = cp->SG;
4569         chained = use_sg > h->max_cmd_sg_entries;
4570         sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4571         last_sg = scsi_sg_count(cmd) - 1;
4572         scsi_for_each_sg(cmd, sg, sg_limit, i) {
4573                 hpsa_set_sg_descriptor(curr_sg, sg);
4574                 curr_sg++;
4575         }
4576 
4577         if (chained) {
4578                 /*
4579                  * Continue with the chained list.  Set curr_sg to the chained
4580                  * list.  Modify the limit to the total count less the entries
4581                  * we've already set up.  Resume the scan at the list entry
4582                  * where the previous loop left off.
4583                  */
4584                 curr_sg = h->cmd_sg_list[cp->cmdindex];
4585                 sg_limit = use_sg - sg_limit;
4586                 for_each_sg(sg, sg, sg_limit, i) {
4587                         hpsa_set_sg_descriptor(curr_sg, sg);
4588                         curr_sg++;
4589                 }
4590         }
4591 
4592         /* Back the pointer up to the last entry and mark it as "last". */
4593         (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4594 
4595         if (use_sg + chained > h->maxSG)
4596                 h->maxSG = use_sg + chained;
4597 
4598         if (chained) {
4599                 cp->Header.SGList = h->max_cmd_sg_entries;
4600                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4601                 if (hpsa_map_sg_chain_block(h, cp)) {
4602                         scsi_dma_unmap(cmd);
4603                         return -1;
4604                 }
4605                 return 0;
4606         }
4607 
4608 sglist_finished:
4609 
4610         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4611         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4612         return 0;
4613 }
4614 
4615 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4616                                                 u8 *cdb, int cdb_len,
4617                                                 const char *func)
4618 {
4619         dev_warn(&h->pdev->dev,
4620                  "%s: Blocking zero-length request: CDB:%*phN\n",
4621                  func, cdb_len, cdb);
4622 }
4623 
4624 #define IO_ACCEL_INELIGIBLE 1
4625 /* zero-length transfers trigger hardware errors. */
4626 static bool is_zero_length_transfer(u8 *cdb)
4627 {
4628         u32 block_cnt;
4629 
4630         /* Block zero-length transfer sizes on certain commands. */
4631         switch (cdb[0]) {
4632         case READ_10:
4633         case WRITE_10:
4634         case VERIFY:            /* 0x2F */
4635         case WRITE_VERIFY:      /* 0x2E */
4636                 block_cnt = get_unaligned_be16(&cdb[7]);
4637                 break;
4638         case READ_12:
4639         case WRITE_12:
4640         case VERIFY_12: /* 0xAF */
4641         case WRITE_VERIFY_12:   /* 0xAE */
4642                 block_cnt = get_unaligned_be32(&cdb[6]);
4643                 break;
4644         case READ_16:
4645         case WRITE_16:
4646         case VERIFY_16:         /* 0x8F */
4647                 block_cnt = get_unaligned_be32(&cdb[10]);
4648                 break;
4649         default:
4650                 return false;
4651         }
4652 
4653         return block_cnt == 0;
4654 }
4655 
4656 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4657 {
4658         int is_write = 0;
4659         u32 block;
4660         u32 block_cnt;
4661 
4662         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4663         switch (cdb[0]) {
4664         case WRITE_6:
4665         case WRITE_12:
4666                 is_write = 1;
4667                 /* fall through */
4668         case READ_6:
4669         case READ_12:
4670                 if (*cdb_len == 6) {
4671                         block = (((cdb[1] & 0x1F) << 16) |
4672                                 (cdb[2] << 8) |
4673                                 cdb[3]);
4674                         block_cnt = cdb[4];
4675                         if (block_cnt == 0)
4676                                 block_cnt = 256;
4677                 } else {
4678                         BUG_ON(*cdb_len != 12);
4679                         block = get_unaligned_be32(&cdb[2]);
4680                         block_cnt = get_unaligned_be32(&cdb[6]);
4681                 }
4682                 if (block_cnt > 0xffff)
4683                         return IO_ACCEL_INELIGIBLE;
4684 
4685                 cdb[0] = is_write ? WRITE_10 : READ_10;
4686                 cdb[1] = 0;
4687                 cdb[2] = (u8) (block >> 24);
4688                 cdb[3] = (u8) (block >> 16);
4689                 cdb[4] = (u8) (block >> 8);
4690                 cdb[5] = (u8) (block);
4691                 cdb[6] = 0;
4692                 cdb[7] = (u8) (block_cnt >> 8);
4693                 cdb[8] = (u8) (block_cnt);
4694                 cdb[9] = 0;
4695                 *cdb_len = 10;
4696                 break;
4697         }
4698         return 0;
4699 }
4700 
4701 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4702         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4703         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4704 {
4705         struct scsi_cmnd *cmd = c->scsi_cmd;
4706         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4707         unsigned int len;
4708         unsigned int total_len = 0;
4709         struct scatterlist *sg;
4710         u64 addr64;
4711         int use_sg, i;
4712         struct SGDescriptor *curr_sg;
4713         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4714 
4715         /* TODO: implement chaining support */
4716         if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4717                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4718                 return IO_ACCEL_INELIGIBLE;
4719         }
4720 
4721         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4722 
4723         if (is_zero_length_transfer(cdb)) {
4724                 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4725                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4726                 return IO_ACCEL_INELIGIBLE;
4727         }
4728 
4729         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4730                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4731                 return IO_ACCEL_INELIGIBLE;
4732         }
4733 
4734         c->cmd_type = CMD_IOACCEL1;
4735 
4736         /* Adjust the DMA address to point to the accelerated command buffer */
4737         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4738                                 (c->cmdindex * sizeof(*cp));
4739         BUG_ON(c->busaddr & 0x0000007F);
4740 
4741         use_sg = scsi_dma_map(cmd);
4742         if (use_sg < 0) {
4743                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4744                 return use_sg;
4745         }
4746 
4747         if (use_sg) {
4748                 curr_sg = cp->SG;
4749                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4750                         addr64 = (u64) sg_dma_address(sg);
4751                         len  = sg_dma_len(sg);
4752                         total_len += len;
4753                         curr_sg->Addr = cpu_to_le64(addr64);
4754                         curr_sg->Len = cpu_to_le32(len);
4755                         curr_sg->Ext = cpu_to_le32(0);
4756                         curr_sg++;
4757                 }
4758                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4759 
4760                 switch (cmd->sc_data_direction) {
4761                 case DMA_TO_DEVICE:
4762                         control |= IOACCEL1_CONTROL_DATA_OUT;
4763                         break;
4764                 case DMA_FROM_DEVICE:
4765                         control |= IOACCEL1_CONTROL_DATA_IN;
4766                         break;
4767                 case DMA_NONE:
4768                         control |= IOACCEL1_CONTROL_NODATAXFER;
4769                         break;
4770                 default:
4771                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4772                         cmd->sc_data_direction);
4773                         BUG();
4774                         break;
4775                 }
4776         } else {
4777                 control |= IOACCEL1_CONTROL_NODATAXFER;
4778         }
4779 
4780         c->Header.SGList = use_sg;
4781         /* Fill out the command structure to submit */
4782         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4783         cp->transfer_len = cpu_to_le32(total_len);
4784         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4785                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4786         cp->control = cpu_to_le32(control);
4787         memcpy(cp->CDB, cdb, cdb_len);
4788         memcpy(cp->CISS_LUN, scsi3addr, 8);
4789         /* Tag was already set at init time. */
4790         enqueue_cmd_and_start_io(h, c);
4791         return 0;
4792 }
4793 
4794 /*
4795  * Queue a command directly to a device behind the controller using the
4796  * I/O accelerator path.
4797  */
4798 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4799         struct CommandList *c)
4800 {
4801         struct scsi_cmnd *cmd = c->scsi_cmd;
4802         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4803 
4804         if (!dev)
4805                 return -1;
4806 
4807         c->phys_disk = dev;
4808 
4809         if (dev->in_reset)
4810                 return -1;
4811 
4812         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4813                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4814 }
4815 
4816 /*
4817  * Set encryption parameters for the ioaccel2 request
4818  */
4819 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4820         struct CommandList *c, struct io_accel2_cmd *cp)
4821 {
4822         struct scsi_cmnd *cmd = c->scsi_cmd;
4823         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4824         struct raid_map_data *map = &dev->raid_map;
4825         u64 first_block;
4826 
4827         /* Are we doing encryption on this device */
4828         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4829                 return;
4830         /* Set the data encryption key index. */
4831         cp->dekindex = map->dekindex;
4832 
4833         /* Set the encryption enable flag, encoded into direction field. */
4834         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4835 
4836         /* Set encryption tweak values based on logical block address
4837          * If block size is 512, tweak value is LBA.
4838          * For other block sizes, tweak is (LBA * block size)/ 512)
4839          */
4840         switch (cmd->cmnd[0]) {
4841         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4842         case READ_6:
4843         case WRITE_6:
4844                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4845                                 (cmd->cmnd[2] << 8) |
4846                                 cmd->cmnd[3]);
4847                 break;
4848         case WRITE_10:
4849         case READ_10:
4850         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4851         case WRITE_12:
4852         case READ_12:
4853                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4854                 break;
4855         case WRITE_16:
4856         case READ_16:
4857                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4858                 break;
4859         default:
4860                 dev_err(&h->pdev->dev,
4861                         "ERROR: %s: size (0x%x) not supported for encryption\n",
4862                         __func__, cmd->cmnd[0]);
4863                 BUG();
4864                 break;
4865         }
4866 
4867         if (le32_to_cpu(map->volume_blk_size) != 512)
4868                 first_block = first_block *
4869                                 le32_to_cpu(map->volume_blk_size)/512;
4870 
4871         cp->tweak_lower = cpu_to_le32(first_block);
4872         cp->tweak_upper = cpu_to_le32(first_block >> 32);
4873 }
4874 
4875 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4876         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4877         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4878 {
4879         struct scsi_cmnd *cmd = c->scsi_cmd;
4880         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4881         struct ioaccel2_sg_element *curr_sg;
4882         int use_sg, i;
4883         struct scatterlist *sg;
4884         u64 addr64;
4885         u32 len;
4886         u32 total_len = 0;
4887 
4888         if (!cmd->device)
4889                 return -1;
4890 
4891         if (!cmd->device->hostdata)
4892                 return -1;
4893 
4894         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4895 
4896         if (is_zero_length_transfer(cdb)) {
4897                 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4898                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4899                 return IO_ACCEL_INELIGIBLE;
4900         }
4901 
4902         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4903                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4904                 return IO_ACCEL_INELIGIBLE;
4905         }
4906 
4907         c->cmd_type = CMD_IOACCEL2;
4908         /* Adjust the DMA address to point to the accelerated command buffer */
4909         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4910                                 (c->cmdindex * sizeof(*cp));
4911         BUG_ON(c->busaddr & 0x0000007F);
4912 
4913         memset(cp, 0, sizeof(*cp));
4914         cp->IU_type = IOACCEL2_IU_TYPE;
4915 
4916         use_sg = scsi_dma_map(cmd);
4917         if (use_sg < 0) {
4918                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4919                 return use_sg;
4920         }
4921 
4922         if (use_sg) {
4923                 curr_sg = cp->sg;
4924                 if (use_sg > h->ioaccel_maxsg) {
4925                         addr64 = le64_to_cpu(
4926                                 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4927                         curr_sg->address = cpu_to_le64(addr64);
4928                         curr_sg->length = 0;
4929                         curr_sg->reserved[0] = 0;
4930                         curr_sg->reserved[1] = 0;
4931                         curr_sg->reserved[2] = 0;
4932                         curr_sg->chain_indicator = IOACCEL2_CHAIN;
4933 
4934                         curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4935                 }
4936                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4937                         addr64 = (u64) sg_dma_address(sg);
4938                         len  = sg_dma_len(sg);
4939                         total_len += len;
4940                         curr_sg->address = cpu_to_le64(addr64);
4941                         curr_sg->length = cpu_to_le32(len);
4942                         curr_sg->reserved[0] = 0;
4943                         curr_sg->reserved[1] = 0;
4944                         curr_sg->reserved[2] = 0;
4945                         curr_sg->chain_indicator = 0;
4946                         curr_sg++;
4947                 }
4948 
4949                 /*
4950                  * Set the last s/g element bit
4951                  */
4952                 (curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;
4953 
4954                 switch (cmd->sc_data_direction) {
4955                 case DMA_TO_DEVICE:
4956                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4957                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
4958                         break;
4959                 case DMA_FROM_DEVICE:
4960                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4961                         cp->direction |= IOACCEL2_DIR_DATA_IN;
4962                         break;
4963                 case DMA_NONE:
4964                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4965                         cp->direction |= IOACCEL2_DIR_NO_DATA;
4966                         break;
4967                 default:
4968                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4969                                 cmd->sc_data_direction);
4970                         BUG();
4971                         break;
4972                 }
4973         } else {
4974                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4975                 cp->direction |= IOACCEL2_DIR_NO_DATA;
4976         }
4977 
4978         /* Set encryption parameters, if necessary */
4979         set_encrypt_ioaccel2(h, c, cp);
4980 
4981         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4982         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4983         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4984 
4985         cp->data_len = cpu_to_le32(total_len);
4986         cp->err_ptr = cpu_to_le64(c->busaddr +
4987                         offsetof(struct io_accel2_cmd, error_data));
4988         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4989 
4990         /* fill in sg elements */
4991         if (use_sg > h->ioaccel_maxsg) {
4992                 cp->sg_count = 1;
4993                 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4994                 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4995                         atomic_dec(&phys_disk->ioaccel_cmds_out);
4996                         scsi_dma_unmap(cmd);
4997                         return -1;
4998                 }
4999         } else
5000                 cp->sg_count = (u8) use_sg;
5001 
5002         if (phys_disk->in_reset) {
5003                 cmd->result = DID_RESET << 16;
5004                 return -1;
5005         }
5006 
5007         enqueue_cmd_and_start_io(h, c);
5008         return 0;
5009 }
5010 
5011 /*
5012  * Queue a command to the correct I/O accelerator path.
5013  */
5014 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5015         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5016         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5017 {
5018         if (!c->scsi_cmd->device)
5019                 return -1;
5020 
5021         if (!c->scsi_cmd->device->hostdata)
5022                 return -1;
5023 
5024         if (phys_disk->in_reset)
5025                 return -1;
5026 
5027         /* Try to honor the device's queue depth */
5028         if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5029                                         phys_disk->queue_depth) {
5030                 atomic_dec(&phys_disk->ioaccel_cmds_out);
5031                 return IO_ACCEL_INELIGIBLE;
5032         }
5033         if (h->transMethod & CFGTBL_Trans_io_accel1)
5034                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5035                                                 cdb, cdb_len, scsi3addr,
5036                                                 phys_disk);
5037         else
5038                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5039                                                 cdb, cdb_len, scsi3addr,
5040                                                 phys_disk);
5041 }
5042 
5043 static void raid_map_helper(struct raid_map_data *map,
5044                 int offload_to_mirror, u32 *map_index, u32 *current_group)
5045 {
5046         if (offload_to_mirror == 0)  {
5047                 /* use physical disk in the first mirrored group. */
5048                 *map_index %= le16_to_cpu(map->data_disks_per_row);
5049                 return;
5050         }
5051         do {
5052                 /* determine mirror group that *map_index indicates */
5053                 *current_group = *map_index /
5054                         le16_to_cpu(map->data_disks_per_row);
5055                 if (offload_to_mirror == *current_group)
5056                         continue;
5057                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5058                         /* select map index from next group */
5059                         *map_index += le16_to_cpu(map->data_disks_per_row);
5060                         (*current_group)++;
5061                 } else {
5062                         /* select map index from first group */
5063                         *map_index %= le16_to_cpu(map->data_disks_per_row);
5064                         *current_group = 0;
5065                 }
5066         } while (offload_to_mirror != *current_group);
5067 }
5068 
5069 /*
5070  * Attempt to perform offload RAID mapping for a logical volume I/O.
5071  */
5072 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5073         struct CommandList *c)
5074 {
5075         struct scsi_cmnd *cmd = c->scsi_cmd;
5076         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5077         struct raid_map_data *map = &dev->raid_map;
5078         struct raid_map_disk_data *dd = &map->data[0];
5079         int is_write = 0;
5080         u32 map_index;
5081         u64 first_block, last_block;
5082         u32 block_cnt;
5083         u32 blocks_per_row;
5084         u64 first_row, last_row;
5085         u32 first_row_offset, last_row_offset;
5086         u32 first_column, last_column;
5087         u64 r0_first_row, r0_last_row;
5088         u32 r5or6_blocks_per_row;
5089         u64 r5or6_first_row, r5or6_last_row;
5090         u32 r5or6_first_row_offset, r5or6_last_row_offset;
5091         u32 r5or6_first_column, r5or6_last_column;
5092         u32 total_disks_per_row;
5093         u32 stripesize;
5094         u32 first_group, last_group, current_group;
5095         u32 map_row;
5096         u32 disk_handle;
5097         u64 disk_block;
5098         u32 disk_block_cnt;
5099         u8 cdb[16];
5100         u8 cdb_len;
5101         u16 strip_size;
5102 #if BITS_PER_LONG == 32
5103         u64 tmpdiv;
5104 #endif
5105         int offload_to_mirror;
5106 
5107         if (!dev)
5108                 return -1;
5109 
5110         if (dev->in_reset)
5111                 return -1;
5112 
5113         /* check for valid opcode, get LBA and block count */
5114         switch (cmd->cmnd[0]) {
5115         case WRITE_6:
5116                 is_write = 1;
5117                 /* fall through */
5118         case READ_6:
5119                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5120                                 (cmd->cmnd[2] << 8) |
5121                                 cmd->cmnd[3]);
5122                 block_cnt = cmd->cmnd[4];
5123                 if (block_cnt == 0)
5124                         block_cnt = 256;
5125                 break;
5126         case WRITE_10:
5127                 is_write = 1;
5128                 /* fall through */
5129         case READ_10:
5130                 first_block =
5131                         (((u64) cmd->cmnd[2]) << 24) |
5132                         (((u64) cmd->cmnd[3]) << 16) |
5133                         (((u64) cmd->cmnd[4]) << 8) |
5134                         cmd->cmnd[5];
5135                 block_cnt =
5136                         (((u32) cmd->cmnd[7]) << 8) |
5137                         cmd->cmnd[8];
5138                 break;
5139         case WRITE_12:
5140                 is_write = 1;
5141                 /* fall through */
5142         case READ_12:
5143                 first_block =
5144                         (((u64) cmd->cmnd[2]) << 24) |
5145                         (((u64) cmd->cmnd[3]) << 16) |
5146                         (((u64) cmd->cmnd[4]) << 8) |
5147                         cmd->cmnd[5];
5148                 block_cnt =
5149                         (((u32) cmd->cmnd[6]) << 24) |
5150                         (((u32) cmd->cmnd[7]) << 16) |
5151                         (((u32) cmd->cmnd[8]) << 8) |
5152                 cmd->cmnd[9];
5153                 break;
5154         case WRITE_16:
5155                 is_write = 1;
5156                 /* fall through */
5157         case READ_16:
5158                 first_block =
5159                         (((u64) cmd->cmnd[2]) << 56) |
5160                         (((u64) cmd->cmnd[3]) << 48) |
5161                         (((u64) cmd->cmnd[4]) << 40) |
5162                         (((u64) cmd->cmnd[5]) << 32) |
5163                         (((u64) cmd->cmnd[6]) << 24) |
5164                         (((u64) cmd->cmnd[7]) << 16) |
5165                         (((u64) cmd->cmnd[8]) << 8) |
5166                         cmd->cmnd[9];
5167                 block_cnt =
5168                         (((u32) cmd->cmnd[10]) << 24) |
5169                         (((u32) cmd->cmnd[11]) << 16) |
5170                         (((u32) cmd->cmnd[12]) << 8) |
5171                         cmd->cmnd[13];
5172                 break;
5173         default:
5174                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5175         }
5176         last_block = first_block + block_cnt - 1;
5177 
5178         /* check for write to non-RAID-0 */
5179         if (is_write && dev->raid_level != 0)
5180                 return IO_ACCEL_INELIGIBLE;
5181 
5182         /* check for invalid block or wraparound */
5183         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5184                 last_block < first_block)
5185                 return IO_ACCEL_INELIGIBLE;
5186 
5187         /* calculate stripe information for the request */
5188         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5189                                 le16_to_cpu(map->strip_size);
5190         strip_size = le16_to_cpu(map->strip_size);
5191 #if BITS_PER_LONG == 32
5192         tmpdiv = first_block;
5193         (void) do_div(tmpdiv, blocks_per_row);
5194         first_row = tmpdiv;
5195         tmpdiv = last_block;
5196         (void) do_div(tmpdiv, blocks_per_row);
5197         last_row = tmpdiv;
5198         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5199         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5200         tmpdiv = first_row_offset;
5201         (void) do_div(tmpdiv, strip_size);
5202         first_column = tmpdiv;
5203         tmpdiv = last_row_offset;
5204         (void) do_div(tmpdiv, strip_size);
5205         last_column = tmpdiv;
5206 #else
5207         first_row = first_block / blocks_per_row;
5208         last_row = last_block / blocks_per_row;
5209         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5210         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5211         first_column = first_row_offset / strip_size;
5212         last_column = last_row_offset / strip_size;
5213 #endif
5214 
5215         /* if this isn't a single row/column then give to the controller */
5216         if ((first_row != last_row) || (first_column != last_column))
5217                 return IO_ACCEL_INELIGIBLE;
5218 
5219         /* proceeding with driver mapping */
5220         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5221                                 le16_to_cpu(map->metadata_disks_per_row);
5222         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5223                                 le16_to_cpu(map->row_cnt);
5224         map_index = (map_row * total_disks_per_row) + first_column;
5225 
5226         switch (dev->raid_level) {
5227         case HPSA_RAID_0:
5228                 break; /* nothing special to do */
5229         case HPSA_RAID_1:
5230                 /* Handles load balance across RAID 1 members.
5231                  * (2-drive R1 and R10 with even # of drives.)
5232                  * Appropriate for SSDs, not optimal for HDDs
5233                  */
5234                 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5235                 if (dev->offload_to_mirror)
5236                         map_index += le16_to_cpu(map->data_disks_per_row);
5237                 dev->offload_to_mirror = !dev->offload_to_mirror;
5238                 break;
5239         case HPSA_RAID_ADM:
5240                 /* Handles N-way mirrors  (R1-ADM)
5241                  * and R10 with # of drives divisible by 3.)
