root/drivers/scsi/cxlflash/main.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. process_cmd_err
  2. cmd_complete
  3. flush_pending_cmds
  4. context_reset
  5. context_reset_ioarrin
  6. context_reset_sq
  7. send_cmd_ioarrin
  8. send_cmd_sq
  9. wait_resp
  10. cmd_to_target_hwq
  11. send_tmf
  12. cxlflash_driver_info
  13. cxlflash_queuecommand
  14. cxlflash_wait_for_pci_err_recovery
  15. free_mem
  16. cxlflash_reset_sync
  17. stop_afu
  18. term_intr
  19. term_mc
  20. term_afu
  21. notify_shutdown
  22. cxlflash_get_minor
  23. cxlflash_put_minor
  24. cxlflash_release_chrdev
  25. cxlflash_remove
  26. alloc_mem
  27. init_pci
  28. init_scsi
  29. set_port_online
  30. set_port_offline
  31. wait_port_online
  32. wait_port_offline
  33. afu_set_wwpn
  34. afu_link_reset
  35. afu_err_intr_init
  36. cxlflash_sync_err_irq
  37. process_hrrq
  38. process_cmd_doneq
  39. cxlflash_irqpoll
  40. cxlflash_rrq_irq
  41. cxlflash_async_err_irq
  42. read_vpd
  43. init_pcr
  44. init_global
  45. start_afu
  46. init_intr
  47. init_mc
  48. get_num_afu_ports
  49. init_afu
  50. afu_reset
  51. drain_ioctls
  52. cxlflash_async_reset_host
  53. cxlflash_schedule_async_reset
  54. send_afu_cmd
  55. cxlflash_afu_sync
  56. cxlflash_eh_abort_handler
  57. cxlflash_eh_device_reset_handler
  58. cxlflash_eh_host_reset_handler
  59. cxlflash_change_queue_depth
  60. cxlflash_show_port_status
  61. port0_show
  62. port1_show
  63. port2_show
  64. port3_show
  65. lun_mode_show
  66. lun_mode_store
  67. ioctl_version_show
  68. cxlflash_show_port_lun_table
  69. port0_lun_table_show
  70. port1_lun_table_show
  71. port2_lun_table_show
  72. port3_lun_table_show
  73. irqpoll_weight_show
  74. irqpoll_weight_store
  75. num_hwqs_show
  76. num_hwqs_store
  77. hwq_mode_show
  78. hwq_mode_store
  79. mode_show
  80. cxlflash_worker_thread
  81. cxlflash_chr_open
  82. decode_hioctl
  83. cxlflash_lun_provision
  84. cxlflash_afu_debug
  85. cxlflash_chr_ioctl
  86. init_chrdev
  87. cxlflash_probe
  88. cxlflash_pci_error_detected
  89. cxlflash_pci_slot_reset
  90. cxlflash_pci_resume
  91. cxlflash_devnode
  92. cxlflash_class_init
  93. cxlflash_class_exit
  94. init_cxlflash
  95. exit_cxlflash

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3  * CXL Flash Device Driver
   4  *
   5  * Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation
   6  *             Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation
   7  *
   8  * Copyright (C) 2015 IBM Corporation
   9  */
  10 
  11 #include <linux/delay.h>
  12 #include <linux/list.h>
  13 #include <linux/module.h>
  14 #include <linux/pci.h>
  15 
  16 #include <asm/unaligned.h>
  17 
  18 #include <scsi/scsi_cmnd.h>
  19 #include <scsi/scsi_host.h>
  20 #include <uapi/scsi/cxlflash_ioctl.h>
  21 
  22 #include "main.h"
  23 #include "sislite.h"
  24 #include "common.h"
  25 
  26 MODULE_DESCRIPTION(CXLFLASH_ADAPTER_NAME);
  27 MODULE_AUTHOR("Manoj N. Kumar <manoj@linux.vnet.ibm.com>");
  28 MODULE_AUTHOR("Matthew R. Ochs <mrochs@linux.vnet.ibm.com>");
  29 MODULE_LICENSE("GPL");
  30 
  31 static struct class *cxlflash_class;
  32 static u32 cxlflash_major;
  33 static DECLARE_BITMAP(cxlflash_minor, CXLFLASH_MAX_ADAPTERS);
  34 
  35 /**
  36  * process_cmd_err() - command error handler
  37  * @cmd:        AFU command that experienced the error.
  38  * @scp:        SCSI command associated with the AFU command in error.
  39  *
  40  * Translates error bits from AFU command to SCSI command results.
  41  */
  42 static void process_cmd_err(struct afu_cmd *cmd, struct scsi_cmnd *scp)
  43 {
  44         struct afu *afu = cmd->parent;
  45         struct cxlflash_cfg *cfg = afu->parent;
  46         struct device *dev = &cfg->dev->dev;
  47         struct sisl_ioarcb *ioarcb;
  48         struct sisl_ioasa *ioasa;
  49         u32 resid;
  50 
  51         if (unlikely(!cmd))
  52                 return;
  53 
  54         ioarcb = &(cmd->rcb);
  55         ioasa = &(cmd->sa);
  56 
  57         if (ioasa->rc.flags & SISL_RC_FLAGS_UNDERRUN) {
  58                 resid = ioasa->resid;
  59                 scsi_set_resid(scp, resid);
  60                 dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p, resid = %d\n",
  61                         __func__, cmd, scp, resid);
  62         }
  63 
  64         if (ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN) {
  65                 dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p\n",
  66                         __func__, cmd, scp);
  67                 scp->result = (DID_ERROR << 16);
  68         }
  69 
  70         dev_dbg(dev, "%s: cmd failed afu_rc=%02x scsi_rc=%02x fc_rc=%02x "
  71                 "afu_extra=%02x scsi_extra=%02x fc_extra=%02x\n", __func__,
  72                 ioasa->rc.afu_rc, ioasa->rc.scsi_rc, ioasa->rc.fc_rc,
  73                 ioasa->afu_extra, ioasa->scsi_extra, ioasa->fc_extra);
  74 
  75         if (ioasa->rc.scsi_rc) {
  76                 /* We have a SCSI status */
  77                 if (ioasa->rc.flags & SISL_RC_FLAGS_SENSE_VALID) {
  78                         memcpy(scp->sense_buffer, ioasa->sense_data,
  79                                SISL_SENSE_DATA_LEN);
  80                         scp->result = ioasa->rc.scsi_rc;
  81                 } else
  82                         scp->result = ioasa->rc.scsi_rc | (DID_ERROR << 16);
  83         }
  84 
  85         /*
  86          * We encountered an error. Set scp->result based on nature
  87          * of error.
  88          */
  89         if (ioasa->rc.fc_rc) {
  90                 /* We have an FC status */
  91                 switch (ioasa->rc.fc_rc) {
  92                 case SISL_FC_RC_LINKDOWN:
  93                         scp->result = (DID_REQUEUE << 16);
  94                         break;
  95                 case SISL_FC_RC_RESID:
  96                         /* This indicates an FCP resid underrun */
  97                         if (!(ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN)) {
  98                                 /* If the SISL_RC_FLAGS_OVERRUN flag was set,
  99                                  * then we will handle this error else where.
 100                                  * If not then we must handle it here.
 101                                  * This is probably an AFU bug.
 102                                  */
 103                                 scp->result = (DID_ERROR << 16);
 104                         }
 105                         break;
 106                 case SISL_FC_RC_RESIDERR:
 107                         /* Resid mismatch between adapter and device */
 108                 case SISL_FC_RC_TGTABORT:
 109                 case SISL_FC_RC_ABORTOK:
 110                 case SISL_FC_RC_ABORTFAIL:
 111                 case SISL_FC_RC_NOLOGI:
 112                 case SISL_FC_RC_ABORTPEND:
 113                 case SISL_FC_RC_WRABORTPEND:
 114                 case SISL_FC_RC_NOEXP:
 115                 case SISL_FC_RC_INUSE:
 116                         scp->result = (DID_ERROR << 16);
 117                         break;
 118                 }
 119         }
 120 
 121         if (ioasa->rc.afu_rc) {
 122                 /* We have an AFU error */
 123                 switch (ioasa->rc.afu_rc) {
 124                 case SISL_AFU_RC_NO_CHANNELS:
 125                         scp->result = (DID_NO_CONNECT << 16);
 126                         break;
 127                 case SISL_AFU_RC_DATA_DMA_ERR:
 128                         switch (ioasa->afu_extra) {
 129                         case SISL_AFU_DMA_ERR_PAGE_IN:
 130                                 /* Retry */
 131                                 scp->result = (DID_IMM_RETRY << 16);
 132                                 break;
 133                         case SISL_AFU_DMA_ERR_INVALID_EA:
 134                         default:
 135                                 scp->result = (DID_ERROR << 16);
 136                         }
 137                         break;
 138                 case SISL_AFU_RC_OUT_OF_DATA_BUFS:
 139                         /* Retry */
 140                         scp->result = (DID_ALLOC_FAILURE << 16);
 141                         break;
 142                 default:
 143                         scp->result = (DID_ERROR << 16);
 144                 }
 145         }
 146 }
 147 
 148 /**
 149  * cmd_complete() - command completion handler
 150  * @cmd:        AFU command that has completed.
 151  *
 152  * For SCSI commands this routine prepares and submits commands that have
 153  * either completed or timed out to the SCSI stack. For internal commands
 154  * (TMF or AFU), this routine simply notifies the originator that the
 155  * command has completed.
 156  */
 157 static void cmd_complete(struct afu_cmd *cmd)
 158 {
 159         struct scsi_cmnd *scp;
 160         ulong lock_flags;
 161         struct afu *afu = cmd->parent;
 162         struct cxlflash_cfg *cfg = afu->parent;
 163         struct device *dev = &cfg->dev->dev;
 164         struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
 165 
 166         spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
 167         list_del(&cmd->list);
 168         spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
 169 
 170         if (cmd->scp) {
 171                 scp = cmd->scp;
 172                 if (unlikely(cmd->sa.ioasc))
 173                         process_cmd_err(cmd, scp);
 174                 else
 175                         scp->result = (DID_OK << 16);
 176 
 177                 dev_dbg_ratelimited(dev, "%s:scp=%p result=%08x ioasc=%08x\n",
 178                                     __func__, scp, scp->result, cmd->sa.ioasc);
 179                 scp->scsi_done(scp);
 180         } else if (cmd->cmd_tmf) {
 181                 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
 182                 cfg->tmf_active = false;
 183                 wake_up_all_locked(&cfg->tmf_waitq);
 184                 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
 185         } else
 186                 complete(&cmd->cevent);
 187 }
 188 
 189 /**
 190  * flush_pending_cmds() - flush all pending commands on this hardware queue
 191  * @hwq:        Hardware queue to flush.
 192  *
 193  * The hardware send queue lock associated with this hardware queue must be
 194  * held when calling this routine.
 195  */
 196 static void flush_pending_cmds(struct hwq *hwq)
 197 {
 198         struct cxlflash_cfg *cfg = hwq->afu->parent;
 199         struct afu_cmd *cmd, *tmp;
 200         struct scsi_cmnd *scp;
 201         ulong lock_flags;
 202 
 203         list_for_each_entry_safe(cmd, tmp, &hwq->pending_cmds, list) {
 204                 /* Bypass command when on a doneq, cmd_complete() will handle */
 205                 if (!list_empty(&cmd->queue))
 206                         continue;
 207 
 208                 list_del(&cmd->list);
 209 
 210                 if (cmd->scp) {
 211                         scp = cmd->scp;
 212                         scp->result = (DID_IMM_RETRY << 16);
 213                         scp->scsi_done(scp);
 214                 } else {
 215                         cmd->cmd_aborted = true;
 216 
 217                         if (cmd->cmd_tmf) {
 218                                 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
 219                                 cfg->tmf_active = false;
 220                                 wake_up_all_locked(&cfg->tmf_waitq);
 221                                 spin_unlock_irqrestore(&cfg->tmf_slock,
 222                                                        lock_flags);
 223                         } else
 224                                 complete(&cmd->cevent);
 225                 }
 226         }
 227 }
 228 
 229 /**
 230  * context_reset() - reset context via specified register
 231  * @hwq:        Hardware queue owning the context to be reset.
 232  * @reset_reg:  MMIO register to perform reset.
 233  *
 234  * When the reset is successful, the SISLite specification guarantees that
 235  * the AFU has aborted all currently pending I/O. Accordingly, these commands
 236  * must be flushed.
 237  *
 238  * Return: 0 on success, -errno on failure
 239  */
 240 static int context_reset(struct hwq *hwq, __be64 __iomem *reset_reg)
 241 {
 242         struct cxlflash_cfg *cfg = hwq->afu->parent;
 243         struct device *dev = &cfg->dev->dev;
 244         int rc = -ETIMEDOUT;
 245         int nretry = 0;
 246         u64 val = 0x1;
 247         ulong lock_flags;
 248 
 249         dev_dbg(dev, "%s: hwq=%p\n", __func__, hwq);
 250 
 251         spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
 252 
 253         writeq_be(val, reset_reg);
 254         do {
 255                 val = readq_be(reset_reg);
 256                 if ((val & 0x1) == 0x0) {
 257                         rc = 0;
 258                         break;
 259                 }
 260 
 261                 /* Double delay each time */
 262                 udelay(1 << nretry);
 263         } while (nretry++ < MC_ROOM_RETRY_CNT);
 264 
 265         if (!rc)
 266                 flush_pending_cmds(hwq);
 267 
 268         spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
 269 
 270         dev_dbg(dev, "%s: returning rc=%d, val=%016llx nretry=%d\n",
 271                 __func__, rc, val, nretry);
 272         return rc;
 273 }
 274 
 275 /**
 276  * context_reset_ioarrin() - reset context via IOARRIN register
 277  * @hwq:        Hardware queue owning the context to be reset.
 278  *
 279  * Return: 0 on success, -errno on failure
 280  */
 281 static int context_reset_ioarrin(struct hwq *hwq)
 282 {
 283         return context_reset(hwq, &hwq->host_map->ioarrin);
 284 }
 285 
 286 /**
 287  * context_reset_sq() - reset context via SQ_CONTEXT_RESET register
 288  * @hwq:        Hardware queue owning the context to be reset.
 289  *
 290  * Return: 0 on success, -errno on failure
 291  */
 292 static int context_reset_sq(struct hwq *hwq)
 293 {
 294         return context_reset(hwq, &hwq->host_map->sq_ctx_reset);
 295 }
 296 
 297 /**
 298  * send_cmd_ioarrin() - sends an AFU command via IOARRIN register
 299  * @afu:        AFU associated with the host.
 300  * @cmd:        AFU command to send.
 301  *
 302  * Return:
 303  *      0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
 304  */
 305 static int send_cmd_ioarrin(struct afu *afu, struct afu_cmd *cmd)
 306 {
 307         struct cxlflash_cfg *cfg = afu->parent;
 308         struct device *dev = &cfg->dev->dev;
 309         struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
 310         int rc = 0;
 311         s64 room;
 312         ulong lock_flags;
 313 
 314         /*
 315          * To avoid the performance penalty of MMIO, spread the update of
 316          * 'room' over multiple commands.
 317          */
 318         spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
 319         if (--hwq->room < 0) {
 320                 room = readq_be(&hwq->host_map->cmd_room);
 321                 if (room <= 0) {
 322                         dev_dbg_ratelimited(dev, "%s: no cmd_room to send "
 323                                             "0x%02X, room=0x%016llX\n",
 324                                             __func__, cmd->rcb.cdb[0], room);
 325                         hwq->room = 0;
 326                         rc = SCSI_MLQUEUE_HOST_BUSY;
 327                         goto out;
 328                 }
 329                 hwq->room = room - 1;
 330         }
 331 
 332         list_add(&cmd->list, &hwq->pending_cmds);
 333         writeq_be((u64)&cmd->rcb, &hwq->host_map->ioarrin);
 334 out:
 335         spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
 336         dev_dbg_ratelimited(dev, "%s: cmd=%p len=%u ea=%016llx rc=%d\n",
 337                 __func__, cmd, cmd->rcb.data_len, cmd->rcb.data_ea, rc);
 338         return rc;
 339 }
 340 
 341 /**
 342  * send_cmd_sq() - sends an AFU command via SQ ring
 343  * @afu:        AFU associated with the host.
 344  * @cmd:        AFU command to send.
 345  *
 346  * Return:
 347  *      0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
 348  */
 349 static int send_cmd_sq(struct afu *afu, struct afu_cmd *cmd)
 350 {
 351         struct cxlflash_cfg *cfg = afu->parent;
 352         struct device *dev = &cfg->dev->dev;
 353         struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
 354         int rc = 0;
 355         int newval;
 356         ulong lock_flags;
 357 
 358         newval = atomic_dec_if_positive(&hwq->hsq_credits);
 359         if (newval <= 0) {
 360                 rc = SCSI_MLQUEUE_HOST_BUSY;
 361                 goto out;
 362         }
 363 
 364         cmd->rcb.ioasa = &cmd->sa;
 365 
 366         spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
 367 
 368         *hwq->hsq_curr = cmd->rcb;
 369         if (hwq->hsq_curr < hwq->hsq_end)
 370                 hwq->hsq_curr++;
 371         else
 372                 hwq->hsq_curr = hwq->hsq_start;
 373 
 374         list_add(&cmd->list, &hwq->pending_cmds);
 375         writeq_be((u64)hwq->hsq_curr, &hwq->host_map->sq_tail);
 376 
 377         spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
 378 out:
 379         dev_dbg(dev, "%s: cmd=%p len=%u ea=%016llx ioasa=%p rc=%d curr=%p "
 380                "head=%016llx tail=%016llx\n", __func__, cmd, cmd->rcb.data_len,
 381                cmd->rcb.data_ea, cmd->rcb.ioasa, rc, hwq->hsq_curr,
 382                readq_be(&hwq->host_map->sq_head),
 383                readq_be(&hwq->host_map->sq_tail));
 384         return rc;
 385 }
 386 
 387 /**
 388  * wait_resp() - polls for a response or timeout to a sent AFU command
 389  * @afu:        AFU associated with the host.
 390  * @cmd:        AFU command that was sent.
 391  *
 392  * Return: 0 on success, -errno on failure
 393  */
 394 static int wait_resp(struct afu *afu, struct afu_cmd *cmd)
 395 {
 396         struct cxlflash_cfg *cfg = afu->parent;
 397         struct device *dev = &cfg->dev->dev;
 398         int rc = 0;
 399         ulong timeout = msecs_to_jiffies(cmd->rcb.timeout * 2 * 1000);
 400 
 401         timeout = wait_for_completion_timeout(&cmd->cevent, timeout);
 402         if (!timeout)
 403                 rc = -ETIMEDOUT;
 404 
 405         if (cmd->cmd_aborted)
 406                 rc = -EAGAIN;
 407 
 408         if (unlikely(cmd->sa.ioasc != 0)) {
 409                 dev_err(dev, "%s: cmd %02x failed, ioasc=%08x\n",
 410                         __func__, cmd->rcb.cdb[0], cmd->sa.ioasc);
 411                 rc = -EIO;
 412         }
 413 
 414         return rc;
 415 }
 416 
 417 /**
 418  * cmd_to_target_hwq() - selects a target hardware queue for a SCSI command
 419  * @host:       SCSI host associated with device.
 420  * @scp:        SCSI command to send.
 421  * @afu:        SCSI command to send.
 422  *
 423  * Hashes a command based upon the hardware queue mode.
