This source file includes following definitions.
- is_event_supported
- input_defuzz_abs_event
- input_start_autorepeat
- input_stop_autorepeat
- input_to_handler
- input_pass_values
- input_pass_event
- input_repeat_key
- input_handle_abs_event
- input_get_disposition
- input_handle_event
- input_event
- input_inject_event
- input_alloc_absinfo
- input_set_abs_params
- input_grab_device
- __input_release_device
- input_release_device
- input_open_device
- input_flush_device
- input_close_device
- input_dev_release_keys
- input_disconnect_device
- input_scancode_to_scalar
- input_fetch_keycode
- input_default_getkeycode
- input_default_setkeycode
- input_get_keycode
- input_set_keycode
- input_match_device_id
- input_match_device
- input_attach_handler
- input_bits_to_string
- input_bits_to_string
- input_wakeup_procfs_readers
- input_proc_devices_poll
- input_devices_seq_start
- input_devices_seq_next
- input_seq_stop
- input_seq_print_bitmap
- input_devices_seq_show
- input_proc_devices_open
- input_handlers_seq_start
- input_handlers_seq_next
- input_handlers_seq_show
- input_proc_handlers_open
- input_proc_init
- input_proc_exit
- input_wakeup_procfs_readers
- input_proc_init
- input_proc_exit
- input_print_modalias_bits
- input_print_modalias
- input_dev_show_modalias
- input_dev_show_properties
- input_print_bitmap
- input_dev_release
- input_add_uevent_bm_var
- input_add_uevent_modalias_var
- input_dev_uevent
- input_dev_toggle
- input_reset_device
- input_dev_suspend
- input_dev_resume
- input_dev_freeze
- input_dev_poweroff
- input_devnode
- input_allocate_device
- devm_input_device_match
- devm_input_device_release
- devm_input_allocate_device
- input_free_device
- input_set_timestamp
- input_get_timestamp
- input_set_capability
- input_estimate_events_per_packet
- input_cleanse_bitmasks
- __input_unregister_device
- devm_input_device_unregister
- input_enable_softrepeat
- input_register_device
- input_unregister_device
- input_register_handler
- input_unregister_handler
- input_handler_for_each_handle
- input_register_handle
- input_unregister_handle
- input_get_new_minor
- input_free_minor
- input_init
- input_exit
1
2
3
4
5
6
7
8
9 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
10
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/idr.h>
14 #include <linux/input/mt.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/random.h>
18 #include <linux/major.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/poll.h>
23 #include <linux/device.h>
24 #include <linux/mutex.h>
25 #include <linux/rcupdate.h>
26 #include "input-compat.h"
27 #include "input-poller.h"
28
29 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
30 MODULE_DESCRIPTION("Input core");
31 MODULE_LICENSE("GPL");
32
33 #define INPUT_MAX_CHAR_DEVICES 1024
34 #define INPUT_FIRST_DYNAMIC_DEV 256
35 static DEFINE_IDA(input_ida);
36
37 static LIST_HEAD(input_dev_list);
38 static LIST_HEAD(input_handler_list);
39
40
41
42
43
44
45
46 static DEFINE_MUTEX(input_mutex);
47
48 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
49
50 static inline int is_event_supported(unsigned int code,
51 unsigned long *bm, unsigned int max)
52 {
53 return code <= max && test_bit(code, bm);
54 }
55
56 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
57 {
58 if (fuzz) {
59 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
60 return old_val;
61
62 if (value > old_val - fuzz && value < old_val + fuzz)
63 return (old_val * 3 + value) / 4;
64
65 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
66 return (old_val + value) / 2;
67 }
68
69 return value;
70 }
71
72 static void input_start_autorepeat(struct input_dev *dev, int code)
73 {
74 if (test_bit(EV_REP, dev->evbit) &&
75 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
76 dev->timer.function) {
77 dev->repeat_key = code;
78 mod_timer(&dev->timer,
79 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
80 }
81 }
82
83 static void input_stop_autorepeat(struct input_dev *dev)
84 {
85 del_timer(&dev->timer);
86 }
87
88
89
90
91
92
93 static unsigned int input_to_handler(struct input_handle *handle,
94 struct input_value *vals, unsigned int count)
95 {
96 struct input_handler *handler = handle->handler;
97 struct input_value *end = vals;
98 struct input_value *v;
99
100 if (handler->filter) {
101 for (v = vals; v != vals + count; v++) {
102 if (handler->filter(handle, v->type, v->code, v->value))
103 continue;
104 if (end != v)
105 *end = *v;
106 end++;
107 }
108 count = end - vals;
109 }
110
111 if (!count)
112 return 0;
113
114 if (handler->events)
115 handler->events(handle, vals, count);
116 else if (handler->event)
117 for (v = vals; v != vals + count; v++)
118 handler->event(handle, v->type, v->code, v->value);
119
120 return count;
121 }
122
123
124
125
126
127
128 static void input_pass_values(struct input_dev *dev,
129 struct input_value *vals, unsigned int count)
130 {
131 struct input_handle *handle;
132 struct input_value *v;
133
134 if (!count)
135 return;
136
137 rcu_read_lock();
138
139 handle = rcu_dereference(dev->grab);
140 if (handle) {
141 count = input_to_handler(handle, vals, count);
142 } else {
143 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
144 if (handle->open) {
145 count = input_to_handler(handle, vals, count);
146 if (!count)
147 break;
148 }
149 }
150
151 rcu_read_unlock();
152
153
154 if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
155 for (v = vals; v != vals + count; v++) {
156 if (v->type == EV_KEY && v->value != 2) {
157 if (v->value)
158 input_start_autorepeat(dev, v->code);
159 else
160 input_stop_autorepeat(dev);
161 }
162 }
163 }
164 }
165
166 static void input_pass_event(struct input_dev *dev,
167 unsigned int type, unsigned int code, int value)
168 {
169 struct input_value vals[] = { { type, code, value } };
170
171 input_pass_values(dev, vals, ARRAY_SIZE(vals));
172 }
173
174
175
176
177
178
179 static void input_repeat_key(struct timer_list *t)
180 {
181 struct input_dev *dev = from_timer(dev, t, timer);
182 unsigned long flags;
183
184 spin_lock_irqsave(&dev->event_lock, flags);
185
186 if (test_bit(dev->repeat_key, dev->key) &&
187 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
188 struct input_value vals[] = {
189 { EV_KEY, dev->repeat_key, 2 },
190 input_value_sync
191 };
192
193 input_set_timestamp(dev, ktime_get());
194 input_pass_values(dev, vals, ARRAY_SIZE(vals));
195
196 if (dev->rep[REP_PERIOD])
197 mod_timer(&dev->timer, jiffies +
198 msecs_to_jiffies(dev->rep[REP_PERIOD]));
199 }
200
201 spin_unlock_irqrestore(&dev->event_lock, flags);
202 }
203
204 #define INPUT_IGNORE_EVENT 0
205 #define INPUT_PASS_TO_HANDLERS 1
206 #define INPUT_PASS_TO_DEVICE 2
207 #define INPUT_SLOT 4
208 #define INPUT_FLUSH 8
209 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
210
211 static int input_handle_abs_event(struct input_dev *dev,
212 unsigned int code, int *pval)
213 {
214 struct input_mt *mt = dev->mt;
215 bool is_mt_event;
216 int *pold;
217
218 if (code == ABS_MT_SLOT) {
219
220
221
222
223 if (mt && *pval >= 0 && *pval < mt->num_slots)
224 mt->slot = *pval;
225
226 return INPUT_IGNORE_EVENT;
227 }
228
229 is_mt_event = input_is_mt_value(code);
230
231 if (!is_mt_event) {
232 pold = &dev->absinfo[code].value;
233 } else if (mt) {
234 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
