root/drivers/memory/emif.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. do_emif_regdump_show
  2. emif_regdump_show
  3. emif_regdump_open
  4. emif_mr4_show
  5. emif_mr4_open
  6. emif_debugfs_init
  7. emif_debugfs_exit
  8. emif_debugfs_init
  9. emif_debugfs_exit
  10. set_ddr_clk_period
  11. get_emif_bus_width
  12. get_cl
  13. set_lpmode
  14. do_freq_update
  15. get_addressing_table
  16. get_timings_table
  17. get_sdram_ref_ctrl_shdw
  18. get_sdram_tim_1_shdw
  19. get_sdram_tim_1_shdw_derated
  20. get_sdram_tim_2_shdw
  21. get_sdram_tim_3_shdw
  22. get_zq_config_reg
  23. get_temp_alert_config
  24. get_read_idle_ctrl_shdw
  25. get_dll_calib_ctrl_shdw
  26. get_ddr_phy_ctrl_1_attilaphy_4d
  27. get_phy_ctrl_1_intelliphy_4d5
  28. get_ext_phy_ctrl_2_intelliphy_4d5
  29. get_ext_phy_ctrl_3_intelliphy_4d5
  30. get_ext_phy_ctrl_4_intelliphy_4d5
  31. get_pwr_mgmt_ctrl
  32. get_temperature_level
  33. setup_registers
  34. setup_volt_sensitive_regs
  35. setup_temperature_sensitive_regs
  36. handle_temp_alert
  37. emif_interrupt_handler
  38. emif_threaded_isr
  39. clear_all_interrupts
  40. disable_and_clear_all_interrupts
  41. setup_interrupts
  42. emif_onetime_settings
  43. get_default_timings
  44. is_dev_data_valid
  45. is_custom_config_valid
  46. of_get_custom_configs
  47. of_get_ddr_info
  48. of_get_memory_device_details
  49. of_get_memory_device_details
  50. get_device_details
  51. emif_probe
  52. emif_remove
  53. emif_shutdown
  54. get_emif_reg_values
  55. get_regs
  56. do_volt_notify_handling
  57. volt_notify_handling
  58. do_freq_pre_notify_handling
  59. freq_pre_notify_handling
  60. do_freq_post_notify_handling
  61. freq_post_notify_handling

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * EMIF driver
   4  *
   5  * Copyright (C) 2012 Texas Instruments, Inc.
   6  *
   7  * Aneesh V <aneesh@ti.com>
   8  * Santosh Shilimkar <santosh.shilimkar@ti.com>
   9  */
  10 #include <linux/err.h>
  11 #include <linux/kernel.h>
  12 #include <linux/reboot.h>
  13 #include <linux/platform_data/emif_plat.h>
  14 #include <linux/io.h>
  15 #include <linux/device.h>
  16 #include <linux/platform_device.h>
  17 #include <linux/interrupt.h>
  18 #include <linux/slab.h>
  19 #include <linux/of.h>
  20 #include <linux/debugfs.h>
  21 #include <linux/seq_file.h>
  22 #include <linux/module.h>
  23 #include <linux/list.h>
  24 #include <linux/spinlock.h>
  25 #include <linux/pm.h>
  26 
  27 #include "emif.h"
  28 #include "jedec_ddr.h"
  29 #include "of_memory.h"
  30 
  31 /**
  32  * struct emif_data - Per device static data for driver's use
  33  * @duplicate:                  Whether the DDR devices attached to this EMIF
  34  *                              instance are exactly same as that on EMIF1. In
  35  *                              this case we can save some memory and processing
  36  * @temperature_level:          Maximum temperature of LPDDR2 devices attached
  37  *                              to this EMIF - read from MR4 register. If there
  38  *                              are two devices attached to this EMIF, this
  39  *                              value is the maximum of the two temperature
  40  *                              levels.
  41  * @node:                       node in the device list
  42  * @base:                       base address of memory-mapped IO registers.
  43  * @dev:                        device pointer.
  44  * @addressing                  table with addressing information from the spec
  45  * @regs_cache:                 An array of 'struct emif_regs' that stores
  46  *                              calculated register values for different
  47  *                              frequencies, to avoid re-calculating them on
  48  *                              each DVFS transition.
  49  * @curr_regs:                  The set of register values used in the last
  50  *                              frequency change (i.e. corresponding to the
  51  *                              frequency in effect at the moment)
  52  * @plat_data:                  Pointer to saved platform data.
  53  * @debugfs_root:               dentry to the root folder for EMIF in debugfs
  54  * @np_ddr:                     Pointer to ddr device tree node
  55  */
  56 struct emif_data {
  57         u8                              duplicate;
  58         u8                              temperature_level;
  59         u8                              lpmode;
  60         struct list_head                node;
  61         unsigned long                   irq_state;
  62         void __iomem                    *base;
  63         struct device                   *dev;
  64         const struct lpddr2_addressing  *addressing;
  65         struct emif_regs                *regs_cache[EMIF_MAX_NUM_FREQUENCIES];
  66         struct emif_regs                *curr_regs;
  67         struct emif_platform_data       *plat_data;
  68         struct dentry                   *debugfs_root;
  69         struct device_node              *np_ddr;
  70 };
  71 
  72 static struct emif_data *emif1;
  73 static spinlock_t       emif_lock;
  74 static unsigned long    irq_state;
  75 static u32              t_ck; /* DDR clock period in ps */
  76 static LIST_HEAD(device_list);
  77 
  78 #ifdef CONFIG_DEBUG_FS
  79 static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif,
  80         struct emif_regs *regs)
  81 {
  82         u32 type = emif->plat_data->device_info->type;
  83         u32 ip_rev = emif->plat_data->ip_rev;
  84 
  85         seq_printf(s, "EMIF register cache dump for %dMHz\n",
  86                 regs->freq/1000000);
  87 
  88         seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw);
  89         seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw);
  90         seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw);
  91         seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw);
  92 
  93         if (ip_rev == EMIF_4D) {
  94                 seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n",
  95                         regs->read_idle_ctrl_shdw_normal);
  96                 seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n",
  97                         regs->read_idle_ctrl_shdw_volt_ramp);
  98         } else if (ip_rev == EMIF_4D5) {
  99                 seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n",
 100                         regs->dll_calib_ctrl_shdw_normal);
 101                 seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n",
 102                         regs->dll_calib_ctrl_shdw_volt_ramp);
 103         }
 104 
 105         if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
 106                 seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n",
 107                         regs->ref_ctrl_shdw_derated);
 108                 seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n",
 109                         regs->sdram_tim1_shdw_derated);
 110                 seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n",
 111                         regs->sdram_tim3_shdw_derated);
 112         }
 113 }
 114 
 115 static int emif_regdump_show(struct seq_file *s, void *unused)
 116 {
 117         struct emif_data        *emif   = s->private;
 118         struct emif_regs        **regs_cache;
 119         int                     i;
 120 
 121         if (emif->duplicate)
 122                 regs_cache = emif1->regs_cache;
 123         else
 124                 regs_cache = emif->regs_cache;
 125 
 126         for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
 127                 do_emif_regdump_show(s, emif, regs_cache[i]);
 128                 seq_putc(s, '\n');
 129         }
 130 
 131         return 0;
 132 }
 133 
 134 static int emif_regdump_open(struct inode *inode, struct file *file)
 135 {
 136         return single_open(file, emif_regdump_show, inode->i_private);
 137 }
 138 
 139 static const struct file_operations emif_regdump_fops = {
 140         .open                   = emif_regdump_open,
 141         .read                   = seq_read,
 142         .release                = single_release,
 143 };
 144 
 145 static int emif_mr4_show(struct seq_file *s, void *unused)
 146 {
 147         struct emif_data *emif = s->private;
 148 
 149         seq_printf(s, "MR4=%d\n", emif->temperature_level);
 150         return 0;
 151 }
 152 
 153 static int emif_mr4_open(struct inode *inode, struct file *file)
 154 {
 155         return single_open(file, emif_mr4_show, inode->i_private);
 156 }
 157 
 158 static const struct file_operations emif_mr4_fops = {
 159         .open                   = emif_mr4_open,
 160         .read                   = seq_read,
 161         .release                = single_release,
 162 };
 163 
 164 static int __init_or_module emif_debugfs_init(struct emif_data *emif)
 165 {
 166         struct dentry   *dentry;
 167         int             ret;
 168 
 169         dentry = debugfs_create_dir(dev_name(emif->dev), NULL);
 170         if (!dentry) {
 171                 ret = -ENOMEM;
 172                 goto err0;
 173         }
 174         emif->debugfs_root = dentry;
 175 
 176         dentry = debugfs_create_file("regcache_dump", S_IRUGO,
 177                         emif->debugfs_root, emif, &emif_regdump_fops);
 178         if (!dentry) {
 179                 ret = -ENOMEM;
 180                 goto err1;
 181         }
 182 
 183         dentry = debugfs_create_file("mr4", S_IRUGO,
 184                         emif->debugfs_root, emif, &emif_mr4_fops);
 185         if (!dentry) {
 186                 ret = -ENOMEM;
 187                 goto err1;
 188         }
 189 
 190         return 0;
 191 err1:
 192         debugfs_remove_recursive(emif->debugfs_root);
 193 err0:
 194         return ret;
 195 }
 196 
 197 static void __exit emif_debugfs_exit(struct emif_data *emif)
 198 {
 199         debugfs_remove_recursive(emif->debugfs_root);
 200         emif->debugfs_root = NULL;
 201 }
 202 #else
 203 static inline int __init_or_module emif_debugfs_init(struct emif_data *emif)
 204 {
 205         return 0;
 206 }
 207 
 208 static inline void __exit emif_debugfs_exit(struct emif_data *emif)
 209 {
 210 }
 211 #endif
 212 
 213 /*
 214  * Calculate the period of DDR clock from frequency value
 215  */
 216 static void set_ddr_clk_period(u32 freq)
 217 {
 218         /* Divide 10^12 by frequency to get period in ps */
 219         t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq);
 220 }
 221 
 222 /*
 223  * Get bus width used by EMIF. Note that this may be different from the
 224  * bus width of the DDR devices used. For instance two 16-bit DDR devices
 225  * may be connected to a given CS of EMIF. In this case bus width as far
 226  * as EMIF is concerned is 32, where as the DDR bus width is 16 bits.