5242                  */
5243                 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5244 
5245                 offload_to_mirror = dev->offload_to_mirror;
5246                 raid_map_helper(map, offload_to_mirror,
5247                                 &map_index, &current_group);
5248                 /* set mirror group to use next time */
5249                 offload_to_mirror =
5250                         (offload_to_mirror >=
5251                         le16_to_cpu(map->layout_map_count) - 1)
5252                         ? 0 : offload_to_mirror + 1;
5253                 dev->offload_to_mirror = offload_to_mirror;
5254                 /* Avoid direct use of dev->offload_to_mirror within this
5255                  * function since multiple threads might simultaneously
5256                  * increment it beyond the range of dev->layout_map_count -1.
5257                  */
5258                 break;
5259         case HPSA_RAID_5:
5260         case HPSA_RAID_6:
5261                 if (le16_to_cpu(map->layout_map_count) <= 1)
5262                         break;
5263 
5264                 /* Verify first and last block are in same RAID group */
5265                 r5or6_blocks_per_row =
5266                         le16_to_cpu(map->strip_size) *
5267                         le16_to_cpu(map->data_disks_per_row);
5268                 BUG_ON(r5or6_blocks_per_row == 0);
5269                 stripesize = r5or6_blocks_per_row *
5270                         le16_to_cpu(map->layout_map_count);
5271 #if BITS_PER_LONG == 32
5272                 tmpdiv = first_block;
5273                 first_group = do_div(tmpdiv, stripesize);
5274                 tmpdiv = first_group;
5275                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5276                 first_group = tmpdiv;
5277                 tmpdiv = last_block;
5278                 last_group = do_div(tmpdiv, stripesize);
5279                 tmpdiv = last_group;
5280                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5281                 last_group = tmpdiv;
5282 #else
5283                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5284                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5285 #endif
5286                 if (first_group != last_group)
5287                         return IO_ACCEL_INELIGIBLE;
5288 
5289                 /* Verify request is in a single row of RAID 5/6 */
5290 #if BITS_PER_LONG == 32
5291                 tmpdiv = first_block;
5292                 (void) do_div(tmpdiv, stripesize);
5293                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
5294                 tmpdiv = last_block;
5295                 (void) do_div(tmpdiv, stripesize);
5296                 r5or6_last_row = r0_last_row = tmpdiv;
5297 #else
5298                 first_row = r5or6_first_row = r0_first_row =
5299                                                 first_block / stripesize;
5300                 r5or6_last_row = r0_last_row = last_block / stripesize;
5301 #endif
5302                 if (r5or6_first_row != r5or6_last_row)
5303                         return IO_ACCEL_INELIGIBLE;
5304 
5305 
5306                 /* Verify request is in a single column */
5307 #if BITS_PER_LONG == 32
5308                 tmpdiv = first_block;
5309                 first_row_offset = do_div(tmpdiv, stripesize);
5310                 tmpdiv = first_row_offset;
5311                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5312                 r5or6_first_row_offset = first_row_offset;
5313                 tmpdiv = last_block;
5314                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5315                 tmpdiv = r5or6_last_row_offset;
5316                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5317                 tmpdiv = r5or6_first_row_offset;
5318                 (void) do_div(tmpdiv, map->strip_size);
5319                 first_column = r5or6_first_column = tmpdiv;
5320                 tmpdiv = r5or6_last_row_offset;
5321                 (void) do_div(tmpdiv, map->strip_size);
5322                 r5or6_last_column = tmpdiv;
5323 #else
5324                 first_row_offset = r5or6_first_row_offset =
5325                         (u32)((first_block % stripesize) %
5326                                                 r5or6_blocks_per_row);
5327 
5328                 r5or6_last_row_offset =
5329                         (u32)((last_block % stripesize) %
5330                                                 r5or6_blocks_per_row);
5331 
5332                 first_column = r5or6_first_column =
5333                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5334                 r5or6_last_column =
5335                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5336 #endif
5337                 if (r5or6_first_column != r5or6_last_column)
5338                         return IO_ACCEL_INELIGIBLE;
5339 
5340                 /* Request is eligible */
5341                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5342                         le16_to_cpu(map->row_cnt);
5343 
5344                 map_index = (first_group *
5345                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5346                         (map_row * total_disks_per_row) + first_column;
5347                 break;
5348         default:
5349                 return IO_ACCEL_INELIGIBLE;
5350         }
5351 
5352         if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5353                 return IO_ACCEL_INELIGIBLE;
5354 
5355         c->phys_disk = dev->phys_disk[map_index];
5356         if (!c->phys_disk)
5357                 return IO_ACCEL_INELIGIBLE;
5358 
5359         disk_handle = dd[map_index].ioaccel_handle;
5360         disk_block = le64_to_cpu(map->disk_starting_blk) +
5361                         first_row * le16_to_cpu(map->strip_size) +
5362                         (first_row_offset - first_column *
5363                         le16_to_cpu(map->strip_size));
5364         disk_block_cnt = block_cnt;
5365 
5366         /* handle differing logical/physical block sizes */
5367         if (map->phys_blk_shift) {
5368                 disk_block <<= map->phys_blk_shift;
5369                 disk_block_cnt <<= map->phys_blk_shift;
5370         }
5371         BUG_ON(disk_block_cnt > 0xffff);
5372 
5373         /* build the new CDB for the physical disk I/O */
5374         if (disk_block > 0xffffffff) {
5375                 cdb[0] = is_write ? WRITE_16 : READ_16;
5376                 cdb[1] = 0;
5377                 cdb[2] = (u8) (disk_block >> 56);
5378                 cdb[3] = (u8) (disk_block >> 48);
5379                 cdb[4] = (u8) (disk_block >> 40);
5380                 cdb[5] = (u8) (disk_block >> 32);
5381                 cdb[6] = (u8) (disk_block >> 24);
5382                 cdb[7] = (u8) (disk_block >> 16);
5383                 cdb[8] = (u8) (disk_block >> 8);
5384                 cdb[9] = (u8) (disk_block);
5385                 cdb[10] = (u8) (disk_block_cnt >> 24);
5386                 cdb[11] = (u8) (disk_block_cnt >> 16);
5387                 cdb[12] = (u8) (disk_block_cnt >> 8);
5388                 cdb[13] = (u8) (disk_block_cnt);
5389                 cdb[14] = 0;
5390                 cdb[15] = 0;
5391                 cdb_len = 16;
5392         } else {
5393                 cdb[0] = is_write ? WRITE_10 : READ_10;
5394                 cdb[1] = 0;
5395                 cdb[2] = (u8) (disk_block >> 24);
5396                 cdb[3] = (u8) (disk_block >> 16);
5397                 cdb[4] = (u8) (disk_block >> 8);
5398                 cdb[5] = (u8) (disk_block);
5399                 cdb[6] = 0;
5400                 cdb[7] = (u8) (disk_block_cnt >> 8);
5401                 cdb[8] = (u8) (disk_block_cnt);
5402                 cdb[9] = 0;
5403                 cdb_len = 10;
5404         }
5405         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5406                                                 dev->scsi3addr,
5407                                                 dev->phys_disk[map_index]);
5408 }
5409 
5410 /*
5411  * Submit commands down the "normal" RAID stack path
5412  * All callers to hpsa_ciss_submit must check lockup_detected
5413  * beforehand, before (opt.) and after calling cmd_alloc
5414  */
5415 static int hpsa_ciss_submit(struct ctlr_info *h,
5416         struct CommandList *c, struct scsi_cmnd *cmd,
5417         struct hpsa_scsi_dev_t *dev)
5418 {
5419         cmd->host_scribble = (unsigned char *) c;
5420         c->cmd_type = CMD_SCSI;
5421         c->scsi_cmd = cmd;
5422         c->Header.ReplyQueue = 0;  /* unused in simple mode */
5423         memcpy(&c->Header.LUN.LunAddrBytes[0], &dev->scsi3addr[0], 8);
5424         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5425 
5426         /* Fill in the request block... */
5427 
5428         c->Request.Timeout = 0;
5429         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5430         c->Request.CDBLen = cmd->cmd_len;
5431         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5432         switch (cmd->sc_data_direction) {
5433         case DMA_TO_DEVICE:
5434                 c->Request.type_attr_dir =
5435                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5436                 break;
5437         case DMA_FROM_DEVICE:
5438                 c->Request.type_attr_dir =
5439                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5440                 break;
5441         case DMA_NONE:
5442                 c->Request.type_attr_dir =
5443                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5444                 break;
5445         case DMA_BIDIRECTIONAL:
5446                 /* This can happen if a buggy application does a scsi passthru
5447                  * and sets both inlen and outlen to non-zero. ( see
5448                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5449                  */
5450 
5451                 c->Request.type_attr_dir =
5452                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5453                 /* This is technically wrong, and hpsa controllers should
5454                  * reject it with CMD_INVALID, which is the most correct
5455                  * response, but non-fibre backends appear to let it
5456                  * slide by, and give the same results as if this field
5457                  * were set correctly.  Either way is acceptable for
5458                  * our purposes here.
5459                  */
5460 
5461                 break;
5462 
5463         default:
5464                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5465                         cmd->sc_data_direction);
5466                 BUG();
5467                 break;
5468         }
5469 
5470         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5471                 hpsa_cmd_resolve_and_free(h, c);
5472                 return SCSI_MLQUEUE_HOST_BUSY;
5473         }
5474 
5475         if (dev->in_reset) {
5476                 hpsa_cmd_resolve_and_free(h, c);
5477                 return SCSI_MLQUEUE_HOST_BUSY;
5478         }
5479 
5480         c->device = dev;
5481 
5482         enqueue_cmd_and_start_io(h, c);
5483         /* the cmd'll come back via intr handler in complete_scsi_command()  */
5484         return 0;
5485 }
5486 
5487 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5488                                 struct CommandList *c)
5489 {
5490         dma_addr_t cmd_dma_handle, err_dma_handle;
5491 
5492         /* Zero out all of commandlist except the last field, refcount */
5493         memset(c, 0, offsetof(struct CommandList, refcount));
5494         c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5495         cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5496         c->err_info = h->errinfo_pool + index;
5497         memset(c->err_info, 0, sizeof(*c->err_info));
5498         err_dma_handle = h->errinfo_pool_dhandle
5499             + index * sizeof(*c->err_info);
5500         c->cmdindex = index;
5501         c->busaddr = (u32) cmd_dma_handle;
5502         c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5503         c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5504         c->h = h;
5505         c->scsi_cmd = SCSI_CMD_IDLE;
5506 }
5507 
5508 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5509 {
5510         int i;
5511 
5512         for (i = 0; i < h->nr_cmds; i++) {
5513                 struct CommandList *c = h->cmd_pool + i;
5514 
5515                 hpsa_cmd_init(h, i, c);
5516                 atomic_set(&c->refcount, 0);
5517         }
5518 }
5519 
5520 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5521                                 struct CommandList *c)
5522 {
5523         dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5524 
5525         BUG_ON(c->cmdindex != index);
5526 
5527         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5528         memset(c->err_info, 0, sizeof(*c->err_info));
5529         c->busaddr = (u32) cmd_dma_handle;
5530 }
5531 
5532 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5533                 struct CommandList *c, struct scsi_cmnd *cmd)
5534 {
5535         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5536         int rc = IO_ACCEL_INELIGIBLE;
5537 
5538         if (!dev)
5539                 return SCSI_MLQUEUE_HOST_BUSY;
5540 
5541         if (dev->in_reset)
5542                 return SCSI_MLQUEUE_HOST_BUSY;
5543 
5544         if (hpsa_simple_mode)
5545                 return IO_ACCEL_INELIGIBLE;
5546 
5547         cmd->host_scribble = (unsigned char *) c;
5548 
5549         if (dev->offload_enabled) {
5550                 hpsa_cmd_init(h, c->cmdindex, c);
5551                 c->cmd_type = CMD_SCSI;
5552                 c->scsi_cmd = cmd;
5553                 c->device = dev;
5554                 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5555                 if (rc < 0)     /* scsi_dma_map failed. */
5556                         rc = SCSI_MLQUEUE_HOST_BUSY;
5557         } else if (dev->hba_ioaccel_enabled) {
5558                 hpsa_cmd_init(h, c->cmdindex, c);
5559                 c->cmd_type = CMD_SCSI;
5560                 c->scsi_cmd = cmd;
5561                 c->device = dev;
5562                 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5563                 if (rc < 0)     /* scsi_dma_map failed. */
5564                         rc = SCSI_MLQUEUE_HOST_BUSY;
5565         }
5566         return rc;
5567 }
5568 
5569 static void hpsa_command_resubmit_worker(struct work_struct *work)
5570 {
5571         struct scsi_cmnd *cmd;
5572         struct hpsa_scsi_dev_t *dev;
5573         struct CommandList *c = container_of(work, struct CommandList, work);
5574 
5575         cmd = c->scsi_cmd;
5576         dev = cmd->device->hostdata;
5577         if (!dev) {
5578                 cmd->result = DID_NO_CONNECT << 16;
5579                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5580         }
5581 
5582         if (dev->in_reset) {
5583                 cmd->result = DID_RESET << 16;
5584                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5585         }
5586 
5587         if (c->cmd_type == CMD_IOACCEL2) {
5588                 struct ctlr_info *h = c->h;
5589                 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5590                 int rc;
5591 
5592                 if (c2->error_data.serv_response ==
5593                                 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5594                         rc = hpsa_ioaccel_submit(h, c, cmd);
5595                         if (rc == 0)
5596                                 return;
5597                         if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5598                                 /*
5599                                  * If we get here, it means dma mapping failed.
5600                                  * Try again via scsi mid layer, which will
5601                                  * then get SCSI_MLQUEUE_HOST_BUSY.
5602                                  */
5603                                 cmd->result = DID_IMM_RETRY << 16;
5604                                 return hpsa_cmd_free_and_done(h, c, cmd);
5605                         }
5606                         /* else, fall thru and resubmit down CISS path */
5607                 }
5608         }
5609         hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5610         if (hpsa_ciss_submit(c->h, c, cmd, dev)) {
5611                 /*
5612                  * If we get here, it means dma mapping failed. Try
5613                  * again via scsi mid layer, which will then get
5614                  * SCSI_MLQUEUE_HOST_BUSY.
5615                  *
5616                  * hpsa_ciss_submit will have already freed c
5617                  * if it encountered a dma mapping failure.
5618                  */
5619                 cmd->result = DID_IMM_RETRY << 16;
5620                 cmd->scsi_done(cmd);
5621         }
5622 }
5623 
5624 /* Running in struct Scsi_Host->host_lock less mode */
5625 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5626 {
5627         struct ctlr_info *h;
5628         struct hpsa_scsi_dev_t *dev;
5629         struct CommandList *c;
5630         int rc = 0;
5631 
5632         /* Get the ptr to our adapter structure out of cmd->host. */
5633         h = sdev_to_hba(cmd->device);
5634 
5635         BUG_ON(cmd->request->tag < 0);
5636 
5637         dev = cmd->device->hostdata;
5638         if (!dev) {
5639                 cmd->result = DID_NO_CONNECT << 16;
5640                 cmd->scsi_done(cmd);
5641                 return 0;
5642         }
5643 
5644         if (dev->removed) {
5645                 cmd->result = DID_NO_CONNECT << 16;
5646                 cmd->scsi_done(cmd);
5647                 return 0;
5648         }
5649 
5650         if (unlikely(lockup_detected(h))) {
5651                 cmd->result = DID_NO_CONNECT << 16;
5652                 cmd->scsi_done(cmd);
5653                 return 0;
5654         }
5655 
5656         if (dev->in_reset)
5657                 return SCSI_MLQUEUE_DEVICE_BUSY;
5658 
5659         c = cmd_tagged_alloc(h, cmd);
5660         if (c == NULL)
5661                 return SCSI_MLQUEUE_DEVICE_BUSY;
5662 
5663         /*
5664          * This is necessary because the SML doesn't zero out this field during
5665          * error recovery.
5666          */
5667         cmd->result = 0;
5668 
5669         /*
5670          * Call alternate submit routine for I/O accelerated commands.
5671          * Retries always go down the normal I/O path.
5672          */
5673         if (likely(cmd->retries == 0 &&
5674                         !blk_rq_is_passthrough(cmd->request) &&
5675                         h->acciopath_status)) {
5676                 rc = hpsa_ioaccel_submit(h, c, cmd);
5677                 if (rc == 0)
5678                         return 0;
5679                 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5680                         hpsa_cmd_resolve_and_free(h, c);
5681                         return SCSI_MLQUEUE_HOST_BUSY;
5682                 }
5683         }
5684         return hpsa_ciss_submit(h, c, cmd, dev);
5685 }
5686 
5687 static void hpsa_scan_complete(struct ctlr_info *h)
5688 {
5689         unsigned long flags;
5690 
5691         spin_lock_irqsave(&h->scan_lock, flags);
5692         h->scan_finished = 1;
5693         wake_up(&h->scan_wait_queue);
5694         spin_unlock_irqrestore(&h->scan_lock, flags);
5695 }
5696 
5697 static void hpsa_scan_start(struct Scsi_Host *sh)
5698 {
5699         struct ctlr_info *h = shost_to_hba(sh);
5700         unsigned long flags;
5701 
5702         /*
5703          * Don't let rescans be initiated on a controller known to be locked
5704          * up.  If the controller locks up *during* a rescan, that thread is
5705          * probably hosed, but at least we can prevent new rescan threads from
5706          * piling up on a locked up controller.
5707          */
5708         if (unlikely(lockup_detected(h)))
5709                 return hpsa_scan_complete(h);
5710 
5711         /*
5712          * If a scan is already waiting to run, no need to add another
5713          */
5714         spin_lock_irqsave(&h->scan_lock, flags);
5715         if (h->scan_waiting) {
5716                 spin_unlock_irqrestore(&h->scan_lock, flags);
5717                 return;
5718         }
5719 
5720         spin_unlock_irqrestore(&h->scan_lock, flags);
5721 
5722         /* wait until any scan already in progress is finished. */
5723         while (1) {
5724                 spin_lock_irqsave(&h->scan_lock, flags);
5725                 if (h->scan_finished)
5726                         break;
5727                 h->scan_waiting = 1;
5728                 spin_unlock_irqrestore(&h->scan_lock, flags);
5729                 wait_event(h->scan_wait_queue, h->scan_finished);
5730                 /* Note: We don't need to worry about a race between this
5731                  * thread and driver unload because the midlayer will
5732                  * have incremented the reference count, so unload won't
5733                  * happen if we're in here.
5734                  */
5735         }
5736         h->scan_finished = 0; /* mark scan as in progress */
5737         h->scan_waiting = 0;
5738         spin_unlock_irqrestore(&h->scan_lock, flags);
5739 
5740         if (unlikely(lockup_detected(h)))
5741                 return hpsa_scan_complete(h);
5742 
5743         /*
5744          * Do the scan after a reset completion
5745          */
5746         spin_lock_irqsave(&h->reset_lock, flags);
5747         if (h->reset_in_progress) {
5748                 h->drv_req_rescan = 1;
5749                 spin_unlock_irqrestore(&h->reset_lock, flags);
5750                 hpsa_scan_complete(h);
5751                 return;
5752         }
5753         spin_unlock_irqrestore(&h->reset_lock, flags);
5754 
5755         hpsa_update_scsi_devices(h);
5756 
5757         hpsa_scan_complete(h);
5758 }
5759 
5760 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5761 {
5762         struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5763 
5764         if (!logical_drive)
5765                 return -ENODEV;
5766 
5767         if (qdepth < 1)
5768                 qdepth = 1;
5769         else if (qdepth > logical_drive->queue_depth)
5770                 qdepth = logical_drive->queue_depth;
5771 
5772         return scsi_change_queue_depth(sdev, qdepth);
5773 }
5774 
5775 static int hpsa_scan_finished(struct Scsi_Host *sh,
5776         unsigned long elapsed_time)
5777 {
5778         struct ctlr_info *h = shost_to_hba(sh);
5779         unsigned long flags;
5780         int finished;
5781 
5782         spin_lock_irqsave(&h->scan_lock, flags);
5783         finished = h->scan_finished;
5784         spin_unlock_irqrestore(&h->scan_lock, flags);
5785         return finished;
5786 }
5787 
5788 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5789 {
5790         struct Scsi_Host *sh;
5791 
5792         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5793         if (sh == NULL) {
5794                 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5795                 return -ENOMEM;
5796         }
5797 
5798         sh->io_port = 0;
5799         sh->n_io_port = 0;
5800         sh->this_id = -1;
5801         sh->max_channel = 3;
5802         sh->max_cmd_len = MAX_COMMAND_SIZE;
5803         sh->max_lun = HPSA_MAX_LUN;
5804         sh->max_id = HPSA_MAX_LUN;
5805         sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5806         sh->cmd_per_lun = sh->can_queue;
5807         sh->sg_tablesize = h->maxsgentries;
5808         sh->transportt = hpsa_sas_transport_template;
5809         sh->hostdata[0] = (unsigned long) h;
5810         sh->irq = pci_irq_vector(h->pdev, 0);
5811         sh->unique_id = sh->irq;
5812 
5813         h->scsi_host = sh;
5814         return 0;
5815 }
5816 
5817 static int hpsa_scsi_add_host(struct ctlr_info *h)
5818 {
5819         int rv;
5820 
5821         rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5822         if (rv) {
5823                 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5824                 return rv;
5825         }
5826         scsi_scan_host(h->scsi_host);
5827         return 0;
5828 }
5829 
5830 /*
5831  * The block layer has already gone to the trouble of picking out a unique,
5832  * small-integer tag for this request.  We use an offset from that value as
5833  * an index to select our command block.  (The offset allows us to reserve the
5834  * low-numbered entries for our own uses.)
5835  */
5836 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5837 {
5838         int idx = scmd->request->tag;
5839 
5840         if (idx < 0)
5841                 return idx;
5842 
5843         /* Offset to leave space for internal cmds. */
5844         return idx += HPSA_NRESERVED_CMDS;
5845 }
5846 
5847 /*
5848  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5849  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5850  */
5851 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5852                                 struct CommandList *c, unsigned char lunaddr[],
5853                                 int reply_queue)
5854 {
5855         int rc;
5856 
5857         /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5858         (void) fill_cmd(c, TEST_UNIT_READY, h,
5859                         NULL, 0, 0, lunaddr, TYPE_CMD);
5860         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5861         if (rc)
5862                 return rc;
5863         /* no unmap needed here because no data xfer. */
5864 
5865         /* Check if the unit is already ready. */
5866         if (c->err_info->CommandStatus == CMD_SUCCESS)
5867                 return 0;
5868 
5869         /*
5870          * The first command sent after reset will receive "unit attention" to
5871          * indicate that the LUN has been reset...this is actually what we're
5872          * looking for (but, success is good too).