 424  *
 425  * Return: Trusted index of target hardware queue
 426  */
 427 static u32 cmd_to_target_hwq(struct Scsi_Host *host, struct scsi_cmnd *scp,
 428                              struct afu *afu)
 429 {
 430         u32 tag;
 431         u32 hwq = 0;
 432 
 433         if (afu->num_hwqs == 1)
 434                 return 0;
 435 
 436         switch (afu->hwq_mode) {
 437         case HWQ_MODE_RR:
 438                 hwq = afu->hwq_rr_count++ % afu->num_hwqs;
 439                 break;
 440         case HWQ_MODE_TAG:
 441                 tag = blk_mq_unique_tag(scp->request);
 442                 hwq = blk_mq_unique_tag_to_hwq(tag);
 443                 break;
 444         case HWQ_MODE_CPU:
 445                 hwq = smp_processor_id() % afu->num_hwqs;
 446                 break;
 447         default:
 448                 WARN_ON_ONCE(1);
 449         }
 450 
 451         return hwq;
 452 }
 453 
 454 /**
 455  * send_tmf() - sends a Task Management Function (TMF)
 456  * @cfg:        Internal structure associated with the host.
 457  * @sdev:       SCSI device destined for TMF.
 458  * @tmfcmd:     TMF command to send.
 459  *
 460  * Return:
 461  *      0 on success, SCSI_MLQUEUE_HOST_BUSY or -errno on failure
 462  */
 463 static int send_tmf(struct cxlflash_cfg *cfg, struct scsi_device *sdev,
 464                     u64 tmfcmd)
 465 {
 466         struct afu *afu = cfg->afu;
 467         struct afu_cmd *cmd = NULL;
 468         struct device *dev = &cfg->dev->dev;
 469         struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
 470         bool needs_deletion = false;
 471         char *buf = NULL;
 472         ulong lock_flags;
 473         int rc = 0;
 474         ulong to;
 475 
 476         buf = kzalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL);
 477         if (unlikely(!buf)) {
 478                 dev_err(dev, "%s: no memory for command\n", __func__);
 479                 rc = -ENOMEM;
 480                 goto out;
 481         }
 482 
 483         cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd));
 484         INIT_LIST_HEAD(&cmd->queue);
 485 
 486         /* When Task Management Function is active do not send another */
 487         spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
 488         if (cfg->tmf_active)
 489                 wait_event_interruptible_lock_irq(cfg->tmf_waitq,
 490                                                   !cfg->tmf_active,
 491                                                   cfg->tmf_slock);
 492         cfg->tmf_active = true;
 493         spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
 494 
 495         cmd->parent = afu;
 496         cmd->cmd_tmf = true;
 497         cmd->hwq_index = hwq->index;
 498 
 499         cmd->rcb.ctx_id = hwq->ctx_hndl;
 500         cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
 501         cmd->rcb.port_sel = CHAN2PORTMASK(sdev->channel);
 502         cmd->rcb.lun_id = lun_to_lunid(sdev->lun);
 503         cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID |
 504                               SISL_REQ_FLAGS_SUP_UNDERRUN |
 505                               SISL_REQ_FLAGS_TMF_CMD);
 506         memcpy(cmd->rcb.cdb, &tmfcmd, sizeof(tmfcmd));
 507 
 508         rc = afu->send_cmd(afu, cmd);
 509         if (unlikely(rc)) {
 510                 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
 511                 cfg->tmf_active = false;
 512                 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
 513                 goto out;
 514         }
 515 
 516         spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
 517         to = msecs_to_jiffies(5000);
 518         to = wait_event_interruptible_lock_irq_timeout(cfg->tmf_waitq,
 519                                                        !cfg->tmf_active,
 520                                                        cfg->tmf_slock,
 521                                                        to);
 522         if (!to) {
 523                 dev_err(dev, "%s: TMF timed out\n", __func__);
 524                 rc = -ETIMEDOUT;
 525                 needs_deletion = true;
 526         } else if (cmd->cmd_aborted) {
 527                 dev_err(dev, "%s: TMF aborted\n", __func__);
 528                 rc = -EAGAIN;
 529         } else if (cmd->sa.ioasc) {
 530                 dev_err(dev, "%s: TMF failed ioasc=%08x\n",
 531                         __func__, cmd->sa.ioasc);
 532                 rc = -EIO;
 533         }
 534         cfg->tmf_active = false;
 535         spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
 536 
 537         if (needs_deletion) {
 538                 spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
 539                 list_del(&cmd->list);
 540                 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
 541         }
 542 out:
 543         kfree(buf);
 544         return rc;
 545 }
 546 
 547 /**
 548  * cxlflash_driver_info() - information handler for this host driver
 549  * @host:       SCSI host associated with device.
 550  *
 551  * Return: A string describing the device.
 552  */
 553 static const char *cxlflash_driver_info(struct Scsi_Host *host)
 554 {
 555         return CXLFLASH_ADAPTER_NAME;
 556 }
 557 
 558 /**
 559  * cxlflash_queuecommand() - sends a mid-layer request
 560  * @host:       SCSI host associated with device.
 561  * @scp:        SCSI command to send.
 562  *
 563  * Return: 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
 564  */
 565 static int cxlflash_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scp)
 566 {
 567         struct cxlflash_cfg *cfg = shost_priv(host);
 568         struct afu *afu = cfg->afu;
 569         struct device *dev = &cfg->dev->dev;
 570         struct afu_cmd *cmd = sc_to_afuci(scp);
 571         struct scatterlist *sg = scsi_sglist(scp);
 572         int hwq_index = cmd_to_target_hwq(host, scp, afu);
 573         struct hwq *hwq = get_hwq(afu, hwq_index);
 574         u16 req_flags = SISL_REQ_FLAGS_SUP_UNDERRUN;
 575         ulong lock_flags;
 576         int rc = 0;
 577 
 578         dev_dbg_ratelimited(dev, "%s: (scp=%p) %d/%d/%d/%llu "
 579                             "cdb=(%08x-%08x-%08x-%08x)\n",
 580                             __func__, scp, host->host_no, scp->device->channel,
 581                             scp->device->id, scp->device->lun,
 582                             get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
 583                             get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
 584                             get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
 585                             get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
 586 
 587         /*
 588          * If a Task Management Function is active, wait for it to complete
 589          * before continuing with regular commands.
 590          */
 591         spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
 592         if (cfg->tmf_active) {
 593                 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
 594                 rc = SCSI_MLQUEUE_HOST_BUSY;
 595                 goto out;
 596         }
 597         spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
 598 
 599         switch (cfg->state) {
 600         case STATE_PROBING:
 601         case STATE_PROBED:
 602         case STATE_RESET:
 603                 dev_dbg_ratelimited(dev, "%s: device is in reset\n", __func__);
 604                 rc = SCSI_MLQUEUE_HOST_BUSY;
 605                 goto out;
 606         case STATE_FAILTERM:
 607                 dev_dbg_ratelimited(dev, "%s: device has failed\n", __func__);
 608                 scp->result = (DID_NO_CONNECT << 16);
 609                 scp->scsi_done(scp);
 610                 rc = 0;
 611                 goto out;
 612         default:
 613                 atomic_inc(&afu->cmds_active);
 614                 break;
 615         }
 616 
 617         if (likely(sg)) {
 618                 cmd->rcb.data_len = sg->length;
 619                 cmd->rcb.data_ea = (uintptr_t)sg_virt(sg);
 620         }
 621 
 622         cmd->scp = scp;
 623         cmd->parent = afu;
 624         cmd->hwq_index = hwq_index;
 625 
 626         cmd->sa.ioasc = 0;
 627         cmd->rcb.ctx_id = hwq->ctx_hndl;
 628         cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
 629         cmd->rcb.port_sel = CHAN2PORTMASK(scp->device->channel);
 630         cmd->rcb.lun_id = lun_to_lunid(scp->device->lun);
 631 
 632         if (scp->sc_data_direction == DMA_TO_DEVICE)
 633                 req_flags |= SISL_REQ_FLAGS_HOST_WRITE;
 634 
 635         cmd->rcb.req_flags = req_flags;
 636         memcpy(cmd->rcb.cdb, scp->cmnd, sizeof(cmd->rcb.cdb));
 637 
 638         rc = afu->send_cmd(afu, cmd);
 639         atomic_dec(&afu->cmds_active);
 640 out:
 641         return rc;
 642 }
 643 
 644 /**
 645  * cxlflash_wait_for_pci_err_recovery() - wait for error recovery during probe
 646  * @cfg:        Internal structure associated with the host.
 647  */
 648 static void cxlflash_wait_for_pci_err_recovery(struct cxlflash_cfg *cfg)
 649 {
 650         struct pci_dev *pdev = cfg->dev;
 651 
 652         if (pci_channel_offline(pdev))
 653                 wait_event_timeout(cfg->reset_waitq,
 654                                    !pci_channel_offline(pdev),
 655                                    CXLFLASH_PCI_ERROR_RECOVERY_TIMEOUT);
 656 }
 657 
 658 /**
 659  * free_mem() - free memory associated with the AFU
 660  * @cfg:        Internal structure associated with the host.
 661  */
 662 static void free_mem(struct cxlflash_cfg *cfg)
 663 {
 664         struct afu *afu = cfg->afu;
 665 
 666         if (cfg->afu) {
 667                 free_pages((ulong)afu, get_order(sizeof(struct afu)));
 668                 cfg->afu = NULL;
 669         }
 670 }
 671 
 672 /**
 673  * cxlflash_reset_sync() - synchronizing point for asynchronous resets
 674  * @cfg:        Internal structure associated with the host.
 675  */
 676 static void cxlflash_reset_sync(struct cxlflash_cfg *cfg)
 677 {
 678         if (cfg->async_reset_cookie == 0)
 679                 return;
 680 
 681         /* Wait until all async calls prior to this cookie have completed */
 682         async_synchronize_cookie(cfg->async_reset_cookie + 1);
 683         cfg->async_reset_cookie = 0;
 684 }
 685 
 686 /**
 687  * stop_afu() - stops the AFU command timers and unmaps the MMIO space
 688  * @cfg:        Internal structure associated with the host.
 689  *
 690  * Safe to call with AFU in a partially allocated/initialized state.
 691  *
 692  * Cancels scheduled worker threads, waits for any active internal AFU
 693  * commands to timeout, disables IRQ polling and then unmaps the MMIO space.
 694  */
 695 static void stop_afu(struct cxlflash_cfg *cfg)
 696 {
 697         struct afu *afu = cfg->afu;
 698         struct hwq *hwq;
 699         int i;
 700 
 701         cancel_work_sync(&cfg->work_q);
 702         if (!current_is_async())
 703                 cxlflash_reset_sync(cfg);
 704 
 705         if (likely(afu)) {
 706                 while (atomic_read(&afu->cmds_active))
 707                         ssleep(1);
 708 
 709                 if (afu_is_irqpoll_enabled(afu)) {
 710                         for (i = 0; i < afu->num_hwqs; i++) {
 711                                 hwq = get_hwq(afu, i);
 712 
 713                                 irq_poll_disable(&hwq->irqpoll);
 714                         }
 715                 }
 716 
 717                 if (likely(afu->afu_map)) {
 718                         cfg->ops->psa_unmap(afu->afu_map);
 719                         afu->afu_map = NULL;
 720                 }
 721         }
 722 }
 723 
 724 /**
 725  * term_intr() - disables all AFU interrupts
 726  * @cfg:        Internal structure associated with the host.
 727  * @level:      Depth of allocation, where to begin waterfall tear down.
 728  * @index:      Index of the hardware queue.
 729  *
 730  * Safe to call with AFU/MC in partially allocated/initialized state.
 731  */
 732 static void term_intr(struct cxlflash_cfg *cfg, enum undo_level level,
 733                       u32 index)
 734 {
 735         struct afu *afu = cfg->afu;
 736         struct device *dev = &cfg->dev->dev;
 737         struct hwq *hwq;
 738 
 739         if (!afu) {
 740                 dev_err(dev, "%s: returning with NULL afu\n", __func__);
 741                 return;
 742         }
 743 
 744         hwq = get_hwq(afu, index);
 745 
 746         if (!hwq->ctx_cookie) {
 747                 dev_err(dev, "%s: returning with NULL MC\n", __func__);
 748                 return;
 749         }
 750 
 751         switch (level) {
 752         case UNMAP_THREE:
 753                 /* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */
 754                 if (index == PRIMARY_HWQ)
 755                         cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 3, hwq);
 756                 /* fall through */
 757         case UNMAP_TWO:
 758                 cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 2, hwq);
 759                 /* fall through */
 760         case UNMAP_ONE:
 761                 cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 1, hwq);
 762                 /* fall through */
 763         case FREE_IRQ:
 764                 cfg->ops->free_afu_irqs(hwq->ctx_cookie);
 765                 /* fall through */
 766         case UNDO_NOOP:
 767                 /* No action required */
 768                 break;
 769         }
 770 }
 771 
 772 /**
 773  * term_mc() - terminates the master context
 774  * @cfg:        Internal structure associated with the host.
 775  * @index:      Index of the hardware queue.
 776  *
 777  * Safe to call with AFU/MC in partially allocated/initialized state.
 778  */
 779 static void term_mc(struct cxlflash_cfg *cfg, u32 index)
 780 {
 781         struct afu *afu = cfg->afu;
 782         struct device *dev = &cfg->dev->dev;
 783         struct hwq *hwq;
 784         ulong lock_flags;
 785 
 786         if (!afu) {
 787                 dev_err(dev, "%s: returning with NULL afu\n", __func__);
 788                 return;
 789         }
 790 
 791         hwq = get_hwq(afu, index);
 792 
 793         if (!hwq->ctx_cookie) {
 794                 dev_err(dev, "%s: returning with NULL MC\n", __func__);
 795                 return;
 796         }
 797 
 798         WARN_ON(cfg->ops->stop_context(hwq->ctx_cookie));
 799         if (index != PRIMARY_HWQ)
 800                 WARN_ON(cfg->ops->release_context(hwq->ctx_cookie));
 801         hwq->ctx_cookie = NULL;
 802 
 803         spin_lock_irqsave(&hwq->hrrq_slock, lock_flags);
 804         hwq->hrrq_online = false;
 805         spin_unlock_irqrestore(&hwq->hrrq_slock, lock_flags);
 806 
 807         spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
 808         flush_pending_cmds(hwq);
 809         spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
 810 }
 811 
 812 /**
 813  * term_afu() - terminates the AFU
 814  * @cfg:        Internal structure associated with the host.
 815  *
 816  * Safe to call with AFU/MC in partially allocated/initialized state.
 817  */
 818 static void term_afu(struct cxlflash_cfg *cfg)
 819 {
 820         struct device *dev = &cfg->dev->dev;
 821         int k;
 822 
 823         /*
 824          * Tear down is carefully orchestrated to ensure
 825          * no interrupts can come in when the problem state
 826          * area is unmapped.
 827          *
 828          * 1) Disable all AFU interrupts for each master
 829          * 2) Unmap the problem state area
 830          * 3) Stop each master context
 831          */
 832         for (k = cfg->afu->num_hwqs - 1; k >= 0; k--)
 833                 term_intr(cfg, UNMAP_THREE, k);
 834 
 835         stop_afu(cfg);
 836 
 837         for (k = cfg->afu->num_hwqs - 1; k >= 0; k--)
 838                 term_mc(cfg, k);
 839 
 840         dev_dbg(dev, "%s: returning\n", __func__);
 841 }
 842 
 843 /**
 844  * notify_shutdown() - notifies device of pending shutdown
 845  * @cfg:        Internal structure associated with the host.
 846  * @wait:       Whether to wait for shutdown processing to complete.
 847  *
 848  * This function will notify the AFU that the adapter is being shutdown
 849  * and will wait for shutdown processing to complete if wait is true.
 850  * This notification should flush pending I/Os to the device and halt
 851  * further I/Os until the next AFU reset is issued and device restarted.
 852  */
 853 static void notify_shutdown(struct cxlflash_cfg *cfg, bool wait)
 854 {
 855         struct afu *afu = cfg->afu;
 856         struct device *dev = &cfg->dev->dev;
 857         struct dev_dependent_vals *ddv;
 858         __be64 __iomem *fc_port_regs;
 859         u64 reg, status;
 860         int i, retry_cnt = 0;
 861 
 862         ddv = (struct dev_dependent_vals *)cfg->dev_id->driver_data;
 863         if (!(ddv->flags & CXLFLASH_NOTIFY_SHUTDOWN))
 864                 return;
 865 
 866         if (!afu || !afu->afu_map) {
 867                 dev_dbg(dev, "%s: Problem state area not mapped\n", __func__);
 868                 return;
 869         }
 870 
 871         /* Notify AFU */
 872         for (i = 0; i < cfg->num_fc_ports; i++) {
 873                 fc_port_regs = get_fc_port_regs(cfg, i);
 874 
 875                 reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]);
 876                 reg |= SISL_FC_SHUTDOWN_NORMAL;
 877                 writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]);
 878         }
 879 
 880         if (!wait)
 881                 return;
 882 
 883         /* Wait up to 1.5 seconds for shutdown processing to complete */
 884         for (i = 0; i < cfg->num_fc_ports; i++) {
 885                 fc_port_regs = get_fc_port_regs(cfg, i);
 886                 retry_cnt = 0;
 887 
 888                 while (true) {
 889                         status = readq_be(&fc_port_regs[FC_STATUS / 8]);
 890                         if (status & SISL_STATUS_SHUTDOWN_COMPLETE)
 891                                 break;
 892                         if (++retry_cnt >= MC_RETRY_CNT) {
 893                                 dev_dbg(dev, "%s: port %d shutdown processing "
 894                                         "not yet completed\n", __func__, i);
 895                                 break;
 896                         }
 897                         msleep(100 * retry_cnt);
 898                 }
 899         }
 900 }
 901 
 902 /**
 903  * cxlflash_get_minor() - gets the first available minor number
 904  *
 905  * Return: Unique minor number that can be used to create the character device.
 906  */
 907 static int cxlflash_get_minor(void)
 908 {
 909         int minor;
 910         long bit;
 911 
 912         bit = find_first_zero_bit(cxlflash_minor, CXLFLASH_MAX_ADAPTERS);
 913         if (bit >= CXLFLASH_MAX_ADAPTERS)
 914                 return -1;
 915 
 916         minor = bit & MINORMASK;
 917         set_bit(minor, cxlflash_minor);
 918         return minor;
 919 }
 920 
 921 /**
 922  * cxlflash_put_minor() - releases the minor number
 923  * @minor:      Minor number that is no longer needed.
 924  */
 925 static void cxlflash_put_minor(int minor)
 926 {
 927         clear_bit(minor, cxlflash_minor);
 928 }
 929 
 930 /**
 931  * cxlflash_release_chrdev() - release the character device for the host
 932  * @cfg:        Internal structure associated with the host.
 933  */
 934 static void cxlflash_release_chrdev(struct cxlflash_cfg *cfg)
 935 {
 936         device_unregister(cfg->chardev);
 937         cfg->chardev = NULL;
 938         cdev_del(&cfg->cdev);
 939         cxlflash_put_minor(MINOR(cfg->cdev.dev));
 940 }
 941 
 942 /**
 943  * cxlflash_remove() - PCI entry point to tear down host
 944  * @pdev:       PCI device associated with the host.
 945  *
 946  * Safe to use as a cleanup in partially allocated/initialized state. Note that
 947  * the reset_waitq is flushed as part of the stop/termination of user contexts.
 948  */
 949 static void cxlflash_remove(struct pci_dev *pdev)
 950 {
 951         struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
 952         struct device *dev = &pdev->dev;
 953         ulong lock_flags;
 954 
 955         if (!pci_is_enabled(pdev)) {
 956                 dev_dbg(dev, "%s: Device is disabled\n", __func__);
 957                 return;
 958         }
 959 
 960         /* Yield to running recovery threads before continuing with remove */
 961         wait_event(cfg->reset_waitq, cfg->state != STATE_RESET &&
 962                                      cfg->state != STATE_PROBING);
 963         spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
 964         if (cfg->tmf_active)
 965                 wait_event_interruptible_lock_irq(cfg->tmf_waitq,
 966                                                   !cfg->tmf_active,
 967                                                   cfg->tmf_slock);
 968         spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
 969 
 970         /* Notify AFU and wait for shutdown processing to complete */
 971         notify_shutdown(cfg, true);
 972 
 973         cfg->state = STATE_FAILTERM;
 974         cxlflash_stop_term_user_contexts(cfg);
 975 
 976         switch (cfg->init_state) {
 977         case INIT_STATE_CDEV:
 978                 cxlflash_release_chrdev(cfg);
 979                 /* fall through */
 980         case INIT_STATE_SCSI:
 981                 cxlflash_term_local_luns(cfg);
 982                 scsi_remove_host(cfg->host);
 983                 /* fall through */
 984         case INIT_STATE_AFU:
 985                 term_afu(cfg);
 986                 /* fall through */
 987         case INIT_STATE_PCI:
 988                 cfg->ops->destroy_afu(cfg->afu_cookie);
 989                 pci_disable_device(pdev);
 990                 /* fall through */
 991         case INIT_STATE_NONE:
 992                 free_mem(cfg);
 993                 scsi_host_put(cfg->host);
 994                 break;
 995         }
 996 
 997         dev_dbg(dev, "%s: returning\n", __func__);
 998 }
 999 
1000 /**
1001  * alloc_mem() - allocates the AFU and its command pool
1002  * @cfg:        Internal structure associated with the host.