 227  */
 228 static u32 get_emif_bus_width(struct emif_data *emif)
 229 {
 230         u32             width;
 231         void __iomem    *base = emif->base;
 232 
 233         width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK)
 234                         >> NARROW_MODE_SHIFT;
 235         width = width == 0 ? 32 : 16;
 236 
 237         return width;
 238 }
 239 
 240 /*
 241  * Get the CL from SDRAM_CONFIG register
 242  */
 243 static u32 get_cl(struct emif_data *emif)
 244 {
 245         u32             cl;
 246         void __iomem    *base = emif->base;
 247 
 248         cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT;
 249 
 250         return cl;
 251 }
 252 
 253 static void set_lpmode(struct emif_data *emif, u8 lpmode)
 254 {
 255         u32 temp;
 256         void __iomem *base = emif->base;
 257 
 258         /*
 259          * Workaround for errata i743 - LPDDR2 Power-Down State is Not
 260          * Efficient
 261          *
 262          * i743 DESCRIPTION:
 263          * The EMIF supports power-down state for low power. The EMIF
 264          * automatically puts the SDRAM into power-down after the memory is
 265          * not accessed for a defined number of cycles and the
 266          * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set to 0x4.
 267          * As the EMIF supports automatic output impedance calibration, a ZQ
 268          * calibration long command is issued every time it exits active
 269          * power-down and precharge power-down modes. The EMIF waits and
 270          * blocks any other command during this calibration.
 271          * The EMIF does not allow selective disabling of ZQ calibration upon
 272          * exit of power-down mode. Due to very short periods of power-down
 273          * cycles, ZQ calibration overhead creates bandwidth issues and
 274          * increases overall system power consumption. On the other hand,
 275          * issuing ZQ calibration long commands when exiting self-refresh is
 276          * still required.
 277          *
 278          * WORKAROUND
 279          * Because there is no power consumption benefit of the power-down due
 280          * to the calibration and there is a performance risk, the guideline
 281          * is to not allow power-down state and, therefore, to not have set
 282          * the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field to 0x4.
 283          */
 284         if ((emif->plat_data->ip_rev == EMIF_4D) &&
 285             (EMIF_LP_MODE_PWR_DN == lpmode)) {
 286                 WARN_ONCE(1,
 287                           "REG_LP_MODE = LP_MODE_PWR_DN(4) is prohibited by"
 288                           "erratum i743 switch to LP_MODE_SELF_REFRESH(2)\n");
 289                 /* rollback LP_MODE to Self-refresh mode */
 290                 lpmode = EMIF_LP_MODE_SELF_REFRESH;
 291         }
 292 
 293         temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL);
 294         temp &= ~LP_MODE_MASK;
 295         temp |= (lpmode << LP_MODE_SHIFT);
 296         writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL);
 297 }
 298 
 299 static void do_freq_update(void)
 300 {
 301         struct emif_data *emif;
 302 
 303         /*
 304          * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE
 305          *
 306          * i728 DESCRIPTION:
 307          * The EMIF automatically puts the SDRAM into self-refresh mode
 308          * after the EMIF has not performed accesses during
 309          * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles
 310          * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set
 311          * to 0x2. If during a small window the following three events
 312          * occur:
 313          * - The SR_TIMING counter expires
 314          * - And frequency change is requested
 315          * - And OCP access is requested
 316          * Then it causes instable clock on the DDR interface.
 317          *
 318          * WORKAROUND
 319          * To avoid the occurrence of the three events, the workaround
 320          * is to disable the self-refresh when requesting a frequency
 321          * change. Before requesting a frequency change the software must
 322          * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the
 323          * frequency change has been done, the software can reprogram
 324          * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2
 325          */
 326         list_for_each_entry(emif, &device_list, node) {
 327                 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
 328                         set_lpmode(emif, EMIF_LP_MODE_DISABLE);
 329         }
 330 
 331         /*
 332          * TODO: Do FREQ_UPDATE here when an API
 333          * is available for this as part of the new
 334          * clock framework
 335          */
 336 
 337         list_for_each_entry(emif, &device_list, node) {
 338                 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
 339                         set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
 340         }
 341 }
 342 
 343 /* Find addressing table entry based on the device's type and density */
 344 static const struct lpddr2_addressing *get_addressing_table(
 345         const struct ddr_device_info *device_info)
 346 {
 347         u32             index, type, density;
 348 
 349         type = device_info->type;
 350         density = device_info->density;
 351 
 352         switch (type) {
 353         case DDR_TYPE_LPDDR2_S4:
 354                 index = density - 1;
 355                 break;
 356         case DDR_TYPE_LPDDR2_S2:
 357                 switch (density) {
 358                 case DDR_DENSITY_1Gb:
 359                 case DDR_DENSITY_2Gb:
 360                         index = density + 3;
 361                         break;
 362                 default:
 363                         index = density - 1;
 364                 }
 365                 break;
 366         default:
 367                 return NULL;
 368         }
 369 
 370         return &lpddr2_jedec_addressing_table[index];
 371 }
 372 
 373 /*
 374  * Find the the right timing table from the array of timing
 375  * tables of the device using DDR clock frequency
 376  */
 377 static const struct lpddr2_timings *get_timings_table(struct emif_data *emif,
 378                 u32 freq)
 379 {
 380         u32                             i, min, max, freq_nearest;
 381         const struct lpddr2_timings     *timings = NULL;
 382         const struct lpddr2_timings     *timings_arr = emif->plat_data->timings;
 383         struct                          device *dev = emif->dev;
 384 
 385         /* Start with a very high frequency - 1GHz */
 386         freq_nearest = 1000000000;
 387 
 388         /*
 389          * Find the timings table such that:
 390          *  1. the frequency range covers the required frequency(safe) AND
 391          *  2. the max_freq is closest to the required frequency(optimal)
 392          */
 393         for (i = 0; i < emif->plat_data->timings_arr_size; i++) {
 394                 max = timings_arr[i].max_freq;
 395                 min = timings_arr[i].min_freq;
 396                 if ((freq >= min) && (freq <= max) && (max < freq_nearest)) {
 397                         freq_nearest = max;
 398                         timings = &timings_arr[i];
 399                 }
 400         }
 401 
 402         if (!timings)
 403                 dev_err(dev, "%s: couldn't find timings for - %dHz\n",
 404                         __func__, freq);
 405 
 406         dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n",
 407                 __func__, freq, freq_nearest);
 408 
 409         return timings;
 410 }
 411 
 412 static u32 get_sdram_ref_ctrl_shdw(u32 freq,
 413                 const struct lpddr2_addressing *addressing)
 414 {