5873          */
5874         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5875                 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5876                         (c->err_info->SenseInfo[2] == NO_SENSE ||
5877                          c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5878                 return 0;
5879 
5880         return 1;
5881 }
5882 
5883 /*
5884  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5885  * returns zero when the unit is ready, and non-zero when giving up.
5886  */
5887 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5888                                 struct CommandList *c,
5889                                 unsigned char lunaddr[], int reply_queue)
5890 {
5891         int rc;
5892         int count = 0;
5893         int waittime = 1; /* seconds */
5894 
5895         /* Send test unit ready until device ready, or give up. */
5896         for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5897 
5898                 /*
5899                  * Wait for a bit.  do this first, because if we send
5900                  * the TUR right away, the reset will just abort it.
5901                  */
5902                 msleep(1000 * waittime);
5903 
5904                 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5905                 if (!rc)
5906                         break;
5907 
5908                 /* Increase wait time with each try, up to a point. */
5909                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5910                         waittime *= 2;
5911 
5912                 dev_warn(&h->pdev->dev,
5913                          "waiting %d secs for device to become ready.\n",
5914                          waittime);
5915         }
5916 
5917         return rc;
5918 }
5919 
5920 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5921                                            unsigned char lunaddr[],
5922                                            int reply_queue)
5923 {
5924         int first_queue;
5925         int last_queue;
5926         int rq;
5927         int rc = 0;
5928         struct CommandList *c;
5929 
5930         c = cmd_alloc(h);
5931 
5932         /*
5933          * If no specific reply queue was requested, then send the TUR
5934          * repeatedly, requesting a reply on each reply queue; otherwise execute
5935          * the loop exactly once using only the specified queue.
5936          */
5937         if (reply_queue == DEFAULT_REPLY_QUEUE) {
5938                 first_queue = 0;
5939                 last_queue = h->nreply_queues - 1;
5940         } else {
5941                 first_queue = reply_queue;
5942                 last_queue = reply_queue;
5943         }
5944 
5945         for (rq = first_queue; rq <= last_queue; rq++) {
5946                 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5947                 if (rc)
5948                         break;
5949         }
5950 
5951         if (rc)
5952                 dev_warn(&h->pdev->dev, "giving up on device.\n");
5953         else
5954                 dev_warn(&h->pdev->dev, "device is ready.\n");
5955 
5956         cmd_free(h, c);
5957         return rc;
5958 }
5959 
5960 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5961  * complaining.  Doing a host- or bus-reset can't do anything good here.
5962  */
5963 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5964 {
5965         int rc = SUCCESS;
5966         int i;
5967         struct ctlr_info *h;
5968         struct hpsa_scsi_dev_t *dev = NULL;
5969         u8 reset_type;
5970         char msg[48];
5971         unsigned long flags;
5972 
5973         /* find the controller to which the command to be aborted was sent */
5974         h = sdev_to_hba(scsicmd->device);
5975         if (h == NULL) /* paranoia */
5976                 return FAILED;
5977 
5978         spin_lock_irqsave(&h->reset_lock, flags);
5979         h->reset_in_progress = 1;
5980         spin_unlock_irqrestore(&h->reset_lock, flags);
5981 
5982         if (lockup_detected(h)) {
5983                 rc = FAILED;
5984                 goto return_reset_status;
5985         }
5986 
5987         dev = scsicmd->device->hostdata;
5988         if (!dev) {
5989                 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5990                 rc = FAILED;
5991                 goto return_reset_status;
5992         }
5993 
5994         if (dev->devtype == TYPE_ENCLOSURE) {
5995                 rc = SUCCESS;
5996                 goto return_reset_status;
5997         }
5998 
5999         /* if controller locked up, we can guarantee command won't complete */
6000         if (lockup_detected(h)) {
6001                 snprintf(msg, sizeof(msg),
6002                          "cmd %d RESET FAILED, lockup detected",
6003                          hpsa_get_cmd_index(scsicmd));
6004                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6005                 rc = FAILED;
6006                 goto return_reset_status;
6007         }
6008 
6009         /* this reset request might be the result of a lockup; check */
6010         if (detect_controller_lockup(h)) {
6011                 snprintf(msg, sizeof(msg),
6012                          "cmd %d RESET FAILED, new lockup detected",
6013                          hpsa_get_cmd_index(scsicmd));
6014                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6015                 rc = FAILED;
6016                 goto return_reset_status;
6017         }
6018 
6019         /* Do not attempt on controller */
6020         if (is_hba_lunid(dev->scsi3addr)) {
6021                 rc = SUCCESS;
6022                 goto return_reset_status;
6023         }
6024 
6025         if (is_logical_dev_addr_mode(dev->scsi3addr))
6026                 reset_type = HPSA_DEVICE_RESET_MSG;
6027         else
6028                 reset_type = HPSA_PHYS_TARGET_RESET;
6029 
6030         sprintf(msg, "resetting %s",
6031                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
6032         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6033 
6034         /*
6035          * wait to see if any commands will complete before sending reset
6036          */
6037         dev->in_reset = true; /* block any new cmds from OS for this device */
6038         for (i = 0; i < 10; i++) {
6039                 if (atomic_read(&dev->commands_outstanding) > 0)
6040                         msleep(1000);
6041                 else
6042                         break;
6043         }
6044 
6045         /* send a reset to the SCSI LUN which the command was sent to */
6046         rc = hpsa_do_reset(h, dev, reset_type, DEFAULT_REPLY_QUEUE);
6047         if (rc == 0)
6048                 rc = SUCCESS;
6049         else
6050                 rc = FAILED;
6051 
6052         sprintf(msg, "reset %s %s",
6053                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
6054                 rc == SUCCESS ? "completed successfully" : "failed");
6055         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6056 
6057 return_reset_status:
6058         spin_lock_irqsave(&h->reset_lock, flags);
6059         h->reset_in_progress = 0;
6060         if (dev)
6061                 dev->in_reset = false;
6062         spin_unlock_irqrestore(&h->reset_lock, flags);
6063         return rc;
6064 }
6065 
6066 /*
6067  * For operations with an associated SCSI command, a command block is allocated
6068  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6069  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6070  * the complement, although cmd_free() may be called instead.
6071  */
6072 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6073                                             struct scsi_cmnd *scmd)
6074 {
6075         int idx = hpsa_get_cmd_index(scmd);
6076         struct CommandList *c = h->cmd_pool + idx;
6077 
6078         if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6079                 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6080                         idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6081                 /* The index value comes from the block layer, so if it's out of
6082                  * bounds, it's probably not our bug.
6083                  */
6084                 BUG();
6085         }
6086 
6087         if (unlikely(!hpsa_is_cmd_idle(c))) {
6088                 /*
6089                  * We expect that the SCSI layer will hand us a unique tag
6090                  * value.  Thus, there should never be a collision here between
6091                  * two requests...because if the selected command isn't idle
6092                  * then someone is going to be very disappointed.
6093                  */
6094                 if (idx != h->last_collision_tag) { /* Print once per tag */
6095                         dev_warn(&h->pdev->dev,
6096                                 "%s: tag collision (tag=%d)\n", __func__, idx);
6097                         if (scmd)
6098                                 scsi_print_command(scmd);
6099                         h->last_collision_tag = idx;
6100                 }
6101                 return NULL;
6102         }
6103 
6104         atomic_inc(&c->refcount);
6105 
6106         hpsa_cmd_partial_init(h, idx, c);
6107         return c;
6108 }
6109 
6110 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6111 {
6112         /*
6113          * Release our reference to the block.  We don't need to do anything
6114          * else to free it, because it is accessed by index.
6115          */
6116         (void)atomic_dec(&c->refcount);
6117 }
6118 
6119 /*
6120  * For operations that cannot sleep, a command block is allocated at init,
6121  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6122  * which ones are free or in use.  Lock must be held when calling this.
6123  * cmd_free() is the complement.
6124  * This function never gives up and returns NULL.  If it hangs,
6125  * another thread must call cmd_free() to free some tags.
6126  */
6127 
6128 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6129 {
6130         struct CommandList *c;
6131         int refcount, i;
6132         int offset = 0;
6133 
6134         /*
6135          * There is some *extremely* small but non-zero chance that that
6136          * multiple threads could get in here, and one thread could
6137          * be scanning through the list of bits looking for a free
6138          * one, but the free ones are always behind him, and other
6139          * threads sneak in behind him and eat them before he can
6140          * get to them, so that while there is always a free one, a
6141          * very unlucky thread might be starved anyway, never able to
6142          * beat the other threads.  In reality, this happens so
6143          * infrequently as to be indistinguishable from never.
6144          *
6145          * Note that we start allocating commands before the SCSI host structure
6146          * is initialized.  Since the search starts at bit zero, this
6147          * all works, since we have at least one command structure available;
6148          * however, it means that the structures with the low indexes have to be
6149          * reserved for driver-initiated requests, while requests from the block
6150          * layer will use the higher indexes.
6151          */
6152 
6153         for (;;) {
6154                 i = find_next_zero_bit(h->cmd_pool_bits,
6155                                         HPSA_NRESERVED_CMDS,
6156                                         offset);
6157                 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6158                         offset = 0;
6159                         continue;
6160                 }
6161                 c = h->cmd_pool + i;
6162                 refcount = atomic_inc_return(&c->refcount);
6163                 if (unlikely(refcount > 1)) {
6164                         cmd_free(h, c); /* already in use */
6165                         offset = (i + 1) % HPSA_NRESERVED_CMDS;
6166                         continue;
6167                 }
6168                 set_bit(i & (BITS_PER_LONG - 1),
6169                         h->cmd_pool_bits + (i / BITS_PER_LONG));
6170                 break; /* it's ours now. */
6171         }
6172         hpsa_cmd_partial_init(h, i, c);
6173         c->device = NULL;
6174         return c;
6175 }
6176 
6177 /*
6178  * This is the complementary operation to cmd_alloc().  Note, however, in some
6179  * corner cases it may also be used to free blocks allocated by
6180  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6181  * the clear-bit is harmless.
6182  */
6183 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6184 {
6185         if (atomic_dec_and_test(&c->refcount)) {
6186                 int i;
6187 
6188                 i = c - h->cmd_pool;
6189                 clear_bit(i & (BITS_PER_LONG - 1),
6190                           h->cmd_pool_bits + (i / BITS_PER_LONG));
6191         }
6192 }
6193 
6194 #ifdef CONFIG_COMPAT
6195 
6196 static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd,
6197         void __user *arg)
6198 {
6199         IOCTL32_Command_struct __user *arg32 =
6200             (IOCTL32_Command_struct __user *) arg;
6201         IOCTL_Command_struct arg64;
6202         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6203         int err;
6204         u32 cp;
6205 
6206         memset(&arg64, 0, sizeof(arg64));
6207         err = 0;
6208         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6209                            sizeof(arg64.LUN_info));
6210         err |= copy_from_user(&arg64.Request, &arg32->Request,
6211                            sizeof(arg64.Request));
6212         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6213                            sizeof(arg64.error_info));
6214         err |= get_user(arg64.buf_size, &arg32->buf_size);
6215         err |= get_user(cp, &arg32->buf);
6216         arg64.buf = compat_ptr(cp);
6217         err |= copy_to_user(p, &arg64, sizeof(arg64));
6218 
6219         if (err)
6220                 return -EFAULT;
6221 
6222         err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6223         if (err)
6224                 return err;
6225         err |= copy_in_user(&arg32->error_info, &p->error_info,
6226                          sizeof(arg32->error_info));
6227         if (err)
6228                 return -EFAULT;
6229         return err;
6230 }
6231 
6232 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6233         unsigned int cmd, void __user *arg)
6234 {
6235         BIG_IOCTL32_Command_struct __user *arg32 =
6236             (BIG_IOCTL32_Command_struct __user *) arg;
6237         BIG_IOCTL_Command_struct arg64;
6238         BIG_IOCTL_Command_struct __user *p =
6239             compat_alloc_user_space(sizeof(arg64));
6240         int err;
6241         u32 cp;
6242 
6243         memset(&arg64, 0, sizeof(arg64));
6244         err = 0;
6245         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6246                            sizeof(arg64.LUN_info));
6247         err |= copy_from_user(&arg64.Request, &arg32->Request,
6248                            sizeof(arg64.Request));
6249         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6250                            sizeof(arg64.error_info));
6251         err |= get_user(arg64.buf_size, &arg32->buf_size);
6252         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6253         err |= get_user(cp, &arg32->buf);
6254         arg64.buf = compat_ptr(cp);
6255         err |= copy_to_user(p, &arg64, sizeof(arg64));
6256 
6257         if (err)
6258                 return -EFAULT;
6259 
6260         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6261         if (err)
6262                 return err;
6263         err |= copy_in_user(&arg32->error_info, &p->error_info,
6264                          sizeof(arg32->error_info));
6265         if (err)
6266                 return -EFAULT;
6267         return err;
6268 }
6269 
6270 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
6271                              void __user *arg)
6272 {
6273         switch (cmd) {
6274         case CCISS_GETPCIINFO:
6275         case CCISS_GETINTINFO:
6276         case CCISS_SETINTINFO:
6277         case CCISS_GETNODENAME:
6278         case CCISS_SETNODENAME:
6279         case CCISS_GETHEARTBEAT:
6280         case CCISS_GETBUSTYPES:
6281         case CCISS_GETFIRMVER:
6282         case CCISS_GETDRIVVER:
6283         case CCISS_REVALIDVOLS:
6284         case CCISS_DEREGDISK:
6285         case CCISS_REGNEWDISK:
6286         case CCISS_REGNEWD:
6287         case CCISS_RESCANDISK:
6288         case CCISS_GETLUNINFO:
6289                 return hpsa_ioctl(dev, cmd, arg);
6290 
6291         case CCISS_PASSTHRU32:
6292                 return hpsa_ioctl32_passthru(dev, cmd, arg);
6293         case CCISS_BIG_PASSTHRU32:
6294                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6295 
6296         default:
6297                 return -ENOIOCTLCMD;
6298         }
6299 }
6300 #endif
6301 
6302 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6303 {
6304         struct hpsa_pci_info pciinfo;
6305 
6306         if (!argp)
6307                 return -EINVAL;
6308         pciinfo.domain = pci_domain_nr(h->pdev->bus);
6309         pciinfo.bus = h->pdev->bus->number;
6310         pciinfo.dev_fn = h->pdev->devfn;
6311         pciinfo.board_id = h->board_id;
6312         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6313                 return -EFAULT;
6314         return 0;
6315 }
6316 
6317 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6318 {
6319         DriverVer_type DriverVer;
6320         unsigned char vmaj, vmin, vsubmin;
6321         int rc;
6322 
6323         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6324                 &vmaj, &vmin, &vsubmin);
6325         if (rc != 3) {
6326                 dev_info(&h->pdev->dev, "driver version string '%s' "
6327                         "unrecognized.", HPSA_DRIVER_VERSION);
6328                 vmaj = 0;
6329                 vmin = 0;
6330                 vsubmin = 0;
6331         }
6332         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6333         if (!argp)
6334                 return -EINVAL;
6335         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6336                 return -EFAULT;
6337         return 0;
6338 }
6339 
6340 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6341 {
6342         IOCTL_Command_struct iocommand;
6343         struct CommandList *c;
6344         char *buff = NULL;
6345         u64 temp64;
6346         int rc = 0;
6347 
6348         if (!argp)
6349                 return -EINVAL;
6350         if (!capable(CAP_SYS_RAWIO))
6351                 return -EPERM;
6352         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6353                 return -EFAULT;
6354         if ((iocommand.buf_size < 1) &&
6355             (iocommand.Request.Type.Direction != XFER_NONE)) {
6356                 return -EINVAL;
6357         }
6358         if (iocommand.buf_size > 0) {
6359                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6360                 if (buff == NULL)
6361                         return -ENOMEM;
6362                 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6363                         /* Copy the data into the buffer we created */
6364                         if (copy_from_user(buff, iocommand.buf,
6365                                 iocommand.buf_size)) {
6366                                 rc = -EFAULT;
6367                                 goto out_kfree;
6368                         }
6369                 } else {
6370                         memset(buff, 0, iocommand.buf_size);
6371                 }
6372         }
6373         c = cmd_alloc(h);
6374 
6375         /* Fill in the command type */
6376         c->cmd_type = CMD_IOCTL_PEND;
6377         c->scsi_cmd = SCSI_CMD_BUSY;
6378         /* Fill in Command Header */
6379         c->Header.ReplyQueue = 0; /* unused in simple mode */
6380         if (iocommand.buf_size > 0) {   /* buffer to fill */
6381                 c->Header.SGList = 1;
6382                 c->Header.SGTotal = cpu_to_le16(1);
6383         } else  { /* no buffers to fill */
6384                 c->Header.SGList = 0;
6385                 c->Header.SGTotal = cpu_to_le16(0);
6386         }
6387         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6388 
6389         /* Fill in Request block */
6390         memcpy(&c->Request, &iocommand.Request,
6391                 sizeof(c->Request));
6392 
6393         /* Fill in the scatter gather information */
6394         if (iocommand.buf_size > 0) {
6395                 temp64 = dma_map_single(&h->pdev->dev, buff,
6396                         iocommand.buf_size, DMA_BIDIRECTIONAL);
6397                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6398                         c->SG[0].Addr = cpu_to_le64(0);
6399                         c->SG[0].Len = cpu_to_le32(0);
6400                         rc = -ENOMEM;
6401                         goto out;
6402                 }
6403                 c->SG[0].Addr = cpu_to_le64(temp64);
6404                 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6405                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6406         }
6407         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6408                                         NO_TIMEOUT);
6409         if (iocommand.buf_size > 0)
6410                 hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
6411         check_ioctl_unit_attention(h, c);
6412         if (rc) {
6413                 rc = -EIO;
6414                 goto out;
6415         }
6416 
6417         /* Copy the error information out */
6418         memcpy(&iocommand.error_info, c->err_info,
6419                 sizeof(iocommand.error_info));
6420         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6421                 rc = -EFAULT;
6422                 goto out;
6423         }
6424         if ((iocommand.Request.Type.Direction & XFER_READ) &&
6425                 iocommand.buf_size > 0) {
6426                 /* Copy the data out of the buffer we created */
6427                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6428                         rc = -EFAULT;
6429                         goto out;
6430                 }
6431         }
6432 out:
6433         cmd_free(h, c);
6434 out_kfree:
6435         kfree(buff);
6436         return rc;
6437 }
6438 
6439 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6440 {
6441         BIG_IOCTL_Command_struct *ioc;
6442         struct CommandList *c;
6443         unsigned char **buff = NULL;
6444         int *buff_size = NULL;
6445         u64 temp64;
6446         BYTE sg_used = 0;
6447         int status = 0;
6448         u32 left;
6449         u32 sz;
6450         BYTE __user *data_ptr;
6451 
6452         if (!argp)
6453                 return -EINVAL;
6454         if (!capable(CAP_SYS_RAWIO))
6455                 return -EPERM;
6456         ioc = vmemdup_user(argp, sizeof(*ioc));
6457         if (IS_ERR(ioc)) {
6458                 status = PTR_ERR(ioc);
6459                 goto cleanup1;
6460         }
6461         if ((ioc->buf_size < 1) &&
6462             (ioc->Request.Type.Direction != XFER_NONE)) {
6463                 status = -EINVAL;
6464                 goto cleanup1;
6465         }
6466         /* Check kmalloc limits  using all SGs */
6467         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6468                 status = -EINVAL;
6469                 goto cleanup1;
6470         }
6471         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6472                 status = -EINVAL;
6473                 goto cleanup1;
6474         }
6475         buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6476         if (!buff) {
6477                 status = -ENOMEM;
6478                 goto cleanup1;
6479         }
6480         buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6481         if (!buff_size) {
6482                 status = -ENOMEM;
6483                 goto cleanup1;
6484         }
6485         left = ioc->buf_size;
6486         data_ptr = ioc->buf;
6487         while (left) {
6488                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6489                 buff_size[sg_used] = sz;
6490                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6491                 if (buff[sg_used] == NULL) {
6492                         status = -ENOMEM;
6493                         goto cleanup1;
6494                 }
6495                 if (ioc->Request.Type.Direction & XFER_WRITE) {
6496                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6497                                 status = -EFAULT;
6498                                 goto cleanup1;
6499                         }
6500                 } else
6501                         memset(buff[sg_used], 0, sz);
6502                 left -= sz;
6503                 data_ptr += sz;
6504                 sg_used++;
6505         }
6506         c = cmd_alloc(h);
6507 
6508         c->cmd_type = CMD_IOCTL_PEND;
6509         c->scsi_cmd = SCSI_CMD_BUSY;
6510         c->Header.ReplyQueue = 0;
6511         c->Header.SGList = (u8) sg_used;
6512         c->Header.SGTotal = cpu_to_le16(sg_used);
6513         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6514         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6515         if (ioc->buf_size > 0) {
6516                 int i;
6517                 for (i = 0; i < sg_used; i++) {
6518                         temp64 = dma_map_single(&h->pdev->dev, buff[i],
6519                                     buff_size[i], DMA_BIDIRECTIONAL);
6520                         if (dma_mapping_error(&h->pdev->dev,
6521                                                         (dma_addr_t) temp64)) {
6522                                 c->SG[i].Addr = cpu_to_le64(0);
6523                                 c->SG[i].Len = cpu_to_le32(0);
6524                                 hpsa_pci_unmap(h->pdev, c, i,
6525                                         DMA_BIDIRECTIONAL);
6526                                 status = -ENOMEM;
6527                                 goto cleanup0;
6528                         }
6529                         c->SG[i].Addr = cpu_to_le64(temp64);
6530                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
6531                         c->SG[i].Ext = cpu_to_le32(0);
6532                 }
6533                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6534         }
6535         status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6536                                                 NO_TIMEOUT);
6537         if (sg_used)
6538                 hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
6539         check_ioctl_unit_attention(h, c);
6540         if (status) {
6541                 status = -EIO;
6542                 goto cleanup0;
6543         }
6544 
6545         /* Copy the error information out */
6546         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6547         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6548                 status = -EFAULT;
6549                 goto cleanup0;
6550         }
6551         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6552                 int i;
6553 
6554                 /* Copy the data out of the buffer we created */
6555                 BYTE __user *ptr = ioc->buf;
6556                 for (i = 0; i < sg_used; i++) {
6557                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
6558                                 status = -EFAULT;
6559                                 goto cleanup0;
6560                         }
6561                         ptr += buff_size[i];
6562                 }
6563         }
6564         status = 0;
6565 cleanup0:
6566         cmd_free(h, c);
6567 cleanup1:
6568         if (buff) {
6569                 int i;
6570 
6571                 for (i = 0; i < sg_used; i++)
6572                         kfree(buff[i]);
6573                 kfree(buff);
6574         }
6575         kfree(buff_size);
6576         kvfree(ioc);
6577         return status;
6578 }
6579 
6580 static void check_ioctl_unit_attention(struct ctlr_info *h,
6581         struct CommandList *c)
6582 {
6583         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6584                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6585                 (void) check_for_unit_attention(h, c);
6586 }
6587 
6588 /*
6589  * ioctl
6590  */
6591 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
6592                       void __user *arg)
6593 {
6594         struct ctlr_info *h;
6595         void __user *argp = (void __user *)arg;
6596         int rc;
6597 
6598         h = sdev_to_hba(dev);
6599 
6600         switch (cmd) {
6601         case CCISS_DEREGDISK:
6602         case CCISS_REGNEWDISK:
6603         case CCISS_REGNEWD:
6604                 hpsa_scan_start(h->scsi_host);
6605                 return 0;
6606         case CCISS_GETPCIINFO:
6607                 return hpsa_getpciinfo_ioctl(h, argp);
6608         case CCISS_GETDRIVVER:
6609                 return hpsa_getdrivver_ioctl(h, argp);
6610         case CCISS_PASSTHRU:
6611                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6612                         return -EAGAIN;
6613                 rc = hpsa_passthru_ioctl(h, argp);
6614                 atomic_inc(&h->passthru_cmds_avail);
6615                 return rc;
6616         case CCISS_BIG_PASSTHRU:
6617                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6618                         return -EAGAIN;
6619                 rc = hpsa_big_passthru_ioctl(h, argp);
6620                 atomic_inc(&h->passthru_cmds_avail);
6621                 return rc;
6622         default:
6623                 return -ENOTTY;
6624         }
6625 }
6626 
6627 static void hpsa_send_host_reset(struct ctlr_info *h, u8 reset_type)
6628 {
6629         struct CommandList *c;
6630 
6631         c = cmd_alloc(h);
6632 
6633         /* fill_cmd can't fail here, no data buffer to map */
6634         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6635                 RAID_CTLR_LUNID, TYPE_MSG);
6636         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6637         c->waiting = NULL;
6638         enqueue_cmd_and_start_io(h, c);
6639         /* Don't wait for completion, the reset won't complete.  Don't free
6640          * the command either.  This is the last command we will send before
6641          * re-initializing everything, so it doesn't matter and won't leak.