1003  *
1004  * A partially allocated state remains on failure.
1005  *
1006  * Return:
1007  *      0 on success
1008  *      -ENOMEM on failure to allocate memory
1009  */
1010 static int alloc_mem(struct cxlflash_cfg *cfg)
1011 {
1012         int rc = 0;
1013         struct device *dev = &cfg->dev->dev;
1014 
1015         /* AFU is ~28k, i.e. only one 64k page or up to seven 4k pages */
1016         cfg->afu = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1017                                             get_order(sizeof(struct afu)));
1018         if (unlikely(!cfg->afu)) {
1019                 dev_err(dev, "%s: cannot get %d free pages\n",
1020                         __func__, get_order(sizeof(struct afu)));
1021                 rc = -ENOMEM;
1022                 goto out;
1023         }
1024         cfg->afu->parent = cfg;
1025         cfg->afu->desired_hwqs = CXLFLASH_DEF_HWQS;
1026         cfg->afu->afu_map = NULL;
1027 out:
1028         return rc;
1029 }
1030 
1031 /**
1032  * init_pci() - initializes the host as a PCI device
1033  * @cfg:        Internal structure associated with the host.
1034  *
1035  * Return: 0 on success, -errno on failure
1036  */
1037 static int init_pci(struct cxlflash_cfg *cfg)
1038 {
1039         struct pci_dev *pdev = cfg->dev;
1040         struct device *dev = &cfg->dev->dev;
1041         int rc = 0;
1042 
1043         rc = pci_enable_device(pdev);
1044         if (rc || pci_channel_offline(pdev)) {
1045                 if (pci_channel_offline(pdev)) {
1046                         cxlflash_wait_for_pci_err_recovery(cfg);
1047                         rc = pci_enable_device(pdev);
1048                 }
1049 
1050                 if (rc) {
1051                         dev_err(dev, "%s: Cannot enable adapter\n", __func__);
1052                         cxlflash_wait_for_pci_err_recovery(cfg);
1053                         goto out;
1054                 }
1055         }
1056 
1057 out:
1058         dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1059         return rc;
1060 }
1061 
1062 /**
1063  * init_scsi() - adds the host to the SCSI stack and kicks off host scan
1064  * @cfg:        Internal structure associated with the host.
1065  *
1066  * Return: 0 on success, -errno on failure
1067  */
1068 static int init_scsi(struct cxlflash_cfg *cfg)
1069 {
1070         struct pci_dev *pdev = cfg->dev;
1071         struct device *dev = &cfg->dev->dev;
1072         int rc = 0;
1073 
1074         rc = scsi_add_host(cfg->host, &pdev->dev);
1075         if (rc) {
1076                 dev_err(dev, "%s: scsi_add_host failed rc=%d\n", __func__, rc);
1077                 goto out;
1078         }
1079 
1080         scsi_scan_host(cfg->host);
1081 
1082 out:
1083         dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1084         return rc;
1085 }
1086 
1087 /**
1088  * set_port_online() - transitions the specified host FC port to online state
1089  * @fc_regs:    Top of MMIO region defined for specified port.
1090  *
1091  * The provided MMIO region must be mapped prior to call. Online state means
1092  * that the FC link layer has synced, completed the handshaking process, and
1093  * is ready for login to start.
1094  */
1095 static void set_port_online(__be64 __iomem *fc_regs)
1096 {
1097         u64 cmdcfg;
1098 
1099         cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
1100         cmdcfg &= (~FC_MTIP_CMDCONFIG_OFFLINE); /* clear OFF_LINE */
1101         cmdcfg |= (FC_MTIP_CMDCONFIG_ONLINE);   /* set ON_LINE */
1102         writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
1103 }
1104 
1105 /**
1106  * set_port_offline() - transitions the specified host FC port to offline state
1107  * @fc_regs:    Top of MMIO region defined for specified port.
1108  *
1109  * The provided MMIO region must be mapped prior to call.
1110  */
1111 static void set_port_offline(__be64 __iomem *fc_regs)
1112 {
1113         u64 cmdcfg;
1114 
1115         cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
1116         cmdcfg &= (~FC_MTIP_CMDCONFIG_ONLINE);  /* clear ON_LINE */
1117         cmdcfg |= (FC_MTIP_CMDCONFIG_OFFLINE);  /* set OFF_LINE */
1118         writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
1119 }
1120 
1121 /**
1122  * wait_port_online() - waits for the specified host FC port come online
1123  * @fc_regs:    Top of MMIO region defined for specified port.
1124  * @delay_us:   Number of microseconds to delay between reading port status.
1125  * @nretry:     Number of cycles to retry reading port status.
1126  *
1127  * The provided MMIO region must be mapped prior to call. This will timeout
1128  * when the cable is not plugged in.
1129  *
1130  * Return:
1131  *      TRUE (1) when the specified port is online
1132  *      FALSE (0) when the specified port fails to come online after timeout
1133  */
1134 static bool wait_port_online(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
1135 {
1136         u64 status;
1137 
1138         WARN_ON(delay_us < 1000);
1139 
1140         do {
1141                 msleep(delay_us / 1000);
1142                 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
1143                 if (status == U64_MAX)
1144                         nretry /= 2;
1145         } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_ONLINE &&
1146                  nretry--);
1147 
1148         return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_ONLINE);
1149 }
1150 
1151 /**
1152  * wait_port_offline() - waits for the specified host FC port go offline
1153  * @fc_regs:    Top of MMIO region defined for specified port.
1154  * @delay_us:   Number of microseconds to delay between reading port status.
1155  * @nretry:     Number of cycles to retry reading port status.
1156  *
1157  * The provided MMIO region must be mapped prior to call.
1158  *
1159  * Return:
1160  *      TRUE (1) when the specified port is offline
1161  *      FALSE (0) when the specified port fails to go offline after timeout
1162  */
1163 static bool wait_port_offline(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
1164 {
1165         u64 status;
1166 
1167         WARN_ON(delay_us < 1000);
1168 
1169         do {
1170                 msleep(delay_us / 1000);
1171                 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
1172                 if (status == U64_MAX)
1173                         nretry /= 2;
1174         } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_OFFLINE &&
1175                  nretry--);
1176 
1177         return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_OFFLINE);
1178 }
1179 
1180 /**
1181  * afu_set_wwpn() - configures the WWPN for the specified host FC port
1182  * @afu:        AFU associated with the host that owns the specified FC port.
1183  * @port:       Port number being configured.
1184  * @fc_regs:    Top of MMIO region defined for specified port.
1185  * @wwpn:       The world-wide-port-number previously discovered for port.
1186  *
1187  * The provided MMIO region must be mapped prior to call. As part of the
1188  * sequence to configure the WWPN, the port is toggled offline and then back
1189  * online. This toggling action can cause this routine to delay up to a few
1190  * seconds. When configured to use the internal LUN feature of the AFU, a
1191  * failure to come online is overridden.
1192  */
1193 static void afu_set_wwpn(struct afu *afu, int port, __be64 __iomem *fc_regs,
1194                          u64 wwpn)
1195 {
1196         struct cxlflash_cfg *cfg = afu->parent;
1197         struct device *dev = &cfg->dev->dev;
1198 
1199         set_port_offline(fc_regs);
1200         if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1201                                FC_PORT_STATUS_RETRY_CNT)) {
1202                 dev_dbg(dev, "%s: wait on port %d to go offline timed out\n",
1203                         __func__, port);
1204         }
1205 
1206         writeq_be(wwpn, &fc_regs[FC_PNAME / 8]);
1207 
1208         set_port_online(fc_regs);
1209         if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1210                               FC_PORT_STATUS_RETRY_CNT)) {
1211                 dev_dbg(dev, "%s: wait on port %d to go online timed out\n",
1212                         __func__, port);
1213         }
1214 }
1215 
1216 /**
1217  * afu_link_reset() - resets the specified host FC port
1218  * @afu:        AFU associated with the host that owns the specified FC port.
1219  * @port:       Port number being configured.
1220  * @fc_regs:    Top of MMIO region defined for specified port.
1221  *
1222  * The provided MMIO region must be mapped prior to call. The sequence to
1223  * reset the port involves toggling it offline and then back online. This
1224  * action can cause this routine to delay up to a few seconds. An effort
1225  * is made to maintain link with the device by switching to host to use
1226  * the alternate port exclusively while the reset takes place.
1227  * failure to come online is overridden.
1228  */
1229 static void afu_link_reset(struct afu *afu, int port, __be64 __iomem *fc_regs)
1230 {
1231         struct cxlflash_cfg *cfg = afu->parent;
1232         struct device *dev = &cfg->dev->dev;
1233         u64 port_sel;
1234 
1235         /* first switch the AFU to the other links, if any */
1236         port_sel = readq_be(&afu->afu_map->global.regs.afu_port_sel);
1237         port_sel &= ~(1ULL << port);
1238         writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
1239         cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
1240 
1241         set_port_offline(fc_regs);
1242         if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1243                                FC_PORT_STATUS_RETRY_CNT))
1244                 dev_err(dev, "%s: wait on port %d to go offline timed out\n",
1245                         __func__, port);
1246 
1247         set_port_online(fc_regs);
1248         if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1249                               FC_PORT_STATUS_RETRY_CNT))
1250                 dev_err(dev, "%s: wait on port %d to go online timed out\n",
1251                         __func__, port);
1252 
1253         /* switch back to include this port */
1254         port_sel |= (1ULL << port);
1255         writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
1256         cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
1257 
1258         dev_dbg(dev, "%s: returning port_sel=%016llx\n", __func__, port_sel);
1259 }
1260 
1261 /**
1262  * afu_err_intr_init() - clears and initializes the AFU for error interrupts
1263  * @afu:        AFU associated with the host.
1264  */
1265 static void afu_err_intr_init(struct afu *afu)
1266 {
1267         struct cxlflash_cfg *cfg = afu->parent;
1268         __be64 __iomem *fc_port_regs;
1269         int i;
1270         struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
1271         u64 reg;
1272 
1273         /* global async interrupts: AFU clears afu_ctrl on context exit
1274          * if async interrupts were sent to that context. This prevents
1275          * the AFU form sending further async interrupts when
1276          * there is
1277          * nobody to receive them.
1278          */
1279 
1280         /* mask all */
1281         writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_mask);
1282         /* set LISN# to send and point to primary master context */
1283         reg = ((u64) (((hwq->ctx_hndl << 8) | SISL_MSI_ASYNC_ERROR)) << 40);
1284 
1285         if (afu->internal_lun)
1286                 reg |= 1;       /* Bit 63 indicates local lun */
1287         writeq_be(reg, &afu->afu_map->global.regs.afu_ctrl);
1288         /* clear all */
1289         writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1290         /* unmask bits that are of interest */
1291         /* note: afu can send an interrupt after this step */
1292         writeq_be(SISL_ASTATUS_MASK, &afu->afu_map->global.regs.aintr_mask);
1293         /* clear again in case a bit came on after previous clear but before */
1294         /* unmask */
1295         writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1296 
1297         /* Clear/Set internal lun bits */
1298         fc_port_regs = get_fc_port_regs(cfg, 0);
1299         reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]);
1300         reg &= SISL_FC_INTERNAL_MASK;
1301         if (afu->internal_lun)
1302                 reg |= ((u64)(afu->internal_lun - 1) << SISL_FC_INTERNAL_SHIFT);
1303         writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]);
1304 
1305         /* now clear FC errors */
1306         for (i = 0; i < cfg->num_fc_ports; i++) {
1307                 fc_port_regs = get_fc_port_regs(cfg, i);
1308 
1309                 writeq_be(0xFFFFFFFFU, &fc_port_regs[FC_ERROR / 8]);
1310                 writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]);
1311         }
1312 
1313         /* sync interrupts for master's IOARRIN write */
1314         /* note that unlike asyncs, there can be no pending sync interrupts */
1315         /* at this time (this is a fresh context and master has not written */
1316         /* IOARRIN yet), so there is nothing to clear. */
1317 
1318         /* set LISN#, it is always sent to the context that wrote IOARRIN */
1319         for (i = 0; i < afu->num_hwqs; i++) {
1320                 hwq = get_hwq(afu, i);
1321 
1322                 reg = readq_be(&hwq->host_map->ctx_ctrl);
1323                 WARN_ON((reg & SISL_CTX_CTRL_LISN_MASK) != 0);
1324                 reg |= SISL_MSI_SYNC_ERROR;
1325                 writeq_be(reg, &hwq->host_map->ctx_ctrl);
1326                 writeq_be(SISL_ISTATUS_MASK, &hwq->host_map->intr_mask);
1327         }
1328 }
1329 
1330 /**
1331  * cxlflash_sync_err_irq() - interrupt handler for synchronous errors
1332  * @irq:        Interrupt number.
1333  * @data:       Private data provided at interrupt registration, the AFU.
1334  *
1335  * Return: Always return IRQ_HANDLED.
1336  */
1337 static irqreturn_t cxlflash_sync_err_irq(int irq, void *data)
1338 {
1339         struct hwq *hwq = (struct hwq *)data;
1340         struct cxlflash_cfg *cfg = hwq->afu->parent;
1341         struct device *dev = &cfg->dev->dev;
1342         u64 reg;
1343         u64 reg_unmasked;
1344 
1345         reg = readq_be(&hwq->host_map->intr_status);
1346         reg_unmasked = (reg & SISL_ISTATUS_UNMASK);
1347 
1348         if (reg_unmasked == 0UL) {
1349                 dev_err(dev, "%s: spurious interrupt, intr_status=%016llx\n",
1350                         __func__, reg);
1351                 goto cxlflash_sync_err_irq_exit;
1352         }
1353 
1354         dev_err(dev, "%s: unexpected interrupt, intr_status=%016llx\n",
1355                 __func__, reg);
1356 
1357         writeq_be(reg_unmasked, &hwq->host_map->intr_clear);
1358 
1359 cxlflash_sync_err_irq_exit:
1360         return IRQ_HANDLED;
1361 }
1362 
1363 /**
1364  * process_hrrq() - process the read-response queue
1365  * @afu:        AFU associated with the host.
1366  * @doneq:      Queue of commands harvested from the RRQ.
1367  * @budget:     Threshold of RRQ entries to process.
1368  *
1369  * This routine must be called holding the disabled RRQ spin lock.
1370  *
1371  * Return: The number of entries processed.
1372  */
1373 static int process_hrrq(struct hwq *hwq, struct list_head *doneq, int budget)
1374 {
1375         struct afu *afu = hwq->afu;
1376         struct afu_cmd *cmd;
1377         struct sisl_ioasa *ioasa;
1378         struct sisl_ioarcb *ioarcb;
1379         bool toggle = hwq->toggle;
1380         int num_hrrq = 0;
1381         u64 entry,
1382             *hrrq_start = hwq->hrrq_start,
1383             *hrrq_end = hwq->hrrq_end,
1384             *hrrq_curr = hwq->hrrq_curr;
1385 
1386         /* Process ready RRQ entries up to the specified budget (if any) */
1387         while (true) {
1388                 entry = *hrrq_curr;
1389 
1390                 if ((entry & SISL_RESP_HANDLE_T_BIT) != toggle)
1391                         break;
1392 
1393                 entry &= ~SISL_RESP_HANDLE_T_BIT;
1394 
1395                 if (afu_is_sq_cmd_mode(afu)) {
1396                         ioasa = (struct sisl_ioasa *)entry;
1397                         cmd = container_of(ioasa, struct afu_cmd, sa);
1398                 } else {
1399                         ioarcb = (struct sisl_ioarcb *)entry;
1400                         cmd = container_of(ioarcb, struct afu_cmd, rcb);
1401                 }
1402 
1403                 list_add_tail(&cmd->queue, doneq);
1404 
1405                 /* Advance to next entry or wrap and flip the toggle bit */
1406                 if (hrrq_curr < hrrq_end)
1407                         hrrq_curr++;
1408                 else {
1409                         hrrq_curr = hrrq_start;
1410                         toggle ^= SISL_RESP_HANDLE_T_BIT;
1411                 }
1412 
1413                 atomic_inc(&hwq->hsq_credits);
1414                 num_hrrq++;
1415 
1416                 if (budget > 0 && num_hrrq >= budget)
1417                         break;
1418         }
1419 
1420         hwq->hrrq_curr = hrrq_curr;
1421         hwq->toggle = toggle;
1422 
1423         return num_hrrq;
1424 }
1425 
1426 /**
1427  * process_cmd_doneq() - process a queue of harvested RRQ commands
1428  * @doneq:      Queue of completed commands.
1429  *
1430  * Note that upon return the queue can no longer be trusted.
1431  */
1432 static void process_cmd_doneq(struct list_head *doneq)
1433 {
1434         struct afu_cmd *cmd, *tmp;
1435 
1436         WARN_ON(list_empty(doneq));
1437 
1438         list_for_each_entry_safe(cmd, tmp, doneq, queue)
1439                 cmd_complete(cmd);
1440 }
1441 
1442 /**
1443  * cxlflash_irqpoll() - process a queue of harvested RRQ commands
1444  * @irqpoll:    IRQ poll structure associated with queue to poll.
1445  * @budget:     Threshold of RRQ entries to process per poll.
1446  *
1447  * Return: The number of entries processed.
1448  */
1449 static int cxlflash_irqpoll(struct irq_poll *irqpoll, int budget)
1450 {
1451         struct hwq *hwq = container_of(irqpoll, struct hwq, irqpoll);
1452         unsigned long hrrq_flags;
1453         LIST_HEAD(doneq);
1454         int num_entries = 0;
1455 
1456         spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags);
1457 
1458         num_entries = process_hrrq(hwq, &doneq, budget);
1459         if (num_entries < budget)
1460                 irq_poll_complete(irqpoll);
1461 
1462         spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1463 
1464         process_cmd_doneq(&doneq);
1465         return num_entries;
1466 }
1467 
1468 /**
1469  * cxlflash_rrq_irq() - interrupt handler for read-response queue (normal path)
1470  * @irq:        Interrupt number.
1471  * @data:       Private data provided at interrupt registration, the AFU.
1472  *
1473  * Return: IRQ_HANDLED or IRQ_NONE when no ready entries found.
1474  */
1475 static irqreturn_t cxlflash_rrq_irq(int irq, void *data)
1476 {
1477         struct hwq *hwq = (struct hwq *)data;
1478         struct afu *afu = hwq->afu;
1479         unsigned long hrrq_flags;
1480         LIST_HEAD(doneq);
1481         int num_entries = 0;
1482 
1483         spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags);
1484 
1485         /* Silently drop spurious interrupts when queue is not online */
1486         if (!hwq->hrrq_online) {
1487                 spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1488                 return IRQ_HANDLED;
1489         }
1490 
1491         if (afu_is_irqpoll_enabled(afu)) {
1492                 irq_poll_sched(&hwq->irqpoll);
1493                 spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1494                 return IRQ_HANDLED;
1495         }
1496 
1497         num_entries = process_hrrq(hwq, &doneq, -1);
1498         spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1499 
1500         if (num_entries == 0)
1501                 return IRQ_NONE;
1502 
1503         process_cmd_doneq(&doneq);
1504         return IRQ_HANDLED;
1505 }
1506 
1507 /*
1508  * Asynchronous interrupt information table
1509  *
1510  * NOTE:
1511  *      - Order matters here as this array is indexed by bit position.
