root/drivers/rtc/rtc-imxdi.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. di_write_busy_wait
  2. di_report_tamper_info
  3. di_what_is_to_be_done
  4. di_handle_failure_state
  5. di_handle_valid_state
  6. di_handle_invalid_state
  7. di_handle_invalid_and_failure_state
  8. di_handle_state
  9. di_int_enable
  10. di_int_disable
  11. clear_write_error
  12. di_write_wait
  13. dryice_rtc_read_time
  14. dryice_rtc_set_time
  15. dryice_rtc_alarm_irq_enable
  16. dryice_rtc_read_alarm
  17. dryice_rtc_set_alarm
  18. dryice_irq
  19. dryice_work
  20. dryice_rtc_probe
  21. dryice_rtc_remove

   1 // SPDX-License-Identifier: GPL-2.0+
   2 /*
   3  * Copyright 2008-2009 Freescale Semiconductor, Inc. All Rights Reserved.
   4  * Copyright 2010 Orex Computed Radiography
   5  */
   6 
   7 /*
   8  * This driver uses the 47-bit 32 kHz counter in the Freescale DryIce block
   9  * to implement a Linux RTC. Times and alarms are truncated to seconds.
  10  * Since the RTC framework performs API locking via rtc->ops_lock the
  11  * only simultaneous accesses we need to deal with is updating DryIce
  12  * registers while servicing an alarm.
  13  *
  14  * Note that reading the DSR (DryIce Status Register) automatically clears
  15  * the WCF (Write Complete Flag). All DryIce writes are synchronized to the
  16  * LP (Low Power) domain and set the WCF upon completion. Writes to the
  17  * DIER (DryIce Interrupt Enable Register) are the only exception. These
  18  * occur at normal bus speeds and do not set WCF.  Periodic interrupts are
  19  * not supported by the hardware.
  20  */
  21 
  22 #include <linux/io.h>
  23 #include <linux/clk.h>
  24 #include <linux/delay.h>
  25 #include <linux/module.h>
  26 #include <linux/platform_device.h>
  27 #include <linux/rtc.h>
  28 #include <linux/sched.h>
  29 #include <linux/spinlock.h>
  30 #include <linux/workqueue.h>
  31 #include <linux/of.h>
  32 
  33 /* DryIce Register Definitions */
  34 
  35 #define DTCMR     0x00           /* Time Counter MSB Reg */
  36 #define DTCLR     0x04           /* Time Counter LSB Reg */
  37 
  38 #define DCAMR     0x08           /* Clock Alarm MSB Reg */
  39 #define DCALR     0x0c           /* Clock Alarm LSB Reg */
  40 #define DCAMR_UNSET  0xFFFFFFFF  /* doomsday - 1 sec */
  41 
  42 #define DCR       0x10           /* Control Reg */
  43 #define DCR_TDCHL (1 << 30)      /* Tamper-detect configuration hard lock */
  44 #define DCR_TDCSL (1 << 29)      /* Tamper-detect configuration soft lock */
  45 #define DCR_KSSL  (1 << 27)      /* Key-select soft lock */
  46 #define DCR_MCHL  (1 << 20)      /* Monotonic-counter hard lock */
  47 #define DCR_MCSL  (1 << 19)      /* Monotonic-counter soft lock */
  48 #define DCR_TCHL  (1 << 18)      /* Timer-counter hard lock */
  49 #define DCR_TCSL  (1 << 17)      /* Timer-counter soft lock */
  50 #define DCR_FSHL  (1 << 16)      /* Failure state hard lock */
  51 #define DCR_TCE   (1 << 3)       /* Time Counter Enable */
  52 #define DCR_MCE   (1 << 2)       /* Monotonic Counter Enable */
  53 
  54 #define DSR       0x14           /* Status Reg */
  55 #define DSR_WTD   (1 << 23)      /* Wire-mesh tamper detected */
  56 #define DSR_ETBD  (1 << 22)      /* External tamper B detected */
  57 #define DSR_ETAD  (1 << 21)      /* External tamper A detected */
  58 #define DSR_EBD   (1 << 20)      /* External boot detected */
  59 #define DSR_SAD   (1 << 19)      /* SCC alarm detected */
  60 #define DSR_TTD   (1 << 18)      /* Temperature tamper detected */
  61 #define DSR_CTD   (1 << 17)      /* Clock tamper detected */
  62 #define DSR_VTD   (1 << 16)      /* Voltage tamper detected */
  63 #define DSR_WBF   (1 << 10)      /* Write Busy Flag (synchronous) */
  64 #define DSR_WNF   (1 << 9)       /* Write Next Flag (synchronous) */
  65 #define DSR_WCF   (1 << 8)       /* Write Complete Flag (synchronous)*/
  66 #define DSR_WEF   (1 << 7)       /* Write Error Flag */
  67 #define DSR_CAF   (1 << 4)       /* Clock Alarm Flag */
  68 #define DSR_MCO   (1 << 3)       /* monotonic counter overflow */
  69 #define DSR_TCO   (1 << 2)       /* time counter overflow */
