root/drivers/input/rmi4/rmi_driver.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. rmi_free_function_list
  2. reset_one_function
  3. configure_one_function
  4. rmi_driver_process_reset_requests
  5. rmi_driver_process_config_requests
  6. rmi_process_interrupt_requests
  7. rmi_set_attn_data
  8. rmi_irq_fn
  9. rmi_irq_init
  10. rmi_find_function
  11. suspend_one_function
  12. rmi_suspend_functions
  13. resume_one_function
  14. rmi_resume_functions
  15. rmi_enable_sensor
  16. rmi_driver_set_input_params
  17. rmi_driver_set_input_name
  18. rmi_driver_set_irq_bits
  19. rmi_driver_clear_irq_bits
  20. rmi_driver_reset_handler
  21. rmi_read_pdt_entry
  22. rmi_driver_copy_pdt_to_fd
  23. rmi_scan_pdt_page
  24. rmi_scan_pdt
  25. rmi_read_register_desc
  26. rmi_get_register_desc_item
  27. rmi_register_desc_calc_size
  28. rmi_register_desc_calc_reg_offset
  29. rmi_register_desc_has_subpacket
  30. rmi_check_bootloader_mode
  31. rmi_count_irqs
  32. rmi_initial_reset
  33. rmi_create_function
  34. rmi_enable_irq
  35. rmi_disable_irq
  36. rmi_driver_suspend
  37. rmi_driver_resume
  38. rmi_driver_remove
  39. rmi_driver_of_probe
  40. rmi_driver_of_probe
  41. rmi_probe_interrupts
  42. rmi_init_functions
  43. rmi_driver_probe
  44. rmi_is_physical_driver
  45. rmi_register_physical_driver
  46. rmi_unregister_physical_driver

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * Copyright (c) 2011-2016 Synaptics Incorporated
   4  * Copyright (c) 2011 Unixphere
   5  *
   6  * This driver provides the core support for a single RMI4-based device.
   7  *
   8  * The RMI4 specification can be found here (URL split for line length):
   9  *
  10  * http://www.synaptics.com/sites/default/files/
  11  *      511-000136-01-Rev-E-RMI4-Interfacing-Guide.pdf
  12  */
  13 
  14 #include <linux/bitmap.h>
  15 #include <linux/delay.h>
  16 #include <linux/fs.h>
  17 #include <linux/irq.h>
  18 #include <linux/pm.h>
  19 #include <linux/slab.h>
  20 #include <linux/of.h>
  21 #include <linux/irqdomain.h>
  22 #include <uapi/linux/input.h>
  23 #include <linux/rmi.h>
  24 #include "rmi_bus.h"
  25 #include "rmi_driver.h"
  26 
  27 #define HAS_NONSTANDARD_PDT_MASK 0x40
  28 #define RMI4_MAX_PAGE 0xff
  29 #define RMI4_PAGE_SIZE 0x100
  30 #define RMI4_PAGE_MASK 0xFF00
  31 
  32 #define RMI_DEVICE_RESET_CMD    0x01
  33 #define DEFAULT_RESET_DELAY_MS  100
  34 
  35 void rmi_free_function_list(struct rmi_device *rmi_dev)
  36 {
  37         struct rmi_function *fn, *tmp;
  38         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
  39 
  40         rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Freeing function list\n");
  41 
  42         /* Doing it in the reverse order so F01 will be removed last */
  43         list_for_each_entry_safe_reverse(fn, tmp,
  44                                          &data->function_list, node) {
  45                 list_del(&fn->node);
  46                 rmi_unregister_function(fn);
  47         }
  48 
  49         devm_kfree(&rmi_dev->dev, data->irq_memory);
  50         data->irq_memory = NULL;
  51         data->irq_status = NULL;
  52         data->fn_irq_bits = NULL;
  53         data->current_irq_mask = NULL;
  54         data->new_irq_mask = NULL;
  55 
  56         data->f01_container = NULL;
  57         data->f34_container = NULL;
  58 }
  59 
  60 static int reset_one_function(struct rmi_function *fn)
  61 {
  62         struct rmi_function_handler *fh;
  63         int retval = 0;
  64 
  65         if (!fn || !fn->dev.driver)
  66                 return 0;
  67 
  68         fh = to_rmi_function_handler(fn->dev.driver);
  69         if (fh->reset) {
  70                 retval = fh->reset(fn);
  71                 if (retval < 0)
  72                         dev_err(&fn->dev, "Reset failed with code %d.\n",
  73                                 retval);
  74         }
  75 
  76         return retval;
  77 }
  78 
  79 static int configure_one_function(struct rmi_function *fn)
  80 {
  81         struct rmi_function_handler *fh;
  82         int retval = 0;
  83 
  84         if (!fn || !fn->dev.driver)
  85                 return 0;
  86 
  87         fh = to_rmi_function_handler(fn->dev.driver);
  88         if (fh->config) {
  89                 retval = fh->config(fn);
  90                 if (retval < 0)
  91                         dev_err(&fn->dev, "Config failed with code %d.\n",
  92                                 retval);
  93         }
  94 
  95         return retval;
  96 }
  97 
  98 static int rmi_driver_process_reset_requests(struct rmi_device *rmi_dev)
  99 {
 100         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
 101         struct rmi_function *entry;
 102         int retval;
 103 
 104         list_for_each_entry(entry, &data->function_list, node) {
 105                 retval = reset_one_function(entry);
 106                 if (retval < 0)
 107                         return retval;
 108         }
 109 
 110         return 0;
 111 }
 112 
 113 static int rmi_driver_process_config_requests(struct rmi_device *rmi_dev)
 114 {
 115         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
 116         struct rmi_function *entry;
 117         int retval;
 118 
 119         list_for_each_entry(entry, &data->function_list, node) {
 120                 retval = configure_one_function(entry);
 121                 if (retval < 0)
 122                         return retval;
 123         }
 124 
 125         return 0;
 126 }
 127 
 128 static int rmi_process_interrupt_requests(struct rmi_device *rmi_dev)
 129 {
 130         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
 131         struct device *dev = &rmi_dev->dev;
 132         int i;
 133         int error;
 134 
 135         if (!data)
 136                 return 0;
 137 
 138         if (!data->attn_data.data) {
 139                 error = rmi_read_block(rmi_dev,
 140                                 data->f01_container->fd.data_base_addr + 1,
 141                                 data->irq_status, data->num_of_irq_regs);
 142                 if (error < 0) {
 143                         dev_err(dev, "Failed to read irqs, code=%d\n", error);
 144                         return error;
 145                 }
 146         }
 147 
 148         mutex_lock(&data->irq_mutex);
 149         bitmap_and(data->irq_status, data->irq_status, data->fn_irq_bits,
 150                data->irq_count);
 151         /*
 152          * At this point, irq_status has all bits that are set in the
 153          * interrupt status register and are enabled.
