This source file includes following definitions.
- cmos_use_acpi_alarm
- cmos_use_acpi_alarm
- is_intr
- is_hpet_enabled
- hpet_mask_rtc_irq_bit
- hpet_set_rtc_irq_bit
- hpet_set_alarm_time
- hpet_set_periodic_freq
- hpet_rtc_dropped_irq
- hpet_rtc_timer_init
- hpet_register_irq_handler
- hpet_unregister_irq_handler
- use_hpet_alarm
- cmos_read_bank2
- cmos_write_bank2
- cmos_read_bank2
- cmos_write_bank2
- cmos_read_time
- cmos_set_time
- cmos_read_alarm
- cmos_checkintr
- cmos_irq_enable
- cmos_irq_disable
- cmos_validate_alarm
- cmos_set_alarm
- cmos_alarm_irq_enable
- cmos_procfs
- cmos_nvram_read
- cmos_nvram_write
- cmos_interrupt
- cmos_do_probe
- cmos_do_shutdown
- cmos_do_remove
- cmos_aie_poweroff
- cmos_suspend
- cmos_poweroff
- cmos_check_wkalrm
- cmos_resume
- rtc_handler
- rtc_wake_setup
- rtc_wake_on
- rtc_wake_off
- use_acpi_alarm_quirks
- use_acpi_alarm_quirks
- cmos_wake_setup
- cmos_check_acpi_rtc_status
- cmos_wake_setup
- cmos_check_acpi_rtc_status
- cmos_pnp_probe
- cmos_pnp_remove
- cmos_pnp_shutdown
- cmos_of_init
- cmos_of_init
- cmos_platform_probe
- cmos_platform_remove
- cmos_platform_shutdown
- cmos_init
- cmos_exit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/spinlock.h>
35 #include <linux/platform_device.h>
36 #include <linux/log2.h>
37 #include <linux/pm.h>
38 #include <linux/of.h>
39 #include <linux/of_platform.h>
40 #ifdef CONFIG_X86
41 #include <asm/i8259.h>
42 #include <asm/processor.h>
43 #include <linux/dmi.h>
44 #endif
45
46
47 #include <linux/mc146818rtc.h>
48
49 #ifdef CONFIG_ACPI
50
51
52
53
54
55
56
57
58 static bool use_acpi_alarm;
59 module_param(use_acpi_alarm, bool, 0444);
60
61 static inline int cmos_use_acpi_alarm(void)
62 {
63 return use_acpi_alarm;
64 }
65 #else
66
67 static inline int cmos_use_acpi_alarm(void)
68 {
69 return 0;
70 }
71 #endif
72
73 struct cmos_rtc {
74 struct rtc_device *rtc;
75 struct device *dev;
76 int irq;
77 struct resource *iomem;
78 time64_t alarm_expires;
79
80 void (*wake_on)(struct device *);
81 void (*wake_off)(struct device *);
82
83 u8 enabled_wake;
84 u8 suspend_ctrl;
85
86
87 u8 day_alrm;
88 u8 mon_alrm;
89 u8 century;
90
91 struct rtc_wkalrm saved_wkalrm;
92 };
93
94
95 #define is_valid_irq(n) ((n) > 0)
96
97 static const char driver_name[] = "rtc_cmos";
98
99
100
101
102
103 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
104
105 static inline int is_intr(u8 rtc_intr)
106 {
107 if (!(rtc_intr & RTC_IRQF))
108 return 0;
109 return rtc_intr & RTC_IRQMASK;
110 }
111
112
113
114
115
116
117
118
119
120
121
122
123
124 #ifdef CONFIG_HPET_EMULATE_RTC
125 #include <asm/hpet.h>
126 #else
127
128 static inline int is_hpet_enabled(void)
129 {
130 return 0;
131 }
132
133 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
134 {
135 return 0;
136 }
137
138 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
139 {
140 return 0;
141 }
142
143 static inline int
144 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
145 {
146 return 0;
147 }
148
149 static inline int hpet_set_periodic_freq(unsigned long freq)
150 {
151 return 0;
152 }
153
154 static inline int hpet_rtc_dropped_irq(void)
155 {
156 return 0;
157 }
158
159 static inline int hpet_rtc_timer_init(void)
160 {
161 return 0;
162 }
163
164 extern irq_handler_t hpet_rtc_interrupt;
165