1512  *
1513  *      - The checkpatch script considers the BUILD_SISL_ASTATUS_FC_PORT macro
1514  *        as complex and complains due to a lack of parentheses/braces.
1515  */
1516 #define ASTATUS_FC(_a, _b, _c, _d)                                       \
1517         { SISL_ASTATUS_FC##_a##_##_b, _c, _a, (_d) }
1518 
1519 #define BUILD_SISL_ASTATUS_FC_PORT(_a)                                   \
1520         ASTATUS_FC(_a, LINK_UP, "link up", 0),                           \
1521         ASTATUS_FC(_a, LINK_DN, "link down", 0),                         \
1522         ASTATUS_FC(_a, LOGI_S, "login succeeded", SCAN_HOST),            \
1523         ASTATUS_FC(_a, LOGI_F, "login failed", CLR_FC_ERROR),            \
1524         ASTATUS_FC(_a, LOGI_R, "login timed out, retrying", LINK_RESET), \
1525         ASTATUS_FC(_a, CRC_T, "CRC threshold exceeded", LINK_RESET),     \
1526         ASTATUS_FC(_a, LOGO, "target initiated LOGO", 0),                \
1527         ASTATUS_FC(_a, OTHER, "other error", CLR_FC_ERROR | LINK_RESET)
1528 
1529 static const struct asyc_intr_info ainfo[] = {
1530         BUILD_SISL_ASTATUS_FC_PORT(1),
1531         BUILD_SISL_ASTATUS_FC_PORT(0),
1532         BUILD_SISL_ASTATUS_FC_PORT(3),
1533         BUILD_SISL_ASTATUS_FC_PORT(2)
1534 };
1535 
1536 /**
1537  * cxlflash_async_err_irq() - interrupt handler for asynchronous errors
1538  * @irq:        Interrupt number.
1539  * @data:       Private data provided at interrupt registration, the AFU.
1540  *
1541  * Return: Always return IRQ_HANDLED.
1542  */
1543 static irqreturn_t cxlflash_async_err_irq(int irq, void *data)
1544 {
1545         struct hwq *hwq = (struct hwq *)data;
1546         struct afu *afu = hwq->afu;
1547         struct cxlflash_cfg *cfg = afu->parent;
1548         struct device *dev = &cfg->dev->dev;
1549         const struct asyc_intr_info *info;
1550         struct sisl_global_map __iomem *global = &afu->afu_map->global;
1551         __be64 __iomem *fc_port_regs;
1552         u64 reg_unmasked;
1553         u64 reg;
1554         u64 bit;
1555         u8 port;
1556 
1557         reg = readq_be(&global->regs.aintr_status);
1558         reg_unmasked = (reg & SISL_ASTATUS_UNMASK);
1559 
1560         if (unlikely(reg_unmasked == 0)) {
1561                 dev_err(dev, "%s: spurious interrupt, aintr_status=%016llx\n",
1562                         __func__, reg);
1563                 goto out;
1564         }
1565 
1566         /* FYI, it is 'okay' to clear AFU status before FC_ERROR */
1567         writeq_be(reg_unmasked, &global->regs.aintr_clear);
1568 
1569         /* Check each bit that is on */
1570         for_each_set_bit(bit, (ulong *)&reg_unmasked, BITS_PER_LONG) {
1571                 if (unlikely(bit >= ARRAY_SIZE(ainfo))) {
1572                         WARN_ON_ONCE(1);
1573                         continue;
1574                 }
1575 
1576                 info = &ainfo[bit];
1577                 if (unlikely(info->status != 1ULL << bit)) {
1578                         WARN_ON_ONCE(1);
1579                         continue;
1580                 }
1581 
1582                 port = info->port;
1583                 fc_port_regs = get_fc_port_regs(cfg, port);
1584 
1585                 dev_err(dev, "%s: FC Port %d -> %s, fc_status=%016llx\n",
1586                         __func__, port, info->desc,
1587                        readq_be(&fc_port_regs[FC_STATUS / 8]));
1588 
1589                 /*
1590                  * Do link reset first, some OTHER errors will set FC_ERROR
1591                  * again if cleared before or w/o a reset
1592                  */
1593                 if (info->action & LINK_RESET) {
1594                         dev_err(dev, "%s: FC Port %d: resetting link\n",
1595                                 __func__, port);
1596                         cfg->lr_state = LINK_RESET_REQUIRED;
1597                         cfg->lr_port = port;
1598                         schedule_work(&cfg->work_q);
1599                 }
1600 
1601                 if (info->action & CLR_FC_ERROR) {
1602                         reg = readq_be(&fc_port_regs[FC_ERROR / 8]);
1603 
1604                         /*
1605                          * Since all errors are unmasked, FC_ERROR and FC_ERRCAP
1606                          * should be the same and tracing one is sufficient.
1607                          */
1608 
1609                         dev_err(dev, "%s: fc %d: clearing fc_error=%016llx\n",
1610                                 __func__, port, reg);
1611 
1612                         writeq_be(reg, &fc_port_regs[FC_ERROR / 8]);
1613                         writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]);
1614                 }
1615 
1616                 if (info->action & SCAN_HOST) {
1617                         atomic_inc(&cfg->scan_host_needed);
1618                         schedule_work(&cfg->work_q);
1619                 }
1620         }
1621 
1622 out:
1623         return IRQ_HANDLED;
1624 }
1625 
1626 /**
1627  * read_vpd() - obtains the WWPNs from VPD
1628  * @cfg:        Internal structure associated with the host.
1629  * @wwpn:       Array of size MAX_FC_PORTS to pass back WWPNs
1630  *
1631  * Return: 0 on success, -errno on failure
1632  */
1633 static int read_vpd(struct cxlflash_cfg *cfg, u64 wwpn[])
1634 {
1635         struct device *dev = &cfg->dev->dev;
1636         struct pci_dev *pdev = cfg->dev;
1637         int rc = 0;
1638         int ro_start, ro_size, i, j, k;
1639         ssize_t vpd_size;
1640         char vpd_data[CXLFLASH_VPD_LEN];
1641         char tmp_buf[WWPN_BUF_LEN] = { 0 };
1642         const struct dev_dependent_vals *ddv = (struct dev_dependent_vals *)
1643                                                 cfg->dev_id->driver_data;
1644         const bool wwpn_vpd_required = ddv->flags & CXLFLASH_WWPN_VPD_REQUIRED;
1645         const char *wwpn_vpd_tags[MAX_FC_PORTS] = { "V5", "V6", "V7", "V8" };
1646 
1647         /* Get the VPD data from the device */
1648         vpd_size = cfg->ops->read_adapter_vpd(pdev, vpd_data, sizeof(vpd_data));
1649         if (unlikely(vpd_size <= 0)) {
1650                 dev_err(dev, "%s: Unable to read VPD (size = %ld)\n",
1651                         __func__, vpd_size);
1652                 rc = -ENODEV;
1653                 goto out;
1654         }
1655 
1656         /* Get the read only section offset */
1657         ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size,
1658                                     PCI_VPD_LRDT_RO_DATA);
1659         if (unlikely(ro_start < 0)) {
1660                 dev_err(dev, "%s: VPD Read-only data not found\n", __func__);
1661                 rc = -ENODEV;
1662                 goto out;
1663         }
1664 
1665         /* Get the read only section size, cap when extends beyond read VPD */
1666         ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
1667         j = ro_size;
1668         i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
1669         if (unlikely((i + j) > vpd_size)) {
1670                 dev_dbg(dev, "%s: Might need to read more VPD (%d > %ld)\n",
1671                         __func__, (i + j), vpd_size);
1672                 ro_size = vpd_size - i;
1673         }
1674 
1675         /*
1676          * Find the offset of the WWPN tag within the read only
1677          * VPD data and validate the found field (partials are
1678          * no good to us). Convert the ASCII data to an integer
1679          * value. Note that we must copy to a temporary buffer
1680          * because the conversion service requires that the ASCII
1681          * string be terminated.
1682          *
1683          * Allow for WWPN not being found for all devices, setting
1684          * the returned WWPN to zero when not found. Notify with a
1685          * log error for cards that should have had WWPN keywords
1686          * in the VPD - cards requiring WWPN will not have their
1687          * ports programmed and operate in an undefined state.
1688          */
1689         for (k = 0; k < cfg->num_fc_ports; k++) {
1690                 j = ro_size;
1691                 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
1692 
1693                 i = pci_vpd_find_info_keyword(vpd_data, i, j, wwpn_vpd_tags[k]);
1694                 if (i < 0) {
1695                         if (wwpn_vpd_required)
1696                                 dev_err(dev, "%s: Port %d WWPN not found\n",
1697                                         __func__, k);
1698                         wwpn[k] = 0ULL;
1699                         continue;
1700                 }
1701 
1702                 j = pci_vpd_info_field_size(&vpd_data[i]);
1703                 i += PCI_VPD_INFO_FLD_HDR_SIZE;
1704                 if (unlikely((i + j > vpd_size) || (j != WWPN_LEN))) {
1705                         dev_err(dev, "%s: Port %d WWPN incomplete or bad VPD\n",
1706                                 __func__, k);
1707                         rc = -ENODEV;
1708                         goto out;
1709                 }
1710 
1711                 memcpy(tmp_buf, &vpd_data[i], WWPN_LEN);
1712                 rc = kstrtoul(tmp_buf, WWPN_LEN, (ulong *)&wwpn[k]);
1713                 if (unlikely(rc)) {
1714                         dev_err(dev, "%s: WWPN conversion failed for port %d\n",
1715                                 __func__, k);
1716                         rc = -ENODEV;
1717                         goto out;
1718                 }
1719 
1720                 dev_dbg(dev, "%s: wwpn%d=%016llx\n", __func__, k, wwpn[k]);
1721         }
1722 
1723 out:
1724         dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1725         return rc;
1726 }
1727 
1728 /**
1729  * init_pcr() - initialize the provisioning and control registers
1730  * @cfg:        Internal structure associated with the host.
1731  *
1732  * Also sets up fast access to the mapped registers and initializes AFU
1733  * command fields that never change.
1734  */
1735 static void init_pcr(struct cxlflash_cfg *cfg)
1736 {
1737         struct afu *afu = cfg->afu;
1738         struct sisl_ctrl_map __iomem *ctrl_map;
1739         struct hwq *hwq;
1740         void *cookie;
1741         int i;
1742 
1743         for (i = 0; i < MAX_CONTEXT; i++) {
1744                 ctrl_map = &afu->afu_map->ctrls[i].ctrl;
1745                 /* Disrupt any clients that could be running */
1746                 /* e.g. clients that survived a master restart */
1747                 writeq_be(0, &ctrl_map->rht_start);
1748                 writeq_be(0, &ctrl_map->rht_cnt_id);
1749                 writeq_be(0, &ctrl_map->ctx_cap);
1750         }
1751 
1752         /* Copy frequently used fields into hwq */
1753         for (i = 0; i < afu->num_hwqs; i++) {
1754                 hwq = get_hwq(afu, i);
1755                 cookie = hwq->ctx_cookie;
1756 
1757                 hwq->ctx_hndl = (u16) cfg->ops->process_element(cookie);
1758                 hwq->host_map = &afu->afu_map->hosts[hwq->ctx_hndl].host;
1759                 hwq->ctrl_map = &afu->afu_map->ctrls[hwq->ctx_hndl].ctrl;
1760 
1761                 /* Program the Endian Control for the master context */
1762                 writeq_be(SISL_ENDIAN_CTRL, &hwq->host_map->endian_ctrl);
1763         }
1764 }
1765 
1766 /**
1767  * init_global() - initialize AFU global registers
1768  * @cfg:        Internal structure associated with the host.
1769  */
1770 static int init_global(struct cxlflash_cfg *cfg)
1771 {
1772         struct afu *afu = cfg->afu;
1773         struct device *dev = &cfg->dev->dev;
1774         struct hwq *hwq;
1775         struct sisl_host_map __iomem *hmap;
1776         __be64 __iomem *fc_port_regs;
1777         u64 wwpn[MAX_FC_PORTS]; /* wwpn of AFU ports */
1778         int i = 0, num_ports = 0;
1779         int rc = 0;
1780         int j;
1781         void *ctx;
1782         u64 reg;
1783 
1784         rc = read_vpd(cfg, &wwpn[0]);
1785         if (rc) {
1786                 dev_err(dev, "%s: could not read vpd rc=%d\n", __func__, rc);
1787                 goto out;
1788         }
1789 
1790         /* Set up RRQ and SQ in HWQ for master issued cmds */
1791         for (i = 0; i < afu->num_hwqs; i++) {
1792                 hwq = get_hwq(afu, i);
1793                 hmap = hwq->host_map;
1794 
1795                 writeq_be((u64) hwq->hrrq_start, &hmap->rrq_start);
1796                 writeq_be((u64) hwq->hrrq_end, &hmap->rrq_end);
1797                 hwq->hrrq_online = true;
1798 
1799                 if (afu_is_sq_cmd_mode(afu)) {
1800                         writeq_be((u64)hwq->hsq_start, &hmap->sq_start);
1801                         writeq_be((u64)hwq->hsq_end, &hmap->sq_end);
1802                 }
1803         }
1804 
1805         /* AFU configuration */
1806         reg = readq_be(&afu->afu_map->global.regs.afu_config);
1807         reg |= SISL_AFUCONF_AR_ALL|SISL_AFUCONF_ENDIAN;
1808         /* enable all auto retry options and control endianness */
1809         /* leave others at default: */
1810         /* CTX_CAP write protected, mbox_r does not clear on read and */
1811         /* checker on if dual afu */
1812         writeq_be(reg, &afu->afu_map->global.regs.afu_config);
1813 
1814         /* Global port select: select either port */
1815         if (afu->internal_lun) {
1816                 /* Only use port 0 */
1817                 writeq_be(PORT0, &afu->afu_map->global.regs.afu_port_sel);
1818                 num_ports = 0;
1819         } else {
1820                 writeq_be(PORT_MASK(cfg->num_fc_ports),
1821                           &afu->afu_map->global.regs.afu_port_sel);
1822                 num_ports = cfg->num_fc_ports;
1823         }
1824 
1825         for (i = 0; i < num_ports; i++) {
1826                 fc_port_regs = get_fc_port_regs(cfg, i);
1827 
1828                 /* Unmask all errors (but they are still masked at AFU) */
1829                 writeq_be(0, &fc_port_regs[FC_ERRMSK / 8]);
1830                 /* Clear CRC error cnt & set a threshold */
1831                 (void)readq_be(&fc_port_regs[FC_CNT_CRCERR / 8]);
1832                 writeq_be(MC_CRC_THRESH, &fc_port_regs[FC_CRC_THRESH / 8]);
1833 
1834                 /* Set WWPNs. If already programmed, wwpn[i] is 0 */
1835                 if (wwpn[i] != 0)
1836                         afu_set_wwpn(afu, i, &fc_port_regs[0], wwpn[i]);
1837                 /* Programming WWPN back to back causes additional
1838                  * offline/online transitions and a PLOGI
1839                  */
1840                 msleep(100);
1841         }
1842 
1843         if (afu_is_ocxl_lisn(afu)) {
1844                 /* Set up the LISN effective address for each master */
1845                 for (i = 0; i < afu->num_hwqs; i++) {
1846                         hwq = get_hwq(afu, i);
1847                         ctx = hwq->ctx_cookie;
1848 
1849                         for (j = 0; j < hwq->num_irqs; j++) {
1850                                 reg = cfg->ops->get_irq_objhndl(ctx, j);
1851                                 writeq_be(reg, &hwq->ctrl_map->lisn_ea[j]);
1852                         }
1853 
1854                         reg = hwq->ctx_hndl;
1855                         writeq_be(SISL_LISN_PASID(reg, reg),
1856                                   &hwq->ctrl_map->lisn_pasid[0]);
1857                         writeq_be(SISL_LISN_PASID(0UL, reg),
1858                                   &hwq->ctrl_map->lisn_pasid[1]);
1859                 }
1860         }
1861 
1862         /* Set up master's own CTX_CAP to allow real mode, host translation */
1863         /* tables, afu cmds and read/write GSCSI cmds. */
1864         /* First, unlock ctx_cap write by reading mbox */
1865         for (i = 0; i < afu->num_hwqs; i++) {
1866                 hwq = get_hwq(afu, i);
1867 
1868                 (void)readq_be(&hwq->ctrl_map->mbox_r); /* unlock ctx_cap */
1869                 writeq_be((SISL_CTX_CAP_REAL_MODE | SISL_CTX_CAP_HOST_XLATE |
1870                         SISL_CTX_CAP_READ_CMD | SISL_CTX_CAP_WRITE_CMD |
1871                         SISL_CTX_CAP_AFU_CMD | SISL_CTX_CAP_GSCSI_CMD),
1872                         &hwq->ctrl_map->ctx_cap);
1873         }
1874 
1875         /*
1876          * Determine write-same unmap support for host by evaluating the unmap
1877          * sector support bit of the context control register associated with
1878          * the primary hardware queue. Note that while this status is reflected
1879          * in a context register, the outcome can be assumed to be host-wide.
1880          */
1881         hwq = get_hwq(afu, PRIMARY_HWQ);
1882         reg = readq_be(&hwq->host_map->ctx_ctrl);
1883         if (reg & SISL_CTX_CTRL_UNMAP_SECTOR)
1884                 cfg->ws_unmap = true;
1885 
1886         /* Initialize heartbeat */
1887         afu->hb = readq_be(&afu->afu_map->global.regs.afu_hb);
1888 out:
1889         return rc;
1890 }
1891 
1892 /**
1893  * start_afu() - initializes and starts the AFU
1894  * @cfg:        Internal structure associated with the host.
1895  */
1896 static int start_afu(struct cxlflash_cfg *cfg)
1897 {
1898         struct afu *afu = cfg->afu;
1899         struct device *dev = &cfg->dev->dev;
1900         struct hwq *hwq;
1901         int rc = 0;
1902         int i;
1903 
1904         init_pcr(cfg);
1905 
1906         /* Initialize each HWQ */
1907         for (i = 0; i < afu->num_hwqs; i++) {
1908                 hwq = get_hwq(afu, i);
1909 
1910                 /* After an AFU reset, RRQ entries are stale, clear them */
1911                 memset(&hwq->rrq_entry, 0, sizeof(hwq->rrq_entry));
1912 
1913                 /* Initialize RRQ pointers */
1914                 hwq->hrrq_start = &hwq->rrq_entry[0];
1915                 hwq->hrrq_end = &hwq->rrq_entry[NUM_RRQ_ENTRY - 1];
1916                 hwq->hrrq_curr = hwq->hrrq_start;
1917                 hwq->toggle = 1;
1918 
1919                 /* Initialize spin locks */
1920                 spin_lock_init(&hwq->hrrq_slock);
1921                 spin_lock_init(&hwq->hsq_slock);
1922 
1923                 /* Initialize SQ */
1924                 if (afu_is_sq_cmd_mode(afu)) {
1925                         memset(&hwq->sq, 0, sizeof(hwq->sq));
1926                         hwq->hsq_start = &hwq->sq[0];
1927                         hwq->hsq_end = &hwq->sq[NUM_SQ_ENTRY - 1];
1928                         hwq->hsq_curr = hwq->hsq_start;
1929 
1930                         atomic_set(&hwq->hsq_credits, NUM_SQ_ENTRY - 1);
1931                 }
1932 
1933                 /* Initialize IRQ poll */
1934                 if (afu_is_irqpoll_enabled(afu))
1935                         irq_poll_init(&hwq->irqpoll, afu->irqpoll_weight,
1936                                       cxlflash_irqpoll);
1937 
1938         }
1939 
1940         rc = init_global(cfg);
1941 
1942         dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1943         return rc;
1944 }
1945 
1946 /**
1947  * init_intr() - setup interrupt handlers for the master context
1948  * @cfg:        Internal structure associated with the host.
