root/drivers/rtc/rtc-cmos.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. cmos_use_acpi_alarm
  2. cmos_use_acpi_alarm
  3. is_intr
  4. is_hpet_enabled
  5. hpet_mask_rtc_irq_bit
  6. hpet_set_rtc_irq_bit
  7. hpet_set_alarm_time
  8. hpet_set_periodic_freq
  9. hpet_rtc_dropped_irq
  10. hpet_rtc_timer_init
  11. hpet_register_irq_handler
  12. hpet_unregister_irq_handler
  13. use_hpet_alarm
  14. cmos_read_bank2
  15. cmos_write_bank2
  16. cmos_read_bank2
  17. cmos_write_bank2
  18. cmos_read_time
  19. cmos_set_time
  20. cmos_read_alarm
  21. cmos_checkintr
  22. cmos_irq_enable
  23. cmos_irq_disable
  24. cmos_validate_alarm
  25. cmos_set_alarm
  26. cmos_alarm_irq_enable
  27. cmos_procfs
  28. cmos_nvram_read
  29. cmos_nvram_write
  30. cmos_interrupt
  31. cmos_do_probe
  32. cmos_do_shutdown
  33. cmos_do_remove
  34. cmos_aie_poweroff
  35. cmos_suspend
  36. cmos_poweroff
  37. cmos_check_wkalrm
  38. cmos_resume
  39. rtc_handler
  40. rtc_wake_setup
  41. rtc_wake_on
  42. rtc_wake_off
  43. use_acpi_alarm_quirks
  44. use_acpi_alarm_quirks
  45. cmos_wake_setup
  46. cmos_check_acpi_rtc_status
  47. cmos_wake_setup
  48. cmos_check_acpi_rtc_status
  49. cmos_pnp_probe
  50. cmos_pnp_remove
  51. cmos_pnp_shutdown
  52. cmos_of_init
  53. cmos_of_init
  54. cmos_platform_probe
  55. cmos_platform_remove
  56. cmos_platform_shutdown
  57. cmos_init
  58. cmos_exit

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3  * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
   4  *
   5  * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
   6  * Copyright (C) 2006 David Brownell (convert to new framework)
   7  */
   8 
   9 /*
  10  * The original "cmos clock" chip was an MC146818 chip, now obsolete.
  11  * That defined the register interface now provided by all PCs, some
  12  * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
  13  * integrate an MC146818 clone in their southbridge, and boards use
  14  * that instead of discrete clones like the DS12887 or M48T86.  There
  15  * are also clones that connect using the LPC bus.
  16  *
  17  * That register API is also used directly by various other drivers
  18  * (notably for integrated NVRAM), infrastructure (x86 has code to
  19  * bypass the RTC framework, directly reading the RTC during boot
  20  * and updating minutes/seconds for systems using NTP synch) and
  21  * utilities (like userspace 'hwclock', if no /dev node exists).
  22  *
  23  * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
  24  * interrupts disabled, holding the global rtc_lock, to exclude those
  25  * other drivers and utilities on correctly configured systems.
  26  */
  27 
  28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  29 
  30 #include <linux/kernel.h>
  31 #include <linux/module.h>
  32 #include <linux/init.h>
  33 #include <linux/interrupt.h>
  34 #include <linux/spinlock.h>
  35 #include <linux/platform_device.h>
  36 #include <linux/log2.h>
  37 #include <linux/pm.h>
  38 #include <linux/of.h>
  39 #include <linux/of_platform.h>
  40 #ifdef CONFIG_X86
  41 #include <asm/i8259.h>
  42 #include <asm/processor.h>
  43 #include <linux/dmi.h>
  44 #endif
  45 
  46 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
  47 #include <linux/mc146818rtc.h>
  48 
  49 #ifdef CONFIG_ACPI
  50 /*
  51  * Use ACPI SCI to replace HPET interrupt for RTC Alarm event
  52  *
  53  * If cleared, ACPI SCI is only used to wake up the system from suspend
  54  *
  55  * If set, ACPI SCI is used to handle UIE/AIE and system wakeup
  56  */
  57 
  58 static bool use_acpi_alarm;
  59 module_param(use_acpi_alarm, bool, 0444);
  60 
  61 static inline int cmos_use_acpi_alarm(void)
  62 {
  63         return use_acpi_alarm;
  64 }
  65 #else /* !CONFIG_ACPI */
  66 
  67 static inline int cmos_use_acpi_alarm(void)
  68 {
  69         return 0;
  70 }
  71 #endif
  72 
  73 struct cmos_rtc {
  74         struct rtc_device       *rtc;
  75         struct device           *dev;
  76         int                     irq;
  77         struct resource         *iomem;
  78         time64_t                alarm_expires;
  79 
  80         void                    (*wake_on)(struct device *);
  81         void                    (*wake_off)(struct device *);
  82 
  83         u8                      enabled_wake;
  84         u8                      suspend_ctrl;
  85 
  86         /* newer hardware extends the original register set */
  87         u8                      day_alrm;
  88         u8                      mon_alrm;
  89         u8                      century;
  90 
  91         struct rtc_wkalrm       saved_wkalrm;
  92 };
  93 
  94 /* both platform and pnp busses use negative numbers for invalid irqs */
  95 #define is_valid_irq(n)         ((n) > 0)
  96 
  97 static const char driver_name[] = "rtc_cmos";
  98 
  99 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
 100  * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
 101  * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
 102  */
 103 #define RTC_IRQMASK     (RTC_PF | RTC_AF | RTC_UF)
 104 
 105 static inline int is_intr(u8 rtc_intr)
 106 {
 107         if (!(rtc_intr & RTC_IRQF))
 108                 return 0;
 109         return rtc_intr & RTC_IRQMASK;
 110 }
 111 
 112 /*----------------------------------------------------------------*/
 113 
 114 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
 115  * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
 116  * used in a broken "legacy replacement" mode.  The breakage includes
 117  * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
 118  * other (better) use.
 119  *
 120  * When that broken mode is in use, platform glue provides a partial
 121  * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
 122  * want to use HPET for anything except those IRQs though...