235 } else {
236
237
238
239
240 pold = NULL;
241 }
242
243 if (pold) {
244 *pval = input_defuzz_abs_event(*pval, *pold,
245 dev->absinfo[code].fuzz);
246 if (*pold == *pval)
247 return INPUT_IGNORE_EVENT;
248
249 *pold = *pval;
250 }
251
252
253 if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
254 input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
255 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
256 }
257
258 return INPUT_PASS_TO_HANDLERS;
259 }
260
261 static int input_get_disposition(struct input_dev *dev,
262 unsigned int type, unsigned int code, int *pval)
263 {
264 int disposition = INPUT_IGNORE_EVENT;
265 int value = *pval;
266
267 switch (type) {
268
269 case EV_SYN:
270 switch (code) {
271 case SYN_CONFIG:
272 disposition = INPUT_PASS_TO_ALL;
273 break;
274
275 case SYN_REPORT:
276 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
277 break;
278 case SYN_MT_REPORT:
279 disposition = INPUT_PASS_TO_HANDLERS;
280 break;
281 }
282 break;
283
284 case EV_KEY:
285 if (is_event_supported(code, dev->keybit, KEY_MAX)) {
286
287
288 if (value == 2) {
289 disposition = INPUT_PASS_TO_HANDLERS;
290 break;
291 }
292
293 if (!!test_bit(code, dev->key) != !!value) {
294
295 __change_bit(code, dev->key);
296 disposition = INPUT_PASS_TO_HANDLERS;
297 }
298 }
299 break;
300
301 case EV_SW:
302 if (is_event_supported(code, dev->swbit, SW_MAX) &&
303 !!test_bit(code, dev->sw) != !!value) {
304
305 __change_bit(code, dev->sw);
306 disposition = INPUT_PASS_TO_HANDLERS;
307 }
308 break;
309
310 case EV_ABS:
311 if (is_event_supported(code, dev->absbit, ABS_MAX))
312 disposition = input_handle_abs_event(dev, code, &value);
313
314 break;
315
316 case EV_REL:
317 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
318 disposition = INPUT_PASS_TO_HANDLERS;
319
320 break;
321
322 case EV_MSC:
323 if (is_event_supported(code, dev->mscbit, MSC_MAX))
324 disposition = INPUT_PASS_TO_ALL;
325
326 break;
327
328 case EV_LED:
329 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
330 !!test_bit(code, dev->led) != !!value) {
331
332 __change_bit(code, dev->led);
333 disposition = INPUT_PASS_TO_ALL;
334 }
335 break;
336
337 case EV_SND:
338 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
339
340 if (!!test_bit(code, dev->snd) != !!value)
341 __change_bit(code, dev->snd);
342 disposition = INPUT_PASS_TO_ALL;
343 }
344 break;
345
346 case EV_REP:
347 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
348 dev->rep[code] = value;
349 disposition = INPUT_PASS_TO_ALL;
350 }
351 break;
352
353 case EV_FF:
354 if (value >= 0)
355 disposition = INPUT_PASS_TO_ALL;
356 break;
357
358 case EV_PWR:
359 disposition = INPUT_PASS_TO_ALL;
360 break;
361 }
362
363 *pval = value;
364 return disposition;
365 }
366
367 static void input_handle_event(struct input_dev *dev,
368 unsigned int type, unsigned int code, int value)
369 {
370 int disposition = input_get_disposition(dev, type, code, &value);
371
372 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
373 add_input_randomness(type, code, value);
374
375 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
376 dev->event(dev, type, code, value);
377
378 if (!dev->vals)
379 return;
380
381 if (disposition & INPUT_PASS_TO_HANDLERS) {
382 struct input_value *v;
383
384 if (disposition & INPUT_SLOT) {
385 v = &dev->vals[dev->num_vals++];
386 v->type = EV_ABS;
387 v->code = ABS_MT_SLOT;
388 v->value = dev->mt->slot;
389 }
390
391 v = &dev->vals[dev->num_vals++];
392 v->type = type;
393 v->code = code;
394 v->value = value;
395 }
396
397 if (disposition & INPUT_FLUSH) {
398 if (dev->num_vals >= 2)
399 input_pass_values(dev, dev->vals, dev->num_vals);
400 dev->num_vals = 0;
401
402
403
404
405
406
407 dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
408 } else if (dev->num_vals >= dev->max_vals - 2) {
409 dev->vals[dev->num_vals++] = input_value_sync;
410 input_pass_values(dev, dev->vals, dev->num_vals);
411 dev->num_vals = 0;
412 }
413
414 }
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433 void input_event(struct input_dev *dev,
434 unsigned int type, unsigned int code, int value)
435 {
436 unsigned long flags;
437
438 if (is_event_supported(type, dev->evbit, EV_MAX)) {
439
440 spin_lock_irqsave(&dev->event_lock, flags);
441 input_handle_event(dev, type, code, value);
442 spin_unlock_irqrestore(&dev->event_lock, flags);
443 }
444 }
445 EXPORT_SYMBOL(input_event);
446
447
448
449
450
451
452
453
454
455
456
457
458 void input_inject_event(struct input_handle *handle,
459 unsigned int type, unsigned int code, int value)
460 {
461 struct input_dev *dev = handle->dev;
462 struct input_handle *grab;
463 unsigned long flags;
464
465 if (is_event_supported(type, dev->evbit, EV_MAX)) {
466 spin_lock_irqsave(&dev->event_lock, flags);
467
468 rcu_read_lock();
469 grab = rcu_dereference(dev->grab);
470 if (!grab || grab == handle)
471 input_handle_event(dev, type, code, value);
472 rcu_read_unlock();
473
474 spin_unlock_irqrestore(&dev->event_lock, flags);
475 }
476 }
477 EXPORT_SYMBOL(input_inject_event);
478
479
480
481
482
483
484
485
486 void input_alloc_absinfo(struct input_dev *dev)
487 {
488 if (dev->absinfo)
489 return;
490
491 dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
492 if (!dev->absinfo) {
493 dev_err(dev->dev.parent ?: &dev->dev,
494 "%s: unable to allocate memory\n", __func__);
495
496
497
498
499
500 }
501 }
502 EXPORT_SYMBOL(input_alloc_absinfo);
503
504 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
505 int min, int max, int fuzz, int flat)
506 {
507 struct input_absinfo *absinfo;
508
509 input_alloc_absinfo(dev);
510 if (!dev->absinfo)
511 return;
512
513 absinfo = &dev->absinfo[axis];
514 absinfo->minimum = min;
515 absinfo->maximum = max;
516 absinfo->fuzz = fuzz;
517 absinfo->flat = flat;
518
519 __set_bit(EV_ABS, dev->evbit);
520 __set_bit(axis, dev->absbit);
521 }
522 EXPORT_SYMBOL(input_set_abs_params);
523
524
525
526
527
528
529
530
531
532
533 int input_grab_device(struct input_handle *handle)
534 {
535 struct input_dev *dev = handle->dev;
536 int retval;
537
538 retval = mutex_lock_interruptible(&dev->mutex);
539 if (retval)
540 return retval;
541
542 if (dev->grab) {
543 retval = -EBUSY;
544 goto out;
545 }
546
547 rcu_assign_pointer(dev->grab, handle);
548
549 out:
550 mutex_unlock(&dev->mutex);
551 return retval;
552 }
553 EXPORT_SYMBOL(input_grab_device);
554
555 static void __input_release_device(struct input_handle *handle)
556 {
557 struct input_dev *dev = handle->dev;
558 struct input_handle *grabber;
559
560 grabber = rcu_dereference_protected(dev->grab,
561 lockdep_is_held(&dev->mutex));
562 if (grabber == handle) {
563 rcu_assign_pointer(dev->grab, NULL);
564
565 synchronize_rcu();
566
567 list_for_each_entry(handle, &dev->h_list, d_node)
568 if (handle->open && handle->handler->start)
569 handle->handler->start(handle);
570 }
571 }
572
573
574
575
576
577
578
579
580
581
582 void input_release_device(struct input_handle *handle)
583 {
584 struct input_dev *dev = handle->dev;
585
586 mutex_lock(&dev->mutex);
587 __input_release_device(handle);
588 mutex_unlock(&dev->mutex);
589 }
590 EXPORT_SYMBOL(input_release_device);
591
592
593
594
595
596
597
598
599 int input_open_device(struct input_handle *handle)
600 {