1949  * @hwq:        Hardware queue to initialize.
1950  *
1951  * Return: 0 on success, -errno on failure
1952  */
1953 static enum undo_level init_intr(struct cxlflash_cfg *cfg,
1954                                  struct hwq *hwq)
1955 {
1956         struct device *dev = &cfg->dev->dev;
1957         void *ctx = hwq->ctx_cookie;
1958         int rc = 0;
1959         enum undo_level level = UNDO_NOOP;
1960         bool is_primary_hwq = (hwq->index == PRIMARY_HWQ);
1961         int num_irqs = hwq->num_irqs;
1962 
1963         rc = cfg->ops->allocate_afu_irqs(ctx, num_irqs);
1964         if (unlikely(rc)) {
1965                 dev_err(dev, "%s: allocate_afu_irqs failed rc=%d\n",
1966                         __func__, rc);
1967                 level = UNDO_NOOP;
1968                 goto out;
1969         }
1970 
1971         rc = cfg->ops->map_afu_irq(ctx, 1, cxlflash_sync_err_irq, hwq,
1972                                    "SISL_MSI_SYNC_ERROR");
1973         if (unlikely(rc <= 0)) {
1974                 dev_err(dev, "%s: SISL_MSI_SYNC_ERROR map failed\n", __func__);
1975                 level = FREE_IRQ;
1976                 goto out;
1977         }
1978 
1979         rc = cfg->ops->map_afu_irq(ctx, 2, cxlflash_rrq_irq, hwq,
1980                                    "SISL_MSI_RRQ_UPDATED");
1981         if (unlikely(rc <= 0)) {
1982                 dev_err(dev, "%s: SISL_MSI_RRQ_UPDATED map failed\n", __func__);
1983                 level = UNMAP_ONE;
1984                 goto out;
1985         }
1986 
1987         /* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */
1988         if (!is_primary_hwq)
1989                 goto out;
1990 
1991         rc = cfg->ops->map_afu_irq(ctx, 3, cxlflash_async_err_irq, hwq,
1992                                    "SISL_MSI_ASYNC_ERROR");
1993         if (unlikely(rc <= 0)) {
1994                 dev_err(dev, "%s: SISL_MSI_ASYNC_ERROR map failed\n", __func__);
1995                 level = UNMAP_TWO;
1996                 goto out;
1997         }
1998 out:
1999         return level;
2000 }
2001 
2002 /**
2003  * init_mc() - create and register as the master context
2004  * @cfg:        Internal structure associated with the host.
2005  * index:       HWQ Index of the master context.
2006  *
2007  * Return: 0 on success, -errno on failure
2008  */
2009 static int init_mc(struct cxlflash_cfg *cfg, u32 index)
2010 {
2011         void *ctx;
2012         struct device *dev = &cfg->dev->dev;
2013         struct hwq *hwq = get_hwq(cfg->afu, index);
2014         int rc = 0;
2015         int num_irqs;
2016         enum undo_level level;
2017 
2018         hwq->afu = cfg->afu;
2019         hwq->index = index;
2020         INIT_LIST_HEAD(&hwq->pending_cmds);
2021 
2022         if (index == PRIMARY_HWQ) {
2023                 ctx = cfg->ops->get_context(cfg->dev, cfg->afu_cookie);
2024                 num_irqs = 3;
2025         } else {
2026                 ctx = cfg->ops->dev_context_init(cfg->dev, cfg->afu_cookie);
2027                 num_irqs = 2;
2028         }
2029         if (IS_ERR_OR_NULL(ctx)) {
2030                 rc = -ENOMEM;
2031                 goto err1;
2032         }
2033 
2034         WARN_ON(hwq->ctx_cookie);
2035         hwq->ctx_cookie = ctx;
2036         hwq->num_irqs = num_irqs;
2037 
2038         /* Set it up as a master with the CXL */
2039         cfg->ops->set_master(ctx);
2040 
2041         /* Reset AFU when initializing primary context */
2042         if (index == PRIMARY_HWQ) {
2043                 rc = cfg->ops->afu_reset(ctx);
2044                 if (unlikely(rc)) {
2045                         dev_err(dev, "%s: AFU reset failed rc=%d\n",
2046                                       __func__, rc);
2047                         goto err1;
2048                 }
2049         }
2050 
2051         level = init_intr(cfg, hwq);
2052         if (unlikely(level)) {
2053                 dev_err(dev, "%s: interrupt init failed rc=%d\n", __func__, rc);
2054                 goto err2;
2055         }
2056 
2057         /* Finally, activate the context by starting it */
2058         rc = cfg->ops->start_context(hwq->ctx_cookie);
2059         if (unlikely(rc)) {
2060                 dev_err(dev, "%s: start context failed rc=%d\n", __func__, rc);
2061                 level = UNMAP_THREE;
2062                 goto err2;
2063         }
2064 
2065 out:
2066         dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2067         return rc;
2068 err2:
2069         term_intr(cfg, level, index);
2070         if (index != PRIMARY_HWQ)
2071                 cfg->ops->release_context(ctx);
2072 err1:
2073         hwq->ctx_cookie = NULL;
2074         goto out;
2075 }
2076 
2077 /**
2078  * get_num_afu_ports() - determines and configures the number of AFU ports
2079  * @cfg:        Internal structure associated with the host.
2080  *
2081  * This routine determines the number of AFU ports by converting the global
2082  * port selection mask. The converted value is only valid following an AFU
2083  * reset (explicit or power-on). This routine must be invoked shortly after
2084  * mapping as other routines are dependent on the number of ports during the
2085  * initialization sequence.
2086  *
2087  * To support legacy AFUs that might not have reflected an initial global
2088  * port mask (value read is 0), default to the number of ports originally
2089  * supported by the cxlflash driver (2) before hardware with other port
2090  * offerings was introduced.
2091  */
2092 static void get_num_afu_ports(struct cxlflash_cfg *cfg)
2093 {
2094         struct afu *afu = cfg->afu;
2095         struct device *dev = &cfg->dev->dev;
2096         u64 port_mask;
2097         int num_fc_ports = LEGACY_FC_PORTS;
2098 
2099         port_mask = readq_be(&afu->afu_map->global.regs.afu_port_sel);
2100         if (port_mask != 0ULL)
2101                 num_fc_ports = min(ilog2(port_mask) + 1, MAX_FC_PORTS);
2102 
2103         dev_dbg(dev, "%s: port_mask=%016llx num_fc_ports=%d\n",
2104                 __func__, port_mask, num_fc_ports);
2105 
2106         cfg->num_fc_ports = num_fc_ports;
2107         cfg->host->max_channel = PORTNUM2CHAN(num_fc_ports);
2108 }
2109 
2110 /**
2111  * init_afu() - setup as master context and start AFU
2112  * @cfg:        Internal structure associated with the host.
2113  *
2114  * This routine is a higher level of control for configuring the
2115  * AFU on probe and reset paths.
2116  *
2117  * Return: 0 on success, -errno on failure
2118  */
2119 static int init_afu(struct cxlflash_cfg *cfg)
2120 {
2121         u64 reg;
2122         int rc = 0;
2123         struct afu *afu = cfg->afu;
2124         struct device *dev = &cfg->dev->dev;
2125         struct hwq *hwq;
2126         int i;
2127 
2128         cfg->ops->perst_reloads_same_image(cfg->afu_cookie, true);
2129 
2130         mutex_init(&afu->sync_active);
2131         afu->num_hwqs = afu->desired_hwqs;
2132         for (i = 0; i < afu->num_hwqs; i++) {
2133                 rc = init_mc(cfg, i);
2134                 if (rc) {
2135                         dev_err(dev, "%s: init_mc failed rc=%d index=%d\n",
2136                                 __func__, rc, i);
2137                         goto err1;
2138                 }
2139         }
2140 
2141         /* Map the entire MMIO space of the AFU using the first context */
2142         hwq = get_hwq(afu, PRIMARY_HWQ);
2143         afu->afu_map = cfg->ops->psa_map(hwq->ctx_cookie);
2144         if (!afu->afu_map) {
2145                 dev_err(dev, "%s: psa_map failed\n", __func__);
2146                 rc = -ENOMEM;
2147                 goto err1;
2148         }
2149 
2150         /* No byte reverse on reading afu_version or string will be backwards */
2151         reg = readq(&afu->afu_map->global.regs.afu_version);
2152         memcpy(afu->version, &reg, sizeof(reg));
2153         afu->interface_version =
2154             readq_be(&afu->afu_map->global.regs.interface_version);
2155         if ((afu->interface_version + 1) == 0) {
2156                 dev_err(dev, "Back level AFU, please upgrade. AFU version %s "
2157                         "interface version %016llx\n", afu->version,
2158                        afu->interface_version);
2159                 rc = -EINVAL;
2160                 goto err1;
2161         }
2162 
2163         if (afu_is_sq_cmd_mode(afu)) {
2164                 afu->send_cmd = send_cmd_sq;
2165                 afu->context_reset = context_reset_sq;
2166         } else {
2167                 afu->send_cmd = send_cmd_ioarrin;
2168                 afu->context_reset = context_reset_ioarrin;
2169         }
2170 
2171         dev_dbg(dev, "%s: afu_ver=%s interface_ver=%016llx\n", __func__,
2172                 afu->version, afu->interface_version);
2173 
2174         get_num_afu_ports(cfg);
2175 
2176         rc = start_afu(cfg);
2177         if (rc) {
2178                 dev_err(dev, "%s: start_afu failed, rc=%d\n", __func__, rc);
2179                 goto err1;
2180         }
2181 
2182         afu_err_intr_init(cfg->afu);
2183         for (i = 0; i < afu->num_hwqs; i++) {
2184                 hwq = get_hwq(afu, i);
2185 
2186                 hwq->room = readq_be(&hwq->host_map->cmd_room);
2187         }
2188 
2189         /* Restore the LUN mappings */
2190         cxlflash_restore_luntable(cfg);
2191 out:
2192         dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2193         return rc;
2194 
2195 err1:
2196         for (i = afu->num_hwqs - 1; i >= 0; i--) {
2197                 term_intr(cfg, UNMAP_THREE, i);
2198                 term_mc(cfg, i);
2199         }
2200         goto out;
2201 }
2202 
2203 /**
2204  * afu_reset() - resets the AFU
2205  * @cfg:        Internal structure associated with the host.
2206  *
2207  * Return: 0 on success, -errno on failure
2208  */
2209 static int afu_reset(struct cxlflash_cfg *cfg)
2210 {
2211         struct device *dev = &cfg->dev->dev;
2212         int rc = 0;
2213 
2214         /* Stop the context before the reset. Since the context is
2215          * no longer available restart it after the reset is complete
2216          */
2217         term_afu(cfg);
2218 
2219         rc = init_afu(cfg);
2220 
2221         dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2222         return rc;
2223 }
2224 
2225 /**
2226  * drain_ioctls() - wait until all currently executing ioctls have completed
2227  * @cfg:        Internal structure associated with the host.
2228  *
2229  * Obtain write access to read/write semaphore that wraps ioctl
2230  * handling to 'drain' ioctls currently executing.
2231  */
2232 static void drain_ioctls(struct cxlflash_cfg *cfg)
2233 {
2234         down_write(&cfg->ioctl_rwsem);
2235         up_write(&cfg->ioctl_rwsem);
2236 }
2237 
2238 /**
2239  * cxlflash_async_reset_host() - asynchronous host reset handler
2240  * @data:       Private data provided while scheduling reset.
2241  * @cookie:     Cookie that can be used for checkpointing.
2242  */
2243 static void cxlflash_async_reset_host(void *data, async_cookie_t cookie)
2244 {
2245         struct cxlflash_cfg *cfg = data;
2246         struct device *dev = &cfg->dev->dev;
2247         int rc = 0;
2248 
2249         if (cfg->state != STATE_RESET) {
2250                 dev_dbg(dev, "%s: Not performing a reset, state=%d\n",
2251                         __func__, cfg->state);
2252                 goto out;
2253         }
2254 
2255         drain_ioctls(cfg);
2256         cxlflash_mark_contexts_error(cfg);
2257         rc = afu_reset(cfg);
2258         if (rc)
2259                 cfg->state = STATE_FAILTERM;
2260         else
2261                 cfg->state = STATE_NORMAL;
2262         wake_up_all(&cfg->reset_waitq);
2263 
2264 out:
2265         scsi_unblock_requests(cfg->host);
2266 }
2267 
2268 /**
2269  * cxlflash_schedule_async_reset() - schedule an asynchronous host reset
2270  * @cfg:        Internal structure associated with the host.
2271  */
2272 static void cxlflash_schedule_async_reset(struct cxlflash_cfg *cfg)
2273 {
2274         struct device *dev = &cfg->dev->dev;
2275 
2276         if (cfg->state != STATE_NORMAL) {
2277                 dev_dbg(dev, "%s: Not performing reset state=%d\n",
2278                         __func__, cfg->state);
2279                 return;
2280         }
2281 
2282         cfg->state = STATE_RESET;
2283         scsi_block_requests(cfg->host);
2284         cfg->async_reset_cookie = async_schedule(cxlflash_async_reset_host,
2285                                                  cfg);
2286 }
2287 
2288 /**
2289  * send_afu_cmd() - builds and sends an internal AFU command
2290  * @afu:        AFU associated with the host.
2291  * @rcb:        Pre-populated IOARCB describing command to send.
2292  *
2293  * The AFU can only take one internal AFU command at a time. This limitation is
2294  * enforced by using a mutex to provide exclusive access to the AFU during the
2295  * operation. This design point requires calling threads to not be on interrupt
2296  * context due to the possibility of sleeping during concurrent AFU operations.
2297  *
2298  * The command status is optionally passed back to the caller when the caller
2299  * populates the IOASA field of the IOARCB with a pointer to an IOASA structure.
2300  *
2301  * Return:
2302  *      0 on success, -errno on failure
2303  */
2304 static int send_afu_cmd(struct afu *afu, struct sisl_ioarcb *rcb)
2305 {
2306         struct cxlflash_cfg *cfg = afu->parent;
2307         struct device *dev = &cfg->dev->dev;
2308         struct afu_cmd *cmd = NULL;
2309         struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
2310         ulong lock_flags;
2311         char *buf = NULL;
2312         int rc = 0;
2313         int nretry = 0;
2314 
2315         if (cfg->state != STATE_NORMAL) {
2316                 dev_dbg(dev, "%s: Sync not required state=%u\n",
2317                         __func__, cfg->state);
2318                 return 0;
2319         }
2320 
2321         mutex_lock(&afu->sync_active);
2322         atomic_inc(&afu->cmds_active);
2323         buf = kmalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL);
2324         if (unlikely(!buf)) {
2325                 dev_err(dev, "%s: no memory for command\n", __func__);
2326                 rc = -ENOMEM;
2327                 goto out;
2328         }
2329 
2330         cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd));
2331 
2332 retry:
2333         memset(cmd, 0, sizeof(*cmd));
2334         memcpy(&cmd->rcb, rcb, sizeof(*rcb));
2335         INIT_LIST_HEAD(&cmd->queue);
2336         init_completion(&cmd->cevent);
2337         cmd->parent = afu;
2338         cmd->hwq_index = hwq->index;
2339         cmd->rcb.ctx_id = hwq->ctx_hndl;
2340 
2341         dev_dbg(dev, "%s: afu=%p cmd=%p type=%02x nretry=%d\n",
2342                 __func__, afu, cmd, cmd->rcb.cdb[0], nretry);
2343 
2344         rc = afu->send_cmd(afu, cmd);
2345         if (unlikely(rc)) {
2346                 rc = -ENOBUFS;
2347                 goto out;
2348         }
2349 
2350         rc = wait_resp(afu, cmd);
2351         switch (rc) {
2352         case -ETIMEDOUT:
2353                 rc = afu->context_reset(hwq);
2354                 if (rc) {
2355                         /* Delete the command from pending_cmds list */
2356                         spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
2357                         list_del(&cmd->list);
2358                         spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
2359 
2360                         cxlflash_schedule_async_reset(cfg);
2361                         break;
2362                 }
2363                 /* fall through - to retry */
2364         case -EAGAIN:
2365                 if (++nretry < 2)
2366                         goto retry;
2367                 /* fall through - to exit */
2368         default:
2369                 break;
2370         }
2371 
2372         if (rcb->ioasa)
2373                 *rcb->ioasa = cmd->sa;
2374 out:
2375         atomic_dec(&afu->cmds_active);
2376         mutex_unlock(&afu->sync_active);
2377         kfree(buf);
2378         dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2379         return rc;
2380 }
2381 
2382 /**
2383  * cxlflash_afu_sync() - builds and sends an AFU sync command
2384  * @afu:        AFU associated with the host.
2385  * @ctx:        Identifies context requesting sync.
2386  * @res:        Identifies resource requesting sync.
2387  * @mode:       Type of sync to issue (lightweight, heavyweight, global).
2388  *
2389  * AFU sync operations are only necessary and allowed when the device is
2390  * operating normally. When not operating normally, sync requests can occur as
2391  * part of cleaning up resources associated with an adapter prior to removal.
2392  * In this scenario, these requests are simply ignored (safe due to the AFU
2393  * going away).
2394  *
2395  * Return:
2396  *      0 on success, -errno on failure
2397  */
2398 int cxlflash_afu_sync(struct afu *afu, ctx_hndl_t ctx, res_hndl_t res, u8 mode)
2399 {
2400         struct cxlflash_cfg *cfg = afu->parent;
2401         struct device *dev = &cfg->dev->dev;
2402         struct sisl_ioarcb rcb = { 0 };
2403 
2404         dev_dbg(dev, "%s: afu=%p ctx=%u res=%u mode=%u\n",
2405                 __func__, afu, ctx, res, mode);
2406 
2407         rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD;
2408         rcb.msi = SISL_MSI_RRQ_UPDATED;
2409         rcb.timeout = MC_AFU_SYNC_TIMEOUT;
2410 
2411         rcb.cdb[0] = SISL_AFU_CMD_SYNC;
2412         rcb.cdb[1] = mode;
2413         put_unaligned_be16(ctx, &rcb.cdb[2]);
2414         put_unaligned_be32(res, &rcb.cdb[4]);
2415 
2416         return send_afu_cmd(afu, &rcb);
2417 }
2418 
2419 /**
2420  * cxlflash_eh_abort_handler() - abort a SCSI command
2421  * @scp:        SCSI command to abort.
2422  *
2423  * CXL Flash devices do not support a single command abort. Reset the context
2424  * as per SISLite specification. Flush any pending commands in the hardware
2425  * queue before the reset.
2426  *
2427  * Return: SUCCESS/FAILED as defined in scsi/scsi.h
2428  */
2429 static int cxlflash_eh_abort_handler(struct scsi_cmnd *scp)
2430 {
2431         int rc = FAILED;
2432         struct Scsi_Host *host = scp->device->host;
2433         struct cxlflash_cfg *cfg = shost_priv(host);
2434         struct afu_cmd *cmd = sc_to_afuc(scp);
2435         struct device *dev = &cfg->dev->dev;
2436         struct afu *afu = cfg->afu;
2437         struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
2438 
2439         dev_dbg(dev, "%s: (scp=%p) %d/%d/%d/%llu "
2440                 "cdb=(%08x-%08x-%08x-%08x)\n", __func__, scp, host->host_no,
2441                 scp->device->channel, scp->device->id, scp->device->lun,
2442                 get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
2443                 get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
2444                 get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
2445                 get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
2446 
2447         /* When the state is not normal, another reset/reload is in progress.
2448          * Return failed and the mid-layer will invoke host reset handler.
2449          */
2450         if (cfg->state != STATE_NORMAL) {
2451                 dev_dbg(dev, "%s: Invalid state for abort, state=%d\n",
2452                         __func__, cfg->state);
2453                 goto out;
2454         }
2455 
2456         rc = afu->context_reset(hwq);
2457         if (unlikely(rc))
2458                 goto out;
2459 
2460         rc = SUCCESS;
2461 
2462 out:
2463         dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2464         return rc;
2465 }
2466 
2467 /**
2468  * cxlflash_eh_device_reset_handler() - reset a single LUN
2469  * @scp:        SCSI command to send.