 123  */
 124 #ifdef CONFIG_HPET_EMULATE_RTC
 125 #include <asm/hpet.h>
 126 #else
 127 
 128 static inline int is_hpet_enabled(void)
 129 {
 130         return 0;
 131 }
 132 
 133 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
 134 {
 135         return 0;
 136 }
 137 
 138 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
 139 {
 140         return 0;
 141 }
 142 
 143 static inline int
 144 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
 145 {
 146         return 0;
 147 }
 148 
 149 static inline int hpet_set_periodic_freq(unsigned long freq)
 150 {
 151         return 0;
 152 }
 153 
 154 static inline int hpet_rtc_dropped_irq(void)
 155 {
 156         return 0;
 157 }
 158 
 159 static inline int hpet_rtc_timer_init(void)
 160 {
 161         return 0;
 162 }
 163 
 164 extern irq_handler_t hpet_rtc_interrupt;
 165 
 166 static inline int hpet_register_irq_handler(irq_handler_t handler)
 167 {
 168         return 0;
 169 }
 170 
 171 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
 172 {
 173         return 0;
 174 }
 175 
 176 #endif
 177 
 178 /* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */
 179 static inline int use_hpet_alarm(void)
 180 {
 181         return is_hpet_enabled() && !cmos_use_acpi_alarm();
 182 }
 183 
 184 /*----------------------------------------------------------------*/
 185 
 186 #ifdef RTC_PORT
 187 
 188 /* Most newer x86 systems have two register banks, the first used
 189  * for RTC and NVRAM and the second only for NVRAM.  Caller must
 190  * own rtc_lock ... and we won't worry about access during NMI.
 191  */
 192 #define can_bank2       true
 193 
 194 static inline unsigned char cmos_read_bank2(unsigned char addr)
 195 {
 196         outb(addr, RTC_PORT(2));
 197         return inb(RTC_PORT(3));
 198 }
 199 
 200 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
 201 {
 202         outb(addr, RTC_PORT(2));
 203         outb(val, RTC_PORT(3));
 204 }
 205 
 206 #else
 207 
 208 #define can_bank2       false
 209 
 210 static inline unsigned char cmos_read_bank2(unsigned char addr)
 211 {
 212         return 0;
 213 }
 214 
 215 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
 216 {
 217 }
 218 
 219 #endif
 220 
 221 /*----------------------------------------------------------------*/
 222 
 223 static int cmos_read_time(struct device *dev, struct rtc_time *t)
 224 {
 225         /*
 226          * If pm_trace abused the RTC for storage, set the timespec to 0,
 227          * which tells the caller that this RTC value is unusable.
 228          */
 229         if (!pm_trace_rtc_valid())
 230                 return -EIO;
 231 
 232         /* REVISIT:  if the clock has a "century" register, use
 233          * that instead of the heuristic in mc146818_get_time().
 234          * That'll make Y3K compatility (year > 2070) easy!
 235          */
 236         mc146818_get_time(t);
 237         return 0;
 238 }
 239 
 240 static int cmos_set_time(struct device *dev, struct rtc_time *t)
 241 {
 242         /* REVISIT:  set the "century" register if available
 243          *
 244          * NOTE: this ignores the issue whereby updating the seconds
 245          * takes effect exactly 500ms after we write the register.
 246          * (Also queueing and other delays before we get this far.)
 247          */
 248         return mc146818_set_time(t);
 249 }
 250 
 251 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
 252 {
 253         struct cmos_rtc *cmos = dev_get_drvdata(dev);
 254         unsigned char   rtc_control;
 255 
 256         /* This not only a rtc_op, but also called directly */
 257         if (!is_valid_irq(cmos->irq))
 258                 return -EIO;
 259 
 260         /* Basic alarms only support hour, minute, and seconds fields.
 261          * Some also support day and month, for alarms up to a year in
 262          * the future.
 263          */
 264 
 265         spin_lock_irq(&rtc_lock);
 266         t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
 267         t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
 268         t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
 269 
 270         if (cmos->day_alrm) {
 271                 /* ignore upper bits on readback per ACPI spec */
 272                 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
 273                 if (!t->time.tm_mday)
 274                         t->time.tm_mday = -1;
 275 
 276                 if (cmos->mon_alrm) {
 277                         t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
 278                         if (!t->time.tm_mon)
 279                                 t->time.tm_mon = -1;
 280                 }
 281         }
 282 
 283         rtc_control = CMOS_READ(RTC_CONTROL);
 284         spin_unlock_irq(&rtc_lock);
 285 
 286         if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
 287                 if (((unsigned)t->time.tm_sec) < 0x60)
 288                         t->time.tm_sec = bcd2bin(t->time.tm_sec);
 289                 else
 290                         t->time.tm_sec = -1;
 291                 if (((unsigned)t->time.tm_min) < 0x60)
 292                         t->time.tm_min = bcd2bin(t->time.tm_min);
 293                 else
 294                         t->time.tm_min = -1;
 295                 if (((unsigned)t->time.tm_hour) < 0x24)
 296                         t->time.tm_hour = bcd2bin(t->time.tm_hour);
 297                 else
 298                         t->time.tm_hour = -1;
 299 
 300                 if (cmos->day_alrm) {
 301                         if (((unsigned)t->time.tm_mday) <= 0x31)
 302                                 t->time.tm_mday = bcd2bin(t->time.tm_mday);
 303                         else
 304                                 t->time.tm_mday = -1;
 305 
 306                         if (cmos->mon_alrm) {
 307                                 if (((unsigned)t->time.tm_mon) <= 0x12)
 308                                         t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
 309                                 else
 310                                         t->time.tm_mon = -1;
 311                         }
 312                 }
 313         }
 314 
 315         t->enabled = !!(rtc_control & RTC_AIE);
 316         t->pending = 0;
 317 
 318         return 0;
 319 }
 320 
 321 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
 322 {
 323         unsigned char   rtc_intr;
 324 
 325         /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
 326          * allegedly some older rtcs need that to handle irqs properly
 327          */
 328         rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
 329 
 330         if (use_hpet_alarm())
 331                 return;
 332 
 333         rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
 334         if (is_intr(rtc_intr))
 335                 rtc_update_irq(cmos->rtc, 1, rtc_intr);
 336 }
 337 
 338 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
 339 {
 340         unsigned char   rtc_control;
 341 
 342         /* flush any pending IRQ status, notably for update irqs,
 343          * before we enable new IRQs
 344          */
 345         rtc_control = CMOS_READ(RTC_CONTROL);
 346         cmos_checkintr(cmos, rtc_control);