  70 #define DSR_NVF   (1 << 1)       /* Non-Valid Flag */
  71 #define DSR_SVF   (1 << 0)       /* Security Violation Flag */
  72 
  73 #define DIER      0x18           /* Interrupt Enable Reg (synchronous) */
  74 #define DIER_WNIE (1 << 9)       /* Write Next Interrupt Enable */
  75 #define DIER_WCIE (1 << 8)       /* Write Complete Interrupt Enable */
  76 #define DIER_WEIE (1 << 7)       /* Write Error Interrupt Enable */
  77 #define DIER_CAIE (1 << 4)       /* Clock Alarm Interrupt Enable */
  78 #define DIER_SVIE (1 << 0)       /* Security-violation Interrupt Enable */
  79 
  80 #define DMCR      0x1c           /* DryIce Monotonic Counter Reg */
  81 
  82 #define DTCR      0x28           /* DryIce Tamper Configuration Reg */
  83 #define DTCR_MOE  (1 << 9)       /* monotonic overflow enabled */
  84 #define DTCR_TOE  (1 << 8)       /* time overflow enabled */
  85 #define DTCR_WTE  (1 << 7)       /* wire-mesh tamper enabled */
  86 #define DTCR_ETBE (1 << 6)       /* external B tamper enabled */
  87 #define DTCR_ETAE (1 << 5)       /* external A tamper enabled */
  88 #define DTCR_EBE  (1 << 4)       /* external boot tamper enabled */
  89 #define DTCR_SAIE (1 << 3)       /* SCC enabled */
  90 #define DTCR_TTE  (1 << 2)       /* temperature tamper enabled */
  91 #define DTCR_CTE  (1 << 1)       /* clock tamper enabled */
  92 #define DTCR_VTE  (1 << 0)       /* voltage tamper enabled */
  93 
  94 #define DGPR      0x3c           /* DryIce General Purpose Reg */
  95 
  96 /**
  97  * struct imxdi_dev - private imxdi rtc data
  98  * @pdev: pionter to platform dev
  99  * @rtc: pointer to rtc struct
 100  * @ioaddr: IO registers pointer
 101  * @clk: input reference clock
 102  * @dsr: copy of the DSR register
 103  * @irq_lock: interrupt enable register (DIER) lock
 104  * @write_wait: registers write complete queue
 105  * @write_mutex: serialize registers write
 106  * @work: schedule alarm work
 107  */
 108 struct imxdi_dev {
 109         struct platform_device *pdev;
 110         struct rtc_device *rtc;
 111         void __iomem *ioaddr;
 112         struct clk *clk;
 113         u32 dsr;
 114         spinlock_t irq_lock;
 115         wait_queue_head_t write_wait;
 116         struct mutex write_mutex;
 117         struct work_struct work;
 118 };
 119 
 120 /* Some background:
 121  *
 122  * The DryIce unit is a complex security/tamper monitor device. To be able do
 123  * its job in a useful manner it runs a bigger statemachine to bring it into
 124  * security/tamper failure state and once again to bring it out of this state.
 125  *
 126  * This unit can be in one of three states:
 127  *
 128  * - "NON-VALID STATE"
 129  *   always after the battery power was removed
 130  * - "FAILURE STATE"
 131  *   if one of the enabled security events has happened
 132  * - "VALID STATE"
 133  *   if the unit works as expected
 134  *
 135  * Everything stops when the unit enters the failure state including the RTC
 136  * counter (to be able to detect the time the security event happened).
 137  *
 138  * The following events (when enabled) let the DryIce unit enter the failure
 139  * state:
 140  *
 141  * - wire-mesh-tamper detect
 142  * - external tamper B detect
 143  * - external tamper A detect
 144  * - temperature tamper detect
 145  * - clock tamper detect
 146  * - voltage tamper detect
 147  * - RTC counter overflow
 148  * - monotonic counter overflow
 149  * - external boot
 150  *
 151  * If we find the DryIce unit in "FAILURE STATE" and the TDCHL cleared, we
 152  * can only detect this state. In this case the unit is completely locked and
 153  * must force a second "SYSTEM POR" to bring the DryIce into the
 154  * "NON-VALID STATE" + "FAILURE STATE" where a recovery is possible.
 155  * If the TDCHL is set in the "FAILURE STATE" we are out of luck. In this case
 156  * a battery power cycle is required.
 157  *
 158  * In the "NON-VALID STATE" + "FAILURE STATE" we can clear the "FAILURE STATE"
 159  * and recover the DryIce unit. By clearing the "NON-VALID STATE" as the last
 160  * task, we bring back this unit into life.