6642          */
6643         return;
6644 }
6645 
6646 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6647         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6648         int cmd_type)
6649 {
6650         enum dma_data_direction dir = DMA_NONE;
6651 
6652         c->cmd_type = CMD_IOCTL_PEND;
6653         c->scsi_cmd = SCSI_CMD_BUSY;
6654         c->Header.ReplyQueue = 0;
6655         if (buff != NULL && size > 0) {
6656                 c->Header.SGList = 1;
6657                 c->Header.SGTotal = cpu_to_le16(1);
6658         } else {
6659                 c->Header.SGList = 0;
6660                 c->Header.SGTotal = cpu_to_le16(0);
6661         }
6662         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6663 
6664         if (cmd_type == TYPE_CMD) {
6665                 switch (cmd) {
6666                 case HPSA_INQUIRY:
6667                         /* are we trying to read a vital product page */
6668                         if (page_code & VPD_PAGE) {
6669                                 c->Request.CDB[1] = 0x01;
6670                                 c->Request.CDB[2] = (page_code & 0xff);
6671                         }
6672                         c->Request.CDBLen = 6;
6673                         c->Request.type_attr_dir =
6674                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6675                         c->Request.Timeout = 0;
6676                         c->Request.CDB[0] = HPSA_INQUIRY;
6677                         c->Request.CDB[4] = size & 0xFF;
6678                         break;
6679                 case RECEIVE_DIAGNOSTIC:
6680                         c->Request.CDBLen = 6;
6681                         c->Request.type_attr_dir =
6682                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6683                         c->Request.Timeout = 0;
6684                         c->Request.CDB[0] = cmd;
6685                         c->Request.CDB[1] = 1;
6686                         c->Request.CDB[2] = 1;
6687                         c->Request.CDB[3] = (size >> 8) & 0xFF;
6688                         c->Request.CDB[4] = size & 0xFF;
6689                         break;
6690                 case HPSA_REPORT_LOG:
6691                 case HPSA_REPORT_PHYS:
6692                         /* Talking to controller so It's a physical command
6693                            mode = 00 target = 0.  Nothing to write.
6694                          */
6695                         c->Request.CDBLen = 12;
6696                         c->Request.type_attr_dir =
6697                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6698                         c->Request.Timeout = 0;
6699                         c->Request.CDB[0] = cmd;
6700                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6701                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6702                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6703                         c->Request.CDB[9] = size & 0xFF;
6704                         break;
6705                 case BMIC_SENSE_DIAG_OPTIONS:
6706                         c->Request.CDBLen = 16;
6707                         c->Request.type_attr_dir =
6708                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6709                         c->Request.Timeout = 0;
6710                         /* Spec says this should be BMIC_WRITE */
6711                         c->Request.CDB[0] = BMIC_READ;
6712                         c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6713                         break;
6714                 case BMIC_SET_DIAG_OPTIONS:
6715                         c->Request.CDBLen = 16;
6716                         c->Request.type_attr_dir =
6717                                         TYPE_ATTR_DIR(cmd_type,
6718                                                 ATTR_SIMPLE, XFER_WRITE);
6719                         c->Request.Timeout = 0;
6720                         c->Request.CDB[0] = BMIC_WRITE;
6721                         c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6722                         break;
6723                 case HPSA_CACHE_FLUSH:
6724                         c->Request.CDBLen = 12;
6725                         c->Request.type_attr_dir =
6726                                         TYPE_ATTR_DIR(cmd_type,
6727                                                 ATTR_SIMPLE, XFER_WRITE);
6728                         c->Request.Timeout = 0;
6729                         c->Request.CDB[0] = BMIC_WRITE;
6730                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6731                         c->Request.CDB[7] = (size >> 8) & 0xFF;
6732                         c->Request.CDB[8] = size & 0xFF;
6733                         break;
6734                 case TEST_UNIT_READY:
6735                         c->Request.CDBLen = 6;
6736                         c->Request.type_attr_dir =
6737                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6738                         c->Request.Timeout = 0;
6739                         break;
6740                 case HPSA_GET_RAID_MAP:
6741                         c->Request.CDBLen = 12;
6742                         c->Request.type_attr_dir =
6743                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6744                         c->Request.Timeout = 0;
6745                         c->Request.CDB[0] = HPSA_CISS_READ;
6746                         c->Request.CDB[1] = cmd;
6747                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6748                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6749                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6750                         c->Request.CDB[9] = size & 0xFF;
6751                         break;
6752                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6753                         c->Request.CDBLen = 10;
6754                         c->Request.type_attr_dir =
6755                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6756                         c->Request.Timeout = 0;
6757                         c->Request.CDB[0] = BMIC_READ;
6758                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6759                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6760                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6761                         break;
6762                 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6763                         c->Request.CDBLen = 10;
6764                         c->Request.type_attr_dir =
6765                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6766                         c->Request.Timeout = 0;
6767                         c->Request.CDB[0] = BMIC_READ;
6768                         c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6769                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6770                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6771                         break;
6772                 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6773                         c->Request.CDBLen = 10;
6774                         c->Request.type_attr_dir =
6775                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6776                         c->Request.Timeout = 0;
6777                         c->Request.CDB[0] = BMIC_READ;
6778                         c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6779                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6780                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6781                         break;
6782                 case BMIC_SENSE_STORAGE_BOX_PARAMS:
6783                         c->Request.CDBLen = 10;
6784                         c->Request.type_attr_dir =
6785                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6786                         c->Request.Timeout = 0;
6787                         c->Request.CDB[0] = BMIC_READ;
6788                         c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6789                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6790                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6791                         break;
6792                 case BMIC_IDENTIFY_CONTROLLER:
6793                         c->Request.CDBLen = 10;
6794                         c->Request.type_attr_dir =
6795                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6796                         c->Request.Timeout = 0;
6797                         c->Request.CDB[0] = BMIC_READ;
6798                         c->Request.CDB[1] = 0;
6799                         c->Request.CDB[2] = 0;
6800                         c->Request.CDB[3] = 0;
6801                         c->Request.CDB[4] = 0;
6802                         c->Request.CDB[5] = 0;
6803                         c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6804                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6805                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6806                         c->Request.CDB[9] = 0;
6807                         break;
6808                 default:
6809                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6810                         BUG();
6811                 }
6812         } else if (cmd_type == TYPE_MSG) {
6813                 switch (cmd) {
6814 
6815                 case  HPSA_PHYS_TARGET_RESET:
6816                         c->Request.CDBLen = 16;
6817                         c->Request.type_attr_dir =
6818                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6819                         c->Request.Timeout = 0; /* Don't time out */
6820                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6821                         c->Request.CDB[0] = HPSA_RESET;
6822                         c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6823                         /* Physical target reset needs no control bytes 4-7*/
6824                         c->Request.CDB[4] = 0x00;
6825                         c->Request.CDB[5] = 0x00;
6826                         c->Request.CDB[6] = 0x00;
6827                         c->Request.CDB[7] = 0x00;
6828                         break;
6829                 case  HPSA_DEVICE_RESET_MSG:
6830                         c->Request.CDBLen = 16;
6831                         c->Request.type_attr_dir =
6832                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6833                         c->Request.Timeout = 0; /* Don't time out */
6834                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6835                         c->Request.CDB[0] =  cmd;
6836                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6837                         /* If bytes 4-7 are zero, it means reset the */
6838                         /* LunID device */
6839                         c->Request.CDB[4] = 0x00;
6840                         c->Request.CDB[5] = 0x00;
6841                         c->Request.CDB[6] = 0x00;
6842                         c->Request.CDB[7] = 0x00;
6843                         break;
6844                 default:
6845                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
6846                                 cmd);
6847                         BUG();
6848                 }
6849         } else {
6850                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6851                 BUG();
6852         }
6853 
6854         switch (GET_DIR(c->Request.type_attr_dir)) {
6855         case XFER_READ:
6856                 dir = DMA_FROM_DEVICE;
6857                 break;
6858         case XFER_WRITE:
6859                 dir = DMA_TO_DEVICE;
6860                 break;
6861         case XFER_NONE:
6862                 dir = DMA_NONE;
6863                 break;
6864         default:
6865                 dir = DMA_BIDIRECTIONAL;
6866         }
6867         if (hpsa_map_one(h->pdev, c, buff, size, dir))
6868                 return -1;
6869         return 0;
6870 }
6871 
6872 /*
6873  * Map (physical) PCI mem into (virtual) kernel space
6874  */
6875 static void __iomem *remap_pci_mem(ulong base, ulong size)
6876 {
6877         ulong page_base = ((ulong) base) & PAGE_MASK;
6878         ulong page_offs = ((ulong) base) - page_base;
6879         void __iomem *page_remapped = ioremap_nocache(page_base,
6880                 page_offs + size);
6881 
6882         return page_remapped ? (page_remapped + page_offs) : NULL;
6883 }
6884 
6885 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6886 {
6887         return h->access.command_completed(h, q);
6888 }
6889 
6890 static inline bool interrupt_pending(struct ctlr_info *h)
6891 {
6892         return h->access.intr_pending(h);
6893 }
6894 
6895 static inline long interrupt_not_for_us(struct ctlr_info *h)
6896 {
6897         return (h->access.intr_pending(h) == 0) ||
6898                 (h->interrupts_enabled == 0);
6899 }
6900 
6901 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6902         u32 raw_tag)
6903 {
6904         if (unlikely(tag_index >= h->nr_cmds)) {
6905                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6906                 return 1;
6907         }
6908         return 0;
6909 }
6910 
6911 static inline void finish_cmd(struct CommandList *c)
6912 {
6913         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6914         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6915                         || c->cmd_type == CMD_IOACCEL2))
6916                 complete_scsi_command(c);
6917         else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6918                 complete(c->waiting);
6919 }
6920 
6921 /* process completion of an indexed ("direct lookup") command */
6922 static inline void process_indexed_cmd(struct ctlr_info *h,
6923         u32 raw_tag)
6924 {
6925         u32 tag_index;
6926         struct CommandList *c;
6927 
6928         tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6929         if (!bad_tag(h, tag_index, raw_tag)) {
6930                 c = h->cmd_pool + tag_index;
6931                 finish_cmd(c);
6932         }
6933 }
6934 
6935 /* Some controllers, like p400, will give us one interrupt
6936  * after a soft reset, even if we turned interrupts off.
6937  * Only need to check for this in the hpsa_xxx_discard_completions
6938  * functions.
6939  */
6940 static int ignore_bogus_interrupt(struct ctlr_info *h)
6941 {
6942         if (likely(!reset_devices))
6943                 return 0;
6944 
6945         if (likely(h->interrupts_enabled))
6946                 return 0;
6947 
6948         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6949                 "(known firmware bug.)  Ignoring.\n");
6950 
6951         return 1;
6952 }
6953 
6954 /*
6955  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6956  * Relies on (h-q[x] == x) being true for x such that
6957  * 0 <= x < MAX_REPLY_QUEUES.
6958  */
6959 static struct ctlr_info *queue_to_hba(u8 *queue)
6960 {
6961         return container_of((queue - *queue), struct ctlr_info, q[0]);
6962 }
6963 
6964 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6965 {
6966         struct ctlr_info *h = queue_to_hba(queue);
6967         u8 q = *(u8 *) queue;
6968         u32 raw_tag;
6969 
6970         if (ignore_bogus_interrupt(h))
6971                 return IRQ_NONE;
6972 
6973         if (interrupt_not_for_us(h))
6974                 return IRQ_NONE;
6975         h->last_intr_timestamp = get_jiffies_64();
6976         while (interrupt_pending(h)) {
6977                 raw_tag = get_next_completion(h, q);
6978                 while (raw_tag != FIFO_EMPTY)
6979                         raw_tag = next_command(h, q);
6980         }
6981         return IRQ_HANDLED;
6982 }
6983 
6984 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6985 {
6986         struct ctlr_info *h = queue_to_hba(queue);
6987         u32 raw_tag;
6988         u8 q = *(u8 *) queue;
6989 
6990         if (ignore_bogus_interrupt(h))
6991                 return IRQ_NONE;
6992 
6993         h->last_intr_timestamp = get_jiffies_64();
6994         raw_tag = get_next_completion(h, q);
6995         while (raw_tag != FIFO_EMPTY)
6996                 raw_tag = next_command(h, q);
6997         return IRQ_HANDLED;
6998 }
6999 
7000 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7001 {
7002         struct ctlr_info *h = queue_to_hba((u8 *) queue);
7003         u32 raw_tag;
7004         u8 q = *(u8 *) queue;
7005 
7006         if (interrupt_not_for_us(h))
7007                 return IRQ_NONE;
7008         h->last_intr_timestamp = get_jiffies_64();
7009         while (interrupt_pending(h)) {
7010                 raw_tag = get_next_completion(h, q);
7011                 while (raw_tag != FIFO_EMPTY) {
7012                         process_indexed_cmd(h, raw_tag);
7013                         raw_tag = next_command(h, q);
7014                 }
7015         }
7016         return IRQ_HANDLED;
7017 }
7018 
7019 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7020 {
7021         struct ctlr_info *h = queue_to_hba(queue);
7022         u32 raw_tag;
7023         u8 q = *(u8 *) queue;
7024 
7025         h->last_intr_timestamp = get_jiffies_64();
7026         raw_tag = get_next_completion(h, q);
7027         while (raw_tag != FIFO_EMPTY) {
7028                 process_indexed_cmd(h, raw_tag);
7029                 raw_tag = next_command(h, q);
7030         }
7031         return IRQ_HANDLED;
7032 }
7033 
7034 /* Send a message CDB to the firmware. Careful, this only works
7035  * in simple mode, not performant mode due to the tag lookup.
7036  * We only ever use this immediately after a controller reset.
7037  */
7038 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7039                         unsigned char type)
7040 {
7041         struct Command {
7042                 struct CommandListHeader CommandHeader;
7043                 struct RequestBlock Request;
7044                 struct ErrDescriptor ErrorDescriptor;
7045         };
7046         struct Command *cmd;
7047         static const size_t cmd_sz = sizeof(*cmd) +
7048                                         sizeof(cmd->ErrorDescriptor);
7049         dma_addr_t paddr64;
7050         __le32 paddr32;
7051         u32 tag;
7052         void __iomem *vaddr;
7053         int i, err;
7054 
7055         vaddr = pci_ioremap_bar(pdev, 0);
7056         if (vaddr == NULL)
7057                 return -ENOMEM;
7058 
7059         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7060          * CCISS commands, so they must be allocated from the lower 4GiB of
7061          * memory.
7062          */
7063         err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
7064         if (err) {
7065                 iounmap(vaddr);
7066                 return err;
7067         }
7068 
7069         cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
7070         if (cmd == NULL) {
7071                 iounmap(vaddr);
7072                 return -ENOMEM;
7073         }
7074 
7075         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
7076          * although there's no guarantee, we assume that the address is at
7077          * least 4-byte aligned (most likely, it's page-aligned).
7078          */
7079         paddr32 = cpu_to_le32(paddr64);
7080 
7081         cmd->CommandHeader.ReplyQueue = 0;
7082         cmd->CommandHeader.SGList = 0;
7083         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7084         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7085         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7086 
7087         cmd->Request.CDBLen = 16;
7088         cmd->Request.type_attr_dir =
7089                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7090         cmd->Request.Timeout = 0; /* Don't time out */
7091         cmd->Request.CDB[0] = opcode;
7092         cmd->Request.CDB[1] = type;
7093         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7094         cmd->ErrorDescriptor.Addr =
7095                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7096         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7097 
7098         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7099 
7100         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7101                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7102                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7103                         break;
7104                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7105         }
7106 
7107         iounmap(vaddr);
7108 
7109         /* we leak the DMA buffer here ... no choice since the controller could
7110          *  still complete the command.
7111          */
7112         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7113                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7114                         opcode, type);
7115                 return -ETIMEDOUT;
7116         }
7117 
7118         dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
7119 
7120         if (tag & HPSA_ERROR_BIT) {
7121                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7122                         opcode, type);
7123                 return -EIO;
7124         }
7125 
7126         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7127                 opcode, type);
7128         return 0;
7129 }
7130 
7131 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7132 
7133 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7134         void __iomem *vaddr, u32 use_doorbell)
7135 {
7136 
7137         if (use_doorbell) {
7138                 /* For everything after the P600, the PCI power state method
7139                  * of resetting the controller doesn't work, so we have this
7140                  * other way using the doorbell register.
7141                  */
7142                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7143                 writel(use_doorbell, vaddr + SA5_DOORBELL);
7144 
7145                 /* PMC hardware guys tell us we need a 10 second delay after
7146                  * doorbell reset and before any attempt to talk to the board
7147                  * at all to ensure that this actually works and doesn't fall
7148                  * over in some weird corner cases.
7149                  */
7150                 msleep(10000);
7151         } else { /* Try to do it the PCI power state way */
7152 
7153                 /* Quoting from the Open CISS Specification: "The Power
7154                  * Management Control/Status Register (CSR) controls the power
7155                  * state of the device.  The normal operating state is D0,
7156                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7157                  * the controller, place the interface device in D3 then to D0,
7158                  * this causes a secondary PCI reset which will reset the
7159                  * controller." */
7160 
7161                 int rc = 0;
7162 
7163                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7164 
7165                 /* enter the D3hot power management state */
7166                 rc = pci_set_power_state(pdev, PCI_D3hot);
7167                 if (rc)
7168                         return rc;
7169 
7170                 msleep(500);
7171 
7172                 /* enter the D0 power management state */
7173                 rc = pci_set_power_state(pdev, PCI_D0);
7174                 if (rc)
7175                         return rc;
7176 
7177                 /*
7178                  * The P600 requires a small delay when changing states.
7179                  * Otherwise we may think the board did not reset and we bail.
7180                  * This for kdump only and is particular to the P600.
7181                  */
7182                 msleep(500);
7183         }
7184         return 0;
7185 }
7186 
7187 static void init_driver_version(char *driver_version, int len)
7188 {
7189         memset(driver_version, 0, len);
7190         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7191 }
7192 
7193 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7194 {
7195         char *driver_version;
7196         int i, size = sizeof(cfgtable->driver_version);
7197 
7198         driver_version = kmalloc(size, GFP_KERNEL);
7199         if (!driver_version)
7200                 return -ENOMEM;
7201 
7202         init_driver_version(driver_version, size);
7203         for (i = 0; i < size; i++)
7204                 writeb(driver_version[i], &cfgtable->driver_version[i]);
7205         kfree(driver_version);
7206         return 0;
7207 }
7208 
7209 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7210                                           unsigned char *driver_ver)
7211 {
7212         int i;
7213 
7214         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7215                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7216 }
7217 
7218 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7219 {
7220 
7221         char *driver_ver, *old_driver_ver;
7222         int rc, size = sizeof(cfgtable->driver_version);
7223 
7224         old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7225         if (!old_driver_ver)
7226                 return -ENOMEM;
7227         driver_ver = old_driver_ver + size;
7228 
7229         /* After a reset, the 32 bytes of "driver version" in the cfgtable
7230          * should have been changed, otherwise we know the reset failed.
7231          */
7232         init_driver_version(old_driver_ver, size);
7233         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7234         rc = !memcmp(driver_ver, old_driver_ver, size);
7235         kfree(old_driver_ver);
7236         return rc;
7237 }
7238 /* This does a hard reset of the controller using PCI power management
7239  * states or the using the doorbell register.