 347 
 348         rtc_control |= mask;
 349         CMOS_WRITE(rtc_control, RTC_CONTROL);
 350         if (use_hpet_alarm())
 351                 hpet_set_rtc_irq_bit(mask);
 352 
 353         if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
 354                 if (cmos->wake_on)
 355                         cmos->wake_on(cmos->dev);
 356         }
 357 
 358         cmos_checkintr(cmos, rtc_control);
 359 }
 360 
 361 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
 362 {
 363         unsigned char   rtc_control;
 364 
 365         rtc_control = CMOS_READ(RTC_CONTROL);
 366         rtc_control &= ~mask;
 367         CMOS_WRITE(rtc_control, RTC_CONTROL);
 368         if (use_hpet_alarm())
 369                 hpet_mask_rtc_irq_bit(mask);
 370 
 371         if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
 372                 if (cmos->wake_off)
 373                         cmos->wake_off(cmos->dev);
 374         }
 375 
 376         cmos_checkintr(cmos, rtc_control);
 377 }
 378 
 379 static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
 380 {
 381         struct cmos_rtc *cmos = dev_get_drvdata(dev);
 382         struct rtc_time now;
 383 
 384         cmos_read_time(dev, &now);
 385 
 386         if (!cmos->day_alrm) {
 387                 time64_t t_max_date;
 388                 time64_t t_alrm;
 389 
 390                 t_max_date = rtc_tm_to_time64(&now);
 391                 t_max_date += 24 * 60 * 60 - 1;
 392                 t_alrm = rtc_tm_to_time64(&t->time);
 393                 if (t_alrm > t_max_date) {
 394                         dev_err(dev,
 395                                 "Alarms can be up to one day in the future\n");
 396                         return -EINVAL;
 397                 }
 398         } else if (!cmos->mon_alrm) {
 399                 struct rtc_time max_date = now;
 400                 time64_t t_max_date;
 401                 time64_t t_alrm;
 402                 int max_mday;
 403 
 404                 if (max_date.tm_mon == 11) {
 405                         max_date.tm_mon = 0;
 406                         max_date.tm_year += 1;
 407                 } else {
 408                         max_date.tm_mon += 1;
 409                 }
 410                 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
 411                 if (max_date.tm_mday > max_mday)
 412                         max_date.tm_mday = max_mday;
 413 
 414                 t_max_date = rtc_tm_to_time64(&max_date);
 415                 t_max_date -= 1;
 416                 t_alrm = rtc_tm_to_time64(&t->time);
 417                 if (t_alrm > t_max_date) {
 418                         dev_err(dev,
 419                                 "Alarms can be up to one month in the future\n");
 420                         return -EINVAL;
 421                 }
 422         } else {
 423                 struct rtc_time max_date = now;
 424                 time64_t t_max_date;
 425                 time64_t t_alrm;
 426                 int max_mday;
 427 
 428                 max_date.tm_year += 1;
 429                 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
 430                 if (max_date.tm_mday > max_mday)
 431                         max_date.tm_mday = max_mday;
 432 
 433                 t_max_date = rtc_tm_to_time64(&max_date);
 434                 t_max_date -= 1;
 435                 t_alrm = rtc_tm_to_time64(&t->time);
 436                 if (t_alrm > t_max_date) {
 437                         dev_err(dev,
 438                                 "Alarms can be up to one year in the future\n");
 439                         return -EINVAL;
 440                 }
 441         }
 442 
 443         return 0;
 444 }
 445 
 446 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
 447 {
 448         struct cmos_rtc *cmos = dev_get_drvdata(dev);
 449         unsigned char mon, mday, hrs, min, sec, rtc_control;
 450         int ret;
 451 
 452         /* This not only a rtc_op, but also called directly */
 453         if (!is_valid_irq(cmos->irq))
 454                 return -EIO;
 455 
 456         ret = cmos_validate_alarm(dev, t);
 457         if (ret < 0)
 458                 return ret;
 459 
 460         mon = t->time.tm_mon + 1;
 461         mday = t->time.tm_mday;
 462         hrs = t->time.tm_hour;
 463         min = t->time.tm_min;
 464         sec = t->time.tm_sec;
 465 
 466         rtc_control = CMOS_READ(RTC_CONTROL);
 467         if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
 468                 /* Writing 0xff means "don't care" or "match all".  */
 469                 mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
 470                 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
 471                 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
 472                 min = (min < 60) ? bin2bcd(min) : 0xff;
 473                 sec = (sec < 60) ? bin2bcd(sec) : 0xff;
 474         }
 475 
 476         spin_lock_irq(&rtc_lock);
 477 
 478         /* next rtc irq must not be from previous alarm setting */
 479         cmos_irq_disable(cmos, RTC_AIE);
 480 
 481         /* update alarm */
 482         CMOS_WRITE(hrs, RTC_HOURS_ALARM);
 483         CMOS_WRITE(min, RTC_MINUTES_ALARM);
 484         CMOS_WRITE(sec, RTC_SECONDS_ALARM);
 485 
 486         /* the system may support an "enhanced" alarm */
 487         if (cmos->day_alrm) {
 488                 CMOS_WRITE(mday, cmos->day_alrm);
 489                 if (cmos->mon_alrm)
 490                         CMOS_WRITE(mon, cmos->mon_alrm);
 491         }
 492 
 493         if (use_hpet_alarm()) {
 494                 /*
 495                  * FIXME the HPET alarm glue currently ignores day_alrm
 496                  * and mon_alrm ...
 497                  */
 498                 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min,
 499                                     t->time.tm_sec);
 500         }
 501 
 502         if (t->enabled)
 503                 cmos_irq_enable(cmos, RTC_AIE);
 504 
 505         spin_unlock_irq(&rtc_lock);
 506 
 507         cmos->alarm_expires = rtc_tm_to_time64(&t->time);
 508 
 509         return 0;
 510 }
 511 
 512 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
 513 {
 514         struct cmos_rtc *cmos = dev_get_drvdata(dev);
 515         unsigned long   flags;
 516 
 517         spin_lock_irqsave(&rtc_lock, flags);
 518 
 519         if (enabled)
 520                 cmos_irq_enable(cmos, RTC_AIE);
 521         else
 522                 cmos_irq_disable(cmos, RTC_AIE);
 523 
 524         spin_unlock_irqrestore(&rtc_lock, flags);
 525         return 0;
 526 }
 527 
 528 #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
 529 
 530 static int cmos_procfs(struct device *dev, struct seq_file *seq)
 531 {
 532         struct cmos_rtc *cmos = dev_get_drvdata(dev);
 533         unsigned char   rtc_control, valid;
 534 
 535         spin_lock_irq(&rtc_lock);
 536         rtc_control = CMOS_READ(RTC_CONTROL);
 537         valid = CMOS_READ(RTC_VALID);
 538         spin_unlock_irq(&rtc_lock);
 539 
 540         /* NOTE:  at least ICH6 reports battery status using a different
 541          * (non-RTC) bit; and SQWE is ignored on many current systems.