601 struct input_dev *dev = handle->dev;
602 int retval;
603
604 retval = mutex_lock_interruptible(&dev->mutex);
605 if (retval)
606 return retval;
607
608 if (dev->going_away) {
609 retval = -ENODEV;
610 goto out;
611 }
612
613 handle->open++;
614
615 if (dev->users++) {
616
617
618
619
620 goto out;
621 }
622
623 if (dev->open) {
624 retval = dev->open(dev);
625 if (retval) {
626 dev->users--;
627 handle->open--;
628
629
630
631
632 synchronize_rcu();
633 goto out;
634 }
635 }
636
637 if (dev->poller)
638 input_dev_poller_start(dev->poller);
639
640 out:
641 mutex_unlock(&dev->mutex);
642 return retval;
643 }
644 EXPORT_SYMBOL(input_open_device);
645
646 int input_flush_device(struct input_handle *handle, struct file *file)
647 {
648 struct input_dev *dev = handle->dev;
649 int retval;
650
651 retval = mutex_lock_interruptible(&dev->mutex);
652 if (retval)
653 return retval;
654
655 if (dev->flush)
656 retval = dev->flush(dev, file);
657
658 mutex_unlock(&dev->mutex);
659 return retval;
660 }
661 EXPORT_SYMBOL(input_flush_device);
662
663
664
665
666
667
668
669
670 void input_close_device(struct input_handle *handle)
671 {
672 struct input_dev *dev = handle->dev;
673
674 mutex_lock(&dev->mutex);
675
676 __input_release_device(handle);
677
678 if (!--dev->users) {
679 if (dev->poller)
680 input_dev_poller_stop(dev->poller);
681
682 if (dev->close)
683 dev->close(dev);
684 }
685
686 if (!--handle->open) {
687
688
689
690
691
692 synchronize_rcu();
693 }
694
695 mutex_unlock(&dev->mutex);
696 }
697 EXPORT_SYMBOL(input_close_device);
698
699
700
701
702
703 static void input_dev_release_keys(struct input_dev *dev)
704 {
705 bool need_sync = false;
706 int code;
707
708 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
709 for_each_set_bit(code, dev->key, KEY_CNT) {
710 input_pass_event(dev, EV_KEY, code, 0);
711 need_sync = true;
712 }
713
714 if (need_sync)
715 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
716
717 memset(dev->key, 0, sizeof(dev->key));
718 }
719 }
720
721
722
723
724 static void input_disconnect_device(struct input_dev *dev)
725 {
726 struct input_handle *handle;
727
728
729
730
731
732
733 mutex_lock(&dev->mutex);
734 dev->going_away = true;
735 mutex_unlock(&dev->mutex);
736
737 spin_lock_irq(&dev->event_lock);
738
739
740
741
742
743
744
745 input_dev_release_keys(dev);
746
747 list_for_each_entry(handle, &dev->h_list, d_node)
748 handle->open = 0;
749
750 spin_unlock_irq(&dev->event_lock);
751 }
752
753
754
755
756
757
758
759
760
761
762
763 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
764 unsigned int *scancode)
765 {
766 switch (ke->len) {
767 case 1:
768 *scancode = *((u8 *)ke->scancode);
769 break;
770
771 case 2:
772 *scancode = *((u16 *)ke->scancode);
773 break;
774
775 case 4:
776 *scancode = *((u32 *)ke->scancode);
777 break;
778
779 default:
780 return -EINVAL;
781 }
782
783 return 0;
784 }
785 EXPORT_SYMBOL(input_scancode_to_scalar);
786
787
788
789
790
791
792 static unsigned int input_fetch_keycode(struct input_dev *dev,
793 unsigned int index)
794 {
795 switch (dev->keycodesize) {
796 case 1:
797 return ((u8 *)dev->keycode)[index];
798
799 case 2:
800 return ((u16 *)dev->keycode)[index];
801
802 default:
803 return ((u32 *)dev->keycode)[index];
804 }
805 }
806
807 static int input_default_getkeycode(struct input_dev *dev,
808 struct input_keymap_entry *ke)
809 {
810 unsigned int index;
811 int error;
812
813 if (!dev->keycodesize)
814 return -EINVAL;
815
816 if (ke->flags & INPUT_KEYMAP_BY_INDEX)
817 index = ke->index;
818 else {
819 error = input_scancode_to_scalar(ke, &index);
820 if (error)
821 return error;
822 }
823
824 if (index >= dev->keycodemax)
825 return -EINVAL;
826
827 ke->keycode = input_fetch_keycode(dev, index);
828 ke->index = index;
829 ke->len = sizeof(index);
830 memcpy(ke->scancode, &index, sizeof(index));
831
832 return 0;
833 }
834
835 static int input_default_setkeycode(struct input_dev *dev,
836 const struct input_keymap_entry *ke,
837 unsigned int *old_keycode)
838 {
839 unsigned int index;
840 int error;
841 int i;
842
843 if (!dev->keycodesize)
844 return -EINVAL;
845
846 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
847 index = ke->index;
848 } else {
849 error = input_scancode_to_scalar(ke, &index);
850 if (error)
851 return error;
852 }
853
854 if (index >= dev->keycodemax)
855 return -EINVAL;
856
857 if (dev->keycodesize < sizeof(ke->keycode) &&
858 (ke->keycode >> (dev->keycodesize * 8)))
859 return -EINVAL;
860
861 switch (dev->keycodesize) {
862 case 1: {
863 u8 *k = (u8 *)dev->keycode;
864 *old_keycode = k[index];
865 k[index] = ke->keycode;
866 break;
867 }
868 case 2: {
869 u16 *k = (u16 *)dev->keycode;
870 *old_keycode = k[index];
871 k[index] = ke->keycode;
872 break;
873 }
874 default: {
875 u32 *k = (u32 *)dev->keycode;
876 *old_keycode = k[index];
877 k[index] = ke->keycode;
878 break;
879 }
880 }
881
882 if (*old_keycode <= KEY_MAX) {
883 __clear_bit(*old_keycode, dev->keybit);
884 for (i = 0; i < dev->keycodemax; i++) {
885 if (input_fetch_keycode(dev, i) == *old_keycode) {
886 __set_bit(*old_keycode, dev->keybit);
887
888 break;
889 }
890 }
891 }
892
893 __set_bit(ke->keycode, dev->keybit);
894 return 0;
895 }
896
897
898
899
900
901
902
903
904
905 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
906 {
907 unsigned long flags;
908 int retval;
909
910 spin_lock_irqsave(&dev->event_lock, flags);
911 retval = dev->getkeycode(dev, ke);
912 spin_unlock_irqrestore(&dev->event_lock, flags);
913
914 return retval;
915 }
916 EXPORT_SYMBOL(input_get_keycode);
917
918
919
920
921
922
923
924
925
926 int input_set_keycode(struct input_dev *dev,
927 const struct input_keymap_entry *ke)
928 {
929 unsigned long flags;
930 unsigned int old_keycode;
931 int retval;
932
933 if (ke->keycode > KEY_MAX)
934 return -EINVAL;
935
936 spin_lock_irqsave(&dev->event_lock, flags);
937
938 retval = dev->setkeycode(dev, ke, &old_keycode);
939 if (retval)
940 goto out;
941
942
943 __clear_bit(KEY_RESERVED, dev->keybit);
944
945
946
947
948
949 if (old_keycode > KEY_MAX) {
950 dev_warn(dev->dev.parent ?: &dev->dev,
951 "%s: got too big old keycode %#x\n",
952 __func__, old_keycode);
953 } else if (test_bit(EV_KEY, dev->evbit) &&
954 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
955 __test_and_clear_bit(old_keycode, dev->key)) {
956 struct input_value vals[] = {
957 { EV_KEY, old_keycode, 0 },
958 input_value_sync
959 };
960
961 input_pass_values(dev, vals, ARRAY_SIZE(vals));
962 }
963
964 out:
965 spin_unlock_irqrestore(&dev->event_lock, flags);
966
967 return retval;
968 }
969 EXPORT_SYMBOL(input_set_keycode);
970
971 bool input_match_device_id(const struct input_dev *dev,
972 const struct input_device_id *id)
973 {
974 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
975 if (id->bustype != dev->id.bustype)
976 return false;
977
978 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
979 if (id->vendor != dev->id.vendor)
980 return false;
981
982 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
983 if (id->product != dev->id.product)
984 return false;
985
986 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
987 if (id->version != dev->id.version)
988 return false;
989
990 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
991 !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