166 static inline int hpet_register_irq_handler(irq_handler_t handler)
167 {
168 return 0;
169 }
170
171 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
172 {
173 return 0;
174 }
175
176 #endif
177
178
179 static inline int use_hpet_alarm(void)
180 {
181 return is_hpet_enabled() && !cmos_use_acpi_alarm();
182 }
183
184
185
186 #ifdef RTC_PORT
187
188
189
190
191
192 #define can_bank2 true
193
194 static inline unsigned char cmos_read_bank2(unsigned char addr)
195 {
196 outb(addr, RTC_PORT(2));
197 return inb(RTC_PORT(3));
198 }
199
200 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
201 {
202 outb(addr, RTC_PORT(2));
203 outb(val, RTC_PORT(3));
204 }
205
206 #else
207
208 #define can_bank2 false
209
210 static inline unsigned char cmos_read_bank2(unsigned char addr)
211 {
212 return 0;
213 }
214
215 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
216 {
217 }
218
219 #endif
220
221
222
223 static int cmos_read_time(struct device *dev, struct rtc_time *t)
224 {
225
226
227
228
229 if (!pm_trace_rtc_valid())
230 return -EIO;
231
232
233
234
235
236 mc146818_get_time(t);
237 return 0;
238 }
239
240 static int cmos_set_time(struct device *dev, struct rtc_time *t)
241 {
242
243
244
245
246
247
248 return mc146818_set_time(t);
249 }
250
251 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
252 {
253 struct cmos_rtc *cmos = dev_get_drvdata(dev);
254 unsigned char rtc_control;
255
256
257 if (!is_valid_irq(cmos->irq))
258 return -EIO;
259
260
261
262
263
264
265 spin_lock_irq(&rtc_lock);
266 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
267 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
268 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
269
270 if (cmos->day_alrm) {
271
272 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
273 if (!t->time.tm_mday)
274 t->time.tm_mday = -1;
275
276 if (cmos->mon_alrm) {
277 t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
278 if (!t->time.tm_mon)
279 t->time.tm_mon = -1;
280 }
281 }
282
283 rtc_control = CMOS_READ(RTC_CONTROL);
284 spin_unlock_irq(&rtc_lock);
285
286 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
287 if (((unsigned)t->time.tm_sec) < 0x60)
288 t->time.tm_sec = bcd2bin(t->time.tm_sec);
289 else
290 t->time.tm_sec = -1;
291 if (((unsigned)t->time.tm_min) < 0x60)
292 t->time.tm_min = bcd2bin(t->time.tm_min);
293 else
294 t->time.tm_min = -1;
295 if (((unsigned)t->time.tm_hour) < 0x24)
296 t->time.tm_hour = bcd2bin(t->time.tm_hour);
297 else
298 t->time.tm_hour = -1;
299
300 if (cmos->day_alrm) {
301 if (((unsigned)t->time.tm_mday) <= 0x31)
302 t->time.tm_mday = bcd2bin(t->time.tm_mday);
303 else
304 t->time.tm_mday = -1;
305
306 if (cmos->mon_alrm) {
307 if (((unsigned)t->time.tm_mon) <= 0x12)
308 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
309 else
310 t->time.tm_mon = -1;
311 }
312 }
313 }
314
315 t->enabled = !!(rtc_control & RTC_AIE);
316 t->pending = 0;
317
318 return 0;
319 }
320
321 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
322 {
323 unsigned char rtc_intr;
324
325
326
327
328 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
329
330 if (use_hpet_alarm())
331 return;
332
333 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
334 if (is_intr(rtc_intr))
335 rtc_update_irq(cmos->rtc, 1, rtc_intr);
336 }
337