 154          */
 155         mutex_unlock(&data->irq_mutex);
 156 
 157         for_each_set_bit(i, data->irq_status, data->irq_count)
 158                 handle_nested_irq(irq_find_mapping(data->irqdomain, i));
 159 
 160         if (data->input)
 161                 input_sync(data->input);
 162 
 163         return 0;
 164 }
 165 
 166 void rmi_set_attn_data(struct rmi_device *rmi_dev, unsigned long irq_status,
 167                        void *data, size_t size)
 168 {
 169         struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
 170         struct rmi4_attn_data attn_data;
 171         void *fifo_data;
 172 
 173         if (!drvdata->enabled)
 174                 return;
 175 
 176         fifo_data = kmemdup(data, size, GFP_ATOMIC);
 177         if (!fifo_data)
 178                 return;
 179 
 180         attn_data.irq_status = irq_status;
 181         attn_data.size = size;
 182         attn_data.data = fifo_data;
 183 
 184         kfifo_put(&drvdata->attn_fifo, attn_data);
 185 }
 186 EXPORT_SYMBOL_GPL(rmi_set_attn_data);
 187 
 188 static irqreturn_t rmi_irq_fn(int irq, void *dev_id)
 189 {
 190         struct rmi_device *rmi_dev = dev_id;
 191         struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
 192         struct rmi4_attn_data attn_data = {0};
 193         int ret, count;
 194 
 195         count = kfifo_get(&drvdata->attn_fifo, &attn_data);
 196         if (count) {
 197                 *(drvdata->irq_status) = attn_data.irq_status;
 198                 drvdata->attn_data = attn_data;
 199         }
 200 
 201         ret = rmi_process_interrupt_requests(rmi_dev);
 202         if (ret)
 203                 rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev,
 204                         "Failed to process interrupt request: %d\n", ret);
 205 
 206         if (count) {
 207                 kfree(attn_data.data);
 208                 drvdata->attn_data.data = NULL;
 209         }
 210 
 211         if (!kfifo_is_empty(&drvdata->attn_fifo))
 212                 return rmi_irq_fn(irq, dev_id);
 213 
 214         return IRQ_HANDLED;
 215 }
 216 
 217 static int rmi_irq_init(struct rmi_device *rmi_dev)
 218 {
 219         struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
 220         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
 221         int irq_flags = irq_get_trigger_type(pdata->irq);
 222         int ret;
 223 
 224         if (!irq_flags)
 225                 irq_flags = IRQF_TRIGGER_LOW;
 226 
 227         ret = devm_request_threaded_irq(&rmi_dev->dev, pdata->irq, NULL,
 228                                         rmi_irq_fn, irq_flags | IRQF_ONESHOT,
 229                                         dev_driver_string(rmi_dev->xport->dev),
 230                                         rmi_dev);
 231         if (ret < 0) {
 232                 dev_err(&rmi_dev->dev, "Failed to register interrupt %d\n",
 233                         pdata->irq);
 234 
 235                 return ret;
 236         }
 237 
 238         data->enabled = true;
 239 
 240         return 0;
 241 }
 242 
 243 struct rmi_function *rmi_find_function(struct rmi_device *rmi_dev, u8 number)
 244 {
 245         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
 246         struct rmi_function *entry;
 247 
 248         list_for_each_entry(entry, &data->function_list, node) {
 249                 if (entry->fd.function_number == number)
 250                         return entry;
 251         }
 252 
 253         return NULL;
 254 }
 255 
 256 static int suspend_one_function(struct rmi_function *fn)
 257 {
 258         struct rmi_function_handler *fh;
 259         int retval = 0;
 260 
 261         if (!fn || !fn->dev.driver)
 262                 return 0;
 263 
 264         fh = to_rmi_function_handler(fn->dev.driver);
 265         if (fh->suspend) {
 266                 retval = fh->suspend(fn);
 267                 if (retval < 0)
 268                         dev_err(&fn->dev, "Suspend failed with code %d.\n",
 269                                 retval);
 270         }
 271 
 272         return retval;
 273 }
 274 
 275 static int rmi_suspend_functions(struct rmi_device *rmi_dev)
 276 {
 277         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
 278         struct rmi_function *entry;
 279         int retval;
 280 
 281         list_for_each_entry(entry, &data->function_list, node) {
 282                 retval = suspend_one_function(entry);
 283                 if (retval < 0)
 284                         return retval;
 285         }
 286 
 287         return 0;
 288 }
 289 
 290 static int resume_one_function(struct rmi_function *fn)
 291 {
 292         struct rmi_function_handler *fh;
 293         int retval = 0;
 294 
 295         if (!fn || !fn->dev.driver)
 296                 return 0;
 297 
 298         fh = to_rmi_function_handler(fn->dev.driver);
 299         if (fh->resume) {
 300                 retval = fh->resume(fn);
 301                 if (retval < 0)
 302                         dev_err(&fn->dev, "Resume failed with code %d.\n",
 303                                 retval);
 304         }
 305 
 306         return retval;
 307 }
 308 
 309 static int rmi_resume_functions(struct rmi_device *rmi_dev)
 310 {
 311         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
 312         struct rmi_function *entry;
 313         int retval;
 314 
 315         list_for_each_entry(entry, &data->function_list, node) {
 316                 retval = resume_one_function(entry);
 317                 if (retval < 0)
 318                         return retval;
 319         }
 320 
 321         return 0;
 322 }
 323 
 324 int rmi_enable_sensor(struct rmi_device *rmi_dev)
 325 {
 326         int retval = 0;
 327 
 328         retval = rmi_driver_process_config_requests(rmi_dev);
 329         if (retval < 0)
 330                 return retval;
 331 
 332         return rmi_process_interrupt_requests(rmi_dev);
 333 }
 334 
 335 /**
 336  * rmi_driver_set_input_params - set input device id and other data.