 542          */
 543         seq_printf(seq,
 544                    "periodic_IRQ\t: %s\n"
 545                    "update_IRQ\t: %s\n"
 546                    "HPET_emulated\t: %s\n"
 547                    // "square_wave\t: %s\n"
 548                    "BCD\t\t: %s\n"
 549                    "DST_enable\t: %s\n"
 550                    "periodic_freq\t: %d\n"
 551                    "batt_status\t: %s\n",
 552                    (rtc_control & RTC_PIE) ? "yes" : "no",
 553                    (rtc_control & RTC_UIE) ? "yes" : "no",
 554                    use_hpet_alarm() ? "yes" : "no",
 555                    // (rtc_control & RTC_SQWE) ? "yes" : "no",
 556                    (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
 557                    (rtc_control & RTC_DST_EN) ? "yes" : "no",
 558                    cmos->rtc->irq_freq,
 559                    (valid & RTC_VRT) ? "okay" : "dead");
 560 
 561         return 0;
 562 }
 563 
 564 #else
 565 #define cmos_procfs     NULL
 566 #endif
 567 
 568 static const struct rtc_class_ops cmos_rtc_ops = {
 569         .read_time              = cmos_read_time,
 570         .set_time               = cmos_set_time,
 571         .read_alarm             = cmos_read_alarm,
 572         .set_alarm              = cmos_set_alarm,
 573         .proc                   = cmos_procfs,
 574         .alarm_irq_enable       = cmos_alarm_irq_enable,
 575 };
 576 
 577 static const struct rtc_class_ops cmos_rtc_ops_no_alarm = {
 578         .read_time              = cmos_read_time,
 579         .set_time               = cmos_set_time,
 580         .proc                   = cmos_procfs,
 581 };
 582 
 583 /*----------------------------------------------------------------*/
 584 
 585 /*
 586  * All these chips have at least 64 bytes of address space, shared by
 587  * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
 588  * by boot firmware.  Modern chips have 128 or 256 bytes.
 589  */
 590 
 591 #define NVRAM_OFFSET    (RTC_REG_D + 1)
 592 
 593 static int cmos_nvram_read(void *priv, unsigned int off, void *val,
 594                            size_t count)
 595 {
 596         unsigned char *buf = val;
 597         int     retval;
 598 
 599         off += NVRAM_OFFSET;
 600         spin_lock_irq(&rtc_lock);
 601         for (retval = 0; count; count--, off++, retval++) {
 602                 if (off < 128)
 603                         *buf++ = CMOS_READ(off);
 604                 else if (can_bank2)
 605                         *buf++ = cmos_read_bank2(off);
 606                 else
 607                         break;
 608         }
 609         spin_unlock_irq(&rtc_lock);
 610 
 611         return retval;
 612 }
 613 
 614 static int cmos_nvram_write(void *priv, unsigned int off, void *val,
 615                             size_t count)
 616 {
 617         struct cmos_rtc *cmos = priv;
 618         unsigned char   *buf = val;
 619         int             retval;
 620 
 621         /* NOTE:  on at least PCs and Ataris, the boot firmware uses a
 622          * checksum on part of the NVRAM data.  That's currently ignored
 623          * here.  If userspace is smart enough to know what fields of
 624          * NVRAM to update, updating checksums is also part of its job.
 625          */
 626         off += NVRAM_OFFSET;
 627         spin_lock_irq(&rtc_lock);
 628         for (retval = 0; count; count--, off++, retval++) {
 629                 /* don't trash RTC registers */
 630                 if (off == cmos->day_alrm
 631                                 || off == cmos->mon_alrm
 632                                 || off == cmos->century)
 633                         buf++;
 634                 else if (off < 128)
 635                         CMOS_WRITE(*buf++, off);
 636                 else if (can_bank2)
 637                         cmos_write_bank2(*buf++, off);
 638                 else
 639                         break;
 640         }
 641         spin_unlock_irq(&rtc_lock);
 642 
 643         return retval;
 644 }
 645 
 646 /*----------------------------------------------------------------*/
 647 
 648 static struct cmos_rtc  cmos_rtc;
 649 
 650 static irqreturn_t cmos_interrupt(int irq, void *p)
 651 {
 652         u8              irqstat;
 653         u8              rtc_control;
 654 
 655         spin_lock(&rtc_lock);
 656 
 657         /* When the HPET interrupt handler calls us, the interrupt
 658          * status is passed as arg1 instead of the irq number.  But
 659          * always clear irq status, even when HPET is in the way.
 660          *
 661          * Note that HPET and RTC are almost certainly out of phase,
 662          * giving different IRQ status ...
 663          */
 664         irqstat = CMOS_READ(RTC_INTR_FLAGS);
 665         rtc_control = CMOS_READ(RTC_CONTROL);
 666         if (use_hpet_alarm())
 667                 irqstat = (unsigned long)irq & 0xF0;
 668 
 669         /* If we were suspended, RTC_CONTROL may not be accurate since the
 670          * bios may have cleared it.
 671          */
 672         if (!cmos_rtc.suspend_ctrl)
 673                 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
 674         else
 675                 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
 676 
 677         /* All Linux RTC alarms should be treated as if they were oneshot.
 678          * Similar code may be needed in system wakeup paths, in case the
 679          * alarm woke the system.
 680          */
 681         if (irqstat & RTC_AIE) {
 682                 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
 683                 rtc_control &= ~RTC_AIE;
 684                 CMOS_WRITE(rtc_control, RTC_CONTROL);
 685                 if (use_hpet_alarm())
 686                         hpet_mask_rtc_irq_bit(RTC_AIE);
 687                 CMOS_READ(RTC_INTR_FLAGS);
 688         }
 689         spin_unlock(&rtc_lock);
 690 
 691         if (is_intr(irqstat)) {
 692                 rtc_update_irq(p, 1, irqstat);
 693                 return IRQ_HANDLED;
 694         } else
 695                 return IRQ_NONE;
 696 }
 697 
 698 #ifdef  CONFIG_PNP
 699 #define INITSECTION
 700 
 701 #else
 702 #define INITSECTION     __init
 703 #endif
 704 
 705 static int INITSECTION
 706 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
 707 {
 708         struct cmos_rtc_board_info      *info = dev_get_platdata(dev);
 709         int                             retval = 0;
 710         unsigned char                   rtc_control;
 711         unsigned                        address_space;
 712         u32                             flags = 0;
 713         struct nvmem_config nvmem_cfg = {
 714                 .name = "cmos_nvram",
 715                 .word_size = 1,
 716                 .stride = 1,
 717                 .reg_read = cmos_nvram_read,
 718                 .reg_write = cmos_nvram_write,
 719                 .priv = &cmos_rtc,
 720         };
 721 
 722         /* there can be only one ... */
 723         if (cmos_rtc.dev)
 724                 return -EBUSY;
 725 
 726         if (!ports)
 727                 return -ENODEV;
 728 
 729         /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
 730          *
 731          * REVISIT non-x86 systems may instead use memory space resources
 732          * (needing ioremap etc), not i/o space resources like this ...