338 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
339 {
340 unsigned char rtc_control;
341
342
343
344
345 rtc_control = CMOS_READ(RTC_CONTROL);
346 cmos_checkintr(cmos, rtc_control);
347
348 rtc_control |= mask;
349 CMOS_WRITE(rtc_control, RTC_CONTROL);
350 if (use_hpet_alarm())
351 hpet_set_rtc_irq_bit(mask);
352
353 if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
354 if (cmos->wake_on)
355 cmos->wake_on(cmos->dev);
356 }
357
358 cmos_checkintr(cmos, rtc_control);
359 }
360
361 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
362 {
363 unsigned char rtc_control;
364
365 rtc_control = CMOS_READ(RTC_CONTROL);
366 rtc_control &= ~mask;
367 CMOS_WRITE(rtc_control, RTC_CONTROL);
368 if (use_hpet_alarm())
369 hpet_mask_rtc_irq_bit(mask);
370
371 if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
372 if (cmos->wake_off)
373 cmos->wake_off(cmos->dev);
374 }
375
376 cmos_checkintr(cmos, rtc_control);
377 }
378
379 static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
380 {
381 struct cmos_rtc *cmos = dev_get_drvdata(dev);
382 struct rtc_time now;
383
384 cmos_read_time(dev, &now);
385
386 if (!cmos->day_alrm) {
387 time64_t t_max_date;
388 time64_t t_alrm;
389
390 t_max_date = rtc_tm_to_time64(&now);
391 t_max_date += 24 * 60 * 60 - 1;
392 t_alrm = rtc_tm_to_time64(&t->time);
393 if (t_alrm > t_max_date) {
394 dev_err(dev,
395 "Alarms can be up to one day in the future\n");
396 return -EINVAL;
397 }
398 } else if (!cmos->mon_alrm) {
399 struct rtc_time max_date = now;
400 time64_t t_max_date;
401 time64_t t_alrm;
402 int max_mday;
403
404 if (max_date.tm_mon == 11) {
405 max_date.tm_mon = 0;
406 max_date.tm_year += 1;
407 } else {
408 max_date.tm_mon += 1;
409 }
410 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
411 if (max_date.tm_mday > max_mday)
412 max_date.tm_mday = max_mday;
413
414 t_max_date = rtc_tm_to_time64(&max_date);
415 t_max_date -= 1;
416 t_alrm = rtc_tm_to_time64(&t->time);
417 if (t_alrm > t_max_date) {
418 dev_err(dev,
419 "Alarms can be up to one month in the future\n");
420 return -EINVAL;
421 }
422 } else {
423 struct rtc_time max_date = now;
424 time64_t t_max_date;
425 time64_t t_alrm;
426 int max_mday;
427
428 max_date.tm_year += 1;
429 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
430 if (max_date.tm_mday > max_mday)
431 max_date.tm_mday = max_mday;
432
433 t_max_date = rtc_tm_to_time64(&max_date);
434 t_max_date -= 1;
435 t_alrm = rtc_tm_to_time64(&t->time);
436 if (t_alrm > t_max_date) {
437 dev_err(dev,
438 "Alarms can be up to one year in the future\n");
439 return -EINVAL;
440 }
441 }
442
443 return 0;
444 }
445
446 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
447 {
448 struct cmos_rtc *cmos = dev_get_drvdata(dev);
449 unsigned char mon, mday, hrs, min, sec, rtc_control;
450 int ret;
451
452
453 if (!is_valid_irq(cmos->irq))
454 return -EIO;
455
456 ret = cmos_validate_alarm(dev, t);
457 if (ret < 0)
458 return ret;
459
460 mon = t->time.tm_mon + 1;
461 mday = t->time.tm_mday;
462 hrs = t->time.tm_hour;
463 min = t->time.tm_min;
464 sec = t->time.tm_sec;
465
466 rtc_control = CMOS_READ(RTC_CONTROL);
467 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
468
469 mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
470 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