992 !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
993 !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
994 !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
995 !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
996 !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
997 !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
998 !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
999 !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
1000 return false;
1001 }
1002
1003 return true;
1004 }
1005 EXPORT_SYMBOL(input_match_device_id);
1006
1007 static const struct input_device_id *input_match_device(struct input_handler *handler,
1008 struct input_dev *dev)
1009 {
1010 const struct input_device_id *id;
1011
1012 for (id = handler->id_table; id->flags || id->driver_info; id++) {
1013 if (input_match_device_id(dev, id) &&
1014 (!handler->match || handler->match(handler, dev))) {
1015 return id;
1016 }
1017 }
1018
1019 return NULL;
1020 }
1021
1022 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
1023 {
1024 const struct input_device_id *id;
1025 int error;
1026
1027 id = input_match_device(handler, dev);
1028 if (!id)
1029 return -ENODEV;
1030
1031 error = handler->connect(handler, dev, id);
1032 if (error && error != -ENODEV)
1033 pr_err("failed to attach handler %s to device %s, error: %d\n",
1034 handler->name, kobject_name(&dev->dev.kobj), error);
1035
1036 return error;
1037 }
1038
1039 #ifdef CONFIG_COMPAT
1040
1041 static int input_bits_to_string(char *buf, int buf_size,
1042 unsigned long bits, bool skip_empty)
1043 {
1044 int len = 0;
1045
1046 if (in_compat_syscall()) {
1047 u32 dword = bits >> 32;
1048 if (dword || !skip_empty)
1049 len += snprintf(buf, buf_size, "%x ", dword);
1050
1051 dword = bits & 0xffffffffUL;
1052 if (dword || !skip_empty || len)
1053 len += snprintf(buf + len, max(buf_size - len, 0),
1054 "%x", dword);
1055 } else {
1056 if (bits || !skip_empty)
1057 len += snprintf(buf, buf_size, "%lx", bits);
1058 }
1059
1060 return len;
1061 }
1062
1063 #else
1064
1065 static int input_bits_to_string(char *buf, int buf_size,
1066 unsigned long bits, bool skip_empty)
1067 {
1068 return bits || !skip_empty ?
1069 snprintf(buf, buf_size, "%lx", bits) : 0;
1070 }
1071
1072 #endif
1073
1074 #ifdef CONFIG_PROC_FS
1075
1076 static struct proc_dir_entry *proc_bus_input_dir;
1077 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1078 static int input_devices_state;
1079
1080 static inline void input_wakeup_procfs_readers(void)
1081 {
1082 input_devices_state++;
1083 wake_up(&input_devices_poll_wait);
1084 }
1085
1086 static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1087 {
1088 poll_wait(file, &input_devices_poll_wait, wait);
1089 if (file->f_version != input_devices_state) {
1090 file->f_version = input_devices_state;
1091 return EPOLLIN | EPOLLRDNORM;
1092 }
1093
1094 return 0;
1095 }
1096
1097 union input_seq_state {
1098 struct {
1099 unsigned short pos;
1100 bool mutex_acquired;
1101 };
1102 void *p;
1103 };
1104
1105 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1106 {
1107 union input_seq_state *state = (union input_seq_state *)&seq->private;
1108 int error;
1109
1110
1111 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1112
1113 error = mutex_lock_interruptible(&input_mutex);
1114 if (error) {
1115 state->mutex_acquired = false;
1116 return ERR_PTR(error);
1117 }
1118
1119 state->mutex_acquired = true;
1120
1121 return seq_list_start(&input_dev_list, *pos);
1122 }
1123
1124 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1125 {
1126 return seq_list_next(v, &input_dev_list, pos);
1127 }
1128
1129 static void input_seq_stop(struct seq_file *seq, void *v)
1130 {
1131 union input_seq_state *state = (union input_seq_state *)&seq->private;
1132
1133 if (state->mutex_acquired)
1134 mutex_unlock(&input_mutex);
1135 }
1136
1137 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1138 unsigned long *bitmap, int max)
1139 {
1140 int i;
1141 bool skip_empty = true;
1142 char buf[18];
1143
1144 seq_printf(seq, "B: %s=", name);
1145
1146 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1147 if (input_bits_to_string(buf, sizeof(buf),
1148 bitmap[i], skip_empty)) {
1149 skip_empty = false;
1150 seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1151 }
1152 }
1153
1154
1155
1156
1157 if (skip_empty)
1158 seq_putc(seq, '0');
1159
1160 seq_putc(seq, '\n');
1161 }
1162
1163 static int input_devices_seq_show(struct seq_file *seq, void *v)
1164 {
1165 struct input_dev *dev = container_of(v, struct input_dev, node);
1166 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1167 struct input_handle *handle;
1168
1169 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1170 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1171
1172 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1173 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1174 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1175 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1176 seq_puts(seq, "H: Handlers=");
1177
1178 list_for_each_entry(handle, &dev->h_list, d_node)
1179 seq_printf(seq, "%s ", handle->name);
1180 seq_putc(seq, '\n');
1181
1182 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1183
1184 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1185 if (test_bit(EV_KEY, dev->evbit))
1186 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1187 if (test_bit(EV_REL, dev->evbit))
1188 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1189 if (test_bit(EV_ABS, dev->evbit))
1190 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1191 if (test_bit(EV_MSC, dev->evbit))
1192 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1193 if (test_bit(EV_LED, dev->evbit))
1194 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1195 if (test_bit(EV_SND, dev->evbit))
1196 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1197 if (test_bit(EV_FF, dev->evbit))
1198 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1199 if (test_bit(EV_SW, dev->evbit))
1200 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1201
1202 seq_putc(seq, '\n');
1203
1204 kfree(path);
1205 return 0;
1206 }
1207
1208 static const struct seq_operations input_devices_seq_ops = {
1209 .start = input_devices_seq_start,
1210 .next = input_devices_seq_next,
1211 .stop = input_seq_stop,
1212 .show = input_devices_seq_show,
1213 };
1214
1215 static int input_proc_devices_open(struct inode *inode, struct file *file)
1216 {
1217 return seq_open(file, &input_devices_seq_ops);
1218 }
1219
1220 static const struct file_operations input_devices_fileops = {
1221 .owner = THIS_MODULE,
1222 .open = input_proc_devices_open,
1223 .poll = input_proc_devices_poll,
1224 .read = seq_read,
1225 .llseek = seq_lseek,
1226 .release = seq_release,
1227 };
1228
1229 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1230 {
1231 union input_seq_state *state = (union input_seq_state *)&seq->private;
1232 int error;
1233
1234
1235 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1236
1237 error = mutex_lock_interruptible(&input_mutex);
1238 if (error) {
1239 state->mutex_acquired = false;
1240 return ERR_PTR(error);
1241 }
1242
1243 state->mutex_acquired = true;
1244 state->pos = *pos;
1245
1246 return seq_list_start(&input_handler_list, *pos);