 415         u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi;
 416 
 417         /* Scale down frequency and t_refi to avoid overflow */
 418         freq_khz = freq / 1000;
 419         t_refi = addressing->tREFI_ns / 100;
 420 
 421         /*
 422          * refresh rate to be set is 'tREFI(in us) * freq in MHz
 423          * division by 10000 to account for change in units
 424          */
 425         val = t_refi * freq_khz / 10000;
 426         ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT;
 427 
 428         return ref_ctrl_shdw;
 429 }
 430 
 431 static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings,
 432                 const struct lpddr2_min_tck *min_tck,
 433                 const struct lpddr2_addressing *addressing)
 434 {
 435         u32 tim1 = 0, val = 0;
 436 
 437         val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
 438         tim1 |= val << T_WTR_SHIFT;
 439 
 440         if (addressing->num_banks == B8)
 441                 val = DIV_ROUND_UP(timings->tFAW, t_ck*4);
 442         else
 443                 val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck));
 444         tim1 |= (val - 1) << T_RRD_SHIFT;
 445 
 446         val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1;
 447         tim1 |= val << T_RC_SHIFT;
 448 
 449         val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck));
 450         tim1 |= (val - 1) << T_RAS_SHIFT;
 451 
 452         val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
 453         tim1 |= val << T_WR_SHIFT;
 454 
 455         val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1;
 456         tim1 |= val << T_RCD_SHIFT;
 457 
 458         val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1;
 459         tim1 |= val << T_RP_SHIFT;
 460 
 461         return tim1;
 462 }
 463 
 464 static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings,
 465                 const struct lpddr2_min_tck *min_tck,
 466                 const struct lpddr2_addressing *addressing)
 467 {
 468         u32 tim1 = 0, val = 0;
 469 
 470         val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
 471         tim1 = val << T_WTR_SHIFT;
 472 
 473         /*
 474          * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps
 475          * to tFAW for de-rating
 476          */
 477         if (addressing->num_banks == B8) {
 478                 val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1;
 479         } else {
 480                 val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck);
 481                 val = max(min_tck->tRRD, val) - 1;
 482         }
 483         tim1 |= val << T_RRD_SHIFT;
 484 
 485         val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck);
 486         tim1 |= (val - 1) << T_RC_SHIFT;
 487 
 488         val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck);
 489         val = max(min_tck->tRASmin, val) - 1;
 490         tim1 |= val << T_RAS_SHIFT;
 491 
 492         val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
 493         tim1 |= val << T_WR_SHIFT;
 494 
 495         val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck));
 496         tim1 |= (val - 1) << T_RCD_SHIFT;
 497 
 498         val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck));
 499         tim1 |= (val - 1) << T_RP_SHIFT;
 500 
 501         return tim1;
 502 }
 503 
 504 static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings,
 505                 const struct lpddr2_min_tck *min_tck,
 506                 const struct lpddr2_addressing *addressing,
 507                 u32 type)
 508 {
 509         u32 tim2 = 0, val = 0;
 510 
 511         val = min_tck->tCKE - 1;
 512         tim2 |= val << T_CKE_SHIFT;
 513 
 514         val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1;
 515         tim2 |= val << T_RTP_SHIFT;
 516 
 517         /* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */
 518         val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1;
 519         tim2 |= val << T_XSNR_SHIFT;
 520 
 521         /* XSRD same as XSNR for LPDDR2 */
 522         tim2 |= val << T_XSRD_SHIFT;
 523 
 524         val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1;
 525         tim2 |= val << T_XP_SHIFT;
 526 
 527         return tim2;
 528 }
 529 
 530 static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings,
 531                 const struct lpddr2_min_tck *min_tck,
 532                 const struct lpddr2_addressing *addressing,
 533                 u32 type, u32 ip_rev, u32 derated)
 534 {
 535         u32 tim3 = 0, val = 0, t_dqsck;
 536 
 537         val = timings->tRAS_max_ns / addressing->tREFI_ns - 1;
 538         val = val > 0xF ? 0xF : val;
 539         tim3 |= val << T_RAS_MAX_SHIFT;
 540 
 541         val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1;
 542         tim3 |= val << T_RFC_SHIFT;
 543 
 544         t_dqsck = (derated == EMIF_DERATED_TIMINGS) ?
 545                 timings->tDQSCK_max_derated : timings->tDQSCK_max;
 546         if (ip_rev == EMIF_4D5)
 547                 val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1;
 548         else
 549                 val = DIV_ROUND_UP(t_dqsck, t_ck) - 1;
 550 
 551         tim3 |= val << T_TDQSCKMAX_SHIFT;
 552 
 553         val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1;
 554         tim3 |= val << ZQ_ZQCS_SHIFT;
 555 
 556         val = DIV_ROUND_UP(timings->tCKESR, t_ck);
 557         val = max(min_tck->tCKESR, val) - 1;
 558         tim3 |= val << T_CKESR_SHIFT;
 559 
 560         if (ip_rev == EMIF_4D5) {
 561                 tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT;
 562 
 563                 val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1;
 564                 tim3 |= val << T_PDLL_UL_SHIFT;
 565         }
 566 
 567         return tim3;
 568 }
 569 
 570 static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing,
 571                 bool cs1_used, bool cal_resistors_per_cs)
 572 {
 573         u32 zq = 0, val = 0;
 574 
 575         val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns;
 576         zq |= val << ZQ_REFINTERVAL_SHIFT;
 577 
 578         val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1;
 579         zq |= val << ZQ_ZQCL_MULT_SHIFT;
 580 
 581         val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1;
 582         zq |= val << ZQ_ZQINIT_MULT_SHIFT;
 583 
 584         zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT;
 585 
 586         if (cal_resistors_per_cs)
 587                 zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT;
 588         else
 589                 zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT;
 590 
 591         zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */
 592 
 593         val = cs1_used ? 1 : 0;
 594         zq |= val << ZQ_CS1EN_SHIFT;
 595 
 596         return zq;
 597 }
 598 
 599 static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing,
 600                 const struct emif_custom_configs *custom_configs, bool cs1_used,
 601                 u32 sdram_io_width, u32 emif_bus_width)
 602 {
 603         u32 alert = 0, interval, devcnt;
 604 
 605         if (custom_configs && (custom_configs->mask &
 606                                 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL))
 607                 interval = custom_configs->temp_alert_poll_interval_ms;
 608         else
 609                 interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS;
 610 
 611         interval *= 1000000;                    /* Convert to ns */
 612         interval /= addressing->tREFI_ns;       /* Convert to refresh cycles */
 613         alert |= (interval << TA_REFINTERVAL_SHIFT);
 614 
 615         /*
 616          * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width
 617          * also to this form and subtract to get TA_DEVCNT, which is
 618          * in log2(x) form.