471 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
472 min = (min < 60) ? bin2bcd(min) : 0xff;
473 sec = (sec < 60) ? bin2bcd(sec) : 0xff;
474 }
475
476 spin_lock_irq(&rtc_lock);
477
478
479 cmos_irq_disable(cmos, RTC_AIE);
480
481
482 CMOS_WRITE(hrs, RTC_HOURS_ALARM);
483 CMOS_WRITE(min, RTC_MINUTES_ALARM);
484 CMOS_WRITE(sec, RTC_SECONDS_ALARM);
485
486
487 if (cmos->day_alrm) {
488 CMOS_WRITE(mday, cmos->day_alrm);
489 if (cmos->mon_alrm)
490 CMOS_WRITE(mon, cmos->mon_alrm);
491 }
492
493 if (use_hpet_alarm()) {
494
495
496
497
498 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min,
499 t->time.tm_sec);
500 }
501
502 if (t->enabled)
503 cmos_irq_enable(cmos, RTC_AIE);
504
505 spin_unlock_irq(&rtc_lock);
506
507 cmos->alarm_expires = rtc_tm_to_time64(&t->time);
508
509 return 0;
510 }
511
512 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
513 {
514 struct cmos_rtc *cmos = dev_get_drvdata(dev);
515 unsigned long flags;
516
517 spin_lock_irqsave(&rtc_lock, flags);
518
519 if (enabled)
520 cmos_irq_enable(cmos, RTC_AIE);
521 else
522 cmos_irq_disable(cmos, RTC_AIE);
523
524 spin_unlock_irqrestore(&rtc_lock, flags);
525 return 0;
526 }
527
528 #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
529
530 static int cmos_procfs(struct device *dev, struct seq_file *seq)
531 {
532 struct cmos_rtc *cmos = dev_get_drvdata(dev);
533 unsigned char rtc_control, valid;
534
535 spin_lock_irq(&rtc_lock);
536 rtc_control = CMOS_READ(RTC_CONTROL);
537 valid = CMOS_READ(RTC_VALID);
538 spin_unlock_irq(&rtc_lock);
539
540
541
542
543 seq_printf(seq,
544 "periodic_IRQ\t: %s\n"
545 "update_IRQ\t: %s\n"
546 "HPET_emulated\t: %s\n"
547
548 "BCD\t\t: %s\n"
549 "DST_enable\t: %s\n"
550 "periodic_freq\t: %d\n"
551 "batt_status\t: %s\n",
552 (rtc_control & RTC_PIE) ? "yes" : "no",
553 (rtc_control & RTC_UIE) ? "yes" : "no",
554 use_hpet_alarm() ? "yes" : "no",
555
556 (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
557 (rtc_control & RTC_DST_EN) ? "yes" : "no",
558 cmos->rtc->irq_freq,
559 (valid & RTC_VRT) ? "okay" : "dead");
560
561 return 0;
562 }
563
564 #else
565 #define cmos_procfs NULL
566 #endif
567
568 static const struct rtc_class_ops cmos_rtc_ops = {
569 .read_time = cmos_read_time,
570 .set_time = cmos_set_time,
571 .read_alarm = cmos_read_alarm,
572 .set_alarm = cmos_set_alarm,
573 .proc = cmos_procfs,
574 .alarm_irq_enable = cmos_alarm_irq_enable,
575 };
576
577 static const struct rtc_class_ops cmos_rtc_ops_no_alarm = {
578 .read_time = cmos_read_time,
579 .set_time = cmos_set_time,
580 .proc = cmos_procfs,
581 };
582
583
584
585
586
587
588
589
590
591 #define NVRAM_OFFSET (RTC_REG_D + 1)
592
593 static int cmos_nvram_read(void *priv, unsigned int off, void *val,
594 size_t count)
595 {
596 unsigned char *buf = val;
597 int retval;
598
599 off += NVRAM_OFFSET;
600 spin_lock_irq(&rtc_lock);
601 for (retval = 0; count; count--, off++, retval++) {
602 if (off < 128)
603 *buf++ = CMOS_READ(off);
604 else if (can_bank2)
605 *buf++ = cmos_read_bank2(off);
606 else
607 break;
608 }
609 spin_unlock_irq(&rtc_lock);
610
611 return retval;
612 }
613
614 static int cmos_nvram_write(void *priv, unsigned int off, void *val,
615 size_t count)
616 {
617 struct cmos_rtc *cmos = priv;
618 unsigned char *buf = val;
619 int retval;
620
621
622
623
624
625