2470  *
2471  * Return:
2472  *      SUCCESS as defined in scsi/scsi.h
2473  *      FAILED as defined in scsi/scsi.h
2474  */
2475 static int cxlflash_eh_device_reset_handler(struct scsi_cmnd *scp)
2476 {
2477         int rc = SUCCESS;
2478         struct scsi_device *sdev = scp->device;
2479         struct Scsi_Host *host = sdev->host;
2480         struct cxlflash_cfg *cfg = shost_priv(host);
2481         struct device *dev = &cfg->dev->dev;
2482         int rcr = 0;
2483 
2484         dev_dbg(dev, "%s: %d/%d/%d/%llu\n", __func__,
2485                 host->host_no, sdev->channel, sdev->id, sdev->lun);
2486 retry:
2487         switch (cfg->state) {
2488         case STATE_NORMAL:
2489                 rcr = send_tmf(cfg, sdev, TMF_LUN_RESET);
2490                 if (unlikely(rcr))
2491                         rc = FAILED;
2492                 break;
2493         case STATE_RESET:
2494                 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
2495                 goto retry;
2496         default:
2497                 rc = FAILED;
2498                 break;
2499         }
2500 
2501         dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2502         return rc;
2503 }
2504 
2505 /**
2506  * cxlflash_eh_host_reset_handler() - reset the host adapter
2507  * @scp:        SCSI command from stack identifying host.
2508  *
2509  * Following a reset, the state is evaluated again in case an EEH occurred
2510  * during the reset. In such a scenario, the host reset will either yield
2511  * until the EEH recovery is complete or return success or failure based
2512  * upon the current device state.
2513  *
2514  * Return:
2515  *      SUCCESS as defined in scsi/scsi.h
2516  *      FAILED as defined in scsi/scsi.h
2517  */
2518 static int cxlflash_eh_host_reset_handler(struct scsi_cmnd *scp)
2519 {
2520         int rc = SUCCESS;
2521         int rcr = 0;
2522         struct Scsi_Host *host = scp->device->host;
2523         struct cxlflash_cfg *cfg = shost_priv(host);
2524         struct device *dev = &cfg->dev->dev;
2525 
2526         dev_dbg(dev, "%s: %d\n", __func__, host->host_no);
2527 
2528         switch (cfg->state) {
2529         case STATE_NORMAL:
2530                 cfg->state = STATE_RESET;
2531                 drain_ioctls(cfg);
2532                 cxlflash_mark_contexts_error(cfg);
2533                 rcr = afu_reset(cfg);
2534                 if (rcr) {
2535                         rc = FAILED;
2536                         cfg->state = STATE_FAILTERM;
2537                 } else
2538                         cfg->state = STATE_NORMAL;
2539                 wake_up_all(&cfg->reset_waitq);
2540                 ssleep(1);
2541                 /* fall through */
2542         case STATE_RESET:
2543                 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
2544                 if (cfg->state == STATE_NORMAL)
2545                         break;
2546                 /* fall through */
2547         default:
2548                 rc = FAILED;
2549                 break;
2550         }
2551 
2552         dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2553         return rc;
2554 }
2555 
2556 /**
2557  * cxlflash_change_queue_depth() - change the queue depth for the device
2558  * @sdev:       SCSI device destined for queue depth change.
2559  * @qdepth:     Requested queue depth value to set.
2560  *
2561  * The requested queue depth is capped to the maximum supported value.
2562  *
2563  * Return: The actual queue depth set.
2564  */
2565 static int cxlflash_change_queue_depth(struct scsi_device *sdev, int qdepth)
2566 {
2567 
2568         if (qdepth > CXLFLASH_MAX_CMDS_PER_LUN)
2569                 qdepth = CXLFLASH_MAX_CMDS_PER_LUN;
2570 
2571         scsi_change_queue_depth(sdev, qdepth);
2572         return sdev->queue_depth;
2573 }
2574 
2575 /**
2576  * cxlflash_show_port_status() - queries and presents the current port status
2577  * @port:       Desired port for status reporting.
2578  * @cfg:        Internal structure associated with the host.
2579  * @buf:        Buffer of length PAGE_SIZE to report back port status in ASCII.
2580  *
2581  * Return: The size of the ASCII string returned in @buf or -EINVAL.
2582  */
2583 static ssize_t cxlflash_show_port_status(u32 port,
2584                                          struct cxlflash_cfg *cfg,
2585                                          char *buf)
2586 {
2587         struct device *dev = &cfg->dev->dev;
2588         char *disp_status;
2589         u64 status;
2590         __be64 __iomem *fc_port_regs;
2591 
2592         WARN_ON(port >= MAX_FC_PORTS);
2593 
2594         if (port >= cfg->num_fc_ports) {
2595                 dev_info(dev, "%s: Port %d not supported on this card.\n",
2596                         __func__, port);
2597                 return -EINVAL;
2598         }
2599 
2600         fc_port_regs = get_fc_port_regs(cfg, port);
2601         status = readq_be(&fc_port_regs[FC_MTIP_STATUS / 8]);
2602         status &= FC_MTIP_STATUS_MASK;
2603 
2604         if (status == FC_MTIP_STATUS_ONLINE)
2605                 disp_status = "online";
2606         else if (status == FC_MTIP_STATUS_OFFLINE)
2607                 disp_status = "offline";
2608         else
2609                 disp_status = "unknown";
2610 
2611         return scnprintf(buf, PAGE_SIZE, "%s\n", disp_status);
2612 }
2613 
2614 /**
2615  * port0_show() - queries and presents the current status of port 0
2616  * @dev:        Generic device associated with the host owning the port.
2617  * @attr:       Device attribute representing the port.
2618  * @buf:        Buffer of length PAGE_SIZE to report back port status in ASCII.
2619  *
2620  * Return: The size of the ASCII string returned in @buf.
2621  */
2622 static ssize_t port0_show(struct device *dev,
2623                           struct device_attribute *attr,
2624                           char *buf)
2625 {
2626         struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2627 
2628         return cxlflash_show_port_status(0, cfg, buf);
2629 }
2630 
2631 /**
2632  * port1_show() - queries and presents the current status of port 1
2633  * @dev:        Generic device associated with the host owning the port.
2634  * @attr:       Device attribute representing the port.
2635  * @buf:        Buffer of length PAGE_SIZE to report back port status in ASCII.
2636  *
2637  * Return: The size of the ASCII string returned in @buf.
2638  */
2639 static ssize_t port1_show(struct device *dev,
2640                           struct device_attribute *attr,
2641                           char *buf)
2642 {
2643         struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2644 
2645         return cxlflash_show_port_status(1, cfg, buf);
2646 }
2647 
2648 /**
2649  * port2_show() - queries and presents the current status of port 2
2650  * @dev:        Generic device associated with the host owning the port.
2651  * @attr:       Device attribute representing the port.
2652  * @buf:        Buffer of length PAGE_SIZE to report back port status in ASCII.
2653  *
2654  * Return: The size of the ASCII string returned in @buf.
2655  */
2656 static ssize_t port2_show(struct device *dev,
2657                           struct device_attribute *attr,
2658                           char *buf)
2659 {
2660         struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2661 
2662         return cxlflash_show_port_status(2, cfg, buf);
2663 }
2664 
2665 /**
2666  * port3_show() - queries and presents the current status of port 3
2667  * @dev:        Generic device associated with the host owning the port.
2668  * @attr:       Device attribute representing the port.
2669  * @buf:        Buffer of length PAGE_SIZE to report back port status in ASCII.
2670  *
2671  * Return: The size of the ASCII string returned in @buf.
2672  */
2673 static ssize_t port3_show(struct device *dev,
2674                           struct device_attribute *attr,
2675                           char *buf)
2676 {
2677         struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2678 
2679         return cxlflash_show_port_status(3, cfg, buf);
2680 }
2681 
2682 /**
2683  * lun_mode_show() - presents the current LUN mode of the host
2684  * @dev:        Generic device associated with the host.
2685  * @attr:       Device attribute representing the LUN mode.
2686  * @buf:        Buffer of length PAGE_SIZE to report back the LUN mode in ASCII.
2687  *
2688  * Return: The size of the ASCII string returned in @buf.
2689  */
2690 static ssize_t lun_mode_show(struct device *dev,
2691                              struct device_attribute *attr, char *buf)
2692 {
2693         struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2694         struct afu *afu = cfg->afu;
2695 
2696         return scnprintf(buf, PAGE_SIZE, "%u\n", afu->internal_lun);
2697 }
2698 
2699 /**
2700  * lun_mode_store() - sets the LUN mode of the host
2701  * @dev:        Generic device associated with the host.
2702  * @attr:       Device attribute representing the LUN mode.
2703  * @buf:        Buffer of length PAGE_SIZE containing the LUN mode in ASCII.
2704  * @count:      Length of data resizing in @buf.
2705  *
2706  * The CXL Flash AFU supports a dummy LUN mode where the external
2707  * links and storage are not required. Space on the FPGA is used
2708  * to create 1 or 2 small LUNs which are presented to the system
2709  * as if they were a normal storage device. This feature is useful
2710  * during development and also provides manufacturing with a way
2711  * to test the AFU without an actual device.
2712  *
2713  * 0 = external LUN[s] (default)
2714  * 1 = internal LUN (1 x 64K, 512B blocks, id 0)
2715  * 2 = internal LUN (1 x 64K, 4K blocks, id 0)
2716  * 3 = internal LUN (2 x 32K, 512B blocks, ids 0,1)
2717  * 4 = internal LUN (2 x 32K, 4K blocks, ids 0,1)
2718  *
2719  * Return: The size of the ASCII string returned in @buf.
2720  */
2721 static ssize_t lun_mode_store(struct device *dev,
2722                               struct device_attribute *attr,
2723                               const char *buf, size_t count)
2724 {
2725         struct Scsi_Host *shost = class_to_shost(dev);
2726         struct cxlflash_cfg *cfg = shost_priv(shost);
2727         struct afu *afu = cfg->afu;
2728         int rc;
2729         u32 lun_mode;
2730 
2731         rc = kstrtouint(buf, 10, &lun_mode);
2732         if (!rc && (lun_mode < 5) && (lun_mode != afu->internal_lun)) {
2733                 afu->internal_lun = lun_mode;
2734 
2735                 /*
2736                  * When configured for internal LUN, there is only one channel,
2737                  * channel number 0, else there will be one less than the number
2738                  * of fc ports for this card.
2739                  */
2740                 if (afu->internal_lun)
2741                         shost->max_channel = 0;
2742                 else
2743                         shost->max_channel = PORTNUM2CHAN(cfg->num_fc_ports);
2744 
2745                 afu_reset(cfg);
2746                 scsi_scan_host(cfg->host);
2747         }
2748 
2749         return count;
2750 }
2751 
2752 /**
2753  * ioctl_version_show() - presents the current ioctl version of the host
2754  * @dev:        Generic device associated with the host.
2755  * @attr:       Device attribute representing the ioctl version.
2756  * @buf:        Buffer of length PAGE_SIZE to report back the ioctl version.
2757  *
2758  * Return: The size of the ASCII string returned in @buf.
2759  */
2760 static ssize_t ioctl_version_show(struct device *dev,
2761                                   struct device_attribute *attr, char *buf)
2762 {
2763         ssize_t bytes = 0;
2764 
2765         bytes = scnprintf(buf, PAGE_SIZE,
2766                           "disk: %u\n", DK_CXLFLASH_VERSION_0);
2767         bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
2768                            "host: %u\n", HT_CXLFLASH_VERSION_0);
2769 
2770         return bytes;
2771 }
2772 
2773 /**
2774  * cxlflash_show_port_lun_table() - queries and presents the port LUN table
2775  * @port:       Desired port for status reporting.
2776  * @cfg:        Internal structure associated with the host.
2777  * @buf:        Buffer of length PAGE_SIZE to report back port status in ASCII.
2778  *
2779  * Return: The size of the ASCII string returned in @buf or -EINVAL.
2780  */
2781 static ssize_t cxlflash_show_port_lun_table(u32 port,
2782                                             struct cxlflash_cfg *cfg,
2783                                             char *buf)
2784 {
2785         struct device *dev = &cfg->dev->dev;
2786         __be64 __iomem *fc_port_luns;
2787         int i;
2788         ssize_t bytes = 0;
2789 
2790         WARN_ON(port >= MAX_FC_PORTS);
2791 
2792         if (port >= cfg->num_fc_ports) {
2793                 dev_info(dev, "%s: Port %d not supported on this card.\n",
2794                         __func__, port);
2795                 return -EINVAL;
2796         }
2797 
2798         fc_port_luns = get_fc_port_luns(cfg, port);
2799 
2800         for (i = 0; i < CXLFLASH_NUM_VLUNS; i++)
2801                 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
2802                                    "%03d: %016llx\n",
2803                                    i, readq_be(&fc_port_luns[i]));
2804         return bytes;
2805 }
2806 
2807 /**
2808  * port0_lun_table_show() - presents the current LUN table of port 0
2809  * @dev:        Generic device associated with the host owning the port.
2810  * @attr:       Device attribute representing the port.
2811  * @buf:        Buffer of length PAGE_SIZE to report back port status in ASCII.
2812  *
2813  * Return: The size of the ASCII string returned in @buf.
2814  */
2815 static ssize_t port0_lun_table_show(struct device *dev,
2816                                     struct device_attribute *attr,
2817                                     char *buf)
2818 {
2819         struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2820 
2821         return cxlflash_show_port_lun_table(0, cfg, buf);
2822 }
2823 
2824 /**
2825  * port1_lun_table_show() - presents the current LUN table of port 1
2826  * @dev:        Generic device associated with the host owning the port.
2827  * @attr:       Device attribute representing the port.
2828  * @buf:        Buffer of length PAGE_SIZE to report back port status in ASCII.
2829  *
2830  * Return: The size of the ASCII string returned in @buf.
2831  */
2832 static ssize_t port1_lun_table_show(struct device *dev,
2833                                     struct device_attribute *attr,
2834                                     char *buf)
2835 {
2836         struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2837 
2838         return cxlflash_show_port_lun_table(1, cfg, buf);
2839 }
2840 
2841 /**
2842  * port2_lun_table_show() - presents the current LUN table of port 2
2843  * @dev:        Generic device associated with the host owning the port.
2844  * @attr:       Device attribute representing the port.
2845  * @buf:        Buffer of length PAGE_SIZE to report back port status in ASCII.
2846  *
2847  * Return: The size of the ASCII string returned in @buf.
2848  */
2849 static ssize_t port2_lun_table_show(struct device *dev,
2850                                     struct device_attribute *attr,
2851                                     char *buf)
2852 {
2853         struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2854 
2855         return cxlflash_show_port_lun_table(2, cfg, buf);
2856 }
2857 
2858 /**
2859  * port3_lun_table_show() - presents the current LUN table of port 3
2860  * @dev:        Generic device associated with the host owning the port.
2861  * @attr:       Device attribute representing the port.
2862  * @buf:        Buffer of length PAGE_SIZE to report back port status in ASCII.
2863  *
2864  * Return: The size of the ASCII string returned in @buf.
2865  */
2866 static ssize_t port3_lun_table_show(struct device *dev,
2867                                     struct device_attribute *attr,
2868                                     char *buf)
2869 {
2870         struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2871 
2872         return cxlflash_show_port_lun_table(3, cfg, buf);
2873 }
2874 
2875 /**
2876  * irqpoll_weight_show() - presents the current IRQ poll weight for the host
2877  * @dev:        Generic device associated with the host.
2878  * @attr:       Device attribute representing the IRQ poll weight.
2879  * @buf:        Buffer of length PAGE_SIZE to report back the current IRQ poll
2880  *              weight in ASCII.
2881  *
2882  * An IRQ poll weight of 0 indicates polling is disabled.
2883  *
2884  * Return: The size of the ASCII string returned in @buf.
2885  */
2886 static ssize_t irqpoll_weight_show(struct device *dev,
2887                                    struct device_attribute *attr, char *buf)
2888 {
2889         struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2890         struct afu *afu = cfg->afu;
2891 
2892         return scnprintf(buf, PAGE_SIZE, "%u\n", afu->irqpoll_weight);
2893 }
2894 
2895 /**
2896  * irqpoll_weight_store() - sets the current IRQ poll weight for the host
2897  * @dev:        Generic device associated with the host.
2898  * @attr:       Device attribute representing the IRQ poll weight.
2899  * @buf:        Buffer of length PAGE_SIZE containing the desired IRQ poll
2900  *              weight in ASCII.
2901  * @count:      Length of data resizing in @buf.
2902  *
2903  * An IRQ poll weight of 0 indicates polling is disabled.
2904  *
2905  * Return: The size of the ASCII string returned in @buf.
2906  */
2907 static ssize_t irqpoll_weight_store(struct device *dev,
2908                                     struct device_attribute *attr,
2909                                     const char *buf, size_t count)
2910 {
2911         struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2912         struct device *cfgdev = &cfg->dev->dev;
2913         struct afu *afu = cfg->afu;
2914         struct hwq *hwq;
2915         u32 weight;
2916         int rc, i;
2917 
2918         rc = kstrtouint(buf, 10, &weight);
2919         if (rc)
2920                 return -EINVAL;
2921 
2922         if (weight > 256) {
2923                 dev_info(cfgdev,
2924                          "Invalid IRQ poll weight. It must be 256 or less.\n");
2925                 return -EINVAL;
2926         }
2927 
2928         if (weight == afu->irqpoll_weight) {
2929                 dev_info(cfgdev,
2930                          "Current IRQ poll weight has the same weight.\n");
2931                 return -EINVAL;
2932         }
2933 
2934         if (afu_is_irqpoll_enabled(afu)) {
2935                 for (i = 0; i < afu->num_hwqs; i++) {
2936                         hwq = get_hwq(afu, i);
2937 
2938                         irq_poll_disable(&hwq->irqpoll);
2939                 }
2940         }
2941 
2942         afu->irqpoll_weight = weight;
2943 
2944         if (weight > 0) {
2945                 for (i = 0; i < afu->num_hwqs; i++) {
2946                         hwq = get_hwq(afu, i);
2947 
2948                         irq_poll_init(&hwq->irqpoll, weight, cxlflash_irqpoll);
2949                 }
2950         }
2951 
2952         return count;
2953 }
2954 
2955 /**
2956  * num_hwqs_show() - presents the number of hardware queues for the host
2957  * @dev:        Generic device associated with the host.
2958  * @attr:       Device attribute representing the number of hardware queues.
2959  * @buf:        Buffer of length PAGE_SIZE to report back the number of hardware
2960  *              queues in ASCII.
2961  *
2962  * Return: The size of the ASCII string returned in @buf.
2963  */
2964 static ssize_t num_hwqs_show(struct device *dev,
2965                              struct device_attribute *attr, char *buf)
2966 {
2967         struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2968         struct afu *afu = cfg->afu;
2969 
2970         return scnprintf(buf, PAGE_SIZE, "%u\n", afu->num_hwqs);
2971 }
2972 
2973 /**
2974  * num_hwqs_store() - sets the number of hardware queues for the host
2975  * @dev:        Generic device associated with the host.
2976  * @attr:       Device attribute representing the number of hardware queues.
2977  * @buf:        Buffer of length PAGE_SIZE containing the number of hardware
2978  *              queues in ASCII.
2979  * @count:      Length of data resizing in @buf.
2980  *
2981  * n > 0: num_hwqs = n
2982  * n = 0: num_hwqs = num_online_cpus()
2983  * n < 0: num_online_cpus() / abs(n)
2984  *
2985  * Return: The size of the ASCII string returned in @buf.