 733          */
 734         if (RTC_IOMAPPED)
 735                 ports = request_region(ports->start, resource_size(ports),
 736                                        driver_name);
 737         else
 738                 ports = request_mem_region(ports->start, resource_size(ports),
 739                                            driver_name);
 740         if (!ports) {
 741                 dev_dbg(dev, "i/o registers already in use\n");
 742                 return -EBUSY;
 743         }
 744 
 745         cmos_rtc.irq = rtc_irq;
 746         cmos_rtc.iomem = ports;
 747 
 748         /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
 749          * driver did, but don't reject unknown configs.   Old hardware
 750          * won't address 128 bytes.  Newer chips have multiple banks,
 751          * though they may not be listed in one I/O resource.
 752          */
 753 #if     defined(CONFIG_ATARI)
 754         address_space = 64;
 755 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
 756                         || defined(__sparc__) || defined(__mips__) \
 757                         || defined(__powerpc__)
 758         address_space = 128;
 759 #else
 760 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
 761         address_space = 128;
 762 #endif
 763         if (can_bank2 && ports->end > (ports->start + 1))
 764                 address_space = 256;
 765 
 766         /* For ACPI systems extension info comes from the FADT.  On others,
 767          * board specific setup provides it as appropriate.  Systems where
 768          * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
 769          * some almost-clones) can provide hooks to make that behave.
 770          *
 771          * Note that ACPI doesn't preclude putting these registers into
 772          * "extended" areas of the chip, including some that we won't yet
 773          * expect CMOS_READ and friends to handle.
 774          */
 775         if (info) {
 776                 if (info->flags)
 777                         flags = info->flags;
 778                 if (info->address_space)
 779                         address_space = info->address_space;
 780 
 781                 if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
 782                         cmos_rtc.day_alrm = info->rtc_day_alarm;
 783                 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
 784                         cmos_rtc.mon_alrm = info->rtc_mon_alarm;
 785                 if (info->rtc_century && info->rtc_century < 128)
 786                         cmos_rtc.century = info->rtc_century;
 787 
 788                 if (info->wake_on && info->wake_off) {
 789                         cmos_rtc.wake_on = info->wake_on;
 790                         cmos_rtc.wake_off = info->wake_off;
 791                 }
 792         }
 793 
 794         cmos_rtc.dev = dev;
 795         dev_set_drvdata(dev, &cmos_rtc);
 796 
 797         cmos_rtc.rtc = devm_rtc_allocate_device(dev);
 798         if (IS_ERR(cmos_rtc.rtc)) {
 799                 retval = PTR_ERR(cmos_rtc.rtc);
 800                 goto cleanup0;
 801         }
 802 
 803         rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
 804 
 805         spin_lock_irq(&rtc_lock);
 806 
 807         if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
 808                 /* force periodic irq to CMOS reset default of 1024Hz;
 809                  *
 810                  * REVISIT it's been reported that at least one x86_64 ALI
 811                  * mobo doesn't use 32KHz here ... for portability we might
 812                  * need to do something about other clock frequencies.
 813                  */
 814                 cmos_rtc.rtc->irq_freq = 1024;
 815                 if (use_hpet_alarm())
 816                         hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
 817                 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
 818         }
 819 
 820         /* disable irqs */
 821         if (is_valid_irq(rtc_irq))
 822                 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
 823 
 824         rtc_control = CMOS_READ(RTC_CONTROL);
 825 
 826         spin_unlock_irq(&rtc_lock);
 827 
 828         if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
 829                 dev_warn(dev, "only 24-hr supported\n");
 830                 retval = -ENXIO;
 831                 goto cleanup1;
 832         }
 833 
 834         if (use_hpet_alarm())
 835                 hpet_rtc_timer_init();
 836 
 837         if (is_valid_irq(rtc_irq)) {
 838                 irq_handler_t rtc_cmos_int_handler;
 839 
 840                 if (use_hpet_alarm()) {
 841                         rtc_cmos_int_handler = hpet_rtc_interrupt;
 842                         retval = hpet_register_irq_handler(cmos_interrupt);
 843                         if (retval) {
 844                                 hpet_mask_rtc_irq_bit(RTC_IRQMASK);
 845                                 dev_warn(dev, "hpet_register_irq_handler "
 846                                                 " failed in rtc_init().");
 847                                 goto cleanup1;
 848                         }
 849                 } else
 850                         rtc_cmos_int_handler = cmos_interrupt;
 851 
 852                 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
 853                                 0, dev_name(&cmos_rtc.rtc->dev),
 854                                 cmos_rtc.rtc);
 855                 if (retval < 0) {
 856                         dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
 857                         goto cleanup1;
 858                 }
 859 
 860                 cmos_rtc.rtc->ops = &cmos_rtc_ops;
 861         } else {
 862                 cmos_rtc.rtc->ops = &cmos_rtc_ops_no_alarm;
 863         }
 864 
 865         cmos_rtc.rtc->nvram_old_abi = true;
 866         retval = rtc_register_device(cmos_rtc.rtc);
 867         if (retval)
 868                 goto cleanup2;
 869 
 870         /* export at least the first block of NVRAM */
 871         nvmem_cfg.size = address_space - NVRAM_OFFSET;
 872         if (rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg))
 873                 dev_err(dev, "nvmem registration failed\n");
 874 
 875         dev_info(dev, "%s%s, %d bytes nvram%s\n",
 876                  !is_valid_irq(rtc_irq) ? "no alarms" :
 877                  cmos_rtc.mon_alrm ? "alarms up to one year" :
 878                  cmos_rtc.day_alrm ? "alarms up to one month" :
 879                  "alarms up to one day",
 880                  cmos_rtc.century ? ", y3k" : "",
 881                  nvmem_cfg.size,
 882                  use_hpet_alarm() ? ", hpet irqs" : "");
 883 
 884         return 0;
 885 
 886 cleanup2:
 887         if (is_valid_irq(rtc_irq))
 888                 free_irq(rtc_irq, cmos_rtc.rtc);
 889 cleanup1:
 890         cmos_rtc.dev = NULL;
 891 cleanup0:
 892         if (RTC_IOMAPPED)
 893                 release_region(ports->start, resource_size(ports));
 894         else
 895                 release_mem_region(ports->start, resource_size(ports));
 896         return retval;
 897 }
 898 
 899 static void cmos_do_shutdown(int rtc_irq)
 900 {
 901         spin_lock_irq(&rtc_lock);
 902         if (is_valid_irq(rtc_irq))
 903                 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
 904         spin_unlock_irq(&rtc_lock);
 905 }
 906 
 907 static void cmos_do_remove(struct device *dev)
 908 {
 909         struct cmos_rtc *cmos = dev_get_drvdata(dev);
 910         struct resource *ports;
 911 
 912         cmos_do_shutdown(cmos->irq);
 913 
 914         if (is_valid_irq(cmos->irq)) {
 915                 free_irq(cmos->irq, cmos->rtc);
 916                 if (use_hpet_alarm())
 917                         hpet_unregister_irq_handler(cmos_interrupt);
 918         }
 919 
 920         cmos->rtc = NULL;
 921 
 922         ports = cmos->iomem;
 923         if (RTC_IOMAPPED)
 924                 release_region(ports->start, resource_size(ports));
 925         else
 926                 release_mem_region(ports->start, resource_size(ports));
 927         cmos->iomem = NULL;
 928 
 929         cmos->dev = NULL;
 930 }
 931 
 932 static int cmos_aie_poweroff(struct device *dev)
 933 {
 934         struct cmos_rtc *cmos = dev_get_drvdata(dev);
 935         struct rtc_time now;
 936         time64_t t_now;
 937         int retval = 0;
 938         unsigned char rtc_control;
 939 
 940         if (!cmos->alarm_expires)
 941                 return -EINVAL;
 942 
 943         spin_lock_irq(&rtc_lock);
 944         rtc_control = CMOS_READ(RTC_CONTROL);
 945         spin_unlock_irq(&rtc_lock);
 946 
 947         /* We only care about the situation where AIE is disabled. */
 948         if (rtc_control & RTC_AIE)
 949                 return -EBUSY;
 950 
 951         cmos_read_time(dev, &now);
 952         t_now = rtc_tm_to_time64(&now);
 953 
 954         /*
 955          * When enabling "RTC wake-up" in BIOS setup, the machine reboots
 956          * automatically right after shutdown on some buggy boxes.