626 off += NVRAM_OFFSET;
627 spin_lock_irq(&rtc_lock);
628 for (retval = 0; count; count--, off++, retval++) {
629
630 if (off == cmos->day_alrm
631 || off == cmos->mon_alrm
632 || off == cmos->century)
633 buf++;
634 else if (off < 128)
635 CMOS_WRITE(*buf++, off);
636 else if (can_bank2)
637 cmos_write_bank2(*buf++, off);
638 else
639 break;
640 }
641 spin_unlock_irq(&rtc_lock);
642
643 return retval;
644 }
645
646
647
648 static struct cmos_rtc cmos_rtc;
649
650 static irqreturn_t cmos_interrupt(int irq, void *p)
651 {
652 u8 irqstat;
653 u8 rtc_control;
654
655 spin_lock(&rtc_lock);
656
657
658
659
660
661
662
663
664 irqstat = CMOS_READ(RTC_INTR_FLAGS);
665 rtc_control = CMOS_READ(RTC_CONTROL);
666 if (use_hpet_alarm())
667 irqstat = (unsigned long)irq & 0xF0;
668
669
670
671
672 if (!cmos_rtc.suspend_ctrl)
673 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
674 else
675 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
676
677
678
679
680
681 if (irqstat & RTC_AIE) {
682 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
683 rtc_control &= ~RTC_AIE;
684 CMOS_WRITE(rtc_control, RTC_CONTROL);
685 if (use_hpet_alarm())
686 hpet_mask_rtc_irq_bit(RTC_AIE);
687 CMOS_READ(RTC_INTR_FLAGS);
688 }
689 spin_unlock(&rtc_lock);
690
691 if (is_intr(irqstat)) {
692 rtc_update_irq(p, 1, irqstat);
693 return IRQ_HANDLED;
694 } else
695 return IRQ_NONE;
696 }
697
698 #ifdef CONFIG_PNP
699 #define INITSECTION
700
701 #else
702 #define INITSECTION __init
703 #endif
704
705 static int INITSECTION
706 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
707 {
708 struct cmos_rtc_board_info *info = dev_get_platdata(dev);
709 int retval = 0;
710 unsigned char rtc_control;
711 unsigned address_space;
712 u32 flags = 0;
713 struct nvmem_config nvmem_cfg = {
714 .name = "cmos_nvram",
715 .word_size = 1,
716 .stride = 1,
717 .reg_read = cmos_nvram_read,
718 .reg_write = cmos_nvram_write,
719 .priv = &cmos_rtc,
720 };
721
722
723 if (cmos_rtc.dev)
724 return -EBUSY;
725
726 if (!ports)
727 return -ENODEV;
728
729
730
731
732
733
734 if (RTC_IOMAPPED)
735 ports = request_region(ports->start, resource_size(ports),
736 driver_name);
737 else
738 ports = request_mem_region(ports->start, resource_size(ports),
739 driver_name);
740 if (!ports) {
741 dev_dbg(dev, "i/o registers already in use\n");
742 return -EBUSY;
743 }
744
745 cmos_rtc.irq = rtc_irq;
746 cmos_rtc.iomem = ports;
747
748
749
750
751
752
753 #if defined(CONFIG_ATARI)
754 address_space = 64;
755 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
756 || defined(__sparc__) || defined(__mips__) \
757 || defined(__powerpc__)
758 address_space = 128;
759 #else
760 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
761 address_space = 128;
762 #endif
763 if (can_bank2 && ports->end > (ports->start + 1))
764 address_space = 256;
765
766
767
768
769
770
771
772
773
774
775 if (info) {
776 if (info->flags)
777 flags = info->flags;
778 if (info->address_space)
779 address_space = info->address_space;
780
781 if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
782 cmos_rtc.day_alrm = info->rtc_day_alarm;
783 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
784 cmos_rtc.mon_alrm = info->rtc_mon_alarm;
785 if (info->rtc_century && info->rtc_century < 128)
786 cmos_rtc.century = info->rtc_century;