 161  */
 162 
 163 /*
 164  * Do a write into the unit without interrupt support.
 165  * We do not need to check the WEF here, because the only reason this kind of
 166  * write error can happen is if we write to the unit twice within the 122 us
 167  * interval. This cannot happen, since we are using this function only while
 168  * setting up the unit.
 169  */
 170 static void di_write_busy_wait(const struct imxdi_dev *imxdi, u32 val,
 171                                unsigned reg)
 172 {
 173         /* do the register write */
 174         writel(val, imxdi->ioaddr + reg);
 175 
 176         /*
 177          * now it takes four 32,768 kHz clock cycles to take
 178          * the change into effect = 122 us
 179          */
 180         usleep_range(130, 200);
 181 }
 182 
 183 static void di_report_tamper_info(struct imxdi_dev *imxdi,  u32 dsr)
 184 {
 185         u32 dtcr;
 186 
 187         dtcr = readl(imxdi->ioaddr + DTCR);
 188 
 189         dev_emerg(&imxdi->pdev->dev, "DryIce tamper event detected\n");
 190         /* the following flags force a transition into the "FAILURE STATE" */
 191         if (dsr & DSR_VTD)
 192                 dev_emerg(&imxdi->pdev->dev, "%sVoltage Tamper Event\n",
 193                           dtcr & DTCR_VTE ? "" : "Spurious ");
 194 
 195         if (dsr & DSR_CTD)
 196                 dev_emerg(&imxdi->pdev->dev, "%s32768 Hz Clock Tamper Event\n",
 197                           dtcr & DTCR_CTE ? "" : "Spurious ");
 198 
 199         if (dsr & DSR_TTD)
 200                 dev_emerg(&imxdi->pdev->dev, "%sTemperature Tamper Event\n",
 201                           dtcr & DTCR_TTE ? "" : "Spurious ");
 202 
 203         if (dsr & DSR_SAD)
 204                 dev_emerg(&imxdi->pdev->dev,
 205                           "%sSecure Controller Alarm Event\n",
 206                           dtcr & DTCR_SAIE ? "" : "Spurious ");
 207 
 208         if (dsr & DSR_EBD)
 209                 dev_emerg(&imxdi->pdev->dev, "%sExternal Boot Tamper Event\n",
 210                           dtcr & DTCR_EBE ? "" : "Spurious ");
 211 
 212         if (dsr & DSR_ETAD)
 213                 dev_emerg(&imxdi->pdev->dev, "%sExternal Tamper A Event\n",
 214                           dtcr & DTCR_ETAE ? "" : "Spurious ");
 215 
 216         if (dsr & DSR_ETBD)
 217                 dev_emerg(&imxdi->pdev->dev, "%sExternal Tamper B Event\n",
 218                           dtcr & DTCR_ETBE ? "" : "Spurious ");
 219 
 220         if (dsr & DSR_WTD)
 221                 dev_emerg(&imxdi->pdev->dev, "%sWire-mesh Tamper Event\n",
 222                           dtcr & DTCR_WTE ? "" : "Spurious ");
 223 
 224         if (dsr & DSR_MCO)
 225                 dev_emerg(&imxdi->pdev->dev,
 226                           "%sMonotonic-counter Overflow Event\n",
 227                           dtcr & DTCR_MOE ? "" : "Spurious ");
 228 
 229         if (dsr & DSR_TCO)
 230                 dev_emerg(&imxdi->pdev->dev, "%sTimer-counter Overflow Event\n",
 231                           dtcr & DTCR_TOE ? "" : "Spurious ");
 232 }
 233 
 234 static void di_what_is_to_be_done(struct imxdi_dev *imxdi,
 235                                   const char *power_supply)
 236 {
 237         dev_emerg(&imxdi->pdev->dev, "Please cycle the %s power supply in order to get the DryIce/RTC unit working again\n",
 238                   power_supply);
 239 }
 240 
 241 static int di_handle_failure_state(struct imxdi_dev *imxdi, u32 dsr)
 242 {
 243         u32 dcr;
 244 
 245         dev_dbg(&imxdi->pdev->dev, "DSR register reports: %08X\n", dsr);
 246 
 247         /* report the cause */
 248         di_report_tamper_info(imxdi, dsr);
 249 
 250         dcr = readl(imxdi->ioaddr + DCR);
 251 
 252         if (dcr & DCR_FSHL) {
 253                 /* we are out of luck */
 254                 di_what_is_to_be_done(imxdi, "battery");
 255                 return -ENODEV;
 256         }
 257         /*
 258          * with the next SYSTEM POR we will transit from the "FAILURE STATE"
 259          * into the "NON-VALID STATE" + "FAILURE STATE"
 260          */