7240  */
7241 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7242 {
7243         u64 cfg_offset;
7244         u32 cfg_base_addr;
7245         u64 cfg_base_addr_index;
7246         void __iomem *vaddr;
7247         unsigned long paddr;
7248         u32 misc_fw_support;
7249         int rc;
7250         struct CfgTable __iomem *cfgtable;
7251         u32 use_doorbell;
7252         u16 command_register;
7253 
7254         /* For controllers as old as the P600, this is very nearly
7255          * the same thing as
7256          *
7257          * pci_save_state(pci_dev);
7258          * pci_set_power_state(pci_dev, PCI_D3hot);
7259          * pci_set_power_state(pci_dev, PCI_D0);
7260          * pci_restore_state(pci_dev);
7261          *
7262          * For controllers newer than the P600, the pci power state
7263          * method of resetting doesn't work so we have another way
7264          * using the doorbell register.
7265          */
7266 
7267         if (!ctlr_is_resettable(board_id)) {
7268                 dev_warn(&pdev->dev, "Controller not resettable\n");
7269                 return -ENODEV;
7270         }
7271 
7272         /* if controller is soft- but not hard resettable... */
7273         if (!ctlr_is_hard_resettable(board_id))
7274                 return -ENOTSUPP; /* try soft reset later. */
7275 
7276         /* Save the PCI command register */
7277         pci_read_config_word(pdev, 4, &command_register);
7278         pci_save_state(pdev);
7279 
7280         /* find the first memory BAR, so we can find the cfg table */
7281         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7282         if (rc)
7283                 return rc;
7284         vaddr = remap_pci_mem(paddr, 0x250);
7285         if (!vaddr)
7286                 return -ENOMEM;
7287 
7288         /* find cfgtable in order to check if reset via doorbell is supported */
7289         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7290                                         &cfg_base_addr_index, &cfg_offset);
7291         if (rc)
7292                 goto unmap_vaddr;
7293         cfgtable = remap_pci_mem(pci_resource_start(pdev,
7294                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7295         if (!cfgtable) {
7296                 rc = -ENOMEM;
7297                 goto unmap_vaddr;
7298         }
7299         rc = write_driver_ver_to_cfgtable(cfgtable);
7300         if (rc)
7301                 goto unmap_cfgtable;
7302 
7303         /* If reset via doorbell register is supported, use that.
7304          * There are two such methods.  Favor the newest method.
7305          */
7306         misc_fw_support = readl(&cfgtable->misc_fw_support);
7307         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7308         if (use_doorbell) {
7309                 use_doorbell = DOORBELL_CTLR_RESET2;
7310         } else {
7311                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7312                 if (use_doorbell) {
7313                         dev_warn(&pdev->dev,
7314                                 "Soft reset not supported. Firmware update is required.\n");
7315                         rc = -ENOTSUPP; /* try soft reset */
7316                         goto unmap_cfgtable;
7317                 }
7318         }
7319 
7320         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7321         if (rc)
7322                 goto unmap_cfgtable;
7323 
7324         pci_restore_state(pdev);
7325         pci_write_config_word(pdev, 4, command_register);
7326 
7327         /* Some devices (notably the HP Smart Array 5i Controller)
7328            need a little pause here */
7329         msleep(HPSA_POST_RESET_PAUSE_MSECS);
7330 
7331         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7332         if (rc) {
7333                 dev_warn(&pdev->dev,
7334                         "Failed waiting for board to become ready after hard reset\n");
7335                 goto unmap_cfgtable;
7336         }
7337 
7338         rc = controller_reset_failed(vaddr);
7339         if (rc < 0)
7340                 goto unmap_cfgtable;
7341         if (rc) {
7342                 dev_warn(&pdev->dev, "Unable to successfully reset "
7343                         "controller. Will try soft reset.\n");
7344                 rc = -ENOTSUPP;
7345         } else {
7346                 dev_info(&pdev->dev, "board ready after hard reset.\n");
7347         }
7348 
7349 unmap_cfgtable:
7350         iounmap(cfgtable);
7351 
7352 unmap_vaddr:
7353         iounmap(vaddr);
7354         return rc;
7355 }
7356 
7357 /*
7358  *  We cannot read the structure directly, for portability we must use
7359  *   the io functions.
7360  *   This is for debug only.
7361  */
7362 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7363 {
7364 #ifdef HPSA_DEBUG
7365         int i;
7366         char temp_name[17];
7367 
7368         dev_info(dev, "Controller Configuration information\n");
7369         dev_info(dev, "------------------------------------\n");
7370         for (i = 0; i < 4; i++)
7371                 temp_name[i] = readb(&(tb->Signature[i]));
7372         temp_name[4] = '\0';
7373         dev_info(dev, "   Signature = %s\n", temp_name);
7374         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7375         dev_info(dev, "   Transport methods supported = 0x%x\n",
7376                readl(&(tb->TransportSupport)));
7377         dev_info(dev, "   Transport methods active = 0x%x\n",
7378                readl(&(tb->TransportActive)));
7379         dev_info(dev, "   Requested transport Method = 0x%x\n",
7380                readl(&(tb->HostWrite.TransportRequest)));
7381         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7382                readl(&(tb->HostWrite.CoalIntDelay)));
7383         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7384                readl(&(tb->HostWrite.CoalIntCount)));
7385         dev_info(dev, "   Max outstanding commands = %d\n",
7386                readl(&(tb->CmdsOutMax)));
7387         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7388         for (i = 0; i < 16; i++)
7389                 temp_name[i] = readb(&(tb->ServerName[i]));
7390         temp_name[16] = '\0';
7391         dev_info(dev, "   Server Name = %s\n", temp_name);
7392         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7393                 readl(&(tb->HeartBeat)));
7394 #endif                          /* HPSA_DEBUG */
7395 }
7396 
7397 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7398 {
7399         int i, offset, mem_type, bar_type;
7400 
7401         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7402                 return 0;
7403         offset = 0;
7404         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7405                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7406                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7407                         offset += 4;
7408                 else {
7409                         mem_type = pci_resource_flags(pdev, i) &
7410                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7411                         switch (mem_type) {
7412                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
7413                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7414                                 offset += 4;    /* 32 bit */
7415                                 break;
7416                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
7417                                 offset += 8;
7418                                 break;
7419                         default:        /* reserved in PCI 2.2 */
7420                                 dev_warn(&pdev->dev,
7421                                        "base address is invalid\n");
7422                                 return -1;
7423                                 break;
7424                         }
7425                 }
7426                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7427                         return i + 1;
7428         }
7429         return -1;
7430 }
7431 
7432 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7433 {
7434         pci_free_irq_vectors(h->pdev);
7435         h->msix_vectors = 0;
7436 }
7437 
7438 static void hpsa_setup_reply_map(struct ctlr_info *h)
7439 {
7440         const struct cpumask *mask;
7441         unsigned int queue, cpu;
7442 
7443         for (queue = 0; queue < h->msix_vectors; queue++) {
7444                 mask = pci_irq_get_affinity(h->pdev, queue);
7445                 if (!mask)
7446                         goto fallback;
7447 
7448                 for_each_cpu(cpu, mask)
7449                         h->reply_map[cpu] = queue;
7450         }
7451         return;
7452 
7453 fallback:
7454         for_each_possible_cpu(cpu)
7455                 h->reply_map[cpu] = 0;
7456 }
7457 
7458 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7459  * controllers that are capable. If not, we use legacy INTx mode.
7460  */
7461 static int hpsa_interrupt_mode(struct ctlr_info *h)
7462 {
7463         unsigned int flags = PCI_IRQ_LEGACY;
7464         int ret;
7465 
7466         /* Some boards advertise MSI but don't really support it */
7467         switch (h->board_id) {
7468         case 0x40700E11:
7469         case 0x40800E11:
7470         case 0x40820E11:
7471         case 0x40830E11:
7472                 break;
7473         default:
7474                 ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7475                                 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7476                 if (ret > 0) {
7477                         h->msix_vectors = ret;
7478                         return 0;
7479                 }
7480 
7481                 flags |= PCI_IRQ_MSI;
7482                 break;
7483         }
7484 
7485         ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7486         if (ret < 0)
7487                 return ret;
7488         return 0;
7489 }
7490 
7491 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7492                                 bool *legacy_board)
7493 {
7494         int i;
7495         u32 subsystem_vendor_id, subsystem_device_id;
7496 
7497         subsystem_vendor_id = pdev->subsystem_vendor;
7498         subsystem_device_id = pdev->subsystem_device;
7499         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7500                     subsystem_vendor_id;
7501 
7502         if (legacy_board)
7503                 *legacy_board = false;
7504         for (i = 0; i < ARRAY_SIZE(products); i++)
7505                 if (*board_id == products[i].board_id) {
7506                         if (products[i].access != &SA5A_access &&
7507                             products[i].access != &SA5B_access)
7508                                 return i;
7509                         dev_warn(&pdev->dev,
7510                                  "legacy board ID: 0x%08x\n",
7511                                  *board_id);
7512                         if (legacy_board)
7513                             *legacy_board = true;
7514                         return i;
7515                 }
7516 
7517         dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7518         if (legacy_board)
7519                 *legacy_board = true;
7520         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7521 }
7522 
7523 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7524                                     unsigned long *memory_bar)
7525 {
7526         int i;
7527 
7528         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7529                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7530                         /* addressing mode bits already removed */
7531                         *memory_bar = pci_resource_start(pdev, i);
7532                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7533                                 *memory_bar);
7534                         return 0;
7535                 }
7536         dev_warn(&pdev->dev, "no memory BAR found\n");
7537         return -ENODEV;
7538 }
7539 
7540 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7541                                      int wait_for_ready)
7542 {
7543         int i, iterations;
7544         u32 scratchpad;
7545         if (wait_for_ready)
7546                 iterations = HPSA_BOARD_READY_ITERATIONS;
7547         else
7548                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7549 
7550         for (i = 0; i < iterations; i++) {
7551                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7552                 if (wait_for_ready) {
7553                         if (scratchpad == HPSA_FIRMWARE_READY)
7554                                 return 0;
7555                 } else {
7556                         if (scratchpad != HPSA_FIRMWARE_READY)
7557                                 return 0;
7558                 }
7559                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7560         }
7561         dev_warn(&pdev->dev, "board not ready, timed out.\n");
7562         return -ENODEV;
7563 }
7564 
7565 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7566                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7567                                u64 *cfg_offset)
7568 {
7569         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7570         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7571         *cfg_base_addr &= (u32) 0x0000ffff;
7572         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7573         if (*cfg_base_addr_index == -1) {
7574                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7575                 return -ENODEV;
7576         }
7577         return 0;
7578 }
7579 
7580 static void hpsa_free_cfgtables(struct ctlr_info *h)
7581 {
7582         if (h->transtable) {
7583                 iounmap(h->transtable);
7584                 h->transtable = NULL;
7585         }
7586         if (h->cfgtable) {
7587                 iounmap(h->cfgtable);
7588                 h->cfgtable = NULL;
7589         }
7590 }
7591 
7592 /* Find and map CISS config table and transfer table
7593 + * several items must be unmapped (freed) later
7594 + * */
7595 static int hpsa_find_cfgtables(struct ctlr_info *h)
7596 {
7597         u64 cfg_offset;
7598         u32 cfg_base_addr;
7599         u64 cfg_base_addr_index;
7600         u32 trans_offset;
7601         int rc;
7602 
7603         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7604                 &cfg_base_addr_index, &cfg_offset);
7605         if (rc)
7606                 return rc;
7607         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7608                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7609         if (!h->cfgtable) {
7610                 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7611                 return -ENOMEM;
7612         }
7613         rc = write_driver_ver_to_cfgtable(h->cfgtable);
7614         if (rc)
7615                 return rc;
7616         /* Find performant mode table. */
7617         trans_offset = readl(&h->cfgtable->TransMethodOffset);
7618         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7619                                 cfg_base_addr_index)+cfg_offset+trans_offset,
7620                                 sizeof(*h->transtable));
7621         if (!h->transtable) {
7622                 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7623                 hpsa_free_cfgtables(h);
7624                 return -ENOMEM;
7625         }
7626         return 0;
7627 }
7628 
7629 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7630 {
7631 #define MIN_MAX_COMMANDS 16
7632         BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7633 
7634         h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7635 
7636         /* Limit commands in memory limited kdump scenario. */
7637         if (reset_devices && h->max_commands > 32)
7638                 h->max_commands = 32;
7639 
7640         if (h->max_commands < MIN_MAX_COMMANDS) {
7641                 dev_warn(&h->pdev->dev,
7642                         "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7643                         h->max_commands,
7644                         MIN_MAX_COMMANDS);
7645                 h->max_commands = MIN_MAX_COMMANDS;
7646         }
7647 }
7648 
7649 /* If the controller reports that the total max sg entries is greater than 512,
7650  * then we know that chained SG blocks work.  (Original smart arrays did not
7651  * support chained SG blocks and would return zero for max sg entries.)
7652  */
7653 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7654 {
7655         return h->maxsgentries > 512;
7656 }
7657 
7658 /* Interrogate the hardware for some limits:
7659  * max commands, max SG elements without chaining, and with chaining,
7660  * SG chain block size, etc.
7661  */
7662 static void hpsa_find_board_params(struct ctlr_info *h)
7663 {
7664         hpsa_get_max_perf_mode_cmds(h);
7665         h->nr_cmds = h->max_commands;
7666         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7667         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7668         if (hpsa_supports_chained_sg_blocks(h)) {
7669                 /* Limit in-command s/g elements to 32 save dma'able memory. */
7670                 h->max_cmd_sg_entries = 32;
7671                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7672                 h->maxsgentries--; /* save one for chain pointer */
7673         } else {
7674                 /*
7675                  * Original smart arrays supported at most 31 s/g entries
7676                  * embedded inline in the command (trying to use more
7677                  * would lock up the controller)
7678                  */
7679                 h->max_cmd_sg_entries = 31;
7680                 h->maxsgentries = 31; /* default to traditional values */
7681                 h->chainsize = 0;
7682         }
7683 
7684         /* Find out what task management functions are supported and cache */
7685         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7686         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7687                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7688         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7689                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7690         if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7691                 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7692 }
7693 
7694 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7695 {
7696         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7697                 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7698                 return false;
7699         }
7700         return true;
7701 }
7702 
7703 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7704 {
7705         u32 driver_support;
7706 
7707         driver_support = readl(&(h->cfgtable->driver_support));
7708         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7709 #ifdef CONFIG_X86
7710         driver_support |= ENABLE_SCSI_PREFETCH;
7711 #endif
7712         driver_support |= ENABLE_UNIT_ATTN;
7713         writel(driver_support, &(h->cfgtable->driver_support));
7714 }
7715 
7716 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7717  * in a prefetch beyond physical memory.
7718  */
7719 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7720 {
7721         u32 dma_prefetch;
7722 
7723         if (h->board_id != 0x3225103C)
7724                 return;
7725         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7726         dma_prefetch |= 0x8000;
7727         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7728 }
7729 
7730 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7731 {
7732         int i;
7733         u32 doorbell_value;
7734         unsigned long flags;
7735         /* wait until the clear_event_notify bit 6 is cleared by controller. */
7736         for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7737                 spin_lock_irqsave(&h->lock, flags);
7738                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7739                 spin_unlock_irqrestore(&h->lock, flags);
7740                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7741                         goto done;
7742                 /* delay and try again */
7743                 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7744         }
7745         return -ENODEV;
7746 done:
7747         return 0;
7748 }
7749 
7750 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7751 {
7752         int i;
7753         u32 doorbell_value;
7754         unsigned long flags;
7755 
7756         /* under certain very rare conditions, this can take awhile.
7757          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7758          * as we enter this code.)
7759          */
7760         for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7761                 if (h->remove_in_progress)
7762                         goto done;
7763                 spin_lock_irqsave(&h->lock, flags);
7764                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7765                 spin_unlock_irqrestore(&h->lock, flags);
7766                 if (!(doorbell_value & CFGTBL_ChangeReq))
7767                         goto done;
7768                 /* delay and try again */
7769                 msleep(MODE_CHANGE_WAIT_INTERVAL);
7770         }
7771         return -ENODEV;
7772 done:
7773         return 0;
7774 }
7775 
7776 /* return -ENODEV or other reason on error, 0 on success */
7777 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7778 {
7779         u32 trans_support;
7780 
7781         trans_support = readl(&(h->cfgtable->TransportSupport));
7782         if (!(trans_support & SIMPLE_MODE))
7783                 return -ENOTSUPP;
7784 
7785         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7786 
7787         /* Update the field, and then ring the doorbell */
7788         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7789         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7790         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7791         if (hpsa_wait_for_mode_change_ack(h))
7792                 goto error;
7793         print_cfg_table(&h->pdev->dev, h->cfgtable);
7794         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7795                 goto error;
7796         h->transMethod = CFGTBL_Trans_Simple;
7797         return 0;
7798 error:
7799         dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7800         return -ENODEV;
7801 }
7802 
7803 /* free items allocated or mapped by hpsa_pci_init */
7804 static void hpsa_free_pci_init(struct ctlr_info *h)
7805 {
7806         hpsa_free_cfgtables(h);                 /* pci_init 4 */
7807         iounmap(h->vaddr);                      /* pci_init 3 */
7808         h->vaddr = NULL;
7809         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
7810         /*
7811          * call pci_disable_device before pci_release_regions per
7812          * Documentation/driver-api/pci/pci.rst
7813          */
7814         pci_disable_device(h->pdev);            /* pci_init 1 */
7815         pci_release_regions(h->pdev);           /* pci_init 2 */
7816 }
7817 
7818 /* several items must be freed later */
7819 static int hpsa_pci_init(struct ctlr_info *h)
7820 {
7821         int prod_index, err;
7822         bool legacy_board;
7823 
7824         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7825         if (prod_index < 0)
7826                 return prod_index;
7827         h->product_name = products[prod_index].product_name;
7828         h->access = *(products[prod_index].access);
7829         h->legacy_board = legacy_board;
7830         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7831                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7832 
7833         err = pci_enable_device(h->pdev);
7834         if (err) {
7835                 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7836                 pci_disable_device(h->pdev);
7837                 return err;
7838         }
7839 
7840         err = pci_request_regions(h->pdev, HPSA);
7841         if (err) {
7842                 dev_err(&h->pdev->dev,
7843                         "failed to obtain PCI resources\n");
7844                 pci_disable_device(h->pdev);
7845                 return err;
7846         }
7847 
7848         pci_set_master(h->pdev);
7849 
7850         err = hpsa_interrupt_mode(h);
7851         if (err)
7852                 goto clean1;
7853 
7854         /* setup mapping between CPU and reply queue */
7855         hpsa_setup_reply_map(h);
7856 
7857         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7858         if (err)
7859                 goto clean2;    /* intmode+region, pci */
7860         h->vaddr = remap_pci_mem(h->paddr, 0x250);
7861         if (!h->vaddr) {
7862                 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7863                 err = -ENOMEM;
7864                 goto clean2;    /* intmode+region, pci */
7865         }
7866         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7867         if (err)
7868                 goto clean3;    /* vaddr, intmode+region, pci */
7869         err = hpsa_find_cfgtables(h);
7870         if (err)
7871                 goto clean3;    /* vaddr, intmode+region, pci */
7872         hpsa_find_board_params(h);
7873 
7874         if (!hpsa_CISS_signature_present(h)) {
7875                 err = -ENODEV;
7876                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7877         }
7878         hpsa_set_driver_support_bits(h);
7879         hpsa_p600_dma_prefetch_quirk(h);
7880         err = hpsa_enter_simple_mode(h);
7881         if (err)
7882                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7883         return 0;
7884 
7885 clean4: /* cfgtables, vaddr, intmode+region, pci */
7886         hpsa_free_cfgtables(h);
7887 clean3: /* vaddr, intmode+region, pci */
7888         iounmap(h->vaddr);
7889         h->vaddr = NULL;
7890 clean2: /* intmode+region, pci */
7891         hpsa_disable_interrupt_mode(h);
7892 clean1:
7893         /*
7894          * call pci_disable_device before pci_release_regions per
7895          * Documentation/driver-api/pci/pci.rst
7896          */
7897         pci_disable_device(h->pdev);
7898         pci_release_regions(h->pdev);
7899         return err;
7900 }
7901 
7902 static void hpsa_hba_inquiry(struct ctlr_info *h)
7903 {
7904         int rc;
7905 
7906 #define HBA_INQUIRY_BYTE_COUNT 64
7907         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7908         if (!h->hba_inquiry_data)
7909                 return;
7910         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7911                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7912         if (rc != 0) {
7913                 kfree(h->hba_inquiry_data);
7914                 h->hba_inquiry_data = NULL;
7915         }
7916 }
7917 
7918 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7919 {
7920         int rc, i;
7921         void __iomem *vaddr;
7922 
7923         if (!reset_devices)
7924                 return 0;
7925 
7926         /* kdump kernel is loading, we don't know in which state is
7927          * the pci interface. The dev->enable_cnt is equal zero
7928          * so we call enable+disable, wait a while and switch it on.
7929          */
7930         rc = pci_enable_device(pdev);
7931         if (rc) {
7932                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7933                 return -ENODEV;
7934         }
7935         pci_disable_device(pdev);
7936         msleep(260);                    /* a randomly chosen number */
7937         rc = pci_enable_device(pdev);
7938         if (rc) {
7939                 dev_warn(&pdev->dev, "failed to enable device.\n");
7940                 return -ENODEV;
7941         }
7942 
7943         pci_set_master(pdev);
7944 
7945         vaddr = pci_ioremap_bar(pdev, 0);
7946         if (vaddr == NULL) {
7947                 rc = -ENOMEM;
7948                 goto out_disable;
7949         }
7950         writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7951         iounmap(vaddr);
7952 
7953         /* Reset the controller with a PCI power-cycle or via doorbell */
7954         rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7955 
7956         /* -ENOTSUPP here means we cannot reset the controller
7957          * but it's already (and still) up and running in
7958          * "performant mode".  Or, it might be 640x, which can't reset
7959          * due to concerns about shared bbwc between 6402/6404 pair.