 957          * This automatic rebooting issue won't happen when the alarm
 958          * time is larger than now+1 seconds.
 959          *
 960          * If the alarm time is equal to now+1 seconds, the issue can be
 961          * prevented by cancelling the alarm.
 962          */
 963         if (cmos->alarm_expires == t_now + 1) {
 964                 struct rtc_wkalrm alarm;
 965 
 966                 /* Cancel the AIE timer by configuring the past time. */
 967                 rtc_time64_to_tm(t_now - 1, &alarm.time);
 968                 alarm.enabled = 0;
 969                 retval = cmos_set_alarm(dev, &alarm);
 970         } else if (cmos->alarm_expires > t_now + 1) {
 971                 retval = -EBUSY;
 972         }
 973 
 974         return retval;
 975 }
 976 
 977 static int cmos_suspend(struct device *dev)
 978 {
 979         struct cmos_rtc *cmos = dev_get_drvdata(dev);
 980         unsigned char   tmp;
 981 
 982         /* only the alarm might be a wakeup event source */
 983         spin_lock_irq(&rtc_lock);
 984         cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
 985         if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
 986                 unsigned char   mask;
 987 
 988                 if (device_may_wakeup(dev))
 989                         mask = RTC_IRQMASK & ~RTC_AIE;
 990                 else
 991                         mask = RTC_IRQMASK;
 992                 tmp &= ~mask;
 993                 CMOS_WRITE(tmp, RTC_CONTROL);
 994                 if (use_hpet_alarm())
 995                         hpet_mask_rtc_irq_bit(mask);
 996                 cmos_checkintr(cmos, tmp);
 997         }
 998         spin_unlock_irq(&rtc_lock);
 999 
1000         if ((tmp & RTC_AIE) && !cmos_use_acpi_alarm()) {
1001                 cmos->enabled_wake = 1;
1002                 if (cmos->wake_on)
1003                         cmos->wake_on(dev);
1004                 else
1005                         enable_irq_wake(cmos->irq);
1006         }
1007 
1008         cmos_read_alarm(dev, &cmos->saved_wkalrm);
1009 
1010         dev_dbg(dev, "suspend%s, ctrl %02x\n",
1011                         (tmp & RTC_AIE) ? ", alarm may wake" : "",
1012                         tmp);
1013 
1014         return 0;
1015 }
1016 
1017 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
1018  * after a detour through G3 "mechanical off", although the ACPI spec
1019  * says wakeup should only work from G1/S4 "hibernate".  To most users,
1020  * distinctions between S4 and S5 are pointless.  So when the hardware
1021  * allows, don't draw that distinction.
1022  */
1023 static inline int cmos_poweroff(struct device *dev)
1024 {
1025         if (!IS_ENABLED(CONFIG_PM))
1026                 return -ENOSYS;
1027 
1028         return cmos_suspend(dev);
1029 }
1030 
1031 static void cmos_check_wkalrm(struct device *dev)
1032 {
1033         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1034         struct rtc_wkalrm current_alarm;
1035         time64_t t_now;
1036         time64_t t_current_expires;
1037         time64_t t_saved_expires;
1038         struct rtc_time now;
1039 
1040         /* Check if we have RTC Alarm armed */
1041         if (!(cmos->suspend_ctrl & RTC_AIE))
1042                 return;
1043 
1044         cmos_read_time(dev, &now);
1045         t_now = rtc_tm_to_time64(&now);
1046 
1047         /*
1048          * ACPI RTC wake event is cleared after resume from STR,
1049          * ACK the rtc irq here
1050          */
1051         if (t_now >= cmos->alarm_expires && cmos_use_acpi_alarm()) {
1052                 cmos_interrupt(0, (void *)cmos->rtc);
1053                 return;
1054         }
1055 
1056         cmos_read_alarm(dev, &current_alarm);
1057         t_current_expires = rtc_tm_to_time64(&current_alarm.time);
1058         t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
1059         if (t_current_expires != t_saved_expires ||
1060             cmos->saved_wkalrm.enabled != current_alarm.enabled) {
1061                 cmos_set_alarm(dev, &cmos->saved_wkalrm);
1062         }
1063 }
1064 
1065 static void cmos_check_acpi_rtc_status(struct device *dev,
1066                                        unsigned char *rtc_control);
1067 
1068 static int __maybe_unused cmos_resume(struct device *dev)
1069 {
1070         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1071         unsigned char tmp;
1072 
1073         if (cmos->enabled_wake && !cmos_use_acpi_alarm()) {
1074                 if (cmos->wake_off)
1075                         cmos->wake_off(dev);
1076                 else
1077                         disable_irq_wake(cmos->irq);
1078                 cmos->enabled_wake = 0;
1079         }
1080 
1081         /* The BIOS might have changed the alarm, restore it */
1082         cmos_check_wkalrm(dev);
1083 
1084         spin_lock_irq(&rtc_lock);
1085         tmp = cmos->suspend_ctrl;
1086         cmos->suspend_ctrl = 0;
1087         /* re-enable any irqs previously active */
1088         if (tmp & RTC_IRQMASK) {
1089                 unsigned char   mask;
1090 
1091                 if (device_may_wakeup(dev) && use_hpet_alarm())
1092                         hpet_rtc_timer_init();
1093 
1094                 do {
1095                         CMOS_WRITE(tmp, RTC_CONTROL);
1096                         if (use_hpet_alarm())
1097                                 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1098 
1099                         mask = CMOS_READ(RTC_INTR_FLAGS);
1100                         mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1101                         if (!use_hpet_alarm() || !is_intr(mask))
1102                                 break;
1103 
1104                         /* force one-shot behavior if HPET blocked
1105                          * the wake alarm's irq
1106                          */
1107                         rtc_update_irq(cmos->rtc, 1, mask);
1108                         tmp &= ~RTC_AIE;
1109                         hpet_mask_rtc_irq_bit(RTC_AIE);
1110                 } while (mask & RTC_AIE);
1111 
1112                 if (tmp & RTC_AIE)
1113                         cmos_check_acpi_rtc_status(dev, &tmp);
1114         }
1115         spin_unlock_irq(&rtc_lock);
1116 
1117         dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1118 
1119         return 0;
1120 }
1121 
1122 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1123 
1124 /*----------------------------------------------------------------*/
1125 
1126 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1127  * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1128  * probably list them in similar PNPBIOS tables; so PNP is more common.