 337  *
 338  * @rmi_dev: Pointer to an RMI device
 339  * @input: Pointer to input device
 340  *
 341  */
 342 static int rmi_driver_set_input_params(struct rmi_device *rmi_dev,
 343                                 struct input_dev *input)
 344 {
 345         input->name = SYNAPTICS_INPUT_DEVICE_NAME;
 346         input->id.vendor  = SYNAPTICS_VENDOR_ID;
 347         input->id.bustype = BUS_RMI;
 348         return 0;
 349 }
 350 
 351 static void rmi_driver_set_input_name(struct rmi_device *rmi_dev,
 352                                 struct input_dev *input)
 353 {
 354         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
 355         const char *device_name = rmi_f01_get_product_ID(data->f01_container);
 356         char *name;
 357 
 358         name = devm_kasprintf(&rmi_dev->dev, GFP_KERNEL,
 359                               "Synaptics %s", device_name);
 360         if (!name)
 361                 return;
 362 
 363         input->name = name;
 364 }
 365 
 366 static int rmi_driver_set_irq_bits(struct rmi_device *rmi_dev,
 367                                    unsigned long *mask)
 368 {
 369         int error = 0;
 370         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
 371         struct device *dev = &rmi_dev->dev;
 372 
 373         mutex_lock(&data->irq_mutex);
 374         bitmap_or(data->new_irq_mask,
 375                   data->current_irq_mask, mask, data->irq_count);
 376 
 377         error = rmi_write_block(rmi_dev,
 378                         data->f01_container->fd.control_base_addr + 1,
 379                         data->new_irq_mask, data->num_of_irq_regs);
 380         if (error < 0) {
 381                 dev_err(dev, "%s: Failed to change enabled interrupts!",
 382                                                         __func__);
 383                 goto error_unlock;
 384         }
 385         bitmap_copy(data->current_irq_mask, data->new_irq_mask,
 386                     data->num_of_irq_regs);
 387 
 388         bitmap_or(data->fn_irq_bits, data->fn_irq_bits, mask, data->irq_count);
 389 
 390 error_unlock:
 391         mutex_unlock(&data->irq_mutex);
 392         return error;
 393 }
 394 
 395 static int rmi_driver_clear_irq_bits(struct rmi_device *rmi_dev,
 396                                      unsigned long *mask)
 397 {
 398         int error = 0;
 399         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
 400         struct device *dev = &rmi_dev->dev;
 401 
 402         mutex_lock(&data->irq_mutex);
 403         bitmap_andnot(data->fn_irq_bits,
 404                       data->fn_irq_bits, mask, data->irq_count);
 405         bitmap_andnot(data->new_irq_mask,
 406                   data->current_irq_mask, mask, data->irq_count);
 407 
 408         error = rmi_write_block(rmi_dev,
 409                         data->f01_container->fd.control_base_addr + 1,
 410                         data->new_irq_mask, data->num_of_irq_regs);
 411         if (error < 0) {
 412                 dev_err(dev, "%s: Failed to change enabled interrupts!",
 413                                                         __func__);
 414                 goto error_unlock;
 415         }
 416         bitmap_copy(data->current_irq_mask, data->new_irq_mask,
 417                     data->num_of_irq_regs);
 418 
 419 error_unlock:
 420         mutex_unlock(&data->irq_mutex);
 421         return error;
 422 }
 423 
 424 static int rmi_driver_reset_handler(struct rmi_device *rmi_dev)
 425 {
 426         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
 427         int error;
 428 
 429         /*
 430          * Can get called before the driver is fully ready to deal with
 431          * this situation.