 619          */
 620         emif_bus_width = __fls(emif_bus_width) - 1;
 621         devcnt = emif_bus_width - sdram_io_width;
 622         alert |= devcnt << TA_DEVCNT_SHIFT;
 623 
 624         /* DEVWDT is in 'log2(x) - 3' form */
 625         alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT;
 626 
 627         alert |= 1 << TA_SFEXITEN_SHIFT;
 628         alert |= 1 << TA_CS0EN_SHIFT;
 629         alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT;
 630 
 631         return alert;
 632 }
 633 
 634 static u32 get_read_idle_ctrl_shdw(u8 volt_ramp)
 635 {
 636         u32 idle = 0, val = 0;
 637 
 638         /*
 639          * Maximum value in normal conditions and increased frequency
 640          * when voltage is ramping
 641          */
 642         if (volt_ramp)
 643                 val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1;
 644         else
 645                 val = 0x1FF;
 646 
 647         /*
 648          * READ_IDLE_CTRL register in EMIF4D has same offset and fields
 649          * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts
 650          */
 651         idle |= val << DLL_CALIB_INTERVAL_SHIFT;
 652         idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT;
 653 
 654         return idle;
 655 }
 656 
 657 static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp)
 658 {
 659         u32 calib = 0, val = 0;
 660 
 661         if (volt_ramp == DDR_VOLTAGE_RAMPING)
 662                 val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1;
 663         else
 664                 val = 0; /* Disabled when voltage is stable */
 665 
 666         calib |= val << DLL_CALIB_INTERVAL_SHIFT;
 667         calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT;
 668 
 669         return calib;
 670 }
 671 
 672 static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings,
 673         u32 freq, u8 RL)
 674 {
 675         u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0;
 676 
 677         val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1;
 678         phy |= val << READ_LATENCY_SHIFT_4D;
 679 
 680         if (freq <= 100000000)
 681                 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY;
 682         else if (freq <= 200000000)
 683                 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY;
 684         else
 685                 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY;
 686 
 687         phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D;
 688 
 689         return phy;
 690 }
 691 
 692 static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl)
 693 {
 694         u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay;
 695 
 696         /*
 697          * DLL operates at 266 MHz. If DDR frequency is near 266 MHz,
 698          * half-delay is not needed else set half-delay
 699          */
 700         if (freq >= 265000000 && freq < 267000000)
 701                 half_delay = 0;
 702         else
 703                 half_delay = 1;
 704 
 705         phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5;
 706         phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS,
 707                         t_ck) - 1) << READ_LATENCY_SHIFT_4D5);
 708 
 709         return phy;
 710 }
 711 
 712 static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void)
 713 {
 714         u32 fifo_we_slave_ratio;
 715 
 716         fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
 717                 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
 718 
 719         return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 |
 720                 fifo_we_slave_ratio << 22;
 721 }
 722 
 723 static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void)
 724 {
 725         u32 fifo_we_slave_ratio;
 726 
 727         fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
 728                 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
 729 
 730         return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 |
 731                 fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23;
 732 }
 733 
 734 static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void)
 735 {
 736         u32 fifo_we_slave_ratio;
 737 
 738         fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
 739                 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
 740 
 741         return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 |
 742                 fifo_we_slave_ratio << 13;
 743 }
 744 
 745 static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev)
 746 {
 747         u32 pwr_mgmt_ctrl       = 0, timeout;
 748         u32 lpmode              = EMIF_LP_MODE_SELF_REFRESH;
 749         u32 timeout_perf        = EMIF_LP_MODE_TIMEOUT_PERFORMANCE;
 750         u32 timeout_pwr         = EMIF_LP_MODE_TIMEOUT_POWER;
 751         u32 freq_threshold      = EMIF_LP_MODE_FREQ_THRESHOLD;
 752         u32 mask;
 753         u8 shift;
 754 
 755         struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs;
 756 
 757         if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) {
 758                 lpmode          = cust_cfgs->lpmode;
 759                 timeout_perf    = cust_cfgs->lpmode_timeout_performance;
 760                 timeout_pwr     = cust_cfgs->lpmode_timeout_power;
 761                 freq_threshold  = cust_cfgs->lpmode_freq_threshold;
 762         }
 763 
 764         /* Timeout based on DDR frequency */
 765         timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr;
 766 
 767         /*
 768          * The value to be set in register is "log2(timeout) - 3"
 769          * if timeout < 16 load 0 in register
 770          * if timeout is not a power of 2, round to next highest power of 2
 771          */
 772         if (timeout < 16) {
 773                 timeout = 0;
 774         } else {
 775                 if (timeout & (timeout - 1))
 776                         timeout <<= 1;
 777                 timeout = __fls(timeout) - 3;
 778         }
 779 
 780         switch (lpmode) {
 781         case EMIF_LP_MODE_CLOCK_STOP:
 782                 shift = CS_TIM_SHIFT;
 783                 mask = CS_TIM_MASK;
 784                 break;
 785         case EMIF_LP_MODE_SELF_REFRESH:
 786                 /* Workaround for errata i735 */
 787                 if (timeout < 6)
 788                         timeout = 6;
 789 
 790                 shift = SR_TIM_SHIFT;
 791                 mask = SR_TIM_MASK;
 792                 break;
 793         case EMIF_LP_MODE_PWR_DN:
 794                 shift = PD_TIM_SHIFT;
 795                 mask = PD_TIM_MASK;
 796                 break;
 797         case EMIF_LP_MODE_DISABLE:
 798         default:
 799                 mask = 0;
 800                 shift = 0;
 801                 break;
 802         }
 803         /* Round to maximum in case of overflow, BUT warn! */
 804         if (lpmode != EMIF_LP_MODE_DISABLE && timeout > mask >> shift) {
 805                 pr_err("TIMEOUT Overflow - lpmode=%d perf=%d pwr=%d freq=%d\n",
 806                        lpmode,
 807                        timeout_perf,
 808                        timeout_pwr,
 809                        freq_threshold);
 810                 WARN(1, "timeout=0x%02x greater than 0x%02x. Using max\n",
 811                      timeout, mask >> shift);
 812                 timeout = mask >> shift;
 813         }
 814 
 815         /* Setup required timing */
 816         pwr_mgmt_ctrl = (timeout << shift) & mask;
 817         /* setup a default mask for rest of the modes */
 818         pwr_mgmt_ctrl |= (SR_TIM_MASK | CS_TIM_MASK | PD_TIM_MASK) &
 819                           ~mask;
 820 
 821         /* No CS_TIM in EMIF_4D5 */
 822         if (ip_rev == EMIF_4D5)
 823                 pwr_mgmt_ctrl &= ~CS_TIM_MASK;
 824 
 825         pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT;
 826 
 827         return pwr_mgmt_ctrl;
 828 }
 829 
 830 /*
 831  * Get the temperature level of the EMIF instance:
 832  * Reads the MR4 register of attached SDRAM parts to find out the temperature
 833  * level. If there are two parts attached(one on each CS), then the temperature
 834  * level for the EMIF instance is the higher of the two temperatures.
 835  */
 836 static void get_temperature_level(struct emif_data *emif)
 837 {
 838         u32             temp, temperature_level;
 839         void __iomem    *base;
 840 
 841         base = emif->base;
 842 
 843         /* Read mode register 4 */
 844         writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG);
 845         temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
 846         temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >>
 847                                 MR4_SDRAM_REF_RATE_SHIFT;
 848 
 849         if (emif->plat_data->device_info->cs1_used) {
 850                 writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG);
 851                 temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
 852                 temp = (temp & MR4_SDRAM_REF_RATE_MASK)
 853                                 >> MR4_SDRAM_REF_RATE_SHIFT;
 854                 temperature_level = max(temp, temperature_level);
 855         }
 856 
 857         /* treat everything less than nominal(3) in MR4 as nominal */
 858         if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL))
 859                 temperature_level = SDRAM_TEMP_NOMINAL;
 860 
 861         /* if we get reserved value in MR4 persist with the existing value */
 862         if (likely(temperature_level != SDRAM_TEMP_RESERVED_4))
 863                 emif->temperature_level = temperature_level;
 864 }
 865 
 866 /*
 867  * Program EMIF shadow registers that are not dependent on temperature
 868  * or voltage
 869  */
 870 static void setup_registers(struct emif_data *emif, struct emif_regs *regs)
 871 {
 872         void __iomem    *base = emif->base;
 873 
 874         writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW);
 875         writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW);
 876         writel(regs->pwr_mgmt_ctrl_shdw,
 877                base + EMIF_POWER_MANAGEMENT_CTRL_SHDW);
 878 
 879         /* Settings specific for EMIF4D5 */
 880         if (emif->plat_data->ip_rev != EMIF_4D5)
 881                 return;
 882         writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW);
 883         writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW);
 884         writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW);
 885 }
 886 
 887 /*
 888  * When voltage ramps dll calibration and forced read idle should
 889  * happen more often
 890  */
 891 static void setup_volt_sensitive_regs(struct emif_data *emif,
 892                 struct emif_regs *regs, u32 volt_state)
 893 {
 894         u32             calib_ctrl;
 895         void __iomem    *base = emif->base;
 896 
 897         /*
 898          * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as
 899          * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_*
 900          * is an alias of the respective read_idle_ctrl_shdw_* (members of
 901          * a union). So, the below code takes care of both cases
 902          */
 903         if (volt_state == DDR_VOLTAGE_RAMPING)
 904                 calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp;
 905         else
 906                 calib_ctrl = regs->dll_calib_ctrl_shdw_normal;
 907 
 908         writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW);
 909 }
 910 
 911 /*
 912  * setup_temperature_sensitive_regs() - set the timings for temperature
 913  * sensitive registers. This happens once at initialisation time based
 914  * on the temperature at boot time and subsequently based on the temperature
 915  * alert interrupt. Temperature alert can happen when the temperature
 916  * increases or drops. So this function can have the effect of either
 917  * derating the timings or going back to nominal values.