1129  *
1130  * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
1131  * predate even PNPBIOS should set up platform_bus devices.
1132  */
1133 
1134 #ifdef  CONFIG_ACPI
1135 
1136 #include <linux/acpi.h>
1137 
1138 static u32 rtc_handler(void *context)
1139 {
1140         struct device *dev = context;
1141         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1142         unsigned char rtc_control = 0;
1143         unsigned char rtc_intr;
1144         unsigned long flags;
1145 
1146 
1147         /*
1148          * Always update rtc irq when ACPI is used as RTC Alarm.
1149          * Or else, ACPI SCI is enabled during suspend/resume only,
1150          * update rtc irq in that case.
1151          */
1152         if (cmos_use_acpi_alarm())
1153                 cmos_interrupt(0, (void *)cmos->rtc);
1154         else {
1155                 /* Fix me: can we use cmos_interrupt() here as well? */
1156                 spin_lock_irqsave(&rtc_lock, flags);
1157                 if (cmos_rtc.suspend_ctrl)
1158                         rtc_control = CMOS_READ(RTC_CONTROL);
1159                 if (rtc_control & RTC_AIE) {
1160                         cmos_rtc.suspend_ctrl &= ~RTC_AIE;
1161                         CMOS_WRITE(rtc_control, RTC_CONTROL);
1162                         rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
1163                         rtc_update_irq(cmos->rtc, 1, rtc_intr);
1164                 }
1165                 spin_unlock_irqrestore(&rtc_lock, flags);
1166         }
1167 
1168         pm_wakeup_hard_event(dev);
1169         acpi_clear_event(ACPI_EVENT_RTC);
1170         acpi_disable_event(ACPI_EVENT_RTC, 0);
1171         return ACPI_INTERRUPT_HANDLED;
1172 }
1173 
1174 static inline void rtc_wake_setup(struct device *dev)
1175 {
1176         acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
1177         /*
1178          * After the RTC handler is installed, the Fixed_RTC event should
1179          * be disabled. Only when the RTC alarm is set will it be enabled.
1180          */
1181         acpi_clear_event(ACPI_EVENT_RTC);
1182         acpi_disable_event(ACPI_EVENT_RTC, 0);
1183 }
1184 
1185 static void rtc_wake_on(struct device *dev)
1186 {
1187         acpi_clear_event(ACPI_EVENT_RTC);
1188         acpi_enable_event(ACPI_EVENT_RTC, 0);
1189 }
1190 
1191 static void rtc_wake_off(struct device *dev)
1192 {
1193         acpi_disable_event(ACPI_EVENT_RTC, 0);
1194 }
1195 
1196 #ifdef CONFIG_X86
1197 /* Enable use_acpi_alarm mode for Intel platforms no earlier than 2015 */
1198 static void use_acpi_alarm_quirks(void)
1199 {
1200         int year;
1201 
1202         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
1203                 return;
1204 
1205         if (!(acpi_gbl_FADT.flags & ACPI_FADT_LOW_POWER_S0))
1206                 return;
1207 
1208         if (!is_hpet_enabled())
1209                 return;
1210 
1211         if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) && year >= 2015)
1212                 use_acpi_alarm = true;
1213 }
1214 #else
1215 static inline void use_acpi_alarm_quirks(void) { }
1216 #endif
1217 
1218 /* Every ACPI platform has a mc146818 compatible "cmos rtc".  Here we find
1219  * its device node and pass extra config data.  This helps its driver use
1220  * capabilities that the now-obsolete mc146818 didn't have, and informs it
1221  * that this board's RTC is wakeup-capable (per ACPI spec).
1222  */
1223 static struct cmos_rtc_board_info acpi_rtc_info;
1224 
1225 static void cmos_wake_setup(struct device *dev)
1226 {
1227         if (acpi_disabled)
1228                 return;
1229 
1230         use_acpi_alarm_quirks();
1231 
1232         rtc_wake_setup(dev);
1233         acpi_rtc_info.wake_on = rtc_wake_on;
1234         acpi_rtc_info.wake_off = rtc_wake_off;
1235 
1236         /* workaround bug in some ACPI tables */
1237         if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1238                 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1239                         acpi_gbl_FADT.month_alarm);
1240                 acpi_gbl_FADT.month_alarm = 0;
1241         }
1242 
1243         acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1244         acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1245         acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1246 
1247         /* NOTE:  S4_RTC_WAKE is NOT currently useful to Linux */
1248         if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1249                 dev_info(dev, "RTC can wake from S4\n");
1250 
1251         dev->platform_data = &acpi_rtc_info;
1252 
1253         /* RTC always wakes from S1/S2/S3, and often S4/STD */
1254         device_init_wakeup(dev, 1);
1255 }
1256 
1257 static void cmos_check_acpi_rtc_status(struct device *dev,
1258                                        unsigned char *rtc_control)
1259 {
1260         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1261         acpi_event_status rtc_status;
1262         acpi_status status;
1263 
1264         if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
1265                 return;
1266 
1267         status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
1268         if (ACPI_FAILURE(status)) {
1269                 dev_err(dev, "Could not get RTC status\n");
1270         } else if (rtc_status & ACPI_EVENT_FLAG_SET) {
1271                 unsigned char mask;
1272                 *rtc_control &= ~RTC_AIE;
1273                 CMOS_WRITE(*rtc_control, RTC_CONTROL);
1274                 mask = CMOS_READ(RTC_INTR_FLAGS);
1275                 rtc_update_irq(cmos->rtc, 1, mask);
1276         }
1277 }
1278 
1279 #else
1280 
1281 static void cmos_wake_setup(struct device *dev)
1282 {
1283 }
1284 
1285 static void cmos_check_acpi_rtc_status(struct device *dev,
1286                                        unsigned char *rtc_control)
1287 {
1288 }
1289 
1290 #endif
1291 
1292 #ifdef  CONFIG_PNP
1293 
1294 #include <linux/pnp.h>
1295 
1296 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1297 {
1298         cmos_wake_setup(&pnp->dev);
1299 
1300         if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1301                 unsigned int irq = 0;
1302 #ifdef CONFIG_X86
1303                 /* Some machines contain a PNP entry for the RTC, but
1304                  * don't define the IRQ. It should always be safe to
1305                  * hardcode it on systems with a legacy PIC.