7960          */
7961         if (rc)
7962                 goto out_disable;
7963 
7964         /* Now try to get the controller to respond to a no-op */
7965         dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7966         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7967                 if (hpsa_noop(pdev) == 0)
7968                         break;
7969                 else
7970                         dev_warn(&pdev->dev, "no-op failed%s\n",
7971                                         (i < 11 ? "; re-trying" : ""));
7972         }
7973 
7974 out_disable:
7975 
7976         pci_disable_device(pdev);
7977         return rc;
7978 }
7979 
7980 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7981 {
7982         kfree(h->cmd_pool_bits);
7983         h->cmd_pool_bits = NULL;
7984         if (h->cmd_pool) {
7985                 dma_free_coherent(&h->pdev->dev,
7986                                 h->nr_cmds * sizeof(struct CommandList),
7987                                 h->cmd_pool,
7988                                 h->cmd_pool_dhandle);
7989                 h->cmd_pool = NULL;
7990                 h->cmd_pool_dhandle = 0;
7991         }
7992         if (h->errinfo_pool) {
7993                 dma_free_coherent(&h->pdev->dev,
7994                                 h->nr_cmds * sizeof(struct ErrorInfo),
7995                                 h->errinfo_pool,
7996                                 h->errinfo_pool_dhandle);
7997                 h->errinfo_pool = NULL;
7998                 h->errinfo_pool_dhandle = 0;
7999         }
8000 }
8001 
8002 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8003 {
8004         h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG),
8005                                    sizeof(unsigned long),
8006                                    GFP_KERNEL);
8007         h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
8008                     h->nr_cmds * sizeof(*h->cmd_pool),
8009                     &h->cmd_pool_dhandle, GFP_KERNEL);
8010         h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
8011                     h->nr_cmds * sizeof(*h->errinfo_pool),
8012                     &h->errinfo_pool_dhandle, GFP_KERNEL);
8013         if ((h->cmd_pool_bits == NULL)
8014             || (h->cmd_pool == NULL)
8015             || (h->errinfo_pool == NULL)) {
8016                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8017                 goto clean_up;
8018         }
8019         hpsa_preinitialize_commands(h);
8020         return 0;
8021 clean_up:
8022         hpsa_free_cmd_pool(h);
8023         return -ENOMEM;
8024 }
8025 
8026 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8027 static void hpsa_free_irqs(struct ctlr_info *h)
8028 {
8029         int i;
8030         int irq_vector = 0;
8031 
8032         if (hpsa_simple_mode)
8033                 irq_vector = h->intr_mode;
8034 
8035         if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
8036                 /* Single reply queue, only one irq to free */
8037                 free_irq(pci_irq_vector(h->pdev, irq_vector),
8038                                 &h->q[h->intr_mode]);
8039                 h->q[h->intr_mode] = 0;
8040                 return;
8041         }
8042 
8043         for (i = 0; i < h->msix_vectors; i++) {
8044                 free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
8045                 h->q[i] = 0;
8046         }
8047         for (; i < MAX_REPLY_QUEUES; i++)
8048                 h->q[i] = 0;
8049 }
8050 
8051 /* returns 0 on success; cleans up and returns -Enn on error */
8052 static int hpsa_request_irqs(struct ctlr_info *h,
8053         irqreturn_t (*msixhandler)(int, void *),
8054         irqreturn_t (*intxhandler)(int, void *))
8055 {
8056         int rc, i;
8057         int irq_vector = 0;
8058 
8059         if (hpsa_simple_mode)
8060                 irq_vector = h->intr_mode;
8061 
8062         /*
8063          * initialize h->q[x] = x so that interrupt handlers know which
8064          * queue to process.
8065          */
8066         for (i = 0; i < MAX_REPLY_QUEUES; i++)
8067                 h->q[i] = (u8) i;
8068 
8069         if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8070                 /* If performant mode and MSI-X, use multiple reply queues */
8071                 for (i = 0; i < h->msix_vectors; i++) {
8072                         sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8073                         rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8074                                         0, h->intrname[i],
8075                                         &h->q[i]);
8076                         if (rc) {
8077                                 int j;
8078 
8079                                 dev_err(&h->pdev->dev,
8080                                         "failed to get irq %d for %s\n",
8081                                        pci_irq_vector(h->pdev, i), h->devname);
8082                                 for (j = 0; j < i; j++) {
8083                                         free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8084                                         h->q[j] = 0;
8085                                 }
8086                                 for (; j < MAX_REPLY_QUEUES; j++)
8087                                         h->q[j] = 0;
8088                                 return rc;
8089                         }
8090                 }
8091         } else {
8092                 /* Use single reply pool */
8093                 if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8094                         sprintf(h->intrname[0], "%s-msi%s", h->devname,
8095                                 h->msix_vectors ? "x" : "");
8096                         rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8097                                 msixhandler, 0,
8098                                 h->intrname[0],
8099                                 &h->q[h->intr_mode]);
8100                 } else {
8101                         sprintf(h->intrname[h->intr_mode],
8102                                 "%s-intx", h->devname);
8103                         rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8104                                 intxhandler, IRQF_SHARED,
8105                                 h->intrname[0],
8106                                 &h->q[h->intr_mode]);
8107                 }
8108         }
8109         if (rc) {
8110                 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8111                        pci_irq_vector(h->pdev, irq_vector), h->devname);
8112                 hpsa_free_irqs(h);
8113                 return -ENODEV;
8114         }
8115         return 0;
8116 }
8117 
8118 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8119 {
8120         int rc;
8121         hpsa_send_host_reset(h, HPSA_RESET_TYPE_CONTROLLER);
8122 
8123         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8124         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8125         if (rc) {
8126                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8127                 return rc;
8128         }
8129 
8130         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8131         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8132         if (rc) {
8133                 dev_warn(&h->pdev->dev, "Board failed to become ready "
8134                         "after soft reset.\n");
8135                 return rc;
8136         }
8137 
8138         return 0;
8139 }
8140 
8141 static void hpsa_free_reply_queues(struct ctlr_info *h)
8142 {
8143         int i;
8144 
8145         for (i = 0; i < h->nreply_queues; i++) {
8146                 if (!h->reply_queue[i].head)
8147                         continue;
8148                 dma_free_coherent(&h->pdev->dev,
8149                                         h->reply_queue_size,
8150                                         h->reply_queue[i].head,
8151                                         h->reply_queue[i].busaddr);
8152                 h->reply_queue[i].head = NULL;
8153                 h->reply_queue[i].busaddr = 0;
8154         }
8155         h->reply_queue_size = 0;
8156 }
8157 
8158 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8159 {
8160         hpsa_free_performant_mode(h);           /* init_one 7 */
8161         hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
8162         hpsa_free_cmd_pool(h);                  /* init_one 5 */
8163         hpsa_free_irqs(h);                      /* init_one 4 */
8164         scsi_host_put(h->scsi_host);            /* init_one 3 */
8165         h->scsi_host = NULL;                    /* init_one 3 */
8166         hpsa_free_pci_init(h);                  /* init_one 2_5 */
8167         free_percpu(h->lockup_detected);        /* init_one 2 */
8168         h->lockup_detected = NULL;              /* init_one 2 */
8169         if (h->resubmit_wq) {
8170                 destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
8171                 h->resubmit_wq = NULL;
8172         }
8173         if (h->rescan_ctlr_wq) {
8174                 destroy_workqueue(h->rescan_ctlr_wq);
8175                 h->rescan_ctlr_wq = NULL;
8176         }
8177         if (h->monitor_ctlr_wq) {
8178                 destroy_workqueue(h->monitor_ctlr_wq);
8179                 h->monitor_ctlr_wq = NULL;
8180         }
8181 
8182         kfree(h);                               /* init_one 1 */
8183 }
8184 
8185 /* Called when controller lockup detected. */
8186 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8187 {
8188         int i, refcount;
8189         struct CommandList *c;
8190         int failcount = 0;
8191 
8192         flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8193         for (i = 0; i < h->nr_cmds; i++) {
8194                 c = h->cmd_pool + i;
8195                 refcount = atomic_inc_return(&c->refcount);
8196                 if (refcount > 1) {
8197                         c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8198                         finish_cmd(c);
8199                         atomic_dec(&h->commands_outstanding);
8200                         failcount++;
8201                 }
8202                 cmd_free(h, c);
8203         }
8204         dev_warn(&h->pdev->dev,
8205                 "failed %d commands in fail_all\n", failcount);
8206 }
8207 
8208 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8209 {
8210         int cpu;
8211 
8212         for_each_online_cpu(cpu) {
8213                 u32 *lockup_detected;
8214                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8215                 *lockup_detected = value;
8216         }
8217         wmb(); /* be sure the per-cpu variables are out to memory */
8218 }
8219 
8220 static void controller_lockup_detected(struct ctlr_info *h)
8221 {
8222         unsigned long flags;
8223         u32 lockup_detected;
8224 
8225         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8226         spin_lock_irqsave(&h->lock, flags);
8227         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8228         if (!lockup_detected) {
8229                 /* no heartbeat, but controller gave us a zero. */
8230                 dev_warn(&h->pdev->dev,
8231                         "lockup detected after %d but scratchpad register is zero\n",
8232                         h->heartbeat_sample_interval / HZ);
8233                 lockup_detected = 0xffffffff;
8234         }
8235         set_lockup_detected_for_all_cpus(h, lockup_detected);
8236         spin_unlock_irqrestore(&h->lock, flags);
8237         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8238                         lockup_detected, h->heartbeat_sample_interval / HZ);
8239         if (lockup_detected == 0xffff0000) {
8240                 dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8241                 writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8242         }
8243         pci_disable_device(h->pdev);
8244         fail_all_outstanding_cmds(h);
8245 }
8246 
8247 static int detect_controller_lockup(struct ctlr_info *h)
8248 {
8249         u64 now;
8250         u32 heartbeat;
8251         unsigned long flags;
8252 
8253         now = get_jiffies_64();
8254         /* If we've received an interrupt recently, we're ok. */
8255         if (time_after64(h->last_intr_timestamp +
8256                                 (h->heartbeat_sample_interval), now))
8257                 return false;
8258 
8259         /*
8260          * If we've already checked the heartbeat recently, we're ok.
8261          * This could happen if someone sends us a signal. We
8262          * otherwise don't care about signals in this thread.
8263          */
8264         if (time_after64(h->last_heartbeat_timestamp +
8265                                 (h->heartbeat_sample_interval), now))
8266                 return false;
8267 
8268         /* If heartbeat has not changed since we last looked, we're not ok. */
8269         spin_lock_irqsave(&h->lock, flags);
8270         heartbeat = readl(&h->cfgtable->HeartBeat);
8271         spin_unlock_irqrestore(&h->lock, flags);
8272         if (h->last_heartbeat == heartbeat) {
8273                 controller_lockup_detected(h);
8274                 return true;
8275         }
8276 
8277         /* We're ok. */
8278         h->last_heartbeat = heartbeat;
8279         h->last_heartbeat_timestamp = now;
8280         return false;
8281 }
8282 
8283 /*
8284  * Set ioaccel status for all ioaccel volumes.
8285  *
8286  * Called from monitor controller worker (hpsa_event_monitor_worker)
8287  *
8288  * A Volume (or Volumes that comprise an Array set may be undergoing a
8289  * transformation, so we will be turning off ioaccel for all volumes that
8290  * make up the Array.
8291  */
8292 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8293 {
8294         int rc;
8295         int i;
8296         u8 ioaccel_status;
8297         unsigned char *buf;
8298         struct hpsa_scsi_dev_t *device;
8299 
8300         if (!h)
8301                 return;
8302 
8303         buf = kmalloc(64, GFP_KERNEL);
8304         if (!buf)
8305                 return;
8306 
8307         /*
8308          * Run through current device list used during I/O requests.
8309          */
8310         for (i = 0; i < h->ndevices; i++) {
8311                 device = h->dev[i];
8312 
8313                 if (!device)
8314                         continue;
8315                 if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8316                                                 HPSA_VPD_LV_IOACCEL_STATUS))
8317                         continue;
8318 
8319                 memset(buf, 0, 64);
8320 
8321                 rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8322                                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8323                                         buf, 64);
8324                 if (rc != 0)
8325                         continue;
8326 
8327                 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8328                 device->offload_config =
8329                                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8330                 if (device->offload_config)
8331                         device->offload_to_be_enabled =
8332                                 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8333 
8334                 /*
8335                  * Immediately turn off ioaccel for any volume the
8336                  * controller tells us to. Some of the reasons could be:
8337                  *    transformation - change to the LVs of an Array.
8338                  *    degraded volume - component failure
8339                  *
8340                  * If ioaccel is to be re-enabled, re-enable later during the
8341                  * scan operation so the driver can get a fresh raidmap
8342                  * before turning ioaccel back on.
8343                  *
8344                  */
8345                 if (!device->offload_to_be_enabled)
8346                         device->offload_enabled = 0;
8347         }
8348 
8349         kfree(buf);
8350 }
8351 
8352 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8353 {
8354         char *event_type;
8355 
8356         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8357                 return;
8358 
8359         /* Ask the controller to clear the events we're handling. */
8360         if ((h->transMethod & (CFGTBL_Trans_io_accel1
8361                         | CFGTBL_Trans_io_accel2)) &&
8362                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8363                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8364 
8365                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8366                         event_type = "state change";
8367                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8368                         event_type = "configuration change";
8369                 /* Stop sending new RAID offload reqs via the IO accelerator */
8370                 scsi_block_requests(h->scsi_host);
8371                 hpsa_set_ioaccel_status(h);
8372                 hpsa_drain_accel_commands(h);
8373                 /* Set 'accelerator path config change' bit */
8374                 dev_warn(&h->pdev->dev,
8375                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8376                         h->events, event_type);
8377                 writel(h->events, &(h->cfgtable->clear_event_notify));
8378                 /* Set the "clear event notify field update" bit 6 */
8379                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8380                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8381                 hpsa_wait_for_clear_event_notify_ack(h);
8382                 scsi_unblock_requests(h->scsi_host);
8383         } else {
8384                 /* Acknowledge controller notification events. */
8385                 writel(h->events, &(h->cfgtable->clear_event_notify));
8386                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8387                 hpsa_wait_for_clear_event_notify_ack(h);
8388         }
8389         return;
8390 }
8391 
8392 /* Check a register on the controller to see if there are configuration
8393  * changes (added/changed/removed logical drives, etc.) which mean that
8394  * we should rescan the controller for devices.
8395  * Also check flag for driver-initiated rescan.
8396  */
8397 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8398 {
8399         if (h->drv_req_rescan) {
8400                 h->drv_req_rescan = 0;
8401                 return 1;
8402         }
8403 
8404         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8405                 return 0;
8406 
8407         h->events = readl(&(h->cfgtable->event_notify));
8408         return h->events & RESCAN_REQUIRED_EVENT_BITS;
8409 }
8410 
8411 /*
8412  * Check if any of the offline devices have become ready
8413  */
8414 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8415 {
8416         unsigned long flags;
8417         struct offline_device_entry *d;
8418         struct list_head *this, *tmp;
8419 
8420         spin_lock_irqsave(&h->offline_device_lock, flags);
8421         list_for_each_safe(this, tmp, &h->offline_device_list) {
8422                 d = list_entry(this, struct offline_device_entry,
8423                                 offline_list);
8424                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8425                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8426                         spin_lock_irqsave(&h->offline_device_lock, flags);
8427                         list_del(&d->offline_list);
8428                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8429                         return 1;
8430                 }
8431                 spin_lock_irqsave(&h->offline_device_lock, flags);
8432         }
8433         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8434         return 0;
8435 }
8436 
8437 static int hpsa_luns_changed(struct ctlr_info *h)
8438 {
8439         int rc = 1; /* assume there are changes */
8440         struct ReportLUNdata *logdev = NULL;
8441 
8442         /* if we can't find out if lun data has changed,
8443          * assume that it has.
8444          */
8445 
8446         if (!h->lastlogicals)
8447                 return rc;
8448 
8449         logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8450         if (!logdev)
8451                 return rc;
8452 
8453         if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8454                 dev_warn(&h->pdev->dev,
8455                         "report luns failed, can't track lun changes.\n");
8456                 goto out;
8457         }
8458         if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8459                 dev_info(&h->pdev->dev,
8460                         "Lun changes detected.\n");
8461                 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8462                 goto out;
8463         } else
8464                 rc = 0; /* no changes detected. */
8465 out:
8466         kfree(logdev);
8467         return rc;
8468 }
8469 
8470 static void hpsa_perform_rescan(struct ctlr_info *h)
8471 {
8472         struct Scsi_Host *sh = NULL;
8473         unsigned long flags;
8474 
8475         /*
8476          * Do the scan after the reset
8477          */
8478         spin_lock_irqsave(&h->reset_lock, flags);
8479         if (h->reset_in_progress) {
8480                 h->drv_req_rescan = 1;
8481                 spin_unlock_irqrestore(&h->reset_lock, flags);
8482                 return;
8483         }
8484         spin_unlock_irqrestore(&h->reset_lock, flags);
8485 
8486         sh = scsi_host_get(h->scsi_host);
8487         if (sh != NULL) {
8488                 hpsa_scan_start(sh);
8489                 scsi_host_put(sh);
8490                 h->drv_req_rescan = 0;
8491         }
8492 }
8493 
8494 /*
8495  * watch for controller events
8496  */
8497 static void hpsa_event_monitor_worker(struct work_struct *work)
8498 {
8499         struct ctlr_info *h = container_of(to_delayed_work(work),
8500                                         struct ctlr_info, event_monitor_work);
8501         unsigned long flags;
8502 
8503         spin_lock_irqsave(&h->lock, flags);
8504         if (h->remove_in_progress) {
8505                 spin_unlock_irqrestore(&h->lock, flags);
8506                 return;
8507         }
8508         spin_unlock_irqrestore(&h->lock, flags);
8509 
8510         if (hpsa_ctlr_needs_rescan(h)) {
8511                 hpsa_ack_ctlr_events(h);
8512                 hpsa_perform_rescan(h);
8513         }
8514 
8515         spin_lock_irqsave(&h->lock, flags);
8516         if (!h->remove_in_progress)
8517                 queue_delayed_work(h->monitor_ctlr_wq, &h->event_monitor_work,
8518                                 HPSA_EVENT_MONITOR_INTERVAL);
8519         spin_unlock_irqrestore(&h->lock, flags);
8520 }
8521 
8522 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8523 {
8524         unsigned long flags;
8525         struct ctlr_info *h = container_of(to_delayed_work(work),
8526                                         struct ctlr_info, rescan_ctlr_work);
8527 
8528         spin_lock_irqsave(&h->lock, flags);
8529         if (h->remove_in_progress) {
8530                 spin_unlock_irqrestore(&h->lock, flags);
8531                 return;
8532         }
8533         spin_unlock_irqrestore(&h->lock, flags);
8534 
8535         if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8536                 hpsa_perform_rescan(h);
8537         } else if (h->discovery_polling) {
8538                 if (hpsa_luns_changed(h)) {
8539                         dev_info(&h->pdev->dev,
8540                                 "driver discovery polling rescan.\n");
8541                         hpsa_perform_rescan(h);
8542                 }
8543         }
8544         spin_lock_irqsave(&h->lock, flags);
8545         if (!h->remove_in_progress)
8546                 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8547                                 h->heartbeat_sample_interval);
8548         spin_unlock_irqrestore(&h->lock, flags);
8549 }
8550 
8551 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8552 {
8553         unsigned long flags;
8554         struct ctlr_info *h = container_of(to_delayed_work(work),
8555                                         struct ctlr_info, monitor_ctlr_work);
8556 
8557         detect_controller_lockup(h);
8558         if (lockup_detected(h))
8559                 return;
8560 
8561         spin_lock_irqsave(&h->lock, flags);
8562         if (!h->remove_in_progress)
8563                 queue_delayed_work(h->monitor_ctlr_wq, &h->monitor_ctlr_work,
8564                                 h->heartbeat_sample_interval);
8565         spin_unlock_irqrestore(&h->lock, flags);
8566 }
8567 
8568 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8569                                                 char *name)
8570 {
8571         struct workqueue_struct *wq = NULL;
8572 
8573         wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8574         if (!wq)
8575                 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8576 
8577         return wq;
8578 }
8579 
8580 static void hpda_free_ctlr_info(struct ctlr_info *h)
8581 {
8582         kfree(h->reply_map);
8583         kfree(h);
8584 }
8585 
8586 static struct ctlr_info *hpda_alloc_ctlr_info(void)
8587 {
8588         struct ctlr_info *h;
8589 
8590         h = kzalloc(sizeof(*h), GFP_KERNEL);
8591         if (!h)
8592                 return NULL;
8593 
8594         h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8595         if (!h->reply_map) {
8596                 kfree(h);
8597                 return NULL;
8598         }
8599         return h;
8600 }
8601 
8602 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8603 {
8604         int dac, rc;
8605         struct ctlr_info *h;
8606         int try_soft_reset = 0;
8607         unsigned long flags;
8608         u32 board_id;
8609 
8610         if (number_of_controllers == 0)
8611                 printk(KERN_INFO DRIVER_NAME "\n");
8612 
8613         rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8614         if (rc < 0) {
8615                 dev_warn(&pdev->dev, "Board ID not found\n");
8616                 return rc;
8617         }
8618 
8619         rc = hpsa_init_reset_devices(pdev, board_id);
8620         if (rc) {
8621                 if (rc != -ENOTSUPP)
8622                         return rc;
8623                 /* If the reset fails in a particular way (it has no way to do
8624                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
8625                  * a soft reset once we get the controller configured up to the
8626                  * point that it can accept a command.
8627                  */
8628                 try_soft_reset = 1;
8629                 rc = 0;
8630         }
8631 
8632 reinit_after_soft_reset:
8633 
8634         /* Command structures must be aligned on a 32-byte boundary because
8635          * the 5 lower bits of the address are used by the hardware. and by
8636          * the driver.  See comments in hpsa.h for more info.