 918  */
 919 static void setup_temperature_sensitive_regs(struct emif_data *emif,
 920                 struct emif_regs *regs)
 921 {
 922         u32             tim1, tim3, ref_ctrl, type;
 923         void __iomem    *base = emif->base;
 924         u32             temperature;
 925 
 926         type = emif->plat_data->device_info->type;
 927 
 928         tim1 = regs->sdram_tim1_shdw;
 929         tim3 = regs->sdram_tim3_shdw;
 930         ref_ctrl = regs->ref_ctrl_shdw;
 931 
 932         /* No de-rating for non-lpddr2 devices */
 933         if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4)
 934                 goto out;
 935 
 936         temperature = emif->temperature_level;
 937         if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) {
 938                 ref_ctrl = regs->ref_ctrl_shdw_derated;
 939         } else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) {
 940                 tim1 = regs->sdram_tim1_shdw_derated;
 941                 tim3 = regs->sdram_tim3_shdw_derated;
 942                 ref_ctrl = regs->ref_ctrl_shdw_derated;
 943         }
 944 
 945 out:
 946         writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW);
 947         writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW);
 948         writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW);
 949 }
 950 
 951 static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif)
 952 {
 953         u32             old_temp_level;
 954         irqreturn_t     ret = IRQ_HANDLED;
 955         struct emif_custom_configs *custom_configs;
 956 
 957         spin_lock_irqsave(&emif_lock, irq_state);
 958         old_temp_level = emif->temperature_level;
 959         get_temperature_level(emif);
 960 
 961         if (unlikely(emif->temperature_level == old_temp_level)) {
 962                 goto out;
 963         } else if (!emif->curr_regs) {
 964                 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
 965                 goto out;
 966         }
 967 
 968         custom_configs = emif->plat_data->custom_configs;
 969 
 970         /*
 971          * IF we detect higher than "nominal rating" from DDR sensor
 972          * on an unsupported DDR part, shutdown system
 973          */
 974         if (custom_configs && !(custom_configs->mask &
 975                                 EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART)) {
 976                 if (emif->temperature_level >= SDRAM_TEMP_HIGH_DERATE_REFRESH) {
 977                         dev_err(emif->dev,
 978                                 "%s:NOT Extended temperature capable memory."
 979                                 "Converting MR4=0x%02x as shutdown event\n",
 980                                 __func__, emif->temperature_level);
 981                         /*
 982                          * Temperature far too high - do kernel_power_off()
 983                          * from thread context
 984                          */
 985                         emif->temperature_level = SDRAM_TEMP_VERY_HIGH_SHUTDOWN;
 986                         ret = IRQ_WAKE_THREAD;
 987                         goto out;
 988                 }
 989         }
 990 
 991         if (emif->temperature_level < old_temp_level ||
 992                 emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
 993                 /*
 994                  * Temperature coming down - defer handling to thread OR
 995                  * Temperature far too high - do kernel_power_off() from
 996                  * thread context
 997                  */
 998                 ret = IRQ_WAKE_THREAD;
 999         } else {
1000                 /* Temperature is going up - handle immediately */
1001                 setup_temperature_sensitive_regs(emif, emif->curr_regs);
1002                 do_freq_update();
1003         }
1004 
1005 out:
1006         spin_unlock_irqrestore(&emif_lock, irq_state);
1007         return ret;
1008 }
1009 
1010 static irqreturn_t emif_interrupt_handler(int irq, void *dev_id)
1011 {
1012         u32                     interrupts;
1013         struct emif_data        *emif = dev_id;
1014         void __iomem            *base = emif->base;
1015         struct device           *dev = emif->dev;
1016         irqreturn_t             ret = IRQ_HANDLED;
1017 
1018         /* Save the status and clear it */
1019         interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
1020         writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
1021 
1022         /*
1023          * Handle temperature alert
1024          * Temperature alert should be same for all ports
1025          * So, it's enough to process it only for one of the ports
1026          */
1027         if (interrupts & TA_SYS_MASK)
1028                 ret = handle_temp_alert(base, emif);
1029 
1030         if (interrupts & ERR_SYS_MASK)
1031                 dev_err(dev, "Access error from SYS port - %x\n", interrupts);
1032 
1033         if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
1034                 /* Save the status and clear it */
1035                 interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS);
1036                 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS);
1037 
1038                 if (interrupts & ERR_LL_MASK)
1039                         dev_err(dev, "Access error from LL port - %x\n",
1040                                 interrupts);
1041         }
1042 
1043         return ret;
1044 }
1045 
1046 static irqreturn_t emif_threaded_isr(int irq, void *dev_id)
1047 {
1048         struct emif_data        *emif = dev_id;
1049 
1050         if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
1051                 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1052 
1053                 /* If we have Power OFF ability, use it, else try restarting */
1054                 if (pm_power_off) {
1055                         kernel_power_off();
1056                 } else {
1057                         WARN(1, "FIXME: NO pm_power_off!!! trying restart\n");
1058                         kernel_restart("SDRAM Over-temp Emergency restart");
1059                 }
1060                 return IRQ_HANDLED;
1061         }
1062 
1063         spin_lock_irqsave(&emif_lock, irq_state);
1064 
1065         if (emif->curr_regs) {
1066                 setup_temperature_sensitive_regs(emif, emif->curr_regs);
1067                 do_freq_update();
1068         } else {
1069                 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
1070         }
1071 
1072         spin_unlock_irqrestore(&emif_lock, irq_state);
1073 
1074         return IRQ_HANDLED;
1075 }
1076 
1077 static void clear_all_interrupts(struct emif_data *emif)
1078 {
1079         void __iomem    *base = emif->base;
1080 
1081         writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS),
1082                 base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
1083         if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
1084                 writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS),
1085                         base + EMIF_LL_OCP_INTERRUPT_STATUS);
1086 }
1087 
1088 static void disable_and_clear_all_interrupts(struct emif_data *emif)
1089 {
1090         void __iomem            *base = emif->base;
1091 
1092         /* Disable all interrupts */
1093         writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET),
1094                 base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR);
1095         if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
1096                 writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET),
1097                         base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR);
1098 
1099         /* Clear all interrupts */
1100         clear_all_interrupts(emif);
1101 }
1102 
1103 static int __init_or_module setup_interrupts(struct emif_data *emif, u32 irq)
1104 {
1105         u32             interrupts, type;
1106         void __iomem    *base = emif->base;
1107 
1108         type = emif->plat_data->device_info->type;
1109 
1110         clear_all_interrupts(emif);
1111 
1112         /* Enable interrupts for SYS interface */
1113         interrupts = EN_ERR_SYS_MASK;
1114         if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4)
1115                 interrupts |= EN_TA_SYS_MASK;
1116         writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET);
1117 
1118         /* Enable interrupts for LL interface */
1119         if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
1120                 /* TA need not be enabled for LL */
1121                 interrupts = EN_ERR_LL_MASK;
1122                 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET);
1123         }
1124 
1125         /* setup IRQ handlers */
1126         return devm_request_threaded_irq(emif->dev, irq,
1127                                     emif_interrupt_handler,
1128                                     emif_threaded_isr,
1129                                     0, dev_name(emif->dev),
1130                                     emif);
1131 
1132 }
1133 
1134 static void __init_or_module emif_onetime_settings(struct emif_data *emif)
1135 {
1136         u32                             pwr_mgmt_ctrl, zq, temp_alert_cfg;
1137         void __iomem                    *base = emif->base;
1138         const struct lpddr2_addressing  *addressing;
1139         const struct ddr_device_info    *device_info;
1140 
1141         device_info = emif->plat_data->device_info;
1142         addressing = get_addressing_table(device_info);
1143 
1144         /*
1145          * Init power management settings
1146          * We don't know the frequency yet. Use a high frequency
1147          * value for a conservative timeout setting
1148          */
1149         pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif,
1150                         emif->plat_data->ip_rev);
1151         emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT;
1152         writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL);
1153 
1154         /* Init ZQ calibration settings */
1155         zq = get_zq_config_reg(addressing, device_info->cs1_used,
1156                 device_info->cal_resistors_per_cs);
1157         writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG);
1158 
1159         /* Check temperature level temperature level*/
1160         get_temperature_level(emif);
1161         if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN)