1306                  */
1307                 if (nr_legacy_irqs())
1308                         irq = 8;
1309 #endif
1310                 return cmos_do_probe(&pnp->dev,
1311                                 pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1312         } else {
1313                 return cmos_do_probe(&pnp->dev,
1314                                 pnp_get_resource(pnp, IORESOURCE_IO, 0),
1315                                 pnp_irq(pnp, 0));
1316         }
1317 }
1318 
1319 static void cmos_pnp_remove(struct pnp_dev *pnp)
1320 {
1321         cmos_do_remove(&pnp->dev);
1322 }
1323 
1324 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1325 {
1326         struct device *dev = &pnp->dev;
1327         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1328 
1329         if (system_state == SYSTEM_POWER_OFF) {
1330                 int retval = cmos_poweroff(dev);
1331 
1332                 if (cmos_aie_poweroff(dev) < 0 && !retval)
1333                         return;
1334         }
1335 
1336         cmos_do_shutdown(cmos->irq);
1337 }
1338 
1339 static const struct pnp_device_id rtc_ids[] = {
1340         { .id = "PNP0b00", },
1341         { .id = "PNP0b01", },
1342         { .id = "PNP0b02", },
1343         { },
1344 };
1345 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1346 
1347 static struct pnp_driver cmos_pnp_driver = {
1348         .name           = (char *) driver_name,
1349         .id_table       = rtc_ids,
1350         .probe          = cmos_pnp_probe,
1351         .remove         = cmos_pnp_remove,
1352         .shutdown       = cmos_pnp_shutdown,
1353 
1354         /* flag ensures resume() gets called, and stops syslog spam */
1355         .flags          = PNP_DRIVER_RES_DO_NOT_CHANGE,
1356         .driver         = {
1357                         .pm = &cmos_pm_ops,
1358         },
1359 };
1360 
1361 #endif  /* CONFIG_PNP */
1362 
1363 #ifdef CONFIG_OF
1364 static const struct of_device_id of_cmos_match[] = {
1365         {
1366                 .compatible = "motorola,mc146818",
1367         },
1368         { },
1369 };
1370 MODULE_DEVICE_TABLE(of, of_cmos_match);
1371 
1372 static __init void cmos_of_init(struct platform_device *pdev)
1373 {
1374         struct device_node *node = pdev->dev.of_node;
1375         const __be32 *val;
1376 
1377         if (!node)
1378                 return;
1379 
1380         val = of_get_property(node, "ctrl-reg", NULL);
1381         if (val)
1382                 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1383 
1384         val = of_get_property(node, "freq-reg", NULL);
1385         if (val)
1386                 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1387 }
1388 #else
1389 static inline void cmos_of_init(struct platform_device *pdev) {}
1390 #endif
1391 /*----------------------------------------------------------------*/
1392 
1393 /* Platform setup should have set up an RTC device, when PNP is
1394  * unavailable ... this could happen even on (older) PCs.
1395  */
1396 
1397 static int __init cmos_platform_probe(struct platform_device *pdev)
1398 {
1399         struct resource *resource;
1400         int irq;
1401 
1402         cmos_of_init(pdev);
1403         cmos_wake_setup(&pdev->dev);
1404 
1405         if (RTC_IOMAPPED)
1406                 resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1407         else
1408                 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1409         irq = platform_get_irq(pdev, 0);
1410         if (irq < 0)
1411                 irq = -1;
1412 
1413         return cmos_do_probe(&pdev->dev, resource, irq);
1414 }
1415 
1416 static int cmos_platform_remove(struct platform_device *pdev)
1417 {
1418         cmos_do_remove(&pdev->dev);
1419         return 0;
1420 }
1421 
1422 static void cmos_platform_shutdown(struct platform_device *pdev)
1423 {
1424         struct device *dev = &pdev->dev;
1425         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1426 
1427         if (system_state == SYSTEM_POWER_OFF) {
1428                 int retval = cmos_poweroff(dev);
1429 
1430                 if (cmos_aie_poweroff(dev) < 0 && !retval)
1431                         return;
1432         }
1433 
1434         cmos_do_shutdown(cmos->irq);
1435 }
1436 
1437 /* work with hotplug and coldplug */
1438 MODULE_ALIAS("platform:rtc_cmos");
1439 
1440 static struct platform_driver cmos_platform_driver = {
1441         .remove         = cmos_platform_remove,
1442         .shutdown       = cmos_platform_shutdown,
1443         .driver = {
1444                 .name           = driver_name,
1445                 .pm             = &cmos_pm_ops,
1446                 .of_match_table = of_match_ptr(of_cmos_match),
1447         }
1448 };
1449 
1450 #ifdef CONFIG_PNP
1451 static bool pnp_driver_registered;
1452 #endif
1453 static bool platform_driver_registered;
1454 
1455 static int __init cmos_init(void)
1456 {
1457         int retval = 0;
1458 
1459 #ifdef  CONFIG_PNP
1460         retval = pnp_register_driver(&cmos_pnp_driver);
1461         if (retval == 0)
1462                 pnp_driver_registered = true;
1463 #endif
1464 
1465         if (!cmos_rtc.dev) {
1466                 retval = platform_driver_probe(&cmos_platform_driver,
1467                                                cmos_platform_probe);
1468                 if (retval == 0)
1469                         platform_driver_registered = true;
1470         }
1471 
1472         if (retval == 0)
1473                 return 0;
1474 
1475 #ifdef  CONFIG_PNP
1476         if (pnp_driver_registered)
1477                 pnp_unregister_driver(&cmos_pnp_driver);
1478 #endif
1479         return retval;
1480 }
1481 module_init(cmos_init);
1482 
1483 static void __exit cmos_exit(void)
1484 {
1485 #ifdef  CONFIG_PNP
1486         if (pnp_driver_registered)
1487                 pnp_unregister_driver(&cmos_pnp_driver);
1488 #endif
1489         if (platform_driver_registered)
1490                 platform_driver_unregister(&cmos_platform_driver);
1491 }
1492 module_exit(cmos_exit);
1493 
1494 
1495 MODULE_AUTHOR("David Brownell");
1496 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1497 MODULE_LICENSE("GPL");

/* [<][>][^][v][top][bottom][index][help] */