 432          */
 433         if (!data || !data->f01_container) {
 434                 dev_warn(&rmi_dev->dev,
 435                          "Not ready to handle reset yet!\n");
 436                 return 0;
 437         }
 438 
 439         error = rmi_read_block(rmi_dev,
 440                                data->f01_container->fd.control_base_addr + 1,
 441                                data->current_irq_mask, data->num_of_irq_regs);
 442         if (error < 0) {
 443                 dev_err(&rmi_dev->dev, "%s: Failed to read current IRQ mask.\n",
 444                         __func__);
 445                 return error;
 446         }
 447 
 448         error = rmi_driver_process_reset_requests(rmi_dev);
 449         if (error < 0)
 450                 return error;
 451 
 452         error = rmi_driver_process_config_requests(rmi_dev);
 453         if (error < 0)
 454                 return error;
 455 
 456         return 0;
 457 }
 458 
 459 static int rmi_read_pdt_entry(struct rmi_device *rmi_dev,
 460                               struct pdt_entry *entry, u16 pdt_address)
 461 {
 462         u8 buf[RMI_PDT_ENTRY_SIZE];
 463         int error;
 464 
 465         error = rmi_read_block(rmi_dev, pdt_address, buf, RMI_PDT_ENTRY_SIZE);
 466         if (error) {
 467                 dev_err(&rmi_dev->dev, "Read PDT entry at %#06x failed, code: %d.\n",
 468                                 pdt_address, error);
 469                 return error;
 470         }
 471 
 472         entry->page_start = pdt_address & RMI4_PAGE_MASK;
 473         entry->query_base_addr = buf[0];
 474         entry->command_base_addr = buf[1];
 475         entry->control_base_addr = buf[2];
 476         entry->data_base_addr = buf[3];
 477         entry->interrupt_source_count = buf[4] & RMI_PDT_INT_SOURCE_COUNT_MASK;
 478         entry->function_version = (buf[4] & RMI_PDT_FUNCTION_VERSION_MASK) >> 5;
 479         entry->function_number = buf[5];
 480 
 481         return 0;
 482 }
 483 
 484 static void rmi_driver_copy_pdt_to_fd(const struct pdt_entry *pdt,
 485                                       struct rmi_function_descriptor *fd)
 486 {
 487         fd->query_base_addr = pdt->query_base_addr + pdt->page_start;
 488         fd->command_base_addr = pdt->command_base_addr + pdt->page_start;
 489         fd->control_base_addr = pdt->control_base_addr + pdt->page_start;
 490         fd->data_base_addr = pdt->data_base_addr + pdt->page_start;
 491         fd->function_number = pdt->function_number;
 492         fd->interrupt_source_count = pdt->interrupt_source_count;
 493         fd->function_version = pdt->function_version;
 494 }
 495 
 496 #define RMI_SCAN_CONTINUE       0
 497 #define RMI_SCAN_DONE           1
 498 
 499 static int rmi_scan_pdt_page(struct rmi_device *rmi_dev,
 500                              int page,
 501                              int *empty_pages,
 502                              void *ctx,
 503                              int (*callback)(struct rmi_device *rmi_dev,
 504                                              void *ctx,
 505                                              const struct pdt_entry *entry))
 506 {
 507         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
 508         struct pdt_entry pdt_entry;
 509         u16 page_start = RMI4_PAGE_SIZE * page;
 510         u16 pdt_start = page_start + PDT_START_SCAN_LOCATION;
 511         u16 pdt_end = page_start + PDT_END_SCAN_LOCATION;
 512         u16 addr;
 513         int error;
 514         int retval;
 515 
 516         for (addr = pdt_start; addr >= pdt_end; addr -= RMI_PDT_ENTRY_SIZE) {
 517                 error = rmi_read_pdt_entry(rmi_dev, &pdt_entry, addr);
 518                 if (error)
 519                         return error;
 520 
 521                 if (RMI4_END_OF_PDT(pdt_entry.function_number))
 522                         break;
 523 
 524                 retval = callback(rmi_dev, ctx, &pdt_entry);
 525                 if (retval != RMI_SCAN_CONTINUE)
 526                         return retval;
 527         }
 528 
 529         /*
 530          * Count number of empty PDT pages. If a gap of two pages
 531          * or more is found, stop scanning.
 532          */
 533         if (addr == pdt_start)
 534                 ++*empty_pages;
 535         else
 536                 *empty_pages = 0;
 537 
 538         return (data->bootloader_mode || *empty_pages >= 2) ?
 539                                         RMI_SCAN_DONE : RMI_SCAN_CONTINUE;
 540 }
 541 
 542 int rmi_scan_pdt(struct rmi_device *rmi_dev, void *ctx,
 543                  int (*callback)(struct rmi_device *rmi_dev,
 544                  void *ctx, const struct pdt_entry *entry))
 545 {
 546         int page;
 547         int empty_pages = 0;
 548         int retval = RMI_SCAN_DONE;
 549 
 550         for (page = 0; page <= RMI4_MAX_PAGE; page++) {
 551                 retval = rmi_scan_pdt_page(rmi_dev, page, &empty_pages,
 552                                            ctx, callback);
 553                 if (retval != RMI_SCAN_CONTINUE)
 554                         break;
 555         }
 556 
 557         return retval < 0 ? retval : 0;
 558 }
 559 
 560 int rmi_read_register_desc(struct rmi_device *d, u16 addr,
 561                                 struct rmi_register_descriptor *rdesc)
 562 {
 563         int ret;
 564         u8 size_presence_reg;
 565         u8 buf[35];
 566         int presense_offset = 1;
 567         u8 *struct_buf;
 568         int reg;
 569         int offset = 0;
 570         int map_offset = 0;
 571         int i;
 572         int b;
 573 
 574         /*
 575          * The first register of the register descriptor is the size of
 576          * the register descriptor's presense register.
 577          */
 578         ret = rmi_read(d, addr, &size_presence_reg);
 579         if (ret)
 580                 return ret;
 581         ++addr;
 582 
 583         if (size_presence_reg < 0 || size_presence_reg > 35)
 584                 return -EIO;
 585 
 586         memset(buf, 0, sizeof(buf));
 587 
 588         /*
 589          * The presence register contains the size of the register structure
 590          * and a bitmap which identified which packet registers are present
 591          * for this particular register type (ie query, control, or data).
 592          */
 593         ret = rmi_read_block(d, addr, buf, size_presence_reg);
 594         if (ret)
 595                 return ret;
 596         ++addr;
 597 
 598         if (buf[0] == 0) {
 599                 presense_offset = 3;
 600                 rdesc->struct_size = buf[1] | (buf[2] << 8);
 601         } else {
 602                 rdesc->struct_size = buf[0];
 603         }
 604 
 605         for (i = presense_offset; i < size_presence_reg; i++) {
 606                 for (b = 0; b < 8; b++) {
 607                         if (buf[i] & (0x1 << b))
 608                                 bitmap_set(rdesc->presense_map, map_offset, 1);
 609                         ++map_offset;
 610                 }
 611         }
 612 
 613         rdesc->num_registers = bitmap_weight(rdesc->presense_map,
 614                                                 RMI_REG_DESC_PRESENSE_BITS);
 615 
 616         rdesc->registers = devm_kcalloc(&d->dev,
 617                                         rdesc->num_registers,
 618                                         sizeof(struct rmi_register_desc_item),
 619                                         GFP_KERNEL);
 620         if (!rdesc->registers)
 621                 return -ENOMEM;
 622 
 623         /*
 624          * Allocate a temporary buffer to hold the register structure.