1162                 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1163 
1164         /* Init temperature polling */
1165         temp_alert_cfg = get_temp_alert_config(addressing,
1166                 emif->plat_data->custom_configs, device_info->cs1_used,
1167                 device_info->io_width, get_emif_bus_width(emif));
1168         writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG);
1169 
1170         /*
1171          * Program external PHY control registers that are not frequency
1172          * dependent
1173          */
1174         if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY)
1175                 return;
1176         writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW);
1177         writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW);
1178         writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW);
1179         writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW);
1180         writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW);
1181         writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW);
1182         writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW);
1183         writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW);
1184         writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW);
1185         writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW);
1186         writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW);
1187         writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW);
1188         writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW);
1189         writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW);
1190         writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW);
1191         writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW);
1192         writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW);
1193         writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW);
1194         writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW);
1195         writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW);
1196         writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW);
1197 }
1198 
1199 static void get_default_timings(struct emif_data *emif)
1200 {
1201         struct emif_platform_data *pd = emif->plat_data;
1202 
1203         pd->timings             = lpddr2_jedec_timings;
1204         pd->timings_arr_size    = ARRAY_SIZE(lpddr2_jedec_timings);
1205 
1206         dev_warn(emif->dev, "%s: using default timings\n", __func__);
1207 }
1208 
1209 static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type,
1210                 u32 ip_rev, struct device *dev)
1211 {
1212         int valid;
1213 
1214         valid = (type == DDR_TYPE_LPDDR2_S4 ||
1215                         type == DDR_TYPE_LPDDR2_S2)
1216                 && (density >= DDR_DENSITY_64Mb
1217                         && density <= DDR_DENSITY_8Gb)
1218                 && (io_width >= DDR_IO_WIDTH_8
1219                         && io_width <= DDR_IO_WIDTH_32);
1220 
1221         /* Combinations of EMIF and PHY revisions that we support today */
1222         switch (ip_rev) {
1223         case EMIF_4D:
1224                 valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY);
1225                 break;
1226         case EMIF_4D5:
1227                 valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY);
1228                 break;
1229         default:
1230                 valid = 0;
1231         }
1232 
1233         if (!valid)
1234                 dev_err(dev, "%s: invalid DDR details\n", __func__);
1235         return valid;
1236 }
1237 
1238 static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs,
1239                 struct device *dev)
1240 {
1241         int valid = 1;
1242 
1243         if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) &&
1244                 (cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE))
1245                 valid = cust_cfgs->lpmode_freq_threshold &&
1246                         cust_cfgs->lpmode_timeout_performance &&
1247                         cust_cfgs->lpmode_timeout_power;
1248 
1249         if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)
1250                 valid = valid && cust_cfgs->temp_alert_poll_interval_ms;
1251 
1252         if (!valid)
1253                 dev_warn(dev, "%s: invalid custom configs\n", __func__);
1254 
1255         return valid;
1256 }
1257 
1258 #if defined(CONFIG_OF)
1259 static void __init_or_module of_get_custom_configs(struct device_node *np_emif,
1260                 struct emif_data *emif)
1261 {
1262         struct emif_custom_configs      *cust_cfgs = NULL;
1263         int                             len;
1264         const __be32                    *lpmode, *poll_intvl;
1265 
1266         lpmode = of_get_property(np_emif, "low-power-mode", &len);
1267         poll_intvl = of_get_property(np_emif, "temp-alert-poll-interval", &len);
1268 
1269         if (lpmode || poll_intvl)
1270                 cust_cfgs = devm_kzalloc(emif->dev, sizeof(*cust_cfgs),
1271                         GFP_KERNEL);
1272 
1273         if (!cust_cfgs)
1274                 return;
1275 
1276         if (lpmode) {
1277                 cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_LPMODE;
1278                 cust_cfgs->lpmode = be32_to_cpup(lpmode);
1279                 of_property_read_u32(np_emif,
1280                                 "low-power-mode-timeout-performance",
1281                                 &cust_cfgs->lpmode_timeout_performance);
1282                 of_property_read_u32(np_emif,
1283                                 "low-power-mode-timeout-power",
1284                                 &cust_cfgs->lpmode_timeout_power);
1285                 of_property_read_u32(np_emif,
1286                                 "low-power-mode-freq-threshold",
1287                                 &cust_cfgs->lpmode_freq_threshold);
1288         }
1289 
1290         if (poll_intvl) {
1291                 cust_cfgs->mask |=
1292                                 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL;
1293                 cust_cfgs->temp_alert_poll_interval_ms =
1294                                                 be32_to_cpup(poll_intvl);
1295         }
1296 
1297         if (of_find_property(np_emif, "extended-temp-part", &len))
1298                 cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART;
1299 
1300         if (!is_custom_config_valid(cust_cfgs, emif->dev)) {
1301                 devm_kfree(emif->dev, cust_cfgs);
1302                 return;
1303         }
1304 
1305         emif->plat_data->custom_configs = cust_cfgs;
1306 }
1307 
1308 static void __init_or_module of_get_ddr_info(struct device_node *np_emif,
1309                 struct device_node *np_ddr,
1310                 struct ddr_device_info *dev_info)
1311 {
1312         u32 density = 0, io_width = 0;
1313         int len;
1314 
1315         if (of_find_property(np_emif, "cs1-used", &len))
1316                 dev_info->cs1_used = true;
1317 
1318         if (of_find_property(np_emif, "cal-resistor-per-cs", &len))
1319                 dev_info->cal_resistors_per_cs = true;
1320 
1321         if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s4"))
1322                 dev_info->type = DDR_TYPE_LPDDR2_S4;
1323         else if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s2"))
1324                 dev_info->type = DDR_TYPE_LPDDR2_S2;
1325 
1326         of_property_read_u32(np_ddr, "density", &density);
1327         of_property_read_u32(np_ddr, "io-width", &io_width);
1328 
1329         /* Convert from density in Mb to the density encoding in jedc_ddr.h */
1330         if (density & (density - 1))
1331                 dev_info->density = 0;
1332         else
1333                 dev_info->density = __fls(density) - 5;
1334 
1335         /* Convert from io_width in bits to io_width encoding in jedc_ddr.h */
1336         if (io_width & (io_width - 1))
1337                 dev_info->io_width = 0;
1338         else
1339                 dev_info->io_width = __fls(io_width) - 1;
1340 }
1341 
1342 static struct emif_data * __init_or_module of_get_memory_device_details(
1343                 struct device_node *np_emif, struct device *dev)
1344 {
1345         struct emif_data                *emif = NULL;
1346         struct ddr_device_info          *dev_info = NULL;
1347         struct emif_platform_data       *pd = NULL;
1348         struct device_node              *np_ddr;
1349         int                             len;
1350 
1351         np_ddr = of_parse_phandle(np_emif, "device-handle", 0);
1352         if (!np_ddr)
1353                 goto error;
1354         emif    = devm_kzalloc(dev, sizeof(struct emif_data), GFP_KERNEL);
1355         pd      = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1356         dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1357 
1358         if (!emif || !pd || !dev_info) {
1359                 dev_err(dev, "%s: Out of memory!!\n",
1360                         __func__);
1361                 goto error;
1362         }
1363 
1364         emif->plat_data         = pd;
1365         pd->device_info         = dev_info;
1366         emif->dev               = dev;
1367         emif->np_ddr            = np_ddr;
1368         emif->temperature_level = SDRAM_TEMP_NOMINAL;
1369 
1370         if (of_device_is_compatible(np_emif, "ti,emif-4d"))
1371                 emif->plat_data->ip_rev = EMIF_4D;
1372         else if (of_device_is_compatible(np_emif, "ti,emif-4d5"))
1373                 emif->plat_data->ip_rev = EMIF_4D5;
1374 
1375         of_property_read_u32(np_emif, "phy-type", &pd->phy_type);
1376 
1377         if (of_find_property(np_emif, "hw-caps-ll-interface", &len))
1378                 pd->hw_caps |= EMIF_HW_CAPS_LL_INTERFACE;
1379 
1380         of_get_ddr_info(np_emif, np_ddr, dev_info);
1381         if (!is_dev_data_valid(pd->device_info->type, pd->device_info->density,
1382                         pd->device_info->io_width, pd->phy_type, pd->ip_rev,
1383                         emif->dev)) {
1384                 dev_err(dev, "%s: invalid device data!!\n", __func__);
1385                 goto error;
1386         }
1387         /*
1388          * For EMIF instances other than EMIF1 see if the devices connected
1389          * are exactly same as on EMIF1(which is typically the case). If so,
1390          * mark it as a duplicate of EMIF1. This will save some memory and
1391          * computation.