1247 }
1248
1249 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1250 {
1251 union input_seq_state *state = (union input_seq_state *)&seq->private;
1252
1253 state->pos = *pos + 1;
1254 return seq_list_next(v, &input_handler_list, pos);
1255 }
1256
1257 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1258 {
1259 struct input_handler *handler = container_of(v, struct input_handler, node);
1260 union input_seq_state *state = (union input_seq_state *)&seq->private;
1261
1262 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1263 if (handler->filter)
1264 seq_puts(seq, " (filter)");
1265 if (handler->legacy_minors)
1266 seq_printf(seq, " Minor=%d", handler->minor);
1267 seq_putc(seq, '\n');
1268
1269 return 0;
1270 }
1271
1272 static const struct seq_operations input_handlers_seq_ops = {
1273 .start = input_handlers_seq_start,
1274 .next = input_handlers_seq_next,
1275 .stop = input_seq_stop,
1276 .show = input_handlers_seq_show,
1277 };
1278
1279 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1280 {
1281 return seq_open(file, &input_handlers_seq_ops);
1282 }
1283
1284 static const struct file_operations input_handlers_fileops = {
1285 .owner = THIS_MODULE,
1286 .open = input_proc_handlers_open,
1287 .read = seq_read,
1288 .llseek = seq_lseek,
1289 .release = seq_release,
1290 };
1291
1292 static int __init input_proc_init(void)
1293 {
1294 struct proc_dir_entry *entry;
1295
1296 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1297 if (!proc_bus_input_dir)
1298 return -ENOMEM;
1299
1300 entry = proc_create("devices", 0, proc_bus_input_dir,
1301 &input_devices_fileops);
1302 if (!entry)
1303 goto fail1;
1304
1305 entry = proc_create("handlers", 0, proc_bus_input_dir,
1306 &input_handlers_fileops);
1307 if (!entry)
1308 goto fail2;
1309
1310 return 0;
1311
1312 fail2: remove_proc_entry("devices", proc_bus_input_dir);
1313 fail1: remove_proc_entry("bus/input", NULL);
1314 return -ENOMEM;
1315 }
1316
1317 static void input_proc_exit(void)
1318 {
1319 remove_proc_entry("devices", proc_bus_input_dir);
1320 remove_proc_entry("handlers", proc_bus_input_dir);
1321 remove_proc_entry("bus/input", NULL);
1322 }
1323
1324 #else
1325 static inline void input_wakeup_procfs_readers(void) { }
1326 static inline int input_proc_init(void) { return 0; }
1327 static inline void input_proc_exit(void) { }
1328 #endif
1329
1330 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1331 static ssize_t input_dev_show_##name(struct device *dev, \
1332 struct device_attribute *attr, \
1333 char *buf) \
1334 { \
1335 struct input_dev *input_dev = to_input_dev(dev); \
1336 \
1337 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1338 input_dev->name ? input_dev->name : ""); \
1339 } \
1340 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1341
1342 INPUT_DEV_STRING_ATTR_SHOW(name);
1343 INPUT_DEV_STRING_ATTR_SHOW(phys);
1344 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1345
1346 static int input_print_modalias_bits(char *buf, int size,
1347 char name, unsigned long *bm,
1348 unsigned int min_bit, unsigned int max_bit)
1349 {
1350 int len = 0, i;
1351
1352 len += snprintf(buf, max(size, 0), "%c", name);
1353 for (i = min_bit; i < max_bit; i++)
1354 if (bm[BIT_WORD(i)] & BIT_MASK(i))
1355 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1356 return len;
1357 }
1358
1359 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1360 int add_cr)
1361 {
1362 int len;
1363
1364 len = snprintf(buf, max(size, 0),
1365 "input:b%04Xv%04Xp%04Xe%04X-",
1366 id->id.bustype, id->id.vendor,
1367 id->id.product, id->id.version);
1368
1369 len += input_print_modalias_bits(buf + len, size - len,
1370 'e', id->evbit, 0, EV_MAX);
1371 len += input_print_modalias_bits(buf + len, size - len,
1372 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1373 len += input_print_modalias_bits(buf + len, size - len,
1374 'r', id->relbit, 0, REL_MAX);
1375 len += input_print_modalias_bits(buf + len, size - len,
1376 'a', id->absbit, 0, ABS_MAX);
1377 len += input_print_modalias_bits(buf + len, size - len,
1378 'm', id->mscbit, 0, MSC_MAX);
1379 len += input_print_modalias_bits(buf + len, size - len,
1380 'l', id->ledbit, 0, LED_MAX);
1381 len += input_print_modalias_bits(buf + len, size - len,
1382 's', id->sndbit, 0, SND_MAX);
1383 len += input_print_modalias_bits(buf + len, size - len,
1384 'f', id->ffbit, 0, FF_MAX);
1385 len += input_print_modalias_bits(buf + len, size - len,
1386 'w', id->swbit, 0, SW_MAX);
1387
1388 if (add_cr)
1389 len += snprintf(buf + len, max(size - len, 0), "\n");
1390
1391 return len;
1392 }
1393
1394 static ssize_t input_dev_show_modalias(struct device *dev,
1395 struct device_attribute *attr,
1396 char *buf)
1397 {
1398 struct input_dev *id = to_input_dev(dev);
1399 ssize_t len;
1400
1401 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1402
1403 return min_t(int, len, PAGE_SIZE);
1404 }
1405 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1406
1407 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1408 int max, int add_cr);
1409
1410 static ssize_t input_dev_show_properties(struct device *dev,
1411 struct device_attribute *attr,
1412 char *buf)
1413 {
1414 struct input_dev *input_dev = to_input_dev(dev);
1415 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1416 INPUT_PROP_MAX, true);
1417 return min_t(int, len, PAGE_SIZE);
1418 }
1419 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1420
1421 static struct attribute *input_dev_attrs[] = {
1422 &dev_attr_name.attr,
1423 &dev_attr_phys.attr,
1424 &dev_attr_uniq.attr,
1425 &dev_attr_modalias.attr,
1426 &dev_attr_properties.attr,
1427 NULL
1428 };
1429
1430 static const struct attribute_group input_dev_attr_group = {
1431 .attrs = input_dev_attrs,
1432 };
1433
1434 #define INPUT_DEV_ID_ATTR(name) \
1435 static ssize_t input_dev_show_id_##name(struct device *dev, \
1436 struct device_attribute *attr, \
1437 char *buf) \
1438 { \
1439 struct input_dev *input_dev = to_input_dev(dev); \
1440 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1441 } \
1442 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1443
1444 INPUT_DEV_ID_ATTR(bustype);
1445 INPUT_DEV_ID_ATTR(vendor);
1446 INPUT_DEV_ID_ATTR(product);
1447 INPUT_DEV_ID_ATTR(version);
1448
1449 static struct attribute *input_dev_id_attrs[] = {
1450 &dev_attr_bustype.attr,
1451 &dev_attr_vendor.attr,
1452 &dev_attr_product.attr,
1453 &dev_attr_version.attr,
1454 NULL
1455 };
1456
1457 static const struct attribute_group input_dev_id_attr_group = {
1458 .name = "id",
1459 .attrs = input_dev_id_attrs,
1460 };
1461
1462 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1463 int max, int add_cr)
1464 {
1465 int i;
1466 int len = 0;
1467 bool skip_empty = true;
1468
1469 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1470 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1471 bitmap[i], skip_empty);
1472 if (len) {
1473 skip_empty = false;
1474 if (i > 0)
1475 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1476 }
1477 }
1478
1479
1480
1481
1482 if (len == 0)
1483 len = snprintf(buf, buf_size, "%d", 0);
1484
1485 if (add_cr)
1486 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1487
1488 return len;
1489 }
1490
1491 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1492 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1493 struct device_attribute *attr, \