 625          * I'm not using devm_kzalloc here since it will not be retained
 626          * after exiting this function
 627          */
 628         struct_buf = kzalloc(rdesc->struct_size, GFP_KERNEL);
 629         if (!struct_buf)
 630                 return -ENOMEM;
 631 
 632         /*
 633          * The register structure contains information about every packet
 634          * register of this type. This includes the size of the packet
 635          * register and a bitmap of all subpackets contained in the packet
 636          * register.
 637          */
 638         ret = rmi_read_block(d, addr, struct_buf, rdesc->struct_size);
 639         if (ret)
 640                 goto free_struct_buff;
 641 
 642         reg = find_first_bit(rdesc->presense_map, RMI_REG_DESC_PRESENSE_BITS);
 643         for (i = 0; i < rdesc->num_registers; i++) {
 644                 struct rmi_register_desc_item *item = &rdesc->registers[i];
 645                 int reg_size = struct_buf[offset];
 646 
 647                 ++offset;
 648                 if (reg_size == 0) {
 649                         reg_size = struct_buf[offset] |
 650                                         (struct_buf[offset + 1] << 8);
 651                         offset += 2;
 652                 }
 653 
 654                 if (reg_size == 0) {
 655                         reg_size = struct_buf[offset] |
 656                                         (struct_buf[offset + 1] << 8) |
 657                                         (struct_buf[offset + 2] << 16) |
 658                                         (struct_buf[offset + 3] << 24);
 659                         offset += 4;
 660                 }
 661 
 662                 item->reg = reg;
 663                 item->reg_size = reg_size;
 664 
 665                 map_offset = 0;
 666 
 667                 do {
 668                         for (b = 0; b < 7; b++) {
 669                                 if (struct_buf[offset] & (0x1 << b))
 670                                         bitmap_set(item->subpacket_map,
 671                                                 map_offset, 1);
 672                                 ++map_offset;
 673                         }
 674                 } while (struct_buf[offset++] & 0x80);
 675 
 676                 item->num_subpackets = bitmap_weight(item->subpacket_map,
 677                                                 RMI_REG_DESC_SUBPACKET_BITS);
 678 
 679                 rmi_dbg(RMI_DEBUG_CORE, &d->dev,
 680                         "%s: reg: %d reg size: %ld subpackets: %d\n", __func__,
 681                         item->reg, item->reg_size, item->num_subpackets);
 682 
 683                 reg = find_next_bit(rdesc->presense_map,
 684                                 RMI_REG_DESC_PRESENSE_BITS, reg + 1);
 685         }
 686 
 687 free_struct_buff:
 688         kfree(struct_buf);
 689         return ret;
 690 }
 691 
 692 const struct rmi_register_desc_item *rmi_get_register_desc_item(
 693                                 struct rmi_register_descriptor *rdesc, u16 reg)
 694 {
 695         const struct rmi_register_desc_item *item;
 696         int i;
 697 
 698         for (i = 0; i < rdesc->num_registers; i++) {
 699                 item = &rdesc->registers[i];
 700                 if (item->reg == reg)
 701                         return item;
 702         }
 703 
 704         return NULL;
 705 }
 706 
 707 size_t rmi_register_desc_calc_size(struct rmi_register_descriptor *rdesc)
 708 {
 709         const struct rmi_register_desc_item *item;
 710         int i;
 711         size_t size = 0;
 712 
 713         for (i = 0; i < rdesc->num_registers; i++) {
 714                 item = &rdesc->registers[i];
 715                 size += item->reg_size;
 716         }
 717         return size;
 718 }
 719 
 720 /* Compute the register offset relative to the base address */
 721 int rmi_register_desc_calc_reg_offset(
 722                 struct rmi_register_descriptor *rdesc, u16 reg)
 723 {
 724         const struct rmi_register_desc_item *item;
 725         int offset = 0;
 726         int i;
 727 
 728         for (i = 0; i < rdesc->num_registers; i++) {
 729                 item = &rdesc->registers[i];
 730                 if (item->reg == reg)
 731                         return offset;
 732                 ++offset;
 733         }
 734         return -1;
 735 }
 736 
 737 bool rmi_register_desc_has_subpacket(const struct rmi_register_desc_item *item,
 738         u8 subpacket)
 739 {
 740         return find_next_bit(item->subpacket_map, RMI_REG_DESC_PRESENSE_BITS,
 741                                 subpacket) == subpacket;
 742 }
 743 
 744 static int rmi_check_bootloader_mode(struct rmi_device *rmi_dev,
 745                                      const struct pdt_entry *pdt)
 746 {
 747         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
 748         int ret;
 749         u8 status;
 750 
 751         if (pdt->function_number == 0x34 && pdt->function_version > 1) {
 752                 ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
 753                 if (ret) {
 754                         dev_err(&rmi_dev->dev,
 755                                 "Failed to read F34 status: %d.\n", ret);
 756                         return ret;
 757                 }
 758 
 759                 if (status & BIT(7))
 760                         data->bootloader_mode = true;
 761         } else if (pdt->function_number == 0x01) {
 762                 ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
 763                 if (ret) {
 764                         dev_err(&rmi_dev->dev,
 765                                 "Failed to read F01 status: %d.\n", ret);
 766                         return ret;
 767                 }
 768 
 769                 if (status & BIT(6))
 770                         data->bootloader_mode = true;
 771         }
 772 
 773         return 0;
 774 }
 775 
 776 static int rmi_count_irqs(struct rmi_device *rmi_dev,
 777                          void *ctx, const struct pdt_entry *pdt)
 778 {
 779         int *irq_count = ctx;
 780         int ret;
 781 
 782         *irq_count += pdt->interrupt_source_count;
 783 
 784         ret = rmi_check_bootloader_mode(rmi_dev, pdt);
 785         if (ret < 0)
 786                 return ret;
 787 
 788         return RMI_SCAN_CONTINUE;
 789 }
 790 
 791 int rmi_initial_reset(struct rmi_device *rmi_dev, void *ctx,
 792                       const struct pdt_entry *pdt)
 793 {
 794         int error;
 795 
 796         if (pdt->function_number == 0x01) {