787
788 if (info->wake_on && info->wake_off) {
789 cmos_rtc.wake_on = info->wake_on;
790 cmos_rtc.wake_off = info->wake_off;
791 }
792 }
793
794 cmos_rtc.dev = dev;
795 dev_set_drvdata(dev, &cmos_rtc);
796
797 cmos_rtc.rtc = devm_rtc_allocate_device(dev);
798 if (IS_ERR(cmos_rtc.rtc)) {
799 retval = PTR_ERR(cmos_rtc.rtc);
800 goto cleanup0;
801 }
802
803 rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
804
805 spin_lock_irq(&rtc_lock);
806
807 if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
808
809
810
811
812
813
814 cmos_rtc.rtc->irq_freq = 1024;
815 if (use_hpet_alarm())
816 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
817 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
818 }
819
820
821 if (is_valid_irq(rtc_irq))
822 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
823
824 rtc_control = CMOS_READ(RTC_CONTROL);
825
826 spin_unlock_irq(&rtc_lock);
827
828 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
829 dev_warn(dev, "only 24-hr supported\n");
830 retval = -ENXIO;
831 goto cleanup1;
832 }
833
834 if (use_hpet_alarm())
835 hpet_rtc_timer_init();
836
837 if (is_valid_irq(rtc_irq)) {
838 irq_handler_t rtc_cmos_int_handler;
839
840 if (use_hpet_alarm()) {
841 rtc_cmos_int_handler = hpet_rtc_interrupt;
842 retval = hpet_register_irq_handler(cmos_interrupt);
843 if (retval) {
844 hpet_mask_rtc_irq_bit(RTC_IRQMASK);
845 dev_warn(dev, "hpet_register_irq_handler "
846 " failed in rtc_init().");
847 goto cleanup1;
848 }
849 } else
850 rtc_cmos_int_handler = cmos_interrupt;
851
852 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
853 0, dev_name(&cmos_rtc.rtc->dev),
854 cmos_rtc.rtc);
855 if (retval < 0) {
856 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
857 goto cleanup1;
858 }
859
860 cmos_rtc.rtc->ops = &cmos_rtc_ops;
861 } else {
862 cmos_rtc.rtc->ops = &cmos_rtc_ops_no_alarm;
863 }
864
865 cmos_rtc.rtc->nvram_old_abi = true;
866 retval = rtc_register_device(cmos_rtc.rtc);
867 if (retval)
868 goto cleanup2;
869
870
871 nvmem_cfg.size = address_space - NVRAM_OFFSET;
872 if (rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg))
873 dev_err(dev, "nvmem registration failed\n");
874
875 dev_info(dev, "%s%s, %d bytes nvram%s\n",
876 !is_valid_irq(rtc_irq) ? "no alarms" :
877 cmos_rtc.mon_alrm ? "alarms up to one year" :
878 cmos_rtc.day_alrm ? "alarms up to one month" :
879 "alarms up to one day",
880 cmos_rtc.century ? ", y3k" : "",
881 nvmem_cfg.size,
882 use_hpet_alarm() ? ", hpet irqs" : "");
883
884 return 0;
885
886 cleanup2:
887 if (is_valid_irq(rtc_irq))
888 free_irq(rtc_irq, cmos_rtc.rtc);
889 cleanup1:
890 cmos_rtc.dev = NULL;
891 cleanup0:
892 if (RTC_IOMAPPED)
893 release_region(ports->start, resource_size(ports));
894 else
895 release_mem_region(ports->start, resource_size(ports));
896 return retval;
897 }
898
899 static void cmos_do_shutdown(int rtc_irq)
900 {
901 spin_lock_irq(&rtc_lock);
902 if (is_valid_irq(rtc_irq))
903 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
904 spin_unlock_irq(&rtc_lock);
905 }
906
907 static void cmos_do_remove(struct device *dev)
908 {
909 struct cmos_rtc *cmos = dev_get_drvdata(dev);
910 struct resource *ports;
911
912 cmos_do_shutdown(cmos->irq);
913
914 if (is_valid_irq(cmos->irq)) {
915 free_irq(cmos->irq, cmos->rtc);
916 if (use_hpet_alarm())