1392          */
1393         if (emif1 && emif1->np_ddr == np_ddr) {
1394                 emif->duplicate = true;
1395                 goto out;
1396         } else if (emif1) {
1397                 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1398                         __func__);
1399         }
1400 
1401         of_get_custom_configs(np_emif, emif);
1402         emif->plat_data->timings = of_get_ddr_timings(np_ddr, emif->dev,
1403                                         emif->plat_data->device_info->type,
1404                                         &emif->plat_data->timings_arr_size);
1405 
1406         emif->plat_data->min_tck = of_get_min_tck(np_ddr, emif->dev);
1407         goto out;
1408 
1409 error:
1410         return NULL;
1411 out:
1412         return emif;
1413 }
1414 
1415 #else
1416 
1417 static struct emif_data * __init_or_module of_get_memory_device_details(
1418                 struct device_node *np_emif, struct device *dev)
1419 {
1420         return NULL;
1421 }
1422 #endif
1423 
1424 static struct emif_data *__init_or_module get_device_details(
1425                 struct platform_device *pdev)
1426 {
1427         u32                             size;
1428         struct emif_data                *emif = NULL;
1429         struct ddr_device_info          *dev_info;
1430         struct emif_custom_configs      *cust_cfgs;
1431         struct emif_platform_data       *pd;
1432         struct device                   *dev;
1433         void                            *temp;
1434 
1435         pd = pdev->dev.platform_data;
1436         dev = &pdev->dev;
1437 
1438         if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type,
1439                         pd->device_info->density, pd->device_info->io_width,
1440                         pd->phy_type, pd->ip_rev, dev))) {
1441                 dev_err(dev, "%s: invalid device data\n", __func__);
1442                 goto error;
1443         }
1444 
1445         emif    = devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL);
1446         temp    = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1447         dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1448 
1449         if (!emif || !pd || !dev_info) {
1450                 dev_err(dev, "%s:%d: allocation error\n", __func__, __LINE__);
1451                 goto error;
1452         }
1453 
1454         memcpy(temp, pd, sizeof(*pd));
1455         pd = temp;
1456         memcpy(dev_info, pd->device_info, sizeof(*dev_info));
1457 
1458         pd->device_info         = dev_info;
1459         emif->plat_data         = pd;
1460         emif->dev               = dev;
1461         emif->temperature_level = SDRAM_TEMP_NOMINAL;
1462 
1463         /*
1464          * For EMIF instances other than EMIF1 see if the devices connected
1465          * are exactly same as on EMIF1(which is typically the case). If so,
1466          * mark it as a duplicate of EMIF1 and skip copying timings data.
1467          * This will save some memory and some computation later.
1468          */
1469         emif->duplicate = emif1 && (memcmp(dev_info,
1470                 emif1->plat_data->device_info,
1471                 sizeof(struct ddr_device_info)) == 0);
1472 
1473         if (emif->duplicate) {
1474                 pd->timings = NULL;
1475                 pd->min_tck = NULL;
1476                 goto out;
1477         } else if (emif1) {
1478                 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1479                         __func__);
1480         }
1481 
1482         /*
1483          * Copy custom configs - ignore allocation error, if any, as
1484          * custom_configs is not very critical
1485          */
1486         cust_cfgs = pd->custom_configs;
1487         if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) {
1488                 temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL);
1489                 if (temp)
1490                         memcpy(temp, cust_cfgs, sizeof(*cust_cfgs));
1491                 else
1492                         dev_warn(dev, "%s:%d: allocation error\n", __func__,
1493                                 __LINE__);
1494                 pd->custom_configs = temp;
1495         }
1496 
1497         /*
1498          * Copy timings and min-tck values from platform data. If it is not
1499          * available or if memory allocation fails, use JEDEC defaults
1500          */
1501         size = sizeof(struct lpddr2_timings) * pd->timings_arr_size;
1502         if (pd->timings) {
1503                 temp = devm_kzalloc(dev, size, GFP_KERNEL);
1504                 if (temp) {
1505                         memcpy(temp, pd->timings, size);
1506                         pd->timings = temp;
1507                 } else {
1508                         dev_warn(dev, "%s:%d: allocation error\n", __func__,
1509                                 __LINE__);
1510                         get_default_timings(emif);
1511                 }
1512         } else {
1513                 get_default_timings(emif);
1514         }
1515 
1516         if (pd->min_tck) {
1517                 temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL);
1518                 if (temp) {
1519                         memcpy(temp, pd->min_tck, sizeof(*pd->min_tck));
1520                         pd->min_tck = temp;
1521                 } else {
1522                         dev_warn(dev, "%s:%d: allocation error\n", __func__,
1523                                 __LINE__);
1524                         pd->min_tck = &lpddr2_jedec_min_tck;
1525                 }
1526         } else {
1527                 pd->min_tck = &lpddr2_jedec_min_tck;
1528         }
1529 
1530 out:
1531         return emif;
1532 
1533 error:
1534         return NULL;
1535 }
1536 
1537 static int __init_or_module emif_probe(struct platform_device *pdev)
1538 {
1539         struct emif_data        *emif;
1540         struct resource         *res;
1541         int                     irq;
1542 
1543         if (pdev->dev.of_node)
1544                 emif = of_get_memory_device_details(pdev->dev.of_node, &pdev->dev);
1545         else
1546                 emif = get_device_details(pdev);
1547 
1548         if (!emif) {
1549                 pr_err("%s: error getting device data\n", __func__);
1550                 goto error;
1551         }
1552 
1553         list_add(&emif->node, &device_list);
1554         emif->addressing = get_addressing_table(emif->plat_data->device_info);
1555 
1556         /* Save pointers to each other in emif and device structures */
1557         emif->dev = &pdev->dev;
1558         platform_set_drvdata(pdev, emif);
1559 
1560         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1561         emif->base = devm_ioremap_resource(emif->dev, res);
1562         if (IS_ERR(emif->base))
1563                 goto error;
1564 
1565         irq = platform_get_irq(pdev, 0);
1566         if (irq < 0) {
1567                 dev_err(emif->dev, "%s: error getting IRQ resource - %d\n",
1568                         __func__, irq);
1569                 goto error;
1570         }
1571 
1572         emif_onetime_settings(emif);
1573         emif_debugfs_init(emif);
1574         disable_and_clear_all_interrupts(emif);
1575         setup_interrupts(emif, irq);
1576 
1577         /* One-time actions taken on probing the first device */
1578         if (!emif1) {
1579                 emif1 = emif;
1580                 spin_lock_init(&emif_lock);
1581 
1582                 /*
1583                  * TODO: register notifiers for frequency and voltage
1584                  * change here once the respective frameworks are
1585                  * available
1586                  */
1587         }
1588 
1589         dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n",
1590                 __func__, emif->base, irq);
1591 
1592         return 0;
1593 error:
1594         return -ENODEV;
1595 }
1596 
1597 static int __exit emif_remove(struct platform_device *pdev)
1598 {
1599         struct emif_data *emif = platform_get_drvdata(pdev);
1600 
1601         emif_debugfs_exit(emif);
1602 
1603         return 0;
1604 }
1605 
1606 static void emif_shutdown(struct platform_device *pdev)
1607 {
1608         struct emif_data        *emif = platform_get_drvdata(pdev);
1609 
1610         disable_and_clear_all_interrupts(emif);
1611 }
1612 
1613 static int get_emif_reg_values(struct emif_data *emif, u32 freq,
1614                 struct emif_regs *regs)
1615 {
1616         u32                             cs1_used, ip_rev, phy_type;
1617         u32                             cl, type;
1618         const struct lpddr2_timings     *timings;
1619         const struct lpddr2_min_tck     *min_tck;
1620         const struct ddr_device_info    *device_info;
1621         const struct lpddr2_addressing  *addressing;
1622         struct emif_data                *emif_for_calc;
1623         struct device                   *dev;
1624         const struct emif_custom_configs *custom_configs;
1625 
1626         dev = emif->dev;
1627         /*
1628          * If the devices on this EMIF instance is duplicate of EMIF1,
1629          * use EMIF1 details for the calculation
1630          */
1631         emif_for_calc   = emif->duplicate ? emif1 : emif;
1632         timings         = get_timings_table(emif_for_calc, freq);
1633         addressing      = emif_for_calc->addressing;
1634         if (!timings || !addressing) {
1635                 dev_err(dev, "%s: not enough data available for %dHz",
1636                         __func__, freq);
1637                 return -1;
1638         }
1639 
1640         device_info     = emif_for_calc->plat_data->device_info;
1641         type            = device_info->type;
1642         cs1_used        = device_info->cs1_used;
1643         ip_rev          = emif_for_calc->plat_data->ip_rev;
1644         phy_type        = emif_for_calc->plat_data->phy_type;
1645 
1646         min_tck         = emif_for_calc->plat_data->min_tck;
1647         custom_configs  = emif_for_calc->plat_data->custom_configs;
1648 
1649         set_ddr_clk_period(freq);
1650 
1651         regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing);
1652         regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck,
1653                         addressing);
1654         regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck,
1655                         addressing, type);
1656         regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck,
1657                 addressing, type, ip_rev, EMIF_NORMAL_TIMINGS);
1658 
1659         cl = get_cl(emif);
1660 
1661         if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) {
1662                 regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d(
1663                         timings, freq, cl);
1664         } else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) {
1665                 regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl);
1666                 regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5();
1667                 regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5();
1668                 regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5();
1669         } else {
1670                 return -1;
1671         }
1672 
1673         /* Only timeout values in pwr_mgmt_ctrl_shdw register */
1674         regs->pwr_mgmt_ctrl_shdw =
1675                 get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) &
1676                 (CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK);
1677 
1678         if (ip_rev & EMIF_4D) {
1679                 regs->read_idle_ctrl_shdw_normal =
1680                         get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE);
1681 
1682                 regs->read_idle_ctrl_shdw_volt_ramp =
1683                         get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1684         } else if (ip_rev & EMIF_4D5) {
1685                 regs->dll_calib_ctrl_shdw_normal =
1686                         get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE);
1687 
1688                 regs->dll_calib_ctrl_shdw_volt_ramp =
1689                         get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1690         }
1691 
1692         if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
1693                 regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4,
1694                         addressing);
1695 
1696                 regs->sdram_tim1_shdw_derated =
1697                         get_sdram_tim_1_shdw_derated(timings, min_tck,
1698                                 addressing);
1699 
1700                 regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings,
1701                         min_tck, addressing, type, ip_rev,
1702                         EMIF_DERATED_TIMINGS);
1703         }
1704 
1705         regs->freq = freq;
1706 
1707         return 0;
1708 }
1709 
1710 /*
1711  * get_regs() - gets the cached emif_regs structure for a given EMIF instance
1712  * given frequency(freq):
1713  *
1714  * As an optimisation, every EMIF instance other than EMIF1 shares the
1715  * register cache with EMIF1 if the devices connected on this instance
1716  * are same as that on EMIF1(indicated by the duplicate flag)
1717  *
1718  * If we do not have an entry corresponding to the frequency given, we
1719  * allocate a new entry and calculate the values
1720  *
1721  * Upon finding the right reg dump, save it in curr_regs. It can be
1722  * directly used for thermal de-rating and voltage ramping changes.