2986  */
2987 static ssize_t num_hwqs_store(struct device *dev,
2988                               struct device_attribute *attr,
2989                               const char *buf, size_t count)
2990 {
2991         struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2992         struct afu *afu = cfg->afu;
2993         int rc;
2994         int nhwqs, num_hwqs;
2995 
2996         rc = kstrtoint(buf, 10, &nhwqs);
2997         if (rc)
2998                 return -EINVAL;
2999 
3000         if (nhwqs >= 1)
3001                 num_hwqs = nhwqs;
3002         else if (nhwqs == 0)
3003                 num_hwqs = num_online_cpus();
3004         else
3005                 num_hwqs = num_online_cpus() / abs(nhwqs);
3006 
3007         afu->desired_hwqs = min(num_hwqs, CXLFLASH_MAX_HWQS);
3008         WARN_ON_ONCE(afu->desired_hwqs == 0);
3009 
3010 retry:
3011         switch (cfg->state) {
3012         case STATE_NORMAL:
3013                 cfg->state = STATE_RESET;
3014                 drain_ioctls(cfg);
3015                 cxlflash_mark_contexts_error(cfg);
3016                 rc = afu_reset(cfg);
3017                 if (rc)
3018                         cfg->state = STATE_FAILTERM;
3019                 else
3020                         cfg->state = STATE_NORMAL;
3021                 wake_up_all(&cfg->reset_waitq);
3022                 break;
3023         case STATE_RESET:
3024                 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
3025                 if (cfg->state == STATE_NORMAL)
3026                         goto retry;
3027                 /* else, fall through */
3028         default:
3029                 /* Ideally should not happen */
3030                 dev_err(dev, "%s: Device is not ready, state=%d\n",
3031                         __func__, cfg->state);
3032                 break;
3033         }
3034 
3035         return count;
3036 }
3037 
3038 static const char *hwq_mode_name[MAX_HWQ_MODE] = { "rr", "tag", "cpu" };
3039 
3040 /**
3041  * hwq_mode_show() - presents the HWQ steering mode for the host
3042  * @dev:        Generic device associated with the host.
3043  * @attr:       Device attribute representing the HWQ steering mode.
3044  * @buf:        Buffer of length PAGE_SIZE to report back the HWQ steering mode
3045  *              as a character string.
3046  *
3047  * Return: The size of the ASCII string returned in @buf.
3048  */
3049 static ssize_t hwq_mode_show(struct device *dev,
3050                              struct device_attribute *attr, char *buf)
3051 {
3052         struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
3053         struct afu *afu = cfg->afu;
3054 
3055         return scnprintf(buf, PAGE_SIZE, "%s\n", hwq_mode_name[afu->hwq_mode]);
3056 }
3057 
3058 /**
3059  * hwq_mode_store() - sets the HWQ steering mode for the host
3060  * @dev:        Generic device associated with the host.
3061  * @attr:       Device attribute representing the HWQ steering mode.
3062  * @buf:        Buffer of length PAGE_SIZE containing the HWQ steering mode
3063  *              as a character string.
3064  * @count:      Length of data resizing in @buf.
3065  *
3066  * rr = Round-Robin
3067  * tag = Block MQ Tagging
3068  * cpu = CPU Affinity
3069  *
3070  * Return: The size of the ASCII string returned in @buf.
3071  */
3072 static ssize_t hwq_mode_store(struct device *dev,
3073                               struct device_attribute *attr,
3074                               const char *buf, size_t count)
3075 {
3076         struct Scsi_Host *shost = class_to_shost(dev);
3077         struct cxlflash_cfg *cfg = shost_priv(shost);
3078         struct device *cfgdev = &cfg->dev->dev;
3079         struct afu *afu = cfg->afu;
3080         int i;
3081         u32 mode = MAX_HWQ_MODE;
3082 
3083         for (i = 0; i < MAX_HWQ_MODE; i++) {
3084                 if (!strncmp(hwq_mode_name[i], buf, strlen(hwq_mode_name[i]))) {
3085                         mode = i;
3086                         break;
3087                 }
3088         }
3089 
3090         if (mode >= MAX_HWQ_MODE) {
3091                 dev_info(cfgdev, "Invalid HWQ steering mode.\n");
3092                 return -EINVAL;
3093         }
3094 
3095         afu->hwq_mode = mode;
3096 
3097         return count;
3098 }
3099 
3100 /**
3101  * mode_show() - presents the current mode of the device
3102  * @dev:        Generic device associated with the device.
3103  * @attr:       Device attribute representing the device mode.
3104  * @buf:        Buffer of length PAGE_SIZE to report back the dev mode in ASCII.
3105  *
3106  * Return: The size of the ASCII string returned in @buf.
3107  */
3108 static ssize_t mode_show(struct device *dev,
3109                          struct device_attribute *attr, char *buf)
3110 {
3111         struct scsi_device *sdev = to_scsi_device(dev);
3112 
3113         return scnprintf(buf, PAGE_SIZE, "%s\n",
3114                          sdev->hostdata ? "superpipe" : "legacy");
3115 }
3116 
3117 /*
3118  * Host attributes
3119  */
3120 static DEVICE_ATTR_RO(port0);
3121 static DEVICE_ATTR_RO(port1);
3122 static DEVICE_ATTR_RO(port2);
3123 static DEVICE_ATTR_RO(port3);
3124 static DEVICE_ATTR_RW(lun_mode);
3125 static DEVICE_ATTR_RO(ioctl_version);
3126 static DEVICE_ATTR_RO(port0_lun_table);
3127 static DEVICE_ATTR_RO(port1_lun_table);
3128 static DEVICE_ATTR_RO(port2_lun_table);
3129 static DEVICE_ATTR_RO(port3_lun_table);
3130 static DEVICE_ATTR_RW(irqpoll_weight);
3131 static DEVICE_ATTR_RW(num_hwqs);
3132 static DEVICE_ATTR_RW(hwq_mode);
3133 
3134 static struct device_attribute *cxlflash_host_attrs[] = {
3135         &dev_attr_port0,
3136         &dev_attr_port1,
3137         &dev_attr_port2,
3138         &dev_attr_port3,
3139         &dev_attr_lun_mode,
3140         &dev_attr_ioctl_version,
3141         &dev_attr_port0_lun_table,
3142         &dev_attr_port1_lun_table,
3143         &dev_attr_port2_lun_table,
3144         &dev_attr_port3_lun_table,
3145         &dev_attr_irqpoll_weight,
3146         &dev_attr_num_hwqs,
3147         &dev_attr_hwq_mode,
3148         NULL
3149 };
3150 
3151 /*
3152  * Device attributes
3153  */
3154 static DEVICE_ATTR_RO(mode);
3155 
3156 static struct device_attribute *cxlflash_dev_attrs[] = {
3157         &dev_attr_mode,
3158         NULL
3159 };
3160 
3161 /*
3162  * Host template
3163  */
3164 static struct scsi_host_template driver_template = {
3165         .module = THIS_MODULE,
3166         .name = CXLFLASH_ADAPTER_NAME,
3167         .info = cxlflash_driver_info,
3168         .ioctl = cxlflash_ioctl,
3169         .proc_name = CXLFLASH_NAME,
3170         .queuecommand = cxlflash_queuecommand,
3171         .eh_abort_handler = cxlflash_eh_abort_handler,
3172         .eh_device_reset_handler = cxlflash_eh_device_reset_handler,
3173         .eh_host_reset_handler = cxlflash_eh_host_reset_handler,
3174         .change_queue_depth = cxlflash_change_queue_depth,
3175         .cmd_per_lun = CXLFLASH_MAX_CMDS_PER_LUN,
3176         .can_queue = CXLFLASH_MAX_CMDS,
3177         .cmd_size = sizeof(struct afu_cmd) + __alignof__(struct afu_cmd) - 1,
3178         .this_id = -1,
3179         .sg_tablesize = 1,      /* No scatter gather support */
3180         .max_sectors = CXLFLASH_MAX_SECTORS,
3181         .shost_attrs = cxlflash_host_attrs,
3182         .sdev_attrs = cxlflash_dev_attrs,
3183 };
3184 
3185 /*
3186  * Device dependent values
3187  */
3188 static struct dev_dependent_vals dev_corsa_vals = { CXLFLASH_MAX_SECTORS,
3189                                         CXLFLASH_WWPN_VPD_REQUIRED };
3190 static struct dev_dependent_vals dev_flash_gt_vals = { CXLFLASH_MAX_SECTORS,
3191                                         CXLFLASH_NOTIFY_SHUTDOWN };
3192 static struct dev_dependent_vals dev_briard_vals = { CXLFLASH_MAX_SECTORS,
3193                                         (CXLFLASH_NOTIFY_SHUTDOWN |
3194                                         CXLFLASH_OCXL_DEV) };
3195 
3196 /*
3197  * PCI device binding table
3198  */
3199 static struct pci_device_id cxlflash_pci_table[] = {
3200         {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_CORSA,
3201          PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_corsa_vals},
3202         {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_FLASH_GT,
3203          PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_flash_gt_vals},
3204         {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_BRIARD,
3205          PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_briard_vals},
3206         {}
3207 };
3208 
3209 MODULE_DEVICE_TABLE(pci, cxlflash_pci_table);
3210 
3211 /**
3212  * cxlflash_worker_thread() - work thread handler for the AFU
3213  * @work:       Work structure contained within cxlflash associated with host.
3214  *
3215  * Handles the following events:
3216  * - Link reset which cannot be performed on interrupt context due to
3217  * blocking up to a few seconds
3218  * - Rescan the host
3219  */
3220 static void cxlflash_worker_thread(struct work_struct *work)
3221 {
3222         struct cxlflash_cfg *cfg = container_of(work, struct cxlflash_cfg,
3223                                                 work_q);
3224         struct afu *afu = cfg->afu;
3225         struct device *dev = &cfg->dev->dev;
3226         __be64 __iomem *fc_port_regs;
3227         int port;
3228         ulong lock_flags;
3229 
3230         /* Avoid MMIO if the device has failed */
3231 
3232         if (cfg->state != STATE_NORMAL)
3233                 return;
3234 
3235         spin_lock_irqsave(cfg->host->host_lock, lock_flags);
3236 
3237         if (cfg->lr_state == LINK_RESET_REQUIRED) {
3238                 port = cfg->lr_port;
3239                 if (port < 0)
3240                         dev_err(dev, "%s: invalid port index %d\n",
3241                                 __func__, port);
3242                 else {
3243                         spin_unlock_irqrestore(cfg->host->host_lock,
3244                                                lock_flags);
3245 
3246                         /* The reset can block... */
3247                         fc_port_regs = get_fc_port_regs(cfg, port);
3248                         afu_link_reset(afu, port, fc_port_regs);
3249                         spin_lock_irqsave(cfg->host->host_lock, lock_flags);
3250                 }
3251 
3252                 cfg->lr_state = LINK_RESET_COMPLETE;
3253         }
3254 
3255         spin_unlock_irqrestore(cfg->host->host_lock, lock_flags);
3256 
3257         if (atomic_dec_if_positive(&cfg->scan_host_needed) >= 0)
3258                 scsi_scan_host(cfg->host);
3259 }
3260 
3261 /**
3262  * cxlflash_chr_open() - character device open handler
3263  * @inode:      Device inode associated with this character device.
3264  * @file:       File pointer for this device.
3265  *
3266  * Only users with admin privileges are allowed to open the character device.
3267  *
3268  * Return: 0 on success, -errno on failure
3269  */
3270 static int cxlflash_chr_open(struct inode *inode, struct file *file)
3271 {
3272         struct cxlflash_cfg *cfg;
3273 
3274         if (!capable(CAP_SYS_ADMIN))
3275                 return -EACCES;
3276 
3277         cfg = container_of(inode->i_cdev, struct cxlflash_cfg, cdev);
3278         file->private_data = cfg;
3279 
3280         return 0;
3281 }
3282 
3283 /**
3284  * decode_hioctl() - translates encoded host ioctl to easily identifiable string
3285  * @cmd:        The host ioctl command to decode.
3286  *
3287  * Return: A string identifying the decoded host ioctl.
3288  */
3289 static char *decode_hioctl(unsigned int cmd)
3290 {
3291         switch (cmd) {
3292         case HT_CXLFLASH_LUN_PROVISION:
3293                 return __stringify_1(HT_CXLFLASH_LUN_PROVISION);
3294         }
3295 
3296         return "UNKNOWN";
3297 }
3298 
3299 /**
3300  * cxlflash_lun_provision() - host LUN provisioning handler
3301  * @cfg:        Internal structure associated with the host.
3302  * @arg:        Kernel copy of userspace ioctl data structure.
3303  *
3304  * Return: 0 on success, -errno on failure
3305  */
3306 static int cxlflash_lun_provision(struct cxlflash_cfg *cfg,
3307                                   struct ht_cxlflash_lun_provision *lunprov)
3308 {
3309         struct afu *afu = cfg->afu;
3310         struct device *dev = &cfg->dev->dev;
3311         struct sisl_ioarcb rcb;
3312         struct sisl_ioasa asa;
3313         __be64 __iomem *fc_port_regs;
3314         u16 port = lunprov->port;
3315         u16 scmd = lunprov->hdr.subcmd;
3316         u16 type;
3317         u64 reg;
3318         u64 size;
3319         u64 lun_id;
3320         int rc = 0;
3321 
3322         if (!afu_is_lun_provision(afu)) {
3323                 rc = -ENOTSUPP;
3324                 goto out;
3325         }
3326 
3327         if (port >= cfg->num_fc_ports) {
3328                 rc = -EINVAL;
3329                 goto out;
3330         }
3331 
3332         switch (scmd) {
3333         case HT_CXLFLASH_LUN_PROVISION_SUBCMD_CREATE_LUN:
3334                 type = SISL_AFU_LUN_PROVISION_CREATE;
3335                 size = lunprov->size;
3336                 lun_id = 0;
3337                 break;
3338         case HT_CXLFLASH_LUN_PROVISION_SUBCMD_DELETE_LUN:
3339                 type = SISL_AFU_LUN_PROVISION_DELETE;
3340                 size = 0;
3341                 lun_id = lunprov->lun_id;
3342                 break;
3343         case HT_CXLFLASH_LUN_PROVISION_SUBCMD_QUERY_PORT:
3344                 fc_port_regs = get_fc_port_regs(cfg, port);
3345 
3346                 reg = readq_be(&fc_port_regs[FC_MAX_NUM_LUNS / 8]);
3347                 lunprov->max_num_luns = reg;
3348                 reg = readq_be(&fc_port_regs[FC_CUR_NUM_LUNS / 8]);
3349                 lunprov->cur_num_luns = reg;
3350                 reg = readq_be(&fc_port_regs[FC_MAX_CAP_PORT / 8]);
3351                 lunprov->max_cap_port = reg;
3352                 reg = readq_be(&fc_port_regs[FC_CUR_CAP_PORT / 8]);
3353                 lunprov->cur_cap_port = reg;
3354 
3355                 goto out;
3356         default:
3357                 rc = -EINVAL;
3358                 goto out;
3359         }
3360 
3361         memset(&rcb, 0, sizeof(rcb));
3362         memset(&asa, 0, sizeof(asa));
3363         rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD;
3364         rcb.lun_id = lun_id;
3365         rcb.msi = SISL_MSI_RRQ_UPDATED;
3366         rcb.timeout = MC_LUN_PROV_TIMEOUT;
3367         rcb.ioasa = &asa;
3368 
3369         rcb.cdb[0] = SISL_AFU_CMD_LUN_PROVISION;
3370         rcb.cdb[1] = type;
3371         rcb.cdb[2] = port;
3372         put_unaligned_be64(size, &rcb.cdb[8]);
3373 
3374         rc = send_afu_cmd(afu, &rcb);
3375         if (rc) {
3376                 dev_err(dev, "%s: send_afu_cmd failed rc=%d asc=%08x afux=%x\n",
3377                         __func__, rc, asa.ioasc, asa.afu_extra);
3378                 goto out;
3379         }
3380 
3381         if (scmd == HT_CXLFLASH_LUN_PROVISION_SUBCMD_CREATE_LUN) {
3382                 lunprov->lun_id = (u64)asa.lunid_hi << 32 | asa.lunid_lo;
3383                 memcpy(lunprov->wwid, asa.wwid, sizeof(lunprov->wwid));
3384         }
3385 out:
3386         dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3387         return rc;
3388 }
3389 
3390 /**
3391  * cxlflash_afu_debug() - host AFU debug handler
3392  * @cfg:        Internal structure associated with the host.
3393  * @arg:        Kernel copy of userspace ioctl data structure.
3394  *
3395  * For debug requests requiring a data buffer, always provide an aligned
3396  * (cache line) buffer to the AFU to appease any alignment requirements.
3397  *
3398  * Return: 0 on success, -errno on failure
3399  */
3400 static int cxlflash_afu_debug(struct cxlflash_cfg *cfg,
3401                               struct ht_cxlflash_afu_debug *afu_dbg)
3402 {
3403         struct afu *afu = cfg->afu;
3404         struct device *dev = &cfg->dev->dev;
3405         struct sisl_ioarcb rcb;
3406         struct sisl_ioasa asa;
3407         char *buf = NULL;
3408         char *kbuf = NULL;
3409         void __user *ubuf = (__force void __user *)afu_dbg->data_ea;
3410         u16 req_flags = SISL_REQ_FLAGS_AFU_CMD;
3411         u32 ulen = afu_dbg->data_len;
3412         bool is_write = afu_dbg->hdr.flags & HT_CXLFLASH_HOST_WRITE;
3413         int rc = 0;
3414 
3415         if (!afu_is_afu_debug(afu)) {
3416                 rc = -ENOTSUPP;
3417                 goto out;
3418         }
3419 
3420         if (ulen) {
3421                 req_flags |= SISL_REQ_FLAGS_SUP_UNDERRUN;
3422 
3423                 if (ulen > HT_CXLFLASH_AFU_DEBUG_MAX_DATA_LEN) {
3424                         rc = -EINVAL;
3425                         goto out;
3426                 }
3427 
3428                 buf = kmalloc(ulen + cache_line_size() - 1, GFP_KERNEL);
3429                 if (unlikely(!buf)) {
3430                         rc = -ENOMEM;
3431                         goto out;
3432                 }
3433 
3434                 kbuf = PTR_ALIGN(buf, cache_line_size());
3435 
3436                 if (is_write) {
3437                         req_flags |= SISL_REQ_FLAGS_HOST_WRITE;
3438 
3439                         if (copy_from_user(kbuf, ubuf, ulen)) {
3440                                 rc = -EFAULT;
3441                                 goto out;
3442                         }
3443                 }
3444         }
3445 
3446         memset(&rcb, 0, sizeof(rcb));
3447         memset(&asa, 0, sizeof(asa));
3448 
3449         rcb.req_flags = req_flags;
3450         rcb.msi = SISL_MSI_RRQ_UPDATED;
3451         rcb.timeout = MC_AFU_DEBUG_TIMEOUT;
3452         rcb.ioasa = &asa;
3453 
3454         if (ulen) {
3455                 rcb.data_len = ulen;
3456                 rcb.data_ea = (uintptr_t)kbuf;
3457         }
3458 
3459         rcb.cdb[0] = SISL_AFU_CMD_DEBUG;
3460         memcpy(&rcb.cdb[4], afu_dbg->afu_subcmd,
3461                HT_CXLFLASH_AFU_DEBUG_SUBCMD_LEN);
3462 
3463         rc = send_afu_cmd(afu, &rcb);
3464         if (rc) {
3465                 dev_err(dev, "%s: send_afu_cmd failed rc=%d asc=%08x afux=%x\n",
3466                         __func__, rc, asa.ioasc, asa.afu_extra);
3467                 goto out;
3468         }
3469 
3470         if (ulen && !is_write) {
3471                 if (copy_to_user(ubuf, kbuf, ulen))
3472                         rc = -EFAULT;
3473         }
3474 out:
3475         kfree(buf);
3476         dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3477         return rc;
3478 }
3479 
3480 /**
3481  * cxlflash_chr_ioctl() - character device IOCTL handler
3482  * @file:       File pointer for this device.
3483  * @cmd:        IOCTL command.
3484  * @arg:        Userspace ioctl data structure.