917 hpet_unregister_irq_handler(cmos_interrupt);
918 }
919
920 cmos->rtc = NULL;
921
922 ports = cmos->iomem;
923 if (RTC_IOMAPPED)
924 release_region(ports->start, resource_size(ports));
925 else
926 release_mem_region(ports->start, resource_size(ports));
927 cmos->iomem = NULL;
928
929 cmos->dev = NULL;
930 }
931
932 static int cmos_aie_poweroff(struct device *dev)
933 {
934 struct cmos_rtc *cmos = dev_get_drvdata(dev);
935 struct rtc_time now;
936 time64_t t_now;
937 int retval = 0;
938 unsigned char rtc_control;
939
940 if (!cmos->alarm_expires)
941 return -EINVAL;
942
943 spin_lock_irq(&rtc_lock);
944 rtc_control = CMOS_READ(RTC_CONTROL);
945 spin_unlock_irq(&rtc_lock);
946
947
948 if (rtc_control & RTC_AIE)
949 return -EBUSY;
950
951 cmos_read_time(dev, &now);
952 t_now = rtc_tm_to_time64(&now);
953
954
955
956
957
958
959
960
961
962
963 if (cmos->alarm_expires == t_now + 1) {
964 struct rtc_wkalrm alarm;
965
966
967 rtc_time64_to_tm(t_now - 1, &alarm.time);
968 alarm.enabled = 0;
969 retval = cmos_set_alarm(dev, &alarm);
970 } else if (cmos->alarm_expires > t_now + 1) {
971 retval = -EBUSY;
972 }
973
974 return retval;
975 }
976
977 static int cmos_suspend(struct device *dev)
978 {
979 struct cmos_rtc *cmos = dev_get_drvdata(dev);
980 unsigned char tmp;
981
982
983 spin_lock_irq(&rtc_lock);
984 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
985 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
986 unsigned char mask;
987
988 if (device_may_wakeup(dev))
989 mask = RTC_IRQMASK & ~RTC_AIE;
990 else
991 mask = RTC_IRQMASK;
992 tmp &= ~mask;
993 CMOS_WRITE(tmp, RTC_CONTROL);
994 if (use_hpet_alarm())
995 hpet_mask_rtc_irq_bit(mask);
996 cmos_checkintr(cmos, tmp);
997 }
998 spin_unlock_irq(&rtc_lock);
999
1000 if ((tmp & RTC_AIE) && !cmos_use_acpi_alarm()) {
1001 cmos->enabled_wake = 1;
1002 if (cmos->wake_on)
1003 cmos->wake_on(dev);
1004 else
1005 enable_irq_wake(cmos->irq);
1006 }
1007
1008 cmos_read_alarm(dev, &cmos->saved_wkalrm);
1009
1010 dev_dbg(dev, "suspend%s, ctrl %02x\n",
1011 (tmp & RTC_AIE) ? ", alarm may wake" : "",
1012 tmp);
1013
1014 return 0;
1015 }
1016
1017
1018
1019
1020
1021
1022
1023 static inline int cmos_poweroff(struct device *dev)
1024 {
1025 if (!IS_ENABLED(CONFIG_PM))
1026 return -ENOSYS;
1027
1028 return cmos_suspend(dev);
1029 }
1030
1031 static void cmos_check_wkalrm(struct device *dev)
1032 {
1033 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1034 struct rtc_wkalrm current_alarm;
1035 time64_t t_now;
1036 time64_t t_current_expires;
1037 time64_t t_saved_expires;
1038 struct rtc_time now;
1039
1040
1041 if (!(cmos->suspend_ctrl & RTC_AIE))
1042 return;
1043
1044 cmos_read_time(dev, &now);
1045 t_now = rtc_tm_to_time64(&now);
1046
1047
1048
1049
1050
1051 if (t_now >= cmos->alarm_expires && cmos_use_acpi_alarm()) {
1052 cmos_interrupt(0, (void *)cmos->rtc);
1053 return;
1054 }
1055
1056 cmos_read_alarm(dev, ¤t_alarm);
1057 t_current_expires = rtc_tm_to_time64(¤t_alarm.time);
1058 t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
1059 if (t_current_expires != t_saved_expires ||
1060 cmos->saved_wkalrm.enabled != current_alarm.enabled) {
1061 cmos_set_alarm(dev, &cmos->saved_wkalrm);
1062 }
1063 }
1064
1065 static void cmos_check_acpi_rtc_status(struct device *dev,
1066 unsigned char *rtc_control);