8637          */
8638         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8639         h = hpda_alloc_ctlr_info();
8640         if (!h) {
8641                 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8642                 return -ENOMEM;
8643         }
8644 
8645         h->pdev = pdev;
8646 
8647         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8648         INIT_LIST_HEAD(&h->offline_device_list);
8649         spin_lock_init(&h->lock);
8650         spin_lock_init(&h->offline_device_lock);
8651         spin_lock_init(&h->scan_lock);
8652         spin_lock_init(&h->reset_lock);
8653         atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8654 
8655         /* Allocate and clear per-cpu variable lockup_detected */
8656         h->lockup_detected = alloc_percpu(u32);
8657         if (!h->lockup_detected) {
8658                 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8659                 rc = -ENOMEM;
8660                 goto clean1;    /* aer/h */
8661         }
8662         set_lockup_detected_for_all_cpus(h, 0);
8663 
8664         rc = hpsa_pci_init(h);
8665         if (rc)
8666                 goto clean2;    /* lu, aer/h */
8667 
8668         /* relies on h-> settings made by hpsa_pci_init, including
8669          * interrupt_mode h->intr */
8670         rc = hpsa_scsi_host_alloc(h);
8671         if (rc)
8672                 goto clean2_5;  /* pci, lu, aer/h */
8673 
8674         sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8675         h->ctlr = number_of_controllers;
8676         number_of_controllers++;
8677 
8678         /* configure PCI DMA stuff */
8679         rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
8680         if (rc == 0) {
8681                 dac = 1;
8682         } else {
8683                 rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
8684                 if (rc == 0) {
8685                         dac = 0;
8686                 } else {
8687                         dev_err(&pdev->dev, "no suitable DMA available\n");
8688                         goto clean3;    /* shost, pci, lu, aer/h */
8689                 }
8690         }
8691 
8692         /* make sure the board interrupts are off */
8693         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8694 
8695         rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8696         if (rc)
8697                 goto clean3;    /* shost, pci, lu, aer/h */
8698         rc = hpsa_alloc_cmd_pool(h);
8699         if (rc)
8700                 goto clean4;    /* irq, shost, pci, lu, aer/h */
8701         rc = hpsa_alloc_sg_chain_blocks(h);
8702         if (rc)
8703                 goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8704         init_waitqueue_head(&h->scan_wait_queue);
8705         init_waitqueue_head(&h->event_sync_wait_queue);
8706         mutex_init(&h->reset_mutex);
8707         h->scan_finished = 1; /* no scan currently in progress */
8708         h->scan_waiting = 0;
8709 
8710         pci_set_drvdata(pdev, h);
8711         h->ndevices = 0;
8712 
8713         spin_lock_init(&h->devlock);
8714         rc = hpsa_put_ctlr_into_performant_mode(h);
8715         if (rc)
8716                 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8717 
8718         /* create the resubmit workqueue */
8719         h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8720         if (!h->rescan_ctlr_wq) {
8721                 rc = -ENOMEM;
8722                 goto clean7;
8723         }
8724 
8725         h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8726         if (!h->resubmit_wq) {
8727                 rc = -ENOMEM;
8728                 goto clean7;    /* aer/h */
8729         }
8730 
8731         h->monitor_ctlr_wq = hpsa_create_controller_wq(h, "monitor");
8732         if (!h->monitor_ctlr_wq) {
8733                 rc = -ENOMEM;
8734                 goto clean7;
8735         }
8736 
8737         /*
8738          * At this point, the controller is ready to take commands.
8739          * Now, if reset_devices and the hard reset didn't work, try
8740          * the soft reset and see if that works.
8741          */
8742         if (try_soft_reset) {
8743 
8744                 /* This is kind of gross.  We may or may not get a completion
8745                  * from the soft reset command, and if we do, then the value
8746                  * from the fifo may or may not be valid.  So, we wait 10 secs
8747                  * after the reset throwing away any completions we get during
8748                  * that time.  Unregister the interrupt handler and register
8749                  * fake ones to scoop up any residual completions.
8750                  */
8751                 spin_lock_irqsave(&h->lock, flags);
8752                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8753                 spin_unlock_irqrestore(&h->lock, flags);
8754                 hpsa_free_irqs(h);
8755                 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8756                                         hpsa_intx_discard_completions);
8757                 if (rc) {
8758                         dev_warn(&h->pdev->dev,
8759                                 "Failed to request_irq after soft reset.\n");
8760                         /*
8761                          * cannot goto clean7 or free_irqs will be called
8762                          * again. Instead, do its work
8763                          */
8764                         hpsa_free_performant_mode(h);   /* clean7 */
8765                         hpsa_free_sg_chain_blocks(h);   /* clean6 */
8766                         hpsa_free_cmd_pool(h);          /* clean5 */
8767                         /*
8768                          * skip hpsa_free_irqs(h) clean4 since that
8769                          * was just called before request_irqs failed
8770                          */
8771                         goto clean3;
8772                 }
8773 
8774                 rc = hpsa_kdump_soft_reset(h);
8775                 if (rc)
8776                         /* Neither hard nor soft reset worked, we're hosed. */
8777                         goto clean7;
8778 
8779                 dev_info(&h->pdev->dev, "Board READY.\n");
8780                 dev_info(&h->pdev->dev,
8781                         "Waiting for stale completions to drain.\n");
8782                 h->access.set_intr_mask(h, HPSA_INTR_ON);
8783                 msleep(10000);
8784                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8785 
8786                 rc = controller_reset_failed(h->cfgtable);
8787                 if (rc)
8788                         dev_info(&h->pdev->dev,
8789                                 "Soft reset appears to have failed.\n");
8790 
8791                 /* since the controller's reset, we have to go back and re-init
8792                  * everything.  Easiest to just forget what we've done and do it
8793                  * all over again.
8794                  */
8795                 hpsa_undo_allocations_after_kdump_soft_reset(h);
8796                 try_soft_reset = 0;
8797                 if (rc)
8798                         /* don't goto clean, we already unallocated */
8799                         return -ENODEV;
8800 
8801                 goto reinit_after_soft_reset;
8802         }
8803 
8804         /* Enable Accelerated IO path at driver layer */
8805         h->acciopath_status = 1;
8806         /* Disable discovery polling.*/
8807         h->discovery_polling = 0;
8808 
8809 
8810         /* Turn the interrupts on so we can service requests */
8811         h->access.set_intr_mask(h, HPSA_INTR_ON);
8812 
8813         hpsa_hba_inquiry(h);
8814 
8815         h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8816         if (!h->lastlogicals)
8817                 dev_info(&h->pdev->dev,
8818                         "Can't track change to report lun data\n");
8819 
8820         /* hook into SCSI subsystem */
8821         rc = hpsa_scsi_add_host(h);
8822         if (rc)
8823                 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8824 
8825         /* Monitor the controller for firmware lockups */
8826         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8827         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8828         schedule_delayed_work(&h->monitor_ctlr_work,
8829                                 h->heartbeat_sample_interval);
8830         INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8831         queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8832                                 h->heartbeat_sample_interval);
8833         INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8834         schedule_delayed_work(&h->event_monitor_work,
8835                                 HPSA_EVENT_MONITOR_INTERVAL);
8836         return 0;
8837 
8838 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8839         hpsa_free_performant_mode(h);
8840         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8841 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8842         hpsa_free_sg_chain_blocks(h);
8843 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8844         hpsa_free_cmd_pool(h);
8845 clean4: /* irq, shost, pci, lu, aer/h */
8846         hpsa_free_irqs(h);
8847 clean3: /* shost, pci, lu, aer/h */
8848         scsi_host_put(h->scsi_host);
8849         h->scsi_host = NULL;
8850 clean2_5: /* pci, lu, aer/h */
8851         hpsa_free_pci_init(h);
8852 clean2: /* lu, aer/h */
8853         if (h->lockup_detected) {
8854                 free_percpu(h->lockup_detected);
8855                 h->lockup_detected = NULL;
8856         }
8857 clean1: /* wq/aer/h */
8858         if (h->resubmit_wq) {
8859                 destroy_workqueue(h->resubmit_wq);
8860                 h->resubmit_wq = NULL;
8861         }
8862         if (h->rescan_ctlr_wq) {
8863                 destroy_workqueue(h->rescan_ctlr_wq);
8864                 h->rescan_ctlr_wq = NULL;
8865         }
8866         if (h->monitor_ctlr_wq) {
8867                 destroy_workqueue(h->monitor_ctlr_wq);
8868                 h->monitor_ctlr_wq = NULL;
8869         }
8870         kfree(h);
8871         return rc;
8872 }
8873 
8874 static void hpsa_flush_cache(struct ctlr_info *h)
8875 {
8876         char *flush_buf;
8877         struct CommandList *c;
8878         int rc;
8879 
8880         if (unlikely(lockup_detected(h)))
8881                 return;
8882         flush_buf = kzalloc(4, GFP_KERNEL);
8883         if (!flush_buf)
8884                 return;
8885 
8886         c = cmd_alloc(h);
8887 
8888         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8889                 RAID_CTLR_LUNID, TYPE_CMD)) {
8890                 goto out;
8891         }
8892         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8893                         DEFAULT_TIMEOUT);
8894         if (rc)
8895                 goto out;
8896         if (c->err_info->CommandStatus != 0)
8897 out:
8898                 dev_warn(&h->pdev->dev,
8899                         "error flushing cache on controller\n");
8900         cmd_free(h, c);
8901         kfree(flush_buf);
8902 }
8903 
8904 /* Make controller gather fresh report lun data each time we
8905  * send down a report luns request
8906  */
8907 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8908 {
8909         u32 *options;
8910         struct CommandList *c;
8911         int rc;
8912 
8913         /* Don't bother trying to set diag options if locked up */
8914         if (unlikely(h->lockup_detected))
8915                 return;
8916 
8917         options = kzalloc(sizeof(*options), GFP_KERNEL);
8918         if (!options)
8919                 return;
8920 
8921         c = cmd_alloc(h);
8922 
8923         /* first, get the current diag options settings */
8924         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8925                 RAID_CTLR_LUNID, TYPE_CMD))
8926                 goto errout;
8927 
8928         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8929                         NO_TIMEOUT);
8930         if ((rc != 0) || (c->err_info->CommandStatus != 0))
8931                 goto errout;
8932 
8933         /* Now, set the bit for disabling the RLD caching */
8934         *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8935 
8936         if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8937                 RAID_CTLR_LUNID, TYPE_CMD))
8938                 goto errout;
8939 
8940         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8941                         NO_TIMEOUT);
8942         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8943                 goto errout;
8944 
8945         /* Now verify that it got set: */
8946         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8947                 RAID_CTLR_LUNID, TYPE_CMD))
8948                 goto errout;
8949 
8950         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8951                         NO_TIMEOUT);
8952         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8953                 goto errout;
8954 
8955         if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8956                 goto out;
8957 
8958 errout:
8959         dev_err(&h->pdev->dev,
8960                         "Error: failed to disable report lun data caching.\n");
8961 out:
8962         cmd_free(h, c);
8963         kfree(options);
8964 }
8965 
8966 static void __hpsa_shutdown(struct pci_dev *pdev)
8967 {
8968         struct ctlr_info *h;
8969 
8970         h = pci_get_drvdata(pdev);
8971         /* Turn board interrupts off  and send the flush cache command
8972          * sendcmd will turn off interrupt, and send the flush...
8973          * To write all data in the battery backed cache to disks
8974          */
8975         hpsa_flush_cache(h);
8976         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8977         hpsa_free_irqs(h);                      /* init_one 4 */
8978         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
8979 }
8980 
8981 static void hpsa_shutdown(struct pci_dev *pdev)
8982 {
8983         __hpsa_shutdown(pdev);
8984         pci_disable_device(pdev);
8985 }
8986 
8987 static void hpsa_free_device_info(struct ctlr_info *h)
8988 {
8989         int i;
8990 
8991         for (i = 0; i < h->ndevices; i++) {
8992                 kfree(h->dev[i]);
8993                 h->dev[i] = NULL;
8994         }
8995 }
8996 
8997 static void hpsa_remove_one(struct pci_dev *pdev)
8998 {
8999         struct ctlr_info *h;
9000         unsigned long flags;
9001 
9002         if (pci_get_drvdata(pdev) == NULL) {
9003                 dev_err(&pdev->dev, "unable to remove device\n");
9004                 return;
9005         }
9006         h = pci_get_drvdata(pdev);
9007 
9008         /* Get rid of any controller monitoring work items */
9009         spin_lock_irqsave(&h->lock, flags);
9010         h->remove_in_progress = 1;
9011         spin_unlock_irqrestore(&h->lock, flags);
9012         cancel_delayed_work_sync(&h->monitor_ctlr_work);
9013         cancel_delayed_work_sync(&h->rescan_ctlr_work);
9014         cancel_delayed_work_sync(&h->event_monitor_work);
9015         destroy_workqueue(h->rescan_ctlr_wq);
9016         destroy_workqueue(h->resubmit_wq);
9017         destroy_workqueue(h->monitor_ctlr_wq);
9018 
9019         hpsa_delete_sas_host(h);
9020 
9021         /*
9022          * Call before disabling interrupts.
9023          * scsi_remove_host can trigger I/O operations especially
9024          * when multipath is enabled. There can be SYNCHRONIZE CACHE
9025          * operations which cannot complete and will hang the system.
9026          */
9027         if (h->scsi_host)
9028                 scsi_remove_host(h->scsi_host);         /* init_one 8 */
9029         /* includes hpsa_free_irqs - init_one 4 */
9030         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9031         __hpsa_shutdown(pdev);
9032 
9033         hpsa_free_device_info(h);               /* scan */
9034 
9035         kfree(h->hba_inquiry_data);                     /* init_one 10 */
9036         h->hba_inquiry_data = NULL;                     /* init_one 10 */
9037         hpsa_free_ioaccel2_sg_chain_blocks(h);
9038         hpsa_free_performant_mode(h);                   /* init_one 7 */
9039         hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
9040         hpsa_free_cmd_pool(h);                          /* init_one 5 */
9041         kfree(h->lastlogicals);
9042 
9043         /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9044 
9045         scsi_host_put(h->scsi_host);                    /* init_one 3 */
9046         h->scsi_host = NULL;                            /* init_one 3 */
9047 
9048         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9049         hpsa_free_pci_init(h);                          /* init_one 2.5 */
9050 
9051         free_percpu(h->lockup_detected);                /* init_one 2 */
9052         h->lockup_detected = NULL;                      /* init_one 2 */
9053         /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
9054 
9055         hpda_free_ctlr_info(h);                         /* init_one 1 */
9056 }
9057 
9058 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
9059         __attribute__((unused)) pm_message_t state)
9060 {
9061         return -ENOSYS;
9062 }
9063 
9064 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
9065 {
9066         return -ENOSYS;
9067 }
9068 
9069 static struct pci_driver hpsa_pci_driver = {
9070         .name = HPSA,
9071         .probe = hpsa_init_one,
9072         .remove = hpsa_remove_one,
9073         .id_table = hpsa_pci_device_id, /* id_table */
9074         .shutdown = hpsa_shutdown,
9075         .suspend = hpsa_suspend,
9076         .resume = hpsa_resume,
9077 };
9078 
9079 /* Fill in bucket_map[], given nsgs (the max number of
9080  * scatter gather elements supported) and bucket[],
9081  * which is an array of 8 integers.  The bucket[] array
9082  * contains 8 different DMA transfer sizes (in 16
9083  * byte increments) which the controller uses to fetch
9084  * commands.  This function fills in bucket_map[], which
9085  * maps a given number of scatter gather elements to one of
9086  * the 8 DMA transfer sizes.  The point of it is to allow the
9087  * controller to only do as much DMA as needed to fetch the
9088  * command, with the DMA transfer size encoded in the lower
9089  * bits of the command address.
9090  */
9091 static void  calc_bucket_map(int bucket[], int num_buckets,
9092         int nsgs, int min_blocks, u32 *bucket_map)
9093 {
9094         int i, j, b, size;
9095 
9096         /* Note, bucket_map must have nsgs+1 entries. */
9097         for (i = 0; i <= nsgs; i++) {
9098                 /* Compute size of a command with i SG entries */
9099                 size = i + min_blocks;
9100                 b = num_buckets; /* Assume the biggest bucket */
9101                 /* Find the bucket that is just big enough */
9102                 for (j = 0; j < num_buckets; j++) {
9103                         if (bucket[j] >= size) {
9104                                 b = j;
9105                                 break;
9106                         }
9107                 }
9108                 /* for a command with i SG entries, use bucket b. */
9109                 bucket_map[i] = b;
9110         }
9111 }
9112 
9113 /*
9114  * return -ENODEV on err, 0 on success (or no action)
9115  * allocates numerous items that must be freed later
9116  */
9117 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9118 {
9119         int i;
9120         unsigned long register_value;
9121         unsigned long transMethod = CFGTBL_Trans_Performant |
9122                         (trans_support & CFGTBL_Trans_use_short_tags) |
9123                                 CFGTBL_Trans_enable_directed_msix |
9124                         (trans_support & (CFGTBL_Trans_io_accel1 |
9125                                 CFGTBL_Trans_io_accel2));
9126         struct access_method access = SA5_performant_access;
9127 
9128         /* This is a bit complicated.  There are 8 registers on
9129          * the controller which we write to to tell it 8 different
9130          * sizes of commands which there may be.  It's a way of
9131          * reducing the DMA done to fetch each command.  Encoded into
9132          * each command's tag are 3 bits which communicate to the controller
9133          * which of the eight sizes that command fits within.  The size of
9134          * each command depends on how many scatter gather entries there are.
9135          * Each SG entry requires 16 bytes.  The eight registers are programmed
9136          * with the number of 16-byte blocks a command of that size requires.
9137          * The smallest command possible requires 5 such 16 byte blocks.
9138          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9139          * blocks.  Note, this only extends to the SG entries contained
9140          * within the command block, and does not extend to chained blocks
9141          * of SG elements.   bft[] contains the eight values we write to
9142          * the registers.  They are not evenly distributed, but have more
9143          * sizes for small commands, and fewer sizes for larger commands.
9144          */
9145         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9146 #define MIN_IOACCEL2_BFT_ENTRY 5
9147 #define HPSA_IOACCEL2_HEADER_SZ 4
9148         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9149                         13, 14, 15, 16, 17, 18, 19,
9150                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9151         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9152         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9153         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9154                                  16 * MIN_IOACCEL2_BFT_ENTRY);
9155         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9156         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9157         /*  5 = 1 s/g entry or 4k
9158          *  6 = 2 s/g entry or 8k
9159          *  8 = 4 s/g entry or 16k
9160          * 10 = 6 s/g entry or 24k
9161          */
9162 
9163         /* If the controller supports either ioaccel method then
9164          * we can also use the RAID stack submit path that does not
9165          * perform the superfluous readl() after each command submission.
9166          */
9167         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9168                 access = SA5_performant_access_no_read;
9169 
9170         /* Controller spec: zero out this buffer. */
9171         for (i = 0; i < h->nreply_queues; i++)
9172                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9173 
9174         bft[7] = SG_ENTRIES_IN_CMD + 4;
9175         calc_bucket_map(bft, ARRAY_SIZE(bft),
9176                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9177         for (i = 0; i < 8; i++)
9178                 writel(bft[i], &h->transtable->BlockFetch[i]);
9179 
9180         /* size of controller ring buffer */
9181         writel(h->max_commands, &h->transtable->RepQSize);
9182         writel(h->nreply_queues, &h->transtable->RepQCount);
9183         writel(0, &h->transtable->RepQCtrAddrLow32);
9184         writel(0, &h->transtable->RepQCtrAddrHigh32);
9185 
9186         for (i = 0; i < h->nreply_queues; i++) {
9187                 writel(0, &h->transtable->RepQAddr[i].upper);
9188                 writel(h->reply_queue[i].busaddr,
9189                         &h->transtable->RepQAddr[i].lower);
9190         }
9191 
9192         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9193         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9194         /*
9195          * enable outbound interrupt coalescing in accelerator mode;
9196          */
9197         if (trans_support & CFGTBL_Trans_io_accel1) {
9198                 access = SA5_ioaccel_mode1_access;
9199                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9200                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9201         } else
9202                 if (trans_support & CFGTBL_Trans_io_accel2)
9203                         access = SA5_ioaccel_mode2_access;
9204         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9205         if (hpsa_wait_for_mode_change_ack(h)) {
9206                 dev_err(&h->pdev->dev,
9207                         "performant mode problem - doorbell timeout\n");
9208                 return -ENODEV;
9209         }
9210         register_value = readl(&(h->cfgtable->TransportActive));
9211         if (!(register_value & CFGTBL_Trans_Performant)) {
9212                 dev_err(&h->pdev->dev,
9213                         "performant mode problem - transport not active\n");
9214                 return -ENODEV;
9215         }
9216         /* Change the access methods to the performant access methods */
9217         h->access = access;
9218         h->transMethod = transMethod;
9219 
9220         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9221                 (trans_support & CFGTBL_Trans_io_accel2)))
9222                 return 0;
9223 
9224         if (trans_support & CFGTBL_Trans_io_accel1) {
9225                 /* Set up I/O accelerator mode */
9226                 for (i = 0; i < h->nreply_queues; i++) {
9227                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9228                         h->reply_queue[i].current_entry =
9229                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9230                 }
9231                 bft[7] = h->ioaccel_maxsg + 8;
9232                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9233                                 h->ioaccel1_blockFetchTable);
9234 
9235                 /* initialize all reply queue entries to unused */
9236                 for (i = 0; i < h->nreply_queues; i++)
9237                         memset(h->reply_queue[i].head,
9238                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9239                                 h->reply_queue_size);
9240 
9241                 /* set all the constant fields in the accelerator command
9242                  * frames once at init time to save CPU cycles later.
9243                  */
9244                 for (i = 0; i < h->nr_cmds; i++) {
9245                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9246 
9247                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
9248                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
9249                                         (i * sizeof(struct ErrorInfo)));
9250                         cp->err_info_len = sizeof(struct ErrorInfo);
9251                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
9252                         cp->host_context_flags =
9253                                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9254                         cp->timeout_sec = 0;
9255                         cp->ReplyQueue = 0;
9256                         cp->tag =
9257                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9258                         cp->host_addr =
9259                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9260                                         (i * sizeof(struct io_accel1_cmd)));
9261                 }
9262         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9263                 u64 cfg_offset, cfg_base_addr_index;
9264                 u32 bft2_offset, cfg_base_addr;
9265                 int rc;
9266 
9267                 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9268                         &cfg_base_addr_index, &cfg_offset);
9269                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9270                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9271                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9272                                 4, h->ioaccel2_blockFetchTable);
9273                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9274                 BUILD_BUG_ON(offsetof(struct CfgTable,
9275                                 io_accel_request_size_offset) != 0xb8);
9276                 h->ioaccel2_bft2_regs =
9277                         remap_pci_mem(pci_resource_start(h->pdev,
9278                                         cfg_base_addr_index) +
9279                                         cfg_offset + bft2_offset,
9280                                         ARRAY_SIZE(bft2) *
9281                                         sizeof(*h->ioaccel2_bft2_regs));
9282                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9283                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9284         }
9285         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9286         if (hpsa_wait_for_mode_change_ack(h)) {
9287                 dev_err(&h->pdev->dev,
9288                         "performant mode problem - enabling ioaccel mode\n");
9289                 return -ENODEV;
9290         }
9291         return 0;
9292 }
9293 
9294 /* Free ioaccel1 mode command blocks and block fetch table */
9295 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9296 {
9297         if (h->ioaccel_cmd_pool) {
9298                 pci_free_consistent(h->pdev,
9299                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9300                         h->ioaccel_cmd_pool,
9301                         h->ioaccel_cmd_pool_dhandle);
9302                 h->ioaccel_cmd_pool = NULL;
9303                 h->ioaccel_cmd_pool_dhandle = 0;
9304         }
9305         kfree(h->ioaccel1_blockFetchTable);
9306         h->ioaccel1_blockFetchTable = NULL;
9307 }
9308 
9309 /* Allocate ioaccel1 mode command blocks and block fetch table */
9310 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9311 {
9312         h->ioaccel_maxsg =
9313                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9314         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9315                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9316 
9317         /* Command structures must be aligned on a 128-byte boundary
9318          * because the 7 lower bits of the address are used by the
9319          * hardware.