 797                 u16 cmd_addr = pdt->page_start + pdt->command_base_addr;
 798                 u8 cmd_buf = RMI_DEVICE_RESET_CMD;
 799                 const struct rmi_device_platform_data *pdata =
 800                                 rmi_get_platform_data(rmi_dev);
 801 
 802                 if (rmi_dev->xport->ops->reset) {
 803                         error = rmi_dev->xport->ops->reset(rmi_dev->xport,
 804                                                                 cmd_addr);
 805                         if (error)
 806                                 return error;
 807 
 808                         return RMI_SCAN_DONE;
 809                 }
 810 
 811                 rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Sending reset\n");
 812                 error = rmi_write_block(rmi_dev, cmd_addr, &cmd_buf, 1);
 813                 if (error) {
 814                         dev_err(&rmi_dev->dev,
 815                                 "Initial reset failed. Code = %d.\n", error);
 816                         return error;
 817                 }
 818 
 819                 mdelay(pdata->reset_delay_ms ?: DEFAULT_RESET_DELAY_MS);
 820 
 821                 return RMI_SCAN_DONE;
 822         }
 823 
 824         /* F01 should always be on page 0. If we don't find it there, fail. */
 825         return pdt->page_start == 0 ? RMI_SCAN_CONTINUE : -ENODEV;
 826 }
 827 
 828 static int rmi_create_function(struct rmi_device *rmi_dev,
 829                                void *ctx, const struct pdt_entry *pdt)
 830 {
 831         struct device *dev = &rmi_dev->dev;
 832         struct rmi_driver_data *data = dev_get_drvdata(dev);
 833         int *current_irq_count = ctx;
 834         struct rmi_function *fn;
 835         int i;
 836         int error;
 837 
 838         rmi_dbg(RMI_DEBUG_CORE, dev, "Initializing F%02X.\n",
 839                         pdt->function_number);
 840 
 841         fn = kzalloc(sizeof(struct rmi_function) +
 842                         BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long),
 843                      GFP_KERNEL);
 844         if (!fn) {
 845                 dev_err(dev, "Failed to allocate memory for F%02X\n",
 846                         pdt->function_number);
 847                 return -ENOMEM;
 848         }
 849 
 850         INIT_LIST_HEAD(&fn->node);
 851         rmi_driver_copy_pdt_to_fd(pdt, &fn->fd);
 852 
 853         fn->rmi_dev = rmi_dev;
 854 
 855         fn->num_of_irqs = pdt->interrupt_source_count;
 856         fn->irq_pos = *current_irq_count;
 857         *current_irq_count += fn->num_of_irqs;
 858 
 859         for (i = 0; i < fn->num_of_irqs; i++)
 860                 set_bit(fn->irq_pos + i, fn->irq_mask);
 861 
 862         error = rmi_register_function(fn);
 863         if (error)
 864                 return error;
 865 
 866         if (pdt->function_number == 0x01)
 867                 data->f01_container = fn;
 868         else if (pdt->function_number == 0x34)
 869                 data->f34_container = fn;
 870 
 871         list_add_tail(&fn->node, &data->function_list);
 872 
 873         return RMI_SCAN_CONTINUE;
 874 }
 875 
 876 void rmi_enable_irq(struct rmi_device *rmi_dev, bool clear_wake)
 877 {
 878         struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
 879         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
 880         int irq = pdata->irq;
 881         int irq_flags;
 882         int retval;
 883 
 884         mutex_lock(&data->enabled_mutex);
 885 
 886         if (data->enabled)
 887                 goto out;
 888 
 889         enable_irq(irq);
 890         data->enabled = true;
 891         if (clear_wake && device_may_wakeup(rmi_dev->xport->dev)) {
 892                 retval = disable_irq_wake(irq);
 893                 if (retval)
 894                         dev_warn(&rmi_dev->dev,
 895                                  "Failed to disable irq for wake: %d\n",
 896                                  retval);
 897         }
 898 
 899         /*
 900          * Call rmi_process_interrupt_requests() after enabling irq,
 901          * otherwise we may lose interrupt on edge-triggered systems.
 902          */
 903         irq_flags = irq_get_trigger_type(pdata->irq);
 904         if (irq_flags & IRQ_TYPE_EDGE_BOTH)
 905                 rmi_process_interrupt_requests(rmi_dev);
 906 
 907 out:
 908         mutex_unlock(&data->enabled_mutex);
 909 }
 910 
 911 void rmi_disable_irq(struct rmi_device *rmi_dev, bool enable_wake)
 912 {
 913         struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
 914         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
 915         struct rmi4_attn_data attn_data = {0};
 916         int irq = pdata->irq;
 917         int retval, count;
 918 
 919         mutex_lock(&data->enabled_mutex);
 920 
 921         if (!data->enabled)
 922                 goto out;
 923 
 924         data->enabled = false;
 925         disable_irq(irq);
 926         if (enable_wake && device_may_wakeup(rmi_dev->xport->dev)) {
 927                 retval = enable_irq_wake(irq);
 928                 if (retval)
 929                         dev_warn(&rmi_dev->dev,
 930                                  "Failed to enable irq for wake: %d\n",
 931                                  retval);
 932         }
 933 
 934         /* make sure the fifo is clean */
 935         while (!kfifo_is_empty(&data->attn_fifo)) {
 936                 count = kfifo_get(&data->attn_fifo, &attn_data);
 937                 if (count)
 938                         kfree(attn_data.data);
 939         }
 940 
 941 out:
 942         mutex_unlock(&data->enabled_mutex);
 943 }
 944 
 945 int rmi_driver_suspend(struct rmi_device *rmi_dev, bool enable_wake)
 946 {
 947         int retval;
 948 
 949         retval = rmi_suspend_functions(rmi_dev);
 950         if (retval)
 951                 dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
 952                         retval);
 953 
 954         rmi_disable_irq(rmi_dev, enable_wake);
 955         return retval;
 956 }
 957 EXPORT_SYMBOL_GPL(rmi_driver_suspend);
 958 
 959 int rmi_driver_resume(struct rmi_device *rmi_dev, bool clear_wake)
 960 {
 961         int retval;
 962 
 963         rmi_enable_irq(rmi_dev, clear_wake);
 964 
 965         retval = rmi_resume_functions(rmi_dev);
 966         if (retval)
 967                 dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
 968                         retval);
 969 
 970         return retval;
 971 }
 972 EXPORT_SYMBOL_GPL(rmi_driver_resume);
 973 
 974 static int rmi_driver_remove(struct device *dev)
 975 {