1494 char *buf) \
1495 { \
1496 struct input_dev *input_dev = to_input_dev(dev); \
1497 int len = input_print_bitmap(buf, PAGE_SIZE, \
1498 input_dev->bm##bit, ev##_MAX, \
1499 true); \
1500 return min_t(int, len, PAGE_SIZE); \
1501 } \
1502 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1503
1504 INPUT_DEV_CAP_ATTR(EV, ev);
1505 INPUT_DEV_CAP_ATTR(KEY, key);
1506 INPUT_DEV_CAP_ATTR(REL, rel);
1507 INPUT_DEV_CAP_ATTR(ABS, abs);
1508 INPUT_DEV_CAP_ATTR(MSC, msc);
1509 INPUT_DEV_CAP_ATTR(LED, led);
1510 INPUT_DEV_CAP_ATTR(SND, snd);
1511 INPUT_DEV_CAP_ATTR(FF, ff);
1512 INPUT_DEV_CAP_ATTR(SW, sw);
1513
1514 static struct attribute *input_dev_caps_attrs[] = {
1515 &dev_attr_ev.attr,
1516 &dev_attr_key.attr,
1517 &dev_attr_rel.attr,
1518 &dev_attr_abs.attr,
1519 &dev_attr_msc.attr,
1520 &dev_attr_led.attr,
1521 &dev_attr_snd.attr,
1522 &dev_attr_ff.attr,
1523 &dev_attr_sw.attr,
1524 NULL
1525 };
1526
1527 static const struct attribute_group input_dev_caps_attr_group = {
1528 .name = "capabilities",
1529 .attrs = input_dev_caps_attrs,
1530 };
1531
1532 static const struct attribute_group *input_dev_attr_groups[] = {
1533 &input_dev_attr_group,
1534 &input_dev_id_attr_group,
1535 &input_dev_caps_attr_group,
1536 &input_poller_attribute_group,
1537 NULL
1538 };
1539
1540 static void input_dev_release(struct device *device)
1541 {
1542 struct input_dev *dev = to_input_dev(device);
1543
1544 input_ff_destroy(dev);
1545 input_mt_destroy_slots(dev);
1546 kfree(dev->poller);
1547 kfree(dev->absinfo);
1548 kfree(dev->vals);
1549 kfree(dev);
1550
1551 module_put(THIS_MODULE);
1552 }
1553
1554
1555
1556
1557
1558 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1559 const char *name, unsigned long *bitmap, int max)
1560 {
1561 int len;
1562
1563 if (add_uevent_var(env, "%s", name))
1564 return -ENOMEM;
1565
1566 len = input_print_bitmap(&env->buf[env->buflen - 1],
1567 sizeof(env->buf) - env->buflen,
1568 bitmap, max, false);
1569 if (len >= (sizeof(env->buf) - env->buflen))
1570 return -ENOMEM;
1571
1572 env->buflen += len;
1573 return 0;
1574 }
1575
1576 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1577 struct input_dev *dev)
1578 {
1579 int len;
1580
1581 if (add_uevent_var(env, "MODALIAS="))
1582 return -ENOMEM;
1583
1584 len = input_print_modalias(&env->buf[env->buflen - 1],
1585 sizeof(env->buf) - env->buflen,
1586 dev, 0);
1587 if (len >= (sizeof(env->buf) - env->buflen))
1588 return -ENOMEM;
1589
1590 env->buflen += len;
1591 return 0;
1592 }
1593
1594 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1595 do { \
1596 int err = add_uevent_var(env, fmt, val); \
1597 if (err) \
1598 return err; \
1599 } while (0)
1600
1601 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1602 do { \
1603 int err = input_add_uevent_bm_var(env, name, bm, max); \
1604 if (err) \
1605 return err; \
1606 } while (0)
1607
1608 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1609 do { \
1610 int err = input_add_uevent_modalias_var(env, dev); \
1611 if (err) \
1612 return err; \
1613 } while (0)
1614
1615 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1616 {
1617 struct input_dev *dev = to_input_dev(device);
1618
1619 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1620 dev->id.bustype, dev->id.vendor,
1621 dev->id.product, dev->id.version);
1622 if (dev->name)
1623 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1624 if (dev->phys)
1625 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1626 if (dev->uniq)
1627 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1628
1629 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1630
1631 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1632 if (test_bit(EV_KEY, dev->evbit))
1633 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1634 if (test_bit(EV_REL, dev->evbit))
1635 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1636 if (test_bit(EV_ABS, dev->evbit))
1637 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1638 if (test_bit(EV_MSC, dev->evbit))
1639 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1640 if (test_bit(EV_LED, dev->evbit))
1641 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1642 if (test_bit(EV_SND, dev->evbit))
1643 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1644 if (test_bit(EV_FF, dev->evbit))
1645 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1646 if (test_bit(EV_SW, dev->evbit))
1647 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1648
1649 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1650
1651 return 0;
1652 }
1653
1654 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1655 do { \
1656 int i; \
1657 bool active; \
1658 \
1659 if (!test_bit(EV_##type, dev->evbit)) \
1660 break; \
1661 \
1662 for_each_set_bit(i, dev->bits##bit, type##_CNT) { \
1663 active = test_bit(i, dev->bits); \
1664 if (!active && !on) \
1665 continue; \
1666 \
1667 dev->event(dev, EV_##type, i, on ? active : 0); \
1668 } \
1669 } while (0)
1670
1671 static void input_dev_toggle(struct input_dev *dev, bool activate)
1672 {
1673 if (!dev->event)
1674 return;
1675
1676 INPUT_DO_TOGGLE(dev, LED, led, activate);
1677 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1678
1679 if (activate && test_bit(EV_REP, dev->evbit)) {
1680 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1681 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1682 }
1683 }
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693 void input_reset_device(struct input_dev *dev)
1694 {
1695 unsigned long flags;
1696
1697 mutex_lock(&dev->mutex);
1698 spin_lock_irqsave(&dev->event_lock, flags);
1699
1700 input_dev_toggle(dev, true);
1701 input_dev_release_keys(dev);
1702
1703 spin_unlock_irqrestore(&dev->event_lock, flags);
1704 mutex_unlock(&dev->mutex);
1705 }
1706 EXPORT_SYMBOL(input_reset_device);
1707
1708 #ifdef CONFIG_PM_SLEEP
1709 static int input_dev_suspend(struct device *dev)
1710 {
1711 struct input_dev *input_dev = to_input_dev(dev);
1712
1713 spin_lock_irq(&input_dev->event_lock);
1714
1715
1716
1717
1718
1719 input_dev_release_keys(input_dev);
1720
1721
1722 input_dev_toggle(input_dev, false);
1723
1724 spin_unlock_irq(&input_dev->event_lock);
1725
1726 return 0;
1727 }
1728
1729 static int input_dev_resume(struct device *dev)
1730 {
1731 struct input_dev *input_dev = to_input_dev(dev);
1732
1733 spin_lock_irq(&input_dev->event_lock);
1734
1735
1736 input_dev_toggle(input_dev, true);
1737
1738 spin_unlock_irq(&input_dev->event_lock);
1739
1740 return 0;
1741 }
1742
1743 static int input_dev_freeze(struct device *dev)
1744 {
1745 struct input_dev *input_dev = to_input_dev(dev);
1746
1747 spin_lock_irq(&input_dev->event_lock);
1748
1749
1750
1751
1752
1753 input_dev_release_keys(input_dev);
1754
1755 spin_unlock_irq(&input_dev->event_lock);
1756
1757 return 0;
1758 }
1759
1760 static int input_dev_poweroff(struct device *dev)
1761 {
1762 struct input_dev *input_dev = to_input_dev(dev);
1763
1764 spin_lock_irq(&input_dev->event_lock);
1765
1766
1767 input_dev_toggle(input_dev, false);
1768
1769 spin_unlock_irq(&input_dev->event_lock);
1770
1771 return 0;
1772 }
1773
1774 static const struct dev_pm_ops input_dev_pm_ops = {
1775 .suspend = input_dev_suspend,
1776 .resume = input_dev_resume,
1777 .freeze = input_dev_freeze,