 261         di_what_is_to_be_done(imxdi, "main");
 262 
 263         return -ENODEV;
 264 }
 265 
 266 static int di_handle_valid_state(struct imxdi_dev *imxdi, u32 dsr)
 267 {
 268         /* initialize alarm */
 269         di_write_busy_wait(imxdi, DCAMR_UNSET, DCAMR);
 270         di_write_busy_wait(imxdi, 0, DCALR);
 271 
 272         /* clear alarm flag */
 273         if (dsr & DSR_CAF)
 274                 di_write_busy_wait(imxdi, DSR_CAF, DSR);
 275 
 276         return 0;
 277 }
 278 
 279 static int di_handle_invalid_state(struct imxdi_dev *imxdi, u32 dsr)
 280 {
 281         u32 dcr, sec;
 282 
 283         /*
 284          * lets disable all sources which can force the DryIce unit into
 285          * the "FAILURE STATE" for now
 286          */
 287         di_write_busy_wait(imxdi, 0x00000000, DTCR);
 288         /* and lets protect them at runtime from any change */
 289         di_write_busy_wait(imxdi, DCR_TDCSL, DCR);
 290 
 291         sec = readl(imxdi->ioaddr + DTCMR);
 292         if (sec != 0)
 293                 dev_warn(&imxdi->pdev->dev,
 294                          "The security violation has happened at %u seconds\n",
 295                          sec);
 296         /*
 297          * the timer cannot be set/modified if
 298          * - the TCHL or TCSL bit is set in DCR
 299          */
 300         dcr = readl(imxdi->ioaddr + DCR);
 301         if (!(dcr & DCR_TCE)) {
 302                 if (dcr & DCR_TCHL) {
 303                         /* we are out of luck */
 304                         di_what_is_to_be_done(imxdi, "battery");
 305                         return -ENODEV;
 306                 }
 307                 if (dcr & DCR_TCSL) {
 308                         di_what_is_to_be_done(imxdi, "main");
 309                         return -ENODEV;
 310                 }
 311         }
 312         /*
 313          * - the timer counter stops/is stopped if
 314          *   - its overflow flag is set (TCO in DSR)
 315          *      -> clear overflow bit to make it count again
 316          *   - NVF is set in DSR
 317          *      -> clear non-valid bit to make it count again
 318          *   - its TCE (DCR) is cleared
 319          *      -> set TCE to make it count
 320          *   - it was never set before
 321          *      -> write a time into it (required again if the NVF was set)
 322          */
 323         /* state handled */
 324         di_write_busy_wait(imxdi, DSR_NVF, DSR);
 325         /* clear overflow flag */
 326         di_write_busy_wait(imxdi, DSR_TCO, DSR);
 327         /* enable the counter */
 328         di_write_busy_wait(imxdi, dcr | DCR_TCE, DCR);
 329         /* set and trigger it to make it count */
 330         di_write_busy_wait(imxdi, sec, DTCMR);
 331 
 332         /* now prepare for the valid state */
 333         return di_handle_valid_state(imxdi, __raw_readl(imxdi->ioaddr + DSR));
 334 }
 335 
 336 static int di_handle_invalid_and_failure_state(struct imxdi_dev *imxdi, u32 dsr)
 337 {
 338         u32 dcr;
 339 
 340         /*
 341          * now we must first remove the tamper sources in order to get the
 342          * device out of the "FAILURE STATE"
 343          * To disable any of the following sources we need to modify the DTCR
 344          */
 345         if (dsr & (DSR_WTD | DSR_ETBD | DSR_ETAD | DSR_EBD | DSR_SAD |
 346                         DSR_TTD | DSR_CTD | DSR_VTD | DSR_MCO | DSR_TCO)) {
 347                 dcr = __raw_readl(imxdi->ioaddr + DCR);
 348                 if (dcr & DCR_TDCHL) {
 349                         /*
 350                          * the tamper register is locked. We cannot disable the
 351                          * tamper detection. The TDCHL can only be reset by a
 352                          * DRYICE POR, but we cannot force a DRYICE POR in
 353                          * softwere because we are still in "FAILURE STATE".
 354                          * We need a DRYICE POR via battery power cycling....
 355                          */
 356                         /*
 357                          * out of luck!