 976         struct rmi_device *rmi_dev = to_rmi_device(dev);
 977         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
 978 
 979         rmi_disable_irq(rmi_dev, false);
 980 
 981         irq_domain_remove(data->irqdomain);
 982         data->irqdomain = NULL;
 983 
 984         rmi_f34_remove_sysfs(rmi_dev);
 985         rmi_free_function_list(rmi_dev);
 986 
 987         return 0;
 988 }
 989 
 990 #ifdef CONFIG_OF
 991 static int rmi_driver_of_probe(struct device *dev,
 992                                 struct rmi_device_platform_data *pdata)
 993 {
 994         int retval;
 995 
 996         retval = rmi_of_property_read_u32(dev, &pdata->reset_delay_ms,
 997                                         "syna,reset-delay-ms", 1);
 998         if (retval)
 999                 return retval;
1000 
1001         return 0;
1002 }
1003 #else
1004 static inline int rmi_driver_of_probe(struct device *dev,
1005                                         struct rmi_device_platform_data *pdata)
1006 {
1007         return -ENODEV;
1008 }
1009 #endif
1010 
1011 int rmi_probe_interrupts(struct rmi_driver_data *data)
1012 {
1013         struct rmi_device *rmi_dev = data->rmi_dev;
1014         struct device *dev = &rmi_dev->dev;
1015         struct fwnode_handle *fwnode = rmi_dev->xport->dev->fwnode;
1016         int irq_count = 0;
1017         size_t size;
1018         int retval;
1019 
1020         /*
1021          * We need to count the IRQs and allocate their storage before scanning
1022          * the PDT and creating the function entries, because adding a new
1023          * function can trigger events that result in the IRQ related storage
1024          * being accessed.
1025          */
1026         rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Counting IRQs.\n", __func__);
1027         data->bootloader_mode = false;
1028 
1029         retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_count_irqs);
1030         if (retval < 0) {
1031                 dev_err(dev, "IRQ counting failed with code %d.\n", retval);
1032                 return retval;
1033         }
1034 
1035         if (data->bootloader_mode)
1036                 dev_warn(dev, "Device in bootloader mode.\n");
1037 
1038         /* Allocate and register a linear revmap irq_domain */
1039         data->irqdomain = irq_domain_create_linear(fwnode, irq_count,
1040                                                    &irq_domain_simple_ops,
1041                                                    data);
1042         if (!data->irqdomain) {
1043                 dev_err(&rmi_dev->dev, "Failed to create IRQ domain\n");
1044                 return -ENOMEM;
1045         }
1046 
1047         data->irq_count = irq_count;
1048         data->num_of_irq_regs = (data->irq_count + 7) / 8;
1049 
1050         size = BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long);
1051         data->irq_memory = devm_kcalloc(dev, size, 4, GFP_KERNEL);
1052         if (!data->irq_memory) {
1053                 dev_err(dev, "Failed to allocate memory for irq masks.\n");
1054                 return -ENOMEM;
1055         }
1056 
1057         data->irq_status        = data->irq_memory + size * 0;
1058         data->fn_irq_bits       = data->irq_memory + size * 1;
1059         data->current_irq_mask  = data->irq_memory + size * 2;
1060         data->new_irq_mask      = data->irq_memory + size * 3;
1061 
1062         return retval;
1063 }
1064 
1065 int rmi_init_functions(struct rmi_driver_data *data)
1066 {
1067         struct rmi_device *rmi_dev = data->rmi_dev;
1068         struct device *dev = &rmi_dev->dev;
1069         int irq_count = 0;
1070         int retval;
1071 
1072         rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Creating functions.\n", __func__);
1073         retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_create_function);
1074         if (retval < 0) {
1075                 dev_err(dev, "Function creation failed with code %d.\n",
1076                         retval);
1077                 goto err_destroy_functions;
1078         }
1079 
1080         if (!data->f01_container) {
1081                 dev_err(dev, "Missing F01 container!\n");
1082                 retval = -EINVAL;
1083                 goto err_destroy_functions;
1084         }
1085 
1086         retval = rmi_read_block(rmi_dev,
1087                                 data->f01_container->fd.control_base_addr + 1,
1088                                 data->current_irq_mask, data->num_of_irq_regs);
1089         if (retval < 0) {
1090                 dev_err(dev, "%s: Failed to read current IRQ mask.\n",
1091                         __func__);
1092                 goto err_destroy_functions;
1093         }
1094 
1095         return 0;
1096 
1097 err_destroy_functions:
1098         rmi_free_function_list(rmi_dev);
1099         return retval;
1100 }
1101 
1102 static int rmi_driver_probe(struct device *dev)
1103 {
1104         struct rmi_driver *rmi_driver;
1105         struct rmi_driver_data *data;
1106         struct rmi_device_platform_data *pdata;
1107         struct rmi_device *rmi_dev;
1108         int retval;
1109 
1110         rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Starting probe.\n",
1111                         __func__);
1112 
1113         if (!rmi_is_physical_device(dev)) {
1114                 rmi_dbg(RMI_DEBUG_CORE, dev, "Not a physical device.\n");
1115                 return -ENODEV;
1116         }
1117 
1118         rmi_dev = to_rmi_device(dev);
1119         rmi_driver = to_rmi_driver(dev->driver);
1120         rmi_dev->driver = rmi_driver;
1121 
1122         pdata = rmi_get_platform_data(rmi_dev);
1123 
1124         if (rmi_dev->xport->dev->of_node) {
1125                 retval = rmi_driver_of_probe(rmi_dev->xport->dev, pdata);
1126                 if (retval)
1127                         return retval;
1128         }
1129 
1130         data = devm_kzalloc(dev, sizeof(struct rmi_driver_data), GFP_KERNEL);
1131         if (!data)
1132                 return -ENOMEM;
1133 
1134         INIT_LIST_HEAD(&data->function_list);
1135         data->rmi_dev = rmi_dev;
1136         dev_set_drvdata(&rmi_dev->dev, data);
1137 
1138         /*
1139          * Right before a warm boot, the sensor might be in some unusual state,
1140          * such as F54 diagnostics, or F34 bootloader mode after a firmware
1141          * or configuration update.  In order to clear the sensor to a known
1142          * state and/or apply any updates, we issue a initial reset to clear any
1143          * previous settings and force it into normal operation.