3485  *
3486  * A read/write semaphore is used to implement a 'drain' of currently
3487  * running ioctls. The read semaphore is taken at the beginning of each
3488  * ioctl thread and released upon concluding execution. Additionally the
3489  * semaphore should be released and then reacquired in any ioctl execution
3490  * path which will wait for an event to occur that is outside the scope of
3491  * the ioctl (i.e. an adapter reset). To drain the ioctls currently running,
3492  * a thread simply needs to acquire the write semaphore.
3493  *
3494  * Return: 0 on success, -errno on failure
3495  */
3496 static long cxlflash_chr_ioctl(struct file *file, unsigned int cmd,
3497                                unsigned long arg)
3498 {
3499         typedef int (*hioctl) (struct cxlflash_cfg *, void *);
3500 
3501         struct cxlflash_cfg *cfg = file->private_data;
3502         struct device *dev = &cfg->dev->dev;
3503         char buf[sizeof(union cxlflash_ht_ioctls)];
3504         void __user *uarg = (void __user *)arg;
3505         struct ht_cxlflash_hdr *hdr;
3506         size_t size = 0;
3507         bool known_ioctl = false;
3508         int idx = 0;
3509         int rc = 0;
3510         hioctl do_ioctl = NULL;
3511 
3512         static const struct {
3513                 size_t size;
3514                 hioctl ioctl;
3515         } ioctl_tbl[] = {       /* NOTE: order matters here */
3516         { sizeof(struct ht_cxlflash_lun_provision),
3517                 (hioctl)cxlflash_lun_provision },
3518         { sizeof(struct ht_cxlflash_afu_debug),
3519                 (hioctl)cxlflash_afu_debug },
3520         };
3521 
3522         /* Hold read semaphore so we can drain if needed */
3523         down_read(&cfg->ioctl_rwsem);
3524 
3525         dev_dbg(dev, "%s: cmd=%u idx=%d tbl_size=%lu\n",
3526                 __func__, cmd, idx, sizeof(ioctl_tbl));
3527 
3528         switch (cmd) {
3529         case HT_CXLFLASH_LUN_PROVISION:
3530         case HT_CXLFLASH_AFU_DEBUG:
3531                 known_ioctl = true;
3532                 idx = _IOC_NR(HT_CXLFLASH_LUN_PROVISION) - _IOC_NR(cmd);
3533                 size = ioctl_tbl[idx].size;
3534                 do_ioctl = ioctl_tbl[idx].ioctl;
3535 
3536                 if (likely(do_ioctl))
3537                         break;
3538 
3539                 /* fall through */
3540         default:
3541                 rc = -EINVAL;
3542                 goto out;
3543         }
3544 
3545         if (unlikely(copy_from_user(&buf, uarg, size))) {
3546                 dev_err(dev, "%s: copy_from_user() fail "
3547                         "size=%lu cmd=%d (%s) uarg=%p\n",
3548                         __func__, size, cmd, decode_hioctl(cmd), uarg);
3549                 rc = -EFAULT;
3550                 goto out;
3551         }
3552 
3553         hdr = (struct ht_cxlflash_hdr *)&buf;
3554         if (hdr->version != HT_CXLFLASH_VERSION_0) {
3555                 dev_dbg(dev, "%s: Version %u not supported for %s\n",
3556                         __func__, hdr->version, decode_hioctl(cmd));
3557                 rc = -EINVAL;
3558                 goto out;
3559         }
3560 
3561         if (hdr->rsvd[0] || hdr->rsvd[1] || hdr->return_flags) {
3562                 dev_dbg(dev, "%s: Reserved/rflags populated\n", __func__);
3563                 rc = -EINVAL;
3564                 goto out;
3565         }
3566 
3567         rc = do_ioctl(cfg, (void *)&buf);
3568         if (likely(!rc))
3569                 if (unlikely(copy_to_user(uarg, &buf, size))) {
3570                         dev_err(dev, "%s: copy_to_user() fail "
3571                                 "size=%lu cmd=%d (%s) uarg=%p\n",
3572                                 __func__, size, cmd, decode_hioctl(cmd), uarg);
3573                         rc = -EFAULT;
3574                 }
3575 
3576         /* fall through to exit */
3577 
3578 out:
3579         up_read(&cfg->ioctl_rwsem);
3580         if (unlikely(rc && known_ioctl))
3581                 dev_err(dev, "%s: ioctl %s (%08X) returned rc=%d\n",
3582                         __func__, decode_hioctl(cmd), cmd, rc);
3583         else
3584                 dev_dbg(dev, "%s: ioctl %s (%08X) returned rc=%d\n",
3585                         __func__, decode_hioctl(cmd), cmd, rc);
3586         return rc;
3587 }
3588 
3589 /*
3590  * Character device file operations
3591  */
3592 static const struct file_operations cxlflash_chr_fops = {
3593         .owner          = THIS_MODULE,
3594         .open           = cxlflash_chr_open,
3595         .unlocked_ioctl = cxlflash_chr_ioctl,
3596         .compat_ioctl   = cxlflash_chr_ioctl,
3597 };
3598 
3599 /**
3600  * init_chrdev() - initialize the character device for the host
3601  * @cfg:        Internal structure associated with the host.
3602  *
3603  * Return: 0 on success, -errno on failure
3604  */
3605 static int init_chrdev(struct cxlflash_cfg *cfg)
3606 {
3607         struct device *dev = &cfg->dev->dev;
3608         struct device *char_dev;
3609         dev_t devno;
3610         int minor;
3611         int rc = 0;
3612 
3613         minor = cxlflash_get_minor();
3614         if (unlikely(minor < 0)) {
3615                 dev_err(dev, "%s: Exhausted allowed adapters\n", __func__);
3616                 rc = -ENOSPC;
3617                 goto out;
3618         }
3619 
3620         devno = MKDEV(cxlflash_major, minor);
3621         cdev_init(&cfg->cdev, &cxlflash_chr_fops);
3622 
3623         rc = cdev_add(&cfg->cdev, devno, 1);
3624         if (rc) {
3625                 dev_err(dev, "%s: cdev_add failed rc=%d\n", __func__, rc);
3626                 goto err1;
3627         }
3628 
3629         char_dev = device_create(cxlflash_class, NULL, devno,
3630                                  NULL, "cxlflash%d", minor);
3631         if (IS_ERR(char_dev)) {
3632                 rc = PTR_ERR(char_dev);
3633                 dev_err(dev, "%s: device_create failed rc=%d\n",
3634                         __func__, rc);
3635                 goto err2;
3636         }
3637 
3638         cfg->chardev = char_dev;
3639 out:
3640         dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3641         return rc;
3642 err2:
3643         cdev_del(&cfg->cdev);
3644 err1:
3645         cxlflash_put_minor(minor);
3646         goto out;
3647 }
3648 
3649 /**
3650  * cxlflash_probe() - PCI entry point to add host
3651  * @pdev:       PCI device associated with the host.
3652  * @dev_id:     PCI device id associated with device.
3653  *
3654  * The device will initially start out in a 'probing' state and
3655  * transition to the 'normal' state at the end of a successful
3656  * probe. Should an EEH event occur during probe, the notification
3657  * thread (error_detected()) will wait until the probe handler
3658  * is nearly complete. At that time, the device will be moved to
3659  * a 'probed' state and the EEH thread woken up to drive the slot
3660  * reset and recovery (device moves to 'normal' state). Meanwhile,
3661  * the probe will be allowed to exit successfully.
3662  *
3663  * Return: 0 on success, -errno on failure
3664  */
3665 static int cxlflash_probe(struct pci_dev *pdev,
3666                           const struct pci_device_id *dev_id)
3667 {
3668         struct Scsi_Host *host;
3669         struct cxlflash_cfg *cfg = NULL;
3670         struct device *dev = &pdev->dev;
3671         struct dev_dependent_vals *ddv;
3672         int rc = 0;
3673         int k;
3674 
3675         dev_dbg(&pdev->dev, "%s: Found CXLFLASH with IRQ: %d\n",
3676                 __func__, pdev->irq);
3677 
3678         ddv = (struct dev_dependent_vals *)dev_id->driver_data;
3679         driver_template.max_sectors = ddv->max_sectors;
3680 
3681         host = scsi_host_alloc(&driver_template, sizeof(struct cxlflash_cfg));
3682         if (!host) {
3683                 dev_err(dev, "%s: scsi_host_alloc failed\n", __func__);
3684                 rc = -ENOMEM;
3685                 goto out;
3686         }
3687 
3688         host->max_id = CXLFLASH_MAX_NUM_TARGETS_PER_BUS;
3689         host->max_lun = CXLFLASH_MAX_NUM_LUNS_PER_TARGET;
3690         host->unique_id = host->host_no;
3691         host->max_cmd_len = CXLFLASH_MAX_CDB_LEN;
3692 
3693         cfg = shost_priv(host);
3694         cfg->state = STATE_PROBING;
3695         cfg->host = host;
3696         rc = alloc_mem(cfg);
3697         if (rc) {
3698                 dev_err(dev, "%s: alloc_mem failed\n", __func__);
3699                 rc = -ENOMEM;
3700                 scsi_host_put(cfg->host);
3701                 goto out;
3702         }
3703 
3704         cfg->init_state = INIT_STATE_NONE;
3705         cfg->dev = pdev;
3706         cfg->cxl_fops = cxlflash_cxl_fops;
3707         cfg->ops = cxlflash_assign_ops(ddv);
3708         WARN_ON_ONCE(!cfg->ops);
3709 
3710         /*
3711          * Promoted LUNs move to the top of the LUN table. The rest stay on
3712          * the bottom half. The bottom half grows from the end (index = 255),
3713          * whereas the top half grows from the beginning (index = 0).
3714          *
3715          * Initialize the last LUN index for all possible ports.
3716          */
3717         cfg->promote_lun_index = 0;
3718 
3719         for (k = 0; k < MAX_FC_PORTS; k++)
3720                 cfg->last_lun_index[k] = CXLFLASH_NUM_VLUNS/2 - 1;
3721 
3722         cfg->dev_id = (struct pci_device_id *)dev_id;
3723 
3724         init_waitqueue_head(&cfg->tmf_waitq);
3725         init_waitqueue_head(&cfg->reset_waitq);
3726 
3727         INIT_WORK(&cfg->work_q, cxlflash_worker_thread);
3728         cfg->lr_state = LINK_RESET_INVALID;
3729         cfg->lr_port = -1;
3730         spin_lock_init(&cfg->tmf_slock);
3731         mutex_init(&cfg->ctx_tbl_list_mutex);
3732         mutex_init(&cfg->ctx_recovery_mutex);
3733         init_rwsem(&cfg->ioctl_rwsem);
3734         INIT_LIST_HEAD(&cfg->ctx_err_recovery);
3735         INIT_LIST_HEAD(&cfg->lluns);
3736 
3737         pci_set_drvdata(pdev, cfg);
3738 
3739         rc = init_pci(cfg);
3740         if (rc) {
3741                 dev_err(dev, "%s: init_pci failed rc=%d\n", __func__, rc);
3742                 goto out_remove;
3743         }
3744         cfg->init_state = INIT_STATE_PCI;
3745 
3746         cfg->afu_cookie = cfg->ops->create_afu(pdev);
3747         if (unlikely(!cfg->afu_cookie)) {
3748                 dev_err(dev, "%s: create_afu failed\n", __func__);
3749                 goto out_remove;
3750         }
3751 
3752         rc = init_afu(cfg);
3753         if (rc && !wq_has_sleeper(&cfg->reset_waitq)) {
3754                 dev_err(dev, "%s: init_afu failed rc=%d\n", __func__, rc);
3755                 goto out_remove;
3756         }
3757         cfg->init_state = INIT_STATE_AFU;
3758 
3759         rc = init_scsi(cfg);
3760         if (rc) {
3761                 dev_err(dev, "%s: init_scsi failed rc=%d\n", __func__, rc);
3762                 goto out_remove;
3763         }
3764         cfg->init_state = INIT_STATE_SCSI;
3765 
3766         rc = init_chrdev(cfg);
3767         if (rc) {
3768                 dev_err(dev, "%s: init_chrdev failed rc=%d\n", __func__, rc);
3769                 goto out_remove;
3770         }
3771         cfg->init_state = INIT_STATE_CDEV;
3772 
3773         if (wq_has_sleeper(&cfg->reset_waitq)) {
3774                 cfg->state = STATE_PROBED;
3775                 wake_up_all(&cfg->reset_waitq);
3776         } else
3777                 cfg->state = STATE_NORMAL;
3778 out:
3779         dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3780         return rc;
3781 
3782 out_remove:
3783         cfg->state = STATE_PROBED;
3784         cxlflash_remove(pdev);
3785         goto out;
3786 }
3787 
3788 /**
3789  * cxlflash_pci_error_detected() - called when a PCI error is detected
3790  * @pdev:       PCI device struct.
3791  * @state:      PCI channel state.
3792  *
3793  * When an EEH occurs during an active reset, wait until the reset is
3794  * complete and then take action based upon the device state.
3795  *
3796  * Return: PCI_ERS_RESULT_NEED_RESET or PCI_ERS_RESULT_DISCONNECT
3797  */
3798 static pci_ers_result_t cxlflash_pci_error_detected(struct pci_dev *pdev,
3799                                                     pci_channel_state_t state)
3800 {
3801         int rc = 0;
3802         struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
3803         struct device *dev = &cfg->dev->dev;
3804 
3805         dev_dbg(dev, "%s: pdev=%p state=%u\n", __func__, pdev, state);
3806 
3807         switch (state) {
3808         case pci_channel_io_frozen:
3809                 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET &&
3810                                              cfg->state != STATE_PROBING);
3811                 if (cfg->state == STATE_FAILTERM)
3812                         return PCI_ERS_RESULT_DISCONNECT;
3813 
3814                 cfg->state = STATE_RESET;
3815                 scsi_block_requests(cfg->host);
3816                 drain_ioctls(cfg);
3817                 rc = cxlflash_mark_contexts_error(cfg);
3818                 if (unlikely(rc))
3819                         dev_err(dev, "%s: Failed to mark user contexts rc=%d\n",
3820                                 __func__, rc);
3821                 term_afu(cfg);
3822                 return PCI_ERS_RESULT_NEED_RESET;
3823         case pci_channel_io_perm_failure:
3824                 cfg->state = STATE_FAILTERM;
3825                 wake_up_all(&cfg->reset_waitq);
3826                 scsi_unblock_requests(cfg->host);
3827                 return PCI_ERS_RESULT_DISCONNECT;
3828         default:
3829                 break;
3830         }
3831         return PCI_ERS_RESULT_NEED_RESET;
3832 }
3833 
3834 /**
3835  * cxlflash_pci_slot_reset() - called when PCI slot has been reset
3836  * @pdev:       PCI device struct.
3837  *
3838  * This routine is called by the pci error recovery code after the PCI
3839  * slot has been reset, just before we should resume normal operations.
3840  *
3841  * Return: PCI_ERS_RESULT_RECOVERED or PCI_ERS_RESULT_DISCONNECT
3842  */
3843 static pci_ers_result_t cxlflash_pci_slot_reset(struct pci_dev *pdev)
3844 {
3845         int rc = 0;
3846         struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
3847         struct device *dev = &cfg->dev->dev;
3848 
3849         dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
3850 
3851         rc = init_afu(cfg);
3852         if (unlikely(rc)) {
3853                 dev_err(dev, "%s: EEH recovery failed rc=%d\n", __func__, rc);
3854                 return PCI_ERS_RESULT_DISCONNECT;
3855         }
3856 
3857         return PCI_ERS_RESULT_RECOVERED;
3858 }
3859 
3860 /**
3861  * cxlflash_pci_resume() - called when normal operation can resume
3862  * @pdev:       PCI device struct
3863  */
3864 static void cxlflash_pci_resume(struct pci_dev *pdev)
3865 {
3866         struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
3867         struct device *dev = &cfg->dev->dev;
3868 
3869         dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
3870 
3871         cfg->state = STATE_NORMAL;
3872         wake_up_all(&cfg->reset_waitq);
3873         scsi_unblock_requests(cfg->host);
3874 }
3875 
3876 /**
3877  * cxlflash_devnode() - provides devtmpfs for devices in the cxlflash class
3878  * @dev:        Character device.
3879  * @mode:       Mode that can be used to verify access.
3880  *
3881  * Return: Allocated string describing the devtmpfs structure.
3882  */
3883 static char *cxlflash_devnode(struct device *dev, umode_t *mode)
3884 {
3885         return kasprintf(GFP_KERNEL, "cxlflash/%s", dev_name(dev));
3886 }
3887 
3888 /**
3889  * cxlflash_class_init() - create character device class
3890  *
3891  * Return: 0 on success, -errno on failure
3892  */
3893 static int cxlflash_class_init(void)
3894 {
3895         dev_t devno;
3896         int rc = 0;
3897 
3898         rc = alloc_chrdev_region(&devno, 0, CXLFLASH_MAX_ADAPTERS, "cxlflash");
3899         if (unlikely(rc)) {
3900                 pr_err("%s: alloc_chrdev_region failed rc=%d\n", __func__, rc);
3901                 goto out;
3902         }
3903 
3904         cxlflash_major = MAJOR(devno);
3905 
3906         cxlflash_class = class_create(THIS_MODULE, "cxlflash");
3907         if (IS_ERR(cxlflash_class)) {
3908                 rc = PTR_ERR(cxlflash_class);
3909                 pr_err("%s: class_create failed rc=%d\n", __func__, rc);
3910                 goto err;
3911         }
3912 
3913         cxlflash_class->devnode = cxlflash_devnode;
3914 out:
3915         pr_debug("%s: returning rc=%d\n", __func__, rc);
3916         return rc;
3917 err:
3918         unregister_chrdev_region(devno, CXLFLASH_MAX_ADAPTERS);
3919         goto out;
3920 }
3921 
3922 /**
3923  * cxlflash_class_exit() - destroy character device class
3924  */
3925 static void cxlflash_class_exit(void)
3926 {
3927         dev_t devno = MKDEV(cxlflash_major, 0);
3928 
3929         class_destroy(cxlflash_class);
3930         unregister_chrdev_region(devno, CXLFLASH_MAX_ADAPTERS);
3931 }
3932 
3933 static const struct pci_error_handlers cxlflash_err_handler = {
3934         .error_detected = cxlflash_pci_error_detected,
3935         .slot_reset = cxlflash_pci_slot_reset,
3936         .resume = cxlflash_pci_resume,
3937 };
3938 
3939 /*
3940  * PCI device structure
3941  */
3942 static struct pci_driver cxlflash_driver = {
3943         .name = CXLFLASH_NAME,
3944         .id_table = cxlflash_pci_table,
3945         .probe = cxlflash_probe,
3946         .remove = cxlflash_remove,
3947         .shutdown = cxlflash_remove,
3948         .err_handler = &cxlflash_err_handler,
3949 };
3950 
3951 /**
3952  * init_cxlflash() - module entry point
3953  *
3954  * Return: 0 on success, -errno on failure
3955  */
3956 static int __init init_cxlflash(void)
3957 {
3958         int rc;
3959 
3960         check_sizes();
3961         cxlflash_list_init();
3962         rc = cxlflash_class_init();
3963         if (unlikely(rc))
3964                 goto out;
3965 
3966         rc = pci_register_driver(&cxlflash_driver);
3967         if (unlikely(rc))
3968                 goto err;
3969 out:
3970         pr_debug("%s: returning rc=%d\n", __func__, rc);
3971         return rc;
3972 err:
3973         cxlflash_class_exit();
3974         goto out;
3975 }
3976 
3977 /**
3978  * exit_cxlflash() - module exit point
3979  */
3980 static void __exit exit_cxlflash(void)
3981 {
3982         cxlflash_term_global_luns();
3983         cxlflash_free_errpage();
3984 
3985         pci_unregister_driver(&cxlflash_driver);
3986         cxlflash_class_exit();
3987 }
3988 
3989 module_init(init_cxlflash);
3990 module_exit(exit_cxlflash);

/* [<][>][^][v][top][bottom][index][help] */