 358                          * we cannot disable them without a DRYICE POR
 359                          */
 360                         di_what_is_to_be_done(imxdi, "battery");
 361                         return -ENODEV;
 362                 }
 363                 if (dcr & DCR_TDCSL) {
 364                         /* a soft lock can be removed by a SYSTEM POR */
 365                         di_what_is_to_be_done(imxdi, "main");
 366                         return -ENODEV;
 367                 }
 368         }
 369 
 370         /* disable all sources */
 371         di_write_busy_wait(imxdi, 0x00000000, DTCR);
 372 
 373         /* clear the status bits now */
 374         di_write_busy_wait(imxdi, dsr & (DSR_WTD | DSR_ETBD | DSR_ETAD |
 375                         DSR_EBD | DSR_SAD | DSR_TTD | DSR_CTD | DSR_VTD |
 376                         DSR_MCO | DSR_TCO), DSR);
 377 
 378         dsr = readl(imxdi->ioaddr + DSR);
 379         if ((dsr & ~(DSR_NVF | DSR_SVF | DSR_WBF | DSR_WNF |
 380                         DSR_WCF | DSR_WEF)) != 0)
 381                 dev_warn(&imxdi->pdev->dev,
 382                          "There are still some sources of pain in DSR: %08x!\n",
 383                          dsr & ~(DSR_NVF | DSR_SVF | DSR_WBF | DSR_WNF |
 384                                  DSR_WCF | DSR_WEF));
 385 
 386         /*
 387          * now we are trying to clear the "Security-violation flag" to
 388          * get the DryIce out of this state
 389          */
 390         di_write_busy_wait(imxdi, DSR_SVF, DSR);
 391 
 392         /* success? */
 393         dsr = readl(imxdi->ioaddr + DSR);
 394         if (dsr & DSR_SVF) {
 395                 dev_crit(&imxdi->pdev->dev,
 396                          "Cannot clear the security violation flag. We are ending up in an endless loop!\n");
 397                 /* last resort */
 398                 di_what_is_to_be_done(imxdi, "battery");
 399                 return -ENODEV;
 400         }
 401 
 402         /*
 403          * now we have left the "FAILURE STATE" and ending up in the
 404          * "NON-VALID STATE" time to recover everything
 405          */
 406         return di_handle_invalid_state(imxdi, dsr);
 407 }
 408 
 409 static int di_handle_state(struct imxdi_dev *imxdi)
 410 {
 411         int rc;
 412         u32 dsr;
 413 
 414         dsr = readl(imxdi->ioaddr + DSR);
 415 
 416         switch (dsr & (DSR_NVF | DSR_SVF)) {
 417         case DSR_NVF:
 418                 dev_warn(&imxdi->pdev->dev, "Invalid stated unit detected\n");
 419                 rc = di_handle_invalid_state(imxdi, dsr);
 420                 break;
 421         case DSR_SVF:
 422                 dev_warn(&imxdi->pdev->dev, "Failure stated unit detected\n");
 423                 rc = di_handle_failure_state(imxdi, dsr);
 424                 break;
 425         case DSR_NVF | DSR_SVF:
 426                 dev_warn(&imxdi->pdev->dev,
 427                          "Failure+Invalid stated unit detected\n");
 428                 rc = di_handle_invalid_and_failure_state(imxdi, dsr);
 429                 break;
 430         default:
 431                 dev_notice(&imxdi->pdev->dev, "Unlocked unit detected\n");
 432                 rc = di_handle_valid_state(imxdi, dsr);
 433         }
 434 
 435         return rc;
 436 }
 437 
 438 /*
 439  * enable a dryice interrupt
 440  */
 441 static void di_int_enable(struct imxdi_dev *imxdi, u32 intr)
 442 {
 443         unsigned long flags;
 444 
 445         spin_lock_irqsave(&imxdi->irq_lock, flags);
 446         writel(readl(imxdi->ioaddr + DIER) | intr,
 447                imxdi->ioaddr + DIER);
 448         spin_unlock_irqrestore(&imxdi->irq_lock, flags);
 449 }
 450 
 451 /*
 452  * disable a dryice interrupt
 453  */
 454 static void di_int_disable(struct imxdi_dev *imxdi, u32 intr)
 455 {
 456         unsigned long flags;
 457 
 458         spin_lock_irqsave(&imxdi->irq_lock, flags);
 459         writel(readl(imxdi->ioaddr + DIER) & ~intr,
 460                imxdi->ioaddr + DIER);
 461         spin_unlock_irqrestore(&imxdi->irq_lock, flags);
 462 }
 463 
 464 /*
 465  * This function attempts to clear the dryice write-error flag.
 466  *
 467  * A dryice write error is similar to a bus fault and should not occur in
 468  * normal operation.  Clearing the flag requires another write, so the root
 469  * cause of the problem may need to be fixed before the flag can be cleared.
 470  */
 471 static void clear_write_error(struct imxdi_dev *imxdi)
 472 {
 473         int cnt;
 474 
 475         dev_warn(&imxdi->pdev->dev, "WARNING: Register write error!\n");
 476 
 477         /* clear the write error flag */
 478         writel(DSR_WEF, imxdi->ioaddr + DSR);
 479 
 480         /* wait for it to take effect */
 481         for (cnt = 0; cnt < 1000; cnt++) {
 482                 if ((readl(imxdi->ioaddr + DSR) & DSR_WEF) == 0)
 483                         return;
 484                 udelay(10);
 485         }
 486         dev_err(&imxdi->pdev->dev,
 487                         "ERROR: Cannot clear write-error flag!\n");
 488 }
 489 
 490 /*
 491  * Write a dryice register and wait until it completes.