1723  */
1724 static struct emif_regs *get_regs(struct emif_data *emif, u32 freq)
1725 {
1726         int                     i;
1727         struct emif_regs        **regs_cache;
1728         struct emif_regs        *regs = NULL;
1729         struct device           *dev;
1730 
1731         dev = emif->dev;
1732         if (emif->curr_regs && emif->curr_regs->freq == freq) {
1733                 dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq);
1734                 return emif->curr_regs;
1735         }
1736 
1737         if (emif->duplicate)
1738                 regs_cache = emif1->regs_cache;
1739         else
1740                 regs_cache = emif->regs_cache;
1741 
1742         for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
1743                 if (regs_cache[i]->freq == freq) {
1744                         regs = regs_cache[i];
1745                         dev_dbg(dev,
1746                                 "%s: reg dump found in reg cache for %u Hz\n",
1747                                 __func__, freq);
1748                         break;
1749                 }
1750         }
1751 
1752         /*
1753          * If we don't have an entry for this frequency in the cache create one
1754          * and calculate the values
1755          */
1756         if (!regs) {
1757                 regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC);
1758                 if (!regs)
1759                         return NULL;
1760 
1761                 if (get_emif_reg_values(emif, freq, regs)) {
1762                         devm_kfree(emif->dev, regs);
1763                         return NULL;
1764                 }
1765 
1766                 /*
1767                  * Now look for an un-used entry in the cache and save the
1768                  * newly created struct. If there are no free entries
1769                  * over-write the last entry
1770                  */
1771                 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++)
1772                         ;
1773 
1774                 if (i >= EMIF_MAX_NUM_FREQUENCIES) {
1775                         dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n",
1776                                 __func__);
1777                         i = EMIF_MAX_NUM_FREQUENCIES - 1;
1778                         devm_kfree(emif->dev, regs_cache[i]);
1779                 }
1780                 regs_cache[i] = regs;
1781         }
1782 
1783         return regs;
1784 }
1785 
1786 static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state)
1787 {
1788         dev_dbg(emif->dev, "%s: voltage notification : %d", __func__,
1789                 volt_state);
1790 
1791         if (!emif->curr_regs) {
1792                 dev_err(emif->dev,
1793                         "%s: volt-notify before registers are ready: %d\n",
1794                         __func__, volt_state);
1795                 return;
1796         }
1797 
1798         setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state);
1799 }
1800 
1801 /*
1802  * TODO: voltage notify handling should be hooked up to
1803  * regulator framework as soon as the necessary support
1804  * is available in mainline kernel. This function is un-used
1805  * right now.
1806  */
1807 static void __attribute__((unused)) volt_notify_handling(u32 volt_state)
1808 {
1809         struct emif_data *emif;
1810 
1811         spin_lock_irqsave(&emif_lock, irq_state);
1812 
1813         list_for_each_entry(emif, &device_list, node)
1814                 do_volt_notify_handling(emif, volt_state);
1815         do_freq_update();
1816 
1817         spin_unlock_irqrestore(&emif_lock, irq_state);
1818 }
1819 
1820 static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq)
1821 {
1822         struct emif_regs *regs;
1823 
1824         regs = get_regs(emif, new_freq);
1825         if (!regs)
1826                 return;
1827 
1828         emif->curr_regs = regs;
1829 
1830         /*
1831          * Update the shadow registers:
1832          * Temperature and voltage-ramp sensitive settings are also configured
1833          * in terms of DDR cycles. So, we need to update them too when there
1834          * is a freq change
1835          */
1836         dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz",
1837                 __func__, new_freq);
1838         setup_registers(emif, regs);
1839         setup_temperature_sensitive_regs(emif, regs);
1840         setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE);
1841 
1842         /*
1843          * Part of workaround for errata i728. See do_freq_update()
1844          * for more details
1845          */
1846         if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1847                 set_lpmode(emif, EMIF_LP_MODE_DISABLE);
1848 }
1849 
1850 /*
1851  * TODO: frequency notify handling should be hooked up to
1852  * clock framework as soon as the necessary support is
1853  * available in mainline kernel. This function is un-used
1854  * right now.
1855  */
1856 static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq)
1857 {
1858         struct emif_data *emif;
1859 
1860         /*
1861          * NOTE: we are taking the spin-lock here and releases it
1862          * only in post-notifier. This doesn't look good and
1863          * Sparse complains about it, but this seems to be
1864          * un-avoidable. We need to lock a sequence of events
1865          * that is split between EMIF and clock framework.
1866          *
1867          * 1. EMIF driver updates EMIF timings in shadow registers in the
1868          *    frequency pre-notify callback from clock framework
1869          * 2. clock framework sets up the registers for the new frequency
1870          * 3. clock framework initiates a hw-sequence that updates
1871          *    the frequency EMIF timings synchronously.
1872          *
1873          * All these 3 steps should be performed as an atomic operation
1874          * vis-a-vis similar sequence in the EMIF interrupt handler
1875          * for temperature events. Otherwise, there could be race
1876          * conditions that could result in incorrect EMIF timings for
1877          * a given frequency
1878          */
1879         spin_lock_irqsave(&emif_lock, irq_state);
1880 
1881         list_for_each_entry(emif, &device_list, node)
1882                 do_freq_pre_notify_handling(emif, new_freq);
1883 }
1884 
1885 static void do_freq_post_notify_handling(struct emif_data *emif)
1886 {
1887         /*
1888          * Part of workaround for errata i728. See do_freq_update()
1889          * for more details
1890          */
1891         if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1892                 set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
1893 }
1894 
1895 /*
1896  * TODO: frequency notify handling should be hooked up to
1897  * clock framework as soon as the necessary support is
1898  * available in mainline kernel. This function is un-used
1899  * right now.
1900  */
1901 static void __attribute__((unused)) freq_post_notify_handling(void)
1902 {
1903         struct emif_data *emif;
1904 
1905         list_for_each_entry(emif, &device_list, node)
1906                 do_freq_post_notify_handling(emif);
1907 
1908         /*
1909          * Lock is done in pre-notify handler. See freq_pre_notify_handling()
1910          * for more details
1911          */
1912         spin_unlock_irqrestore(&emif_lock, irq_state);
1913 }
1914 
1915 #if defined(CONFIG_OF)
1916 static const struct of_device_id emif_of_match[] = {
1917                 { .compatible = "ti,emif-4d" },
1918                 { .compatible = "ti,emif-4d5" },
1919                 {},
1920 };
1921 MODULE_DEVICE_TABLE(of, emif_of_match);
1922 #endif
1923 
1924 static struct platform_driver emif_driver = {
1925         .remove         = __exit_p(emif_remove),
1926         .shutdown       = emif_shutdown,
1927         .driver = {
1928                 .name = "emif",
1929                 .of_match_table = of_match_ptr(emif_of_match),
1930         },
1931 };
1932 
1933 module_platform_driver_probe(emif_driver, emif_probe);
1934 
1935 MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver");
1936 MODULE_LICENSE("GPL");
1937 MODULE_ALIAS("platform:emif");
1938 MODULE_AUTHOR("Texas Instruments Inc");

/* [<][>][^][v][top][bottom][index][help] */