1778 .poweroff = input_dev_poweroff,
1779 .restore = input_dev_resume,
1780 };
1781 #endif
1782
1783 static const struct device_type input_dev_type = {
1784 .groups = input_dev_attr_groups,
1785 .release = input_dev_release,
1786 .uevent = input_dev_uevent,
1787 #ifdef CONFIG_PM_SLEEP
1788 .pm = &input_dev_pm_ops,
1789 #endif
1790 };
1791
1792 static char *input_devnode(struct device *dev, umode_t *mode)
1793 {
1794 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1795 }
1796
1797 struct class input_class = {
1798 .name = "input",
1799 .devnode = input_devnode,
1800 };
1801 EXPORT_SYMBOL_GPL(input_class);
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812 struct input_dev *input_allocate_device(void)
1813 {
1814 static atomic_t input_no = ATOMIC_INIT(-1);
1815 struct input_dev *dev;
1816
1817 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1818 if (dev) {
1819 dev->dev.type = &input_dev_type;
1820 dev->dev.class = &input_class;
1821 device_initialize(&dev->dev);
1822 mutex_init(&dev->mutex);
1823 spin_lock_init(&dev->event_lock);
1824 timer_setup(&dev->timer, NULL, 0);
1825 INIT_LIST_HEAD(&dev->h_list);
1826 INIT_LIST_HEAD(&dev->node);
1827
1828 dev_set_name(&dev->dev, "input%lu",
1829 (unsigned long)atomic_inc_return(&input_no));
1830
1831 __module_get(THIS_MODULE);
1832 }
1833
1834 return dev;
1835 }
1836 EXPORT_SYMBOL(input_allocate_device);
1837
1838 struct input_devres {
1839 struct input_dev *input;
1840 };
1841
1842 static int devm_input_device_match(struct device *dev, void *res, void *data)
1843 {
1844 struct input_devres *devres = res;
1845
1846 return devres->input == data;
1847 }
1848
1849 static void devm_input_device_release(struct device *dev, void *res)
1850 {
1851 struct input_devres *devres = res;
1852 struct input_dev *input = devres->input;
1853
1854 dev_dbg(dev, "%s: dropping reference to %s\n",
1855 __func__, dev_name(&input->dev));
1856 input_put_device(input);
1857 }
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877 struct input_dev *devm_input_allocate_device(struct device *dev)
1878 {
1879 struct input_dev *input;
1880 struct input_devres *devres;
1881
1882 devres = devres_alloc(devm_input_device_release,
1883 sizeof(*devres), GFP_KERNEL);
1884 if (!devres)
1885 return NULL;
1886
1887 input = input_allocate_device();
1888 if (!input) {
1889 devres_free(devres);
1890 return NULL;
1891 }
1892
1893 input->dev.parent = dev;
1894 input->devres_managed = true;
1895
1896 devres->input = input;
1897 devres_add(dev, devres);
1898
1899 return input;
1900 }
1901 EXPORT_SYMBOL(devm_input_allocate_device);
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917 void input_free_device(struct input_dev *dev)
1918 {
1919 if (dev) {
1920 if (dev->devres_managed)
1921 WARN_ON(devres_destroy(dev->dev.parent,
1922 devm_input_device_release,
1923 devm_input_device_match,
1924 dev));
1925 input_put_device(dev);
1926 }
1927 }
1928 EXPORT_SYMBOL(input_free_device);
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944 void input_set_timestamp(struct input_dev *dev, ktime_t timestamp)
1945 {
1946 dev->timestamp[INPUT_CLK_MONO] = timestamp;
1947 dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
1948 dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
1949 TK_OFFS_BOOT);
1950 }
1951 EXPORT_SYMBOL(input_set_timestamp);
1952
1953
1954
1955
1956
1957
1958
1959 ktime_t *input_get_timestamp(struct input_dev *dev)
1960 {
1961 const ktime_t invalid_timestamp = ktime_set(0, 0);
1962
1963 if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
1964 input_set_timestamp(dev, ktime_get());
1965
1966 return dev->timestamp;
1967 }
1968 EXPORT_SYMBOL(input_get_timestamp);
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1980 {
1981 switch (type) {
1982 case EV_KEY:
1983 __set_bit(code, dev->keybit);
1984 break;
1985
1986 case EV_REL:
1987 __set_bit(code, dev->relbit);
1988 break;
1989
1990 case EV_ABS:
1991 input_alloc_absinfo(dev);
1992 if (!dev->absinfo)
1993 return;
1994
1995 __set_bit(code, dev->absbit);
1996 break;
1997
1998 case EV_MSC:
1999 __set_bit(code, dev->mscbit);
2000 break;
2001
2002 case EV_SW:
2003 __set_bit(code, dev->swbit);
2004 break;
2005
2006 case EV_LED:
2007 __set_bit(code, dev->ledbit);
2008 break;
2009
2010 case EV_SND:
2011 __set_bit(code, dev->sndbit);
2012 break;
2013
2014 case EV_FF:
2015 __set_bit(code, dev->ffbit);
2016 break;
2017
2018 case EV_PWR:
2019
2020 break;
2021
2022 default:
2023 pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
2024 dump_stack();
2025 return;
2026 }
2027
2028 __set_bit(type, dev->evbit);
2029 }
2030 EXPORT_SYMBOL(input_set_capability);
2031
2032 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
2033 {
2034 int mt_slots;
2035 int i;
2036 unsigned int events;
2037
2038 if (dev->mt) {
2039 mt_slots = dev->mt->num_slots;
2040 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
2041 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
2042 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
2043 mt_slots = clamp(mt_slots, 2, 32);
2044 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
2045 mt_slots = 2;
2046 } else {
2047 mt_slots = 0;
2048 }
2049
2050 events = mt_slots + 1;
2051
2052 if (test_bit(EV_ABS, dev->evbit))
2053 for_each_set_bit(i, dev->absbit, ABS_CNT)
2054 events += input_is_mt_axis(i) ? mt_slots : 1;
2055
2056 if (test_bit(EV_REL, dev->evbit))
2057 events += bitmap_weight(dev->relbit, REL_CNT);
2058
2059
2060 events += 7;
2061
2062 return events;
2063 }
2064
2065 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
2066 do { \
2067 if (!test_bit(EV_##type, dev->evbit)) \
2068 memset(dev->bits##bit, 0, \
2069 sizeof(dev->bits##bit)); \
2070 } while (0)
2071
2072 static void input_cleanse_bitmasks(struct input_dev *dev)
2073 {
2074 INPUT_CLEANSE_BITMASK(dev, KEY, key);
2075 INPUT_CLEANSE_BITMASK(dev, REL, rel);
2076 INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2077 INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2078 INPUT_CLEANSE_BITMASK(dev, LED, led);
2079 INPUT_CLEANSE_BITMASK(dev, SND, snd);
2080 INPUT_CLEANSE_BITMASK(dev, FF, ff);
2081 INPUT_CLEANSE_BITMASK(dev, SW, sw);
2082 }
2083
2084 static void __input_unregister_device(struct input_dev *dev)
2085 {
2086 struct input_handle *handle, *next;
2087
2088 input_disconnect_device(dev);
2089
2090 mutex_lock(&input_mutex);
2091
2092 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2093 handle->handler->disconnect(handle);
2094 WARN_ON(!list_empty(&dev->h_list));
2095
2096 del_timer_sync(&dev->timer);
2097 list_del_init(&dev->node);
2098
2099 input_wakeup_procfs_readers();
2100
2101 mutex_unlock(&input_mutex);
2102
2103 device_del(&dev->dev);
2104 }
2105
2106 static void devm_input_device_unregister(struct device *dev, void *res)
2107 {
2108 struct input_devres *devres = res;
2109 struct input_dev *input = devres->input;
2110
2111 dev_dbg(dev, "%s: unregistering device %s\n",
2112 __func__, dev_name(&input->dev));
2113 __input_unregister_device(input);
2114 }
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124 void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2125 {
2126 dev->timer.function = input_repeat_key;
2127 dev->rep[REP_DELAY] = delay;
2128 dev->rep[REP_PERIOD] = period;
2129 }
2130 EXPORT_SYMBOL(input_enable_softrepeat);