 492  *
 493  * This function uses interrupts to determine when the
 494  * write has completed.
 495  */
 496 static int di_write_wait(struct imxdi_dev *imxdi, u32 val, int reg)
 497 {
 498         int ret;
 499         int rc = 0;
 500 
 501         /* serialize register writes */
 502         mutex_lock(&imxdi->write_mutex);
 503 
 504         /* enable the write-complete interrupt */
 505         di_int_enable(imxdi, DIER_WCIE);
 506 
 507         imxdi->dsr = 0;
 508 
 509         /* do the register write */
 510         writel(val, imxdi->ioaddr + reg);
 511 
 512         /* wait for the write to finish */
 513         ret = wait_event_interruptible_timeout(imxdi->write_wait,
 514                         imxdi->dsr & (DSR_WCF | DSR_WEF), msecs_to_jiffies(1));
 515         if (ret < 0) {
 516                 rc = ret;
 517                 goto out;
 518         } else if (ret == 0) {
 519                 dev_warn(&imxdi->pdev->dev,
 520                                 "Write-wait timeout "
 521                                 "val = 0x%08x reg = 0x%08x\n", val, reg);
 522         }
 523 
 524         /* check for write error */
 525         if (imxdi->dsr & DSR_WEF) {
 526                 clear_write_error(imxdi);
 527                 rc = -EIO;
 528         }
 529 
 530 out:
 531         mutex_unlock(&imxdi->write_mutex);
 532 
 533         return rc;
 534 }
 535 
 536 /*
 537  * read the seconds portion of the current time from the dryice time counter
 538  */
 539 static int dryice_rtc_read_time(struct device *dev, struct rtc_time *tm)
 540 {
 541         struct imxdi_dev *imxdi = dev_get_drvdata(dev);
 542         unsigned long now;
 543 
 544         now = readl(imxdi->ioaddr + DTCMR);
 545         rtc_time64_to_tm(now, tm);
 546 
 547         return 0;
 548 }
 549 
 550 /*
 551  * set the seconds portion of dryice time counter and clear the
 552  * fractional part.
 553  */
 554 static int dryice_rtc_set_time(struct device *dev, struct rtc_time *tm)
 555 {
 556         struct imxdi_dev *imxdi = dev_get_drvdata(dev);
 557         u32 dcr, dsr;
 558         int rc;
 559 
 560         dcr = readl(imxdi->ioaddr + DCR);
 561         dsr = readl(imxdi->ioaddr + DSR);
 562 
 563         if (!(dcr & DCR_TCE) || (dsr & DSR_SVF)) {
 564                 if (dcr & DCR_TCHL) {
 565                         /* we are even more out of luck */
 566                         di_what_is_to_be_done(imxdi, "battery");
 567                         return -EPERM;
 568                 }
 569                 if ((dcr & DCR_TCSL) || (dsr & DSR_SVF)) {
 570                         /* we are out of luck for now */
 571                         di_what_is_to_be_done(imxdi, "main");
 572                         return -EPERM;
 573                 }
 574         }
 575 
 576         /* zero the fractional part first */
 577         rc = di_write_wait(imxdi, 0, DTCLR);
 578         if (rc != 0)
 579                 return rc;
 580 
 581         rc = di_write_wait(imxdi, rtc_tm_to_time64(tm), DTCMR);
 582         if (rc != 0)
 583                 return rc;
 584 
 585         return di_write_wait(imxdi, readl(imxdi->ioaddr + DCR) | DCR_TCE, DCR);
 586 }
 587 
 588 static int dryice_rtc_alarm_irq_enable(struct device *dev,
 589                 unsigned int enabled)
 590 {
 591         struct imxdi_dev *imxdi = dev_get_drvdata(dev);
 592 
 593         if (enabled)
 594                 di_int_enable(imxdi, DIER_CAIE);
 595         else
 596                 di_int_disable(imxdi, DIER_CAIE);
 597 
 598         return 0;
 599 }
 600 
 601 /*
 602  * read the seconds portion of the alarm register.
 603  * the fractional part of the alarm register is always zero.