1144          *
1145          * We have to do this before actually building the PDT because
1146          * the reflash updates (if any) might cause various registers to move
1147          * around.
1148          *
1149          * For a number of reasons, this initial reset may fail to return
1150          * within the specified time, but we'll still be able to bring up the
1151          * driver normally after that failure.  This occurs most commonly in
1152          * a cold boot situation (where then firmware takes longer to come up
1153          * than from a warm boot) and the reset_delay_ms in the platform data
1154          * has been set too short to accommodate that.  Since the sensor will
1155          * eventually come up and be usable, we don't want to just fail here
1156          * and leave the customer's device unusable.  So we warn them, and
1157          * continue processing.
1158          */
1159         retval = rmi_scan_pdt(rmi_dev, NULL, rmi_initial_reset);
1160         if (retval < 0)
1161                 dev_warn(dev, "RMI initial reset failed! Continuing in spite of this.\n");
1162 
1163         retval = rmi_read(rmi_dev, PDT_PROPERTIES_LOCATION, &data->pdt_props);
1164         if (retval < 0) {
1165                 /*
1166                  * we'll print out a warning and continue since
1167                  * failure to get the PDT properties is not a cause to fail
1168                  */
1169                 dev_warn(dev, "Could not read PDT properties from %#06x (code %d). Assuming 0x00.\n",
1170                          PDT_PROPERTIES_LOCATION, retval);
1171         }
1172 
1173         mutex_init(&data->irq_mutex);
1174         mutex_init(&data->enabled_mutex);
1175 
1176         retval = rmi_probe_interrupts(data);
1177         if (retval)
1178                 goto err;
1179 
1180         if (rmi_dev->xport->input) {
1181                 /*
1182                  * The transport driver already has an input device.
1183                  * In some cases it is preferable to reuse the transport
1184                  * devices input device instead of creating a new one here.
1185                  * One example is some HID touchpads report "pass-through"
1186                  * button events are not reported by rmi registers.
1187                  */
1188                 data->input = rmi_dev->xport->input;
1189         } else {
1190                 data->input = devm_input_allocate_device(dev);
1191                 if (!data->input) {
1192                         dev_err(dev, "%s: Failed to allocate input device.\n",
1193                                 __func__);
1194                         retval = -ENOMEM;
1195                         goto err;
1196                 }
1197                 rmi_driver_set_input_params(rmi_dev, data->input);
1198                 data->input->phys = devm_kasprintf(dev, GFP_KERNEL,
1199                                                 "%s/input0", dev_name(dev));
1200         }
1201 
1202         retval = rmi_init_functions(data);
1203         if (retval)
1204                 goto err;
1205 
1206         retval = rmi_f34_create_sysfs(rmi_dev);
1207         if (retval)
1208                 goto err;
1209 
1210         if (data->input) {
1211                 rmi_driver_set_input_name(rmi_dev, data->input);
1212                 if (!rmi_dev->xport->input) {
1213                         retval = input_register_device(data->input);
1214                         if (retval) {
1215                                 dev_err(dev, "%s: Failed to register input device.\n",
1216                                         __func__);
1217                                 goto err_destroy_functions;
1218                         }
1219                 }
1220         }
1221 
1222         retval = rmi_irq_init(rmi_dev);
1223         if (retval < 0)
1224                 goto err_destroy_functions;
1225 
1226         if (data->f01_container->dev.driver) {
1227                 /* Driver already bound, so enable ATTN now. */
1228                 retval = rmi_enable_sensor(rmi_dev);
1229                 if (retval)
1230                         goto err_disable_irq;
1231         }
1232 
1233         return 0;
1234 
1235 err_disable_irq:
1236         rmi_disable_irq(rmi_dev, false);
1237 err_destroy_functions:
1238         rmi_free_function_list(rmi_dev);
1239 err:
1240         return retval;
1241 }
1242 
1243 static struct rmi_driver rmi_physical_driver = {
1244         .driver = {
1245                 .owner  = THIS_MODULE,
1246                 .name   = "rmi4_physical",
1247                 .bus    = &rmi_bus_type,
1248                 .probe = rmi_driver_probe,
1249                 .remove = rmi_driver_remove,
1250         },
1251         .reset_handler = rmi_driver_reset_handler,
1252         .clear_irq_bits = rmi_driver_clear_irq_bits,
1253         .set_irq_bits = rmi_driver_set_irq_bits,
1254         .set_input_params = rmi_driver_set_input_params,
1255 };
1256 
1257 bool rmi_is_physical_driver(struct device_driver *drv)
1258 {
1259         return drv == &rmi_physical_driver.driver;
1260 }
1261 
1262 int __init rmi_register_physical_driver(void)
1263 {
1264         int error;
1265 
1266         error = driver_register(&rmi_physical_driver.driver);
1267         if (error) {
1268                 pr_err("%s: driver register failed, code=%d.\n", __func__,
1269                        error);
1270                 return error;
1271         }
1272 
1273         return 0;
1274 }
1275 
1276 void __exit rmi_unregister_physical_driver(void)
1277 {
1278         driver_unregister(&rmi_physical_driver.driver);
1279 }

/* [<][>][^][v][top][bottom][index][help] */