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155 int input_register_device(struct input_dev *dev)
2156 {
2157 struct input_devres *devres = NULL;
2158 struct input_handler *handler;
2159 unsigned int packet_size;
2160 const char *path;
2161 int error;
2162
2163 if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2164 dev_err(&dev->dev,
2165 "Absolute device without dev->absinfo, refusing to register\n");
2166 return -EINVAL;
2167 }
2168
2169 if (dev->devres_managed) {
2170 devres = devres_alloc(devm_input_device_unregister,
2171 sizeof(*devres), GFP_KERNEL);
2172 if (!devres)
2173 return -ENOMEM;
2174
2175 devres->input = dev;
2176 }
2177
2178
2179 __set_bit(EV_SYN, dev->evbit);
2180
2181
2182 __clear_bit(KEY_RESERVED, dev->keybit);
2183
2184
2185 input_cleanse_bitmasks(dev);
2186
2187 packet_size = input_estimate_events_per_packet(dev);
2188 if (dev->hint_events_per_packet < packet_size)
2189 dev->hint_events_per_packet = packet_size;
2190
2191 dev->max_vals = dev->hint_events_per_packet + 2;
2192 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2193 if (!dev->vals) {
2194 error = -ENOMEM;
2195 goto err_devres_free;
2196 }
2197
2198
2199
2200
2201
2202 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2203 input_enable_softrepeat(dev, 250, 33);
2204
2205 if (!dev->getkeycode)
2206 dev->getkeycode = input_default_getkeycode;
2207
2208 if (!dev->setkeycode)
2209 dev->setkeycode = input_default_setkeycode;
2210
2211 if (dev->poller)
2212 input_dev_poller_finalize(dev->poller);
2213
2214 error = device_add(&dev->dev);
2215 if (error)
2216 goto err_free_vals;
2217
2218 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2219 pr_info("%s as %s\n",
2220 dev->name ? dev->name : "Unspecified device",
2221 path ? path : "N/A");
2222 kfree(path);
2223
2224 error = mutex_lock_interruptible(&input_mutex);
2225 if (error)
2226 goto err_device_del;
2227
2228 list_add_tail(&dev->node, &input_dev_list);
2229
2230 list_for_each_entry(handler, &input_handler_list, node)
2231 input_attach_handler(dev, handler);
2232
2233 input_wakeup_procfs_readers();
2234
2235 mutex_unlock(&input_mutex);
2236
2237 if (dev->devres_managed) {
2238 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2239 __func__, dev_name(&dev->dev));
2240 devres_add(dev->dev.parent, devres);
2241 }
2242 return 0;
2243
2244 err_device_del:
2245 device_del(&dev->dev);
2246 err_free_vals:
2247 kfree(dev->vals);
2248 dev->vals = NULL;
2249 err_devres_free:
2250 devres_free(devres);
2251 return error;
2252 }
2253 EXPORT_SYMBOL(input_register_device);
2254
2255
2256
2257
2258
2259
2260
2261
2262 void input_unregister_device(struct input_dev *dev)
2263 {
2264 if (dev->devres_managed) {
2265 WARN_ON(devres_destroy(dev->dev.parent,
2266 devm_input_device_unregister,
2267 devm_input_device_match,
2268 dev));
2269 __input_unregister_device(dev);
2270
2271
2272
2273
2274 } else {
2275 __input_unregister_device(dev);
2276 input_put_device(dev);
2277 }
2278 }
2279 EXPORT_SYMBOL(input_unregister_device);
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289 int input_register_handler(struct input_handler *handler)
2290 {
2291 struct input_dev *dev;
2292 int error;
2293
2294 error = mutex_lock_interruptible(&input_mutex);
2295 if (error)
2296 return error;
2297
2298 INIT_LIST_HEAD(&handler->h_list);
2299
2300 list_add_tail(&handler->node, &input_handler_list);
2301
2302 list_for_each_entry(dev, &input_dev_list, node)
2303 input_attach_handler(dev, handler);
2304
2305 input_wakeup_procfs_readers();
2306
2307 mutex_unlock(&input_mutex);
2308 return 0;
2309 }
2310 EXPORT_SYMBOL(input_register_handler);
2311
2312
2313
2314
2315
2316
2317
2318
2319 void input_unregister_handler(struct input_handler *handler)
2320 {
2321 struct input_handle *handle, *next;
2322
2323 mutex_lock(&input_mutex);
2324
2325 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2326 handler->disconnect(handle);
2327 WARN_ON(!list_empty(&handler->h_list));
2328
2329 list_del_init(&handler->node);
2330
2331 input_wakeup_procfs_readers();
2332
2333 mutex_unlock(&input_mutex);
2334 }
2335 EXPORT_SYMBOL(input_unregister_handler);
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2350 int (*fn)(struct input_handle *, void *))
2351 {
2352 struct input_handle *handle;
2353 int retval = 0;
2354
2355 rcu_read_lock();
2356
2357 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2358 retval = fn(handle, data);
2359 if (retval)
2360 break;
2361 }
2362
2363 rcu_read_unlock();
2364
2365 return retval;
2366 }
2367 EXPORT_SYMBOL(input_handler_for_each_handle);
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380 int input_register_handle(struct input_handle *handle)
2381 {
2382 struct input_handler *handler = handle->handler;
2383 struct input_dev *dev = handle->dev;
2384 int error;
2385
2386
2387
2388
2389
2390 error = mutex_lock_interruptible(&dev->mutex);
2391 if (error)
2392 return error;
2393
2394
2395
2396
2397
2398 if (handler->filter)
2399 list_add_rcu(&handle->d_node, &dev->h_list);
2400 else
2401 list_add_tail_rcu(&handle->d_node, &dev->h_list);
2402
2403 mutex_unlock(&dev->mutex);
2404
2405
2406
2407
2408
2409
2410
2411 list_add_tail_rcu(&handle->h_node, &handler->h_list);
2412
2413 if (handler->start)
2414 handler->start(handle);
2415
2416 return 0;
2417 }
2418 EXPORT_SYMBOL(input_register_handle);
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430 void input_unregister_handle(struct input_handle *handle)
2431 {
2432 struct input_dev *dev = handle->dev;
2433
2434 list_del_rcu(&handle->h_node);
2435
2436
2437
2438
2439 mutex_lock(&dev->mutex);
2440 list_del_rcu(&handle->d_node);
2441 mutex_unlock(&dev->mutex);
2442
2443 synchronize_rcu();
2444 }
2445 EXPORT_SYMBOL(input_unregister_handle);
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458 int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2459 bool allow_dynamic)
2460 {
2461
2462
2463
2464
2465
2466 if (legacy_base >= 0) {
2467 int minor = ida_simple_get(&input_ida,
2468 legacy_base,
2469 legacy_base + legacy_num,
2470 GFP_KERNEL);
2471 if (minor >= 0 || !allow_dynamic)
2472 return minor;
2473 }
2474
2475 return ida_simple_get(&input_ida,
2476 INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2477 GFP_KERNEL);
2478 }
2479 EXPORT_SYMBOL(input_get_new_minor);
2480
2481
2482
2483
2484
2485
2486
2487
2488 void input_free_minor(unsigned int minor)
2489 {
2490 ida_simple_remove(&input_ida, minor);
2491 }
2492 EXPORT_SYMBOL(input_free_minor);
2493
2494 static int __init input_init(void)
2495 {
2496 int err;
2497
2498 err = class_register(&input_class);
2499 if (err) {
2500 pr_err("unable to register input_dev class\n");
2501 return err;
2502 }
2503
2504 err = input_proc_init();
2505 if (err)
2506 goto fail1;
2507
2508 err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2509 INPUT_MAX_CHAR_DEVICES, "input");
2510 if (err) {
2511 pr_err("unable to register char major %d", INPUT_MAJOR);
2512 goto fail2;
2513 }
2514
2515 return 0;
2516
2517 fail2: input_proc_exit();
2518 fail1: class_unregister(&input_class);
2519 return err;
2520 }
2521
2522 static void __exit input_exit(void)
2523 {
2524 input_proc_exit();
2525 unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2526 INPUT_MAX_CHAR_DEVICES);
2527 class_unregister(&input_class);
2528 }
2529
2530 subsys_initcall(input_init);
2531 module_exit(input_exit);