 604  */
 605 static int dryice_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
 606 {
 607         struct imxdi_dev *imxdi = dev_get_drvdata(dev);
 608         u32 dcamr;
 609 
 610         dcamr = readl(imxdi->ioaddr + DCAMR);
 611         rtc_time64_to_tm(dcamr, &alarm->time);
 612 
 613         /* alarm is enabled if the interrupt is enabled */
 614         alarm->enabled = (readl(imxdi->ioaddr + DIER) & DIER_CAIE) != 0;
 615 
 616         /* don't allow the DSR read to mess up DSR_WCF */
 617         mutex_lock(&imxdi->write_mutex);
 618 
 619         /* alarm is pending if the alarm flag is set */
 620         alarm->pending = (readl(imxdi->ioaddr + DSR) & DSR_CAF) != 0;
 621 
 622         mutex_unlock(&imxdi->write_mutex);
 623 
 624         return 0;
 625 }
 626 
 627 /*
 628  * set the seconds portion of dryice alarm register
 629  */
 630 static int dryice_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
 631 {
 632         struct imxdi_dev *imxdi = dev_get_drvdata(dev);
 633         int rc;
 634 
 635         /* write the new alarm time */
 636         rc = di_write_wait(imxdi, rtc_tm_to_time64(&alarm->time), DCAMR);
 637         if (rc)
 638                 return rc;
 639 
 640         if (alarm->enabled)
 641                 di_int_enable(imxdi, DIER_CAIE);  /* enable alarm intr */
 642         else
 643                 di_int_disable(imxdi, DIER_CAIE); /* disable alarm intr */
 644 
 645         return 0;
 646 }
 647 
 648 static const struct rtc_class_ops dryice_rtc_ops = {
 649         .read_time              = dryice_rtc_read_time,
 650         .set_time               = dryice_rtc_set_time,
 651         .alarm_irq_enable       = dryice_rtc_alarm_irq_enable,
 652         .read_alarm             = dryice_rtc_read_alarm,
 653         .set_alarm              = dryice_rtc_set_alarm,
 654 };
 655 
 656 /*
 657  * interrupt handler for dryice "normal" and security violation interrupt
 658  */
 659 static irqreturn_t dryice_irq(int irq, void *dev_id)
 660 {
 661         struct imxdi_dev *imxdi = dev_id;
 662         u32 dsr, dier;
 663         irqreturn_t rc = IRQ_NONE;
 664 
 665         dier = readl(imxdi->ioaddr + DIER);
 666         dsr = readl(imxdi->ioaddr + DSR);
 667 
 668         /* handle the security violation event */
 669         if (dier & DIER_SVIE) {
 670                 if (dsr & DSR_SVF) {
 671                         /*
 672                          * Disable the interrupt when this kind of event has
 673                          * happened.
 674                          * There cannot be more than one event of this type,
 675                          * because it needs a complex state change
 676                          * including a main power cycle to get again out of
 677                          * this state.
 678                          */
 679                         di_int_disable(imxdi, DIER_SVIE);
 680                         /* report the violation */
 681                         di_report_tamper_info(imxdi, dsr);
 682                         rc = IRQ_HANDLED;
 683                 }
 684         }
 685 
 686         /* handle write complete and write error cases */
 687         if (dier & DIER_WCIE) {
 688                 /*If the write wait queue is empty then there is no pending
 689                   operations. It means the interrupt is for DryIce -Security.
 690                   IRQ must be returned as none.*/
 691                 if (list_empty_careful(&imxdi->write_wait.head))
 692                         return rc;
 693 
 694                 /* DSR_WCF clears itself on DSR read */
 695                 if (dsr & (DSR_WCF | DSR_WEF)) {
 696                         /* mask the interrupt */
 697                         di_int_disable(imxdi, DIER_WCIE);
 698 
 699                         /* save the dsr value for the wait queue */
 700                         imxdi->dsr |= dsr;
 701 
 702                         wake_up_interruptible(&imxdi->write_wait);
 703                         rc = IRQ_HANDLED;
 704                 }
 705         }
 706 
 707         /* handle the alarm case */
 708         if (dier & DIER_CAIE) {
 709                 /* DSR_WCF clears itself on DSR read */
 710                 if (dsr & DSR_CAF) {
 711                         /* mask the interrupt */
 712                         di_int_disable(imxdi, DIER_CAIE);
 713 
 714                         /* finish alarm in user context */
 715                         schedule_work(&imxdi->work);
 716                         rc = IRQ_HANDLED;
 717                 }
 718         }
 719         return rc;
 720 }
 721 
 722 /*
 723  * post the alarm event from user context so it can sleep
 724  * on the write completion.