9320          */
9321         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9322                         IOACCEL1_COMMANDLIST_ALIGNMENT);
9323         h->ioaccel_cmd_pool =
9324                 dma_alloc_coherent(&h->pdev->dev,
9325                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9326                         &h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
9327 
9328         h->ioaccel1_blockFetchTable =
9329                 kmalloc(((h->ioaccel_maxsg + 1) *
9330                                 sizeof(u32)), GFP_KERNEL);
9331 
9332         if ((h->ioaccel_cmd_pool == NULL) ||
9333                 (h->ioaccel1_blockFetchTable == NULL))
9334                 goto clean_up;
9335 
9336         memset(h->ioaccel_cmd_pool, 0,
9337                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9338         return 0;
9339 
9340 clean_up:
9341         hpsa_free_ioaccel1_cmd_and_bft(h);
9342         return -ENOMEM;
9343 }
9344 
9345 /* Free ioaccel2 mode command blocks and block fetch table */
9346 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9347 {
9348         hpsa_free_ioaccel2_sg_chain_blocks(h);
9349 
9350         if (h->ioaccel2_cmd_pool) {
9351                 pci_free_consistent(h->pdev,
9352                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9353                         h->ioaccel2_cmd_pool,
9354                         h->ioaccel2_cmd_pool_dhandle);
9355                 h->ioaccel2_cmd_pool = NULL;
9356                 h->ioaccel2_cmd_pool_dhandle = 0;
9357         }
9358         kfree(h->ioaccel2_blockFetchTable);
9359         h->ioaccel2_blockFetchTable = NULL;
9360 }
9361 
9362 /* Allocate ioaccel2 mode command blocks and block fetch table */
9363 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9364 {
9365         int rc;
9366 
9367         /* Allocate ioaccel2 mode command blocks and block fetch table */
9368 
9369         h->ioaccel_maxsg =
9370                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9371         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9372                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9373 
9374         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9375                         IOACCEL2_COMMANDLIST_ALIGNMENT);
9376         h->ioaccel2_cmd_pool =
9377                 dma_alloc_coherent(&h->pdev->dev,
9378                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9379                         &h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
9380 
9381         h->ioaccel2_blockFetchTable =
9382                 kmalloc(((h->ioaccel_maxsg + 1) *
9383                                 sizeof(u32)), GFP_KERNEL);
9384 
9385         if ((h->ioaccel2_cmd_pool == NULL) ||
9386                 (h->ioaccel2_blockFetchTable == NULL)) {
9387                 rc = -ENOMEM;
9388                 goto clean_up;
9389         }
9390 
9391         rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9392         if (rc)
9393                 goto clean_up;
9394 
9395         memset(h->ioaccel2_cmd_pool, 0,
9396                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9397         return 0;
9398 
9399 clean_up:
9400         hpsa_free_ioaccel2_cmd_and_bft(h);
9401         return rc;
9402 }
9403 
9404 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9405 static void hpsa_free_performant_mode(struct ctlr_info *h)
9406 {
9407         kfree(h->blockFetchTable);
9408         h->blockFetchTable = NULL;
9409         hpsa_free_reply_queues(h);
9410         hpsa_free_ioaccel1_cmd_and_bft(h);
9411         hpsa_free_ioaccel2_cmd_and_bft(h);
9412 }
9413 
9414 /* return -ENODEV on error, 0 on success (or no action)
9415  * allocates numerous items that must be freed later
9416  */
9417 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9418 {
9419         u32 trans_support;
9420         unsigned long transMethod = CFGTBL_Trans_Performant |
9421                                         CFGTBL_Trans_use_short_tags;
9422         int i, rc;
9423 
9424         if (hpsa_simple_mode)
9425                 return 0;
9426 
9427         trans_support = readl(&(h->cfgtable->TransportSupport));
9428         if (!(trans_support & PERFORMANT_MODE))
9429                 return 0;
9430 
9431         /* Check for I/O accelerator mode support */
9432         if (trans_support & CFGTBL_Trans_io_accel1) {
9433                 transMethod |= CFGTBL_Trans_io_accel1 |
9434                                 CFGTBL_Trans_enable_directed_msix;
9435                 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9436                 if (rc)
9437                         return rc;
9438         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9439                 transMethod |= CFGTBL_Trans_io_accel2 |
9440                                 CFGTBL_Trans_enable_directed_msix;
9441                 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9442                 if (rc)
9443                         return rc;
9444         }
9445 
9446         h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9447         hpsa_get_max_perf_mode_cmds(h);
9448         /* Performant mode ring buffer and supporting data structures */
9449         h->reply_queue_size = h->max_commands * sizeof(u64);
9450 
9451         for (i = 0; i < h->nreply_queues; i++) {
9452                 h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
9453                                                 h->reply_queue_size,
9454                                                 &h->reply_queue[i].busaddr,
9455                                                 GFP_KERNEL);
9456                 if (!h->reply_queue[i].head) {
9457                         rc = -ENOMEM;
9458                         goto clean1;    /* rq, ioaccel */
9459                 }
9460                 h->reply_queue[i].size = h->max_commands;
9461                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9462                 h->reply_queue[i].current_entry = 0;
9463         }
9464 
9465         /* Need a block fetch table for performant mode */
9466         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9467                                 sizeof(u32)), GFP_KERNEL);
9468         if (!h->blockFetchTable) {
9469                 rc = -ENOMEM;
9470                 goto clean1;    /* rq, ioaccel */
9471         }
9472 
9473         rc = hpsa_enter_performant_mode(h, trans_support);
9474         if (rc)
9475                 goto clean2;    /* bft, rq, ioaccel */
9476         return 0;
9477 
9478 clean2: /* bft, rq, ioaccel */
9479         kfree(h->blockFetchTable);
9480         h->blockFetchTable = NULL;
9481 clean1: /* rq, ioaccel */
9482         hpsa_free_reply_queues(h);
9483         hpsa_free_ioaccel1_cmd_and_bft(h);
9484         hpsa_free_ioaccel2_cmd_and_bft(h);
9485         return rc;
9486 }
9487 
9488 static int is_accelerated_cmd(struct CommandList *c)
9489 {
9490         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9491 }
9492 
9493 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9494 {
9495         struct CommandList *c = NULL;
9496         int i, accel_cmds_out;
9497         int refcount;
9498 
9499         do { /* wait for all outstanding ioaccel commands to drain out */
9500                 accel_cmds_out = 0;
9501                 for (i = 0; i < h->nr_cmds; i++) {
9502                         c = h->cmd_pool + i;
9503                         refcount = atomic_inc_return(&c->refcount);
9504                         if (refcount > 1) /* Command is allocated */
9505                                 accel_cmds_out += is_accelerated_cmd(c);
9506                         cmd_free(h, c);
9507                 }
9508                 if (accel_cmds_out <= 0)
9509                         break;
9510                 msleep(100);
9511         } while (1);
9512 }
9513 
9514 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9515                                 struct hpsa_sas_port *hpsa_sas_port)
9516 {
9517         struct hpsa_sas_phy *hpsa_sas_phy;
9518         struct sas_phy *phy;
9519 
9520         hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9521         if (!hpsa_sas_phy)
9522                 return NULL;
9523 
9524         phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9525                 hpsa_sas_port->next_phy_index);
9526         if (!phy) {
9527                 kfree(hpsa_sas_phy);
9528                 return NULL;
9529         }
9530 
9531         hpsa_sas_port->next_phy_index++;
9532         hpsa_sas_phy->phy = phy;
9533         hpsa_sas_phy->parent_port = hpsa_sas_port;
9534 
9535         return hpsa_sas_phy;
9536 }
9537 
9538 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9539 {
9540         struct sas_phy *phy = hpsa_sas_phy->phy;
9541 
9542         sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9543         if (hpsa_sas_phy->added_to_port)
9544                 list_del(&hpsa_sas_phy->phy_list_entry);
9545         sas_phy_delete(phy);
9546         kfree(hpsa_sas_phy);
9547 }
9548 
9549 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9550 {
9551         int rc;
9552         struct hpsa_sas_port *hpsa_sas_port;
9553         struct sas_phy *phy;
9554         struct sas_identify *identify;
9555 
9556         hpsa_sas_port = hpsa_sas_phy->parent_port;
9557         phy = hpsa_sas_phy->phy;
9558 
9559         identify = &phy->identify;
9560         memset(identify, 0, sizeof(*identify));
9561         identify->sas_address = hpsa_sas_port->sas_address;
9562         identify->device_type = SAS_END_DEVICE;
9563         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9564         identify->target_port_protocols = SAS_PROTOCOL_STP;
9565         phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9566         phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9567         phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9568         phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9569         phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9570 
9571         rc = sas_phy_add(hpsa_sas_phy->phy);
9572         if (rc)
9573                 return rc;
9574 
9575         sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9576         list_add_tail(&hpsa_sas_phy->phy_list_entry,
9577                         &hpsa_sas_port->phy_list_head);
9578         hpsa_sas_phy->added_to_port = true;
9579 
9580         return 0;
9581 }
9582 
9583 static int
9584         hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9585                                 struct sas_rphy *rphy)
9586 {
9587         struct sas_identify *identify;
9588 
9589         identify = &rphy->identify;
9590         identify->sas_address = hpsa_sas_port->sas_address;
9591         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9592         identify->target_port_protocols = SAS_PROTOCOL_STP;
9593 
9594         return sas_rphy_add(rphy);
9595 }
9596 
9597 static struct hpsa_sas_port
9598         *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9599                                 u64 sas_address)
9600 {
9601         int rc;
9602         struct hpsa_sas_port *hpsa_sas_port;
9603         struct sas_port *port;
9604 
9605         hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9606         if (!hpsa_sas_port)
9607                 return NULL;
9608 
9609         INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9610         hpsa_sas_port->parent_node = hpsa_sas_node;
9611 
9612         port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9613         if (!port)
9614                 goto free_hpsa_port;
9615 
9616         rc = sas_port_add(port);
9617         if (rc)
9618                 goto free_sas_port;
9619 
9620         hpsa_sas_port->port = port;
9621         hpsa_sas_port->sas_address = sas_address;
9622         list_add_tail(&hpsa_sas_port->port_list_entry,
9623                         &hpsa_sas_node->port_list_head);
9624 
9625         return hpsa_sas_port;
9626 
9627 free_sas_port:
9628         sas_port_free(port);
9629 free_hpsa_port:
9630         kfree(hpsa_sas_port);
9631 
9632         return NULL;
9633 }
9634 
9635 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9636 {
9637         struct hpsa_sas_phy *hpsa_sas_phy;
9638         struct hpsa_sas_phy *next;
9639 
9640         list_for_each_entry_safe(hpsa_sas_phy, next,
9641                         &hpsa_sas_port->phy_list_head, phy_list_entry)
9642                 hpsa_free_sas_phy(hpsa_sas_phy);
9643 
9644         sas_port_delete(hpsa_sas_port->port);
9645         list_del(&hpsa_sas_port->port_list_entry);
9646         kfree(hpsa_sas_port);
9647 }
9648 
9649 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9650 {
9651         struct hpsa_sas_node *hpsa_sas_node;
9652 
9653         hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9654         if (hpsa_sas_node) {
9655                 hpsa_sas_node->parent_dev = parent_dev;
9656                 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9657         }
9658 
9659         return hpsa_sas_node;
9660 }
9661 
9662 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9663 {
9664         struct hpsa_sas_port *hpsa_sas_port;
9665         struct hpsa_sas_port *next;
9666 
9667         if (!hpsa_sas_node)
9668                 return;
9669 
9670         list_for_each_entry_safe(hpsa_sas_port, next,
9671                         &hpsa_sas_node->port_list_head, port_list_entry)
9672                 hpsa_free_sas_port(hpsa_sas_port);
9673 
9674         kfree(hpsa_sas_node);
9675 }
9676 
9677 static struct hpsa_scsi_dev_t
9678         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9679                                         struct sas_rphy *rphy)
9680 {
9681         int i;
9682         struct hpsa_scsi_dev_t *device;
9683 
9684         for (i = 0; i < h->ndevices; i++) {
9685                 device = h->dev[i];
9686                 if (!device->sas_port)
9687                         continue;
9688                 if (device->sas_port->rphy == rphy)
9689                         return device;
9690         }
9691 
9692         return NULL;
9693 }
9694 
9695 static int hpsa_add_sas_host(struct ctlr_info *h)
9696 {
9697         int rc;
9698         struct device *parent_dev;
9699         struct hpsa_sas_node *hpsa_sas_node;
9700         struct hpsa_sas_port *hpsa_sas_port;
9701         struct hpsa_sas_phy *hpsa_sas_phy;
9702 
9703         parent_dev = &h->scsi_host->shost_dev;
9704 
9705         hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9706         if (!hpsa_sas_node)
9707                 return -ENOMEM;
9708 
9709         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9710         if (!hpsa_sas_port) {
9711                 rc = -ENODEV;
9712                 goto free_sas_node;
9713         }
9714 
9715         hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9716         if (!hpsa_sas_phy) {
9717                 rc = -ENODEV;
9718                 goto free_sas_port;
9719         }
9720 
9721         rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9722         if (rc)
9723                 goto free_sas_phy;
9724 
9725         h->sas_host = hpsa_sas_node;
9726 
9727         return 0;
9728 
9729 free_sas_phy:
9730         hpsa_free_sas_phy(hpsa_sas_phy);
9731 free_sas_port:
9732         hpsa_free_sas_port(hpsa_sas_port);
9733 free_sas_node:
9734         hpsa_free_sas_node(hpsa_sas_node);
9735 
9736         return rc;
9737 }
9738 
9739 static void hpsa_delete_sas_host(struct ctlr_info *h)
9740 {
9741         hpsa_free_sas_node(h->sas_host);
9742 }
9743 
9744 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9745                                 struct hpsa_scsi_dev_t *device)
9746 {
9747         int rc;
9748         struct hpsa_sas_port *hpsa_sas_port;
9749         struct sas_rphy *rphy;
9750 
9751         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9752         if (!hpsa_sas_port)
9753                 return -ENOMEM;
9754 
9755         rphy = sas_end_device_alloc(hpsa_sas_port->port);
9756         if (!rphy) {
9757                 rc = -ENODEV;
9758                 goto free_sas_port;
9759         }
9760 
9761         hpsa_sas_port->rphy = rphy;
9762         device->sas_port = hpsa_sas_port;
9763 
9764         rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9765         if (rc)
9766                 goto free_sas_port;
9767 
9768         return 0;
9769 
9770 free_sas_port:
9771         hpsa_free_sas_port(hpsa_sas_port);
9772         device->sas_port = NULL;
9773 
9774         return rc;
9775 }
9776 
9777 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9778 {
9779         if (device->sas_port) {
9780                 hpsa_free_sas_port(device->sas_port);
9781                 device->sas_port = NULL;
9782         }
9783 }
9784 
9785 static int
9786 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9787 {
9788         return 0;
9789 }
9790 
9791 static int
9792 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9793 {
9794         struct Scsi_Host *shost = phy_to_shost(rphy);
9795         struct ctlr_info *h;
9796         struct hpsa_scsi_dev_t *sd;
9797 
9798         if (!shost)
9799                 return -ENXIO;
9800 
9801         h = shost_to_hba(shost);
9802 
9803         if (!h)
9804                 return -ENXIO;
9805 
9806         sd = hpsa_find_device_by_sas_rphy(h, rphy);
9807         if (!sd)
9808                 return -ENXIO;
9809 
9810         *identifier = sd->eli;
9811 
9812         return 0;
9813 }
9814 
9815 static int
9816 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9817 {
9818         return -ENXIO;
9819 }
9820 
9821 static int
9822 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9823 {
9824         return 0;
9825 }
9826 
9827 static int
9828 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9829 {
9830         return 0;
9831 }
9832 
9833 static int
9834 hpsa_sas_phy_setup(struct sas_phy *phy)
9835 {
9836         return 0;
9837 }
9838 
9839 static void
9840 hpsa_sas_phy_release(struct sas_phy *phy)
9841 {
9842 }
9843 
9844 static int
9845 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9846 {
9847         return -EINVAL;
9848 }
9849 
9850 static struct sas_function_template hpsa_sas_transport_functions = {
9851         .get_linkerrors = hpsa_sas_get_linkerrors,
9852         .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9853         .get_bay_identifier = hpsa_sas_get_bay_identifier,
9854         .phy_reset = hpsa_sas_phy_reset,
9855         .phy_enable = hpsa_sas_phy_enable,
9856         .phy_setup = hpsa_sas_phy_setup,
9857         .phy_release = hpsa_sas_phy_release,
9858         .set_phy_speed = hpsa_sas_phy_speed,
9859 };
9860 
9861 /*
9862  *  This is it.  Register the PCI driver information for the cards we control
9863  *  the OS will call our registered routines when it finds one of our cards.
9864  */
9865 static int __init hpsa_init(void)
9866 {
9867         int rc;
9868 
9869         hpsa_sas_transport_template =
9870                 sas_attach_transport(&hpsa_sas_transport_functions);
9871         if (!hpsa_sas_transport_template)
9872                 return -ENODEV;
9873 
9874         rc = pci_register_driver(&hpsa_pci_driver);
9875 
9876         if (rc)
9877                 sas_release_transport(hpsa_sas_transport_template);
9878 
9879         return rc;
9880 }
9881 
9882 static void __exit hpsa_cleanup(void)
9883 {
9884         pci_unregister_driver(&hpsa_pci_driver);
9885         sas_release_transport(hpsa_sas_transport_template);
9886 }
9887 
9888 static void __attribute__((unused)) verify_offsets(void)
9889 {
9890 #define VERIFY_OFFSET(member, offset) \
9891         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9892 
9893         VERIFY_OFFSET(structure_size, 0);
9894         VERIFY_OFFSET(volume_blk_size, 4);
9895         VERIFY_OFFSET(volume_blk_cnt, 8);
9896         VERIFY_OFFSET(phys_blk_shift, 16);
9897         VERIFY_OFFSET(parity_rotation_shift, 17);
9898         VERIFY_OFFSET(strip_size, 18);
9899         VERIFY_OFFSET(disk_starting_blk, 20);
9900         VERIFY_OFFSET(disk_blk_cnt, 28);
9901         VERIFY_OFFSET(data_disks_per_row, 36);
9902         VERIFY_OFFSET(metadata_disks_per_row, 38);
9903         VERIFY_OFFSET(row_cnt, 40);
9904         VERIFY_OFFSET(layout_map_count, 42);
9905         VERIFY_OFFSET(flags, 44);
9906         VERIFY_OFFSET(dekindex, 46);
9907         /* VERIFY_OFFSET(reserved, 48 */
9908         VERIFY_OFFSET(data, 64);
9909 
9910 #undef VERIFY_OFFSET
9911 
9912 #define VERIFY_OFFSET(member, offset) \
9913         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9914 
9915         VERIFY_OFFSET(IU_type, 0);
9916         VERIFY_OFFSET(direction, 1);
9917         VERIFY_OFFSET(reply_queue, 2);
9918         /* VERIFY_OFFSET(reserved1, 3);  */
9919         VERIFY_OFFSET(scsi_nexus, 4);
9920         VERIFY_OFFSET(Tag, 8);
9921         VERIFY_OFFSET(cdb, 16);
9922         VERIFY_OFFSET(cciss_lun, 32);
9923         VERIFY_OFFSET(data_len, 40);
9924         VERIFY_OFFSET(cmd_priority_task_attr, 44);
9925         VERIFY_OFFSET(sg_count, 45);
9926         /* VERIFY_OFFSET(reserved3 */
9927         VERIFY_OFFSET(err_ptr, 48);
9928         VERIFY_OFFSET(err_len, 56);
9929         /* VERIFY_OFFSET(reserved4  */
9930         VERIFY_OFFSET(sg, 64);
9931 
9932 #undef VERIFY_OFFSET
9933 
9934 #define VERIFY_OFFSET(member, offset) \
9935         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9936 
9937         VERIFY_OFFSET(dev_handle, 0x00);
9938         VERIFY_OFFSET(reserved1, 0x02);
9939         VERIFY_OFFSET(function, 0x03);
9940         VERIFY_OFFSET(reserved2, 0x04);
9941         VERIFY_OFFSET(err_info, 0x0C);
9942         VERIFY_OFFSET(reserved3, 0x10);
9943         VERIFY_OFFSET(err_info_len, 0x12);
9944         VERIFY_OFFSET(reserved4, 0x13);
9945         VERIFY_OFFSET(sgl_offset, 0x14);
9946         VERIFY_OFFSET(reserved5, 0x15);
9947         VERIFY_OFFSET(transfer_len, 0x1C);
9948         VERIFY_OFFSET(reserved6, 0x20);
9949         VERIFY_OFFSET(io_flags, 0x24);
9950         VERIFY_OFFSET(reserved7, 0x26);
9951         VERIFY_OFFSET(LUN, 0x34);
9952         VERIFY_OFFSET(control, 0x3C);
9953         VERIFY_OFFSET(CDB, 0x40);
9954         VERIFY_OFFSET(reserved8, 0x50);
9955         VERIFY_OFFSET(host_context_flags, 0x60);
9956         VERIFY_OFFSET(timeout_sec, 0x62);
9957         VERIFY_OFFSET(ReplyQueue, 0x64);
9958         VERIFY_OFFSET(reserved9, 0x65);
9959         VERIFY_OFFSET(tag, 0x68);
9960         VERIFY_OFFSET(host_addr, 0x70);
9961         VERIFY_OFFSET(CISS_LUN, 0x78);
9962         VERIFY_OFFSET(SG, 0x78 + 8);
9963 #undef VERIFY_OFFSET
9964 }
9965 
9966 module_init(hpsa_init);
9967 module_exit(hpsa_cleanup);

/* [<][>][^][v][top][bottom][index][help] */