 725  */
 726 static void dryice_work(struct work_struct *work)
 727 {
 728         struct imxdi_dev *imxdi = container_of(work,
 729                         struct imxdi_dev, work);
 730 
 731         /* dismiss the interrupt (ignore error) */
 732         di_write_wait(imxdi, DSR_CAF, DSR);
 733 
 734         /* pass the alarm event to the rtc framework. */
 735         rtc_update_irq(imxdi->rtc, 1, RTC_AF | RTC_IRQF);
 736 }
 737 
 738 /*
 739  * probe for dryice rtc device
 740  */
 741 static int __init dryice_rtc_probe(struct platform_device *pdev)
 742 {
 743         struct imxdi_dev *imxdi;
 744         int norm_irq, sec_irq;
 745         int rc;
 746 
 747         imxdi = devm_kzalloc(&pdev->dev, sizeof(*imxdi), GFP_KERNEL);
 748         if (!imxdi)
 749                 return -ENOMEM;
 750 
 751         imxdi->pdev = pdev;
 752 
 753         imxdi->ioaddr = devm_platform_ioremap_resource(pdev, 0);
 754         if (IS_ERR(imxdi->ioaddr))
 755                 return PTR_ERR(imxdi->ioaddr);
 756 
 757         spin_lock_init(&imxdi->irq_lock);
 758 
 759         norm_irq = platform_get_irq(pdev, 0);
 760         if (norm_irq < 0)
 761                 return norm_irq;
 762 
 763         /* the 2nd irq is the security violation irq
 764          * make this optional, don't break the device tree ABI
 765          */
 766         sec_irq = platform_get_irq(pdev, 1);
 767         if (sec_irq <= 0)
 768                 sec_irq = IRQ_NOTCONNECTED;
 769 
 770         init_waitqueue_head(&imxdi->write_wait);
 771 
 772         INIT_WORK(&imxdi->work, dryice_work);
 773 
 774         mutex_init(&imxdi->write_mutex);
 775 
 776         imxdi->rtc = devm_rtc_allocate_device(&pdev->dev);
 777         if (IS_ERR(imxdi->rtc))
 778                 return PTR_ERR(imxdi->rtc);
 779 
 780         imxdi->clk = devm_clk_get(&pdev->dev, NULL);
 781         if (IS_ERR(imxdi->clk))
 782                 return PTR_ERR(imxdi->clk);
 783         rc = clk_prepare_enable(imxdi->clk);
 784         if (rc)
 785                 return rc;
 786 
 787         /*
 788          * Initialize dryice hardware
 789          */
 790 
 791         /* mask all interrupts */
 792         writel(0, imxdi->ioaddr + DIER);
 793 
 794         rc = di_handle_state(imxdi);
 795         if (rc != 0)
 796                 goto err;
 797 
 798         rc = devm_request_irq(&pdev->dev, norm_irq, dryice_irq,
 799                               IRQF_SHARED, pdev->name, imxdi);
 800         if (rc) {
 801                 dev_warn(&pdev->dev, "interrupt not available.\n");
 802                 goto err;
 803         }
 804 
 805         rc = devm_request_irq(&pdev->dev, sec_irq, dryice_irq,
 806                               IRQF_SHARED, pdev->name, imxdi);
 807         if (rc) {
 808                 dev_warn(&pdev->dev, "security violation interrupt not available.\n");
 809                 /* this is not an error, see above */
 810         }
 811 
 812         platform_set_drvdata(pdev, imxdi);
 813 
 814         imxdi->rtc->ops = &dryice_rtc_ops;
 815         imxdi->rtc->range_max = U32_MAX;
 816 
 817         rc = rtc_register_device(imxdi->rtc);
 818         if (rc)
 819                 goto err;
 820 
 821         return 0;
 822 
 823 err:
 824         clk_disable_unprepare(imxdi->clk);
 825 
 826         return rc;
 827 }
 828 
 829 static int __exit dryice_rtc_remove(struct platform_device *pdev)
 830 {
 831         struct imxdi_dev *imxdi = platform_get_drvdata(pdev);
 832 
 833         flush_work(&imxdi->work);
 834 
 835         /* mask all interrupts */
 836         writel(0, imxdi->ioaddr + DIER);
 837 
 838         clk_disable_unprepare(imxdi->clk);
 839 
 840         return 0;
 841 }
 842 
 843 #ifdef CONFIG_OF
 844 static const struct of_device_id dryice_dt_ids[] = {
 845         { .compatible = "fsl,imx25-rtc" },
 846         { /* sentinel */ }
 847 };
 848 
 849 MODULE_DEVICE_TABLE(of, dryice_dt_ids);
 850 #endif
 851 
 852 static struct platform_driver dryice_rtc_driver = {
 853         .driver = {
 854                    .name = "imxdi_rtc",
 855                    .of_match_table = of_match_ptr(dryice_dt_ids),
 856                    },
 857         .remove = __exit_p(dryice_rtc_remove),
 858 };
 859 
 860 module_platform_driver_probe(dryice_rtc_driver, dryice_rtc_probe);
 861 
 862 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
 863 MODULE_AUTHOR("Baruch Siach <baruch@tkos.co.il>");
 864 MODULE_DESCRIPTION("IMX DryIce Realtime Clock Driver (RTC)");
 865 MODULE_LICENSE("GPL");

/* [<][>][^][v][top][bottom][index][help] */