1067
1068 static int __maybe_unused cmos_resume(struct device *dev)
1069 {
1070 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1071 unsigned char tmp;
1072
1073 if (cmos->enabled_wake && !cmos_use_acpi_alarm()) {
1074 if (cmos->wake_off)
1075 cmos->wake_off(dev);
1076 else
1077 disable_irq_wake(cmos->irq);
1078 cmos->enabled_wake = 0;
1079 }
1080
1081
1082 cmos_check_wkalrm(dev);
1083
1084 spin_lock_irq(&rtc_lock);
1085 tmp = cmos->suspend_ctrl;
1086 cmos->suspend_ctrl = 0;
1087
1088 if (tmp & RTC_IRQMASK) {
1089 unsigned char mask;
1090
1091 if (device_may_wakeup(dev) && use_hpet_alarm())
1092 hpet_rtc_timer_init();
1093
1094 do {
1095 CMOS_WRITE(tmp, RTC_CONTROL);
1096 if (use_hpet_alarm())
1097 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1098
1099 mask = CMOS_READ(RTC_INTR_FLAGS);
1100 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1101 if (!use_hpet_alarm() || !is_intr(mask))
1102 break;
1103
1104
1105
1106
1107 rtc_update_irq(cmos->rtc, 1, mask);
1108 tmp &= ~RTC_AIE;
1109 hpet_mask_rtc_irq_bit(RTC_AIE);
1110 } while (mask & RTC_AIE);
1111
1112 if (tmp & RTC_AIE)
1113 cmos_check_acpi_rtc_status(dev, &tmp);
1114 }
1115 spin_unlock_irq(&rtc_lock);
1116
1117 dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1118
1119 return 0;
1120 }
1121
1122 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134 #ifdef CONFIG_ACPI
1135
1136 #include <linux/acpi.h>
1137
1138 static u32 rtc_handler(void *context)
1139 {
1140 struct device *dev = context;
1141 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1142 unsigned char rtc_control = 0;
1143 unsigned char rtc_intr;
1144 unsigned long flags;
1145
1146
1147
1148
1149
1150
1151
1152 if (cmos_use_acpi_alarm())
1153 cmos_interrupt(0, (void *)cmos->rtc);
1154 else {
1155
1156 spin_lock_irqsave(&rtc_lock, flags);
1157 if (cmos_rtc.suspend_ctrl)
1158 rtc_control = CMOS_READ(RTC_CONTROL);
1159 if (rtc_control & RTC_AIE) {
1160 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
1161 CMOS_WRITE(rtc_control, RTC_CONTROL);
1162 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
1163 rtc_update_irq(cmos->rtc, 1, rtc_intr);
1164 }
1165 spin_unlock_irqrestore(&rtc_lock, flags);
1166 }
1167
1168 pm_wakeup_hard_event(dev);
1169 acpi_clear_event(ACPI_EVENT_RTC);
1170 acpi_disable_event(ACPI_EVENT_RTC, 0);
1171 return ACPI_INTERRUPT_HANDLED;
1172 }
1173
1174 static inline void rtc_wake_setup(struct device *dev)
1175 {
1176 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
1177
1178
1179
1180
1181 acpi_clear_event(ACPI_EVENT_RTC);
1182 acpi_disable_event(ACPI_EVENT_RTC, 0);
1183 }
1184
1185 static void rtc_wake_on(struct device *dev)
1186 {
1187 acpi_clear_event(ACPI_EVENT_RTC);
1188 acpi_enable_event(ACPI_EVENT_RTC, 0);
1189 }
1190
1191 static void rtc_wake_off(struct device *dev)
1192 {
1193 acpi_disable_event(ACPI_EVENT_RTC, 0);
1194 }
1195
1196 #ifdef CONFIG_X86
1197
1198 static void use_acpi_alarm_quirks(void)
1199 {
1200 int year;
1201
1202 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
1203 return;
1204
1205 if (!(acpi_gbl_FADT.flags & ACPI_FADT_LOW_POWER_S0))
1206 return;
1207
1208 if (!is_hpet_enabled())
1209 return;
1210
1211 if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) && year >= 2015)
1212 use_acpi_alarm = true;
1213 }
1214 #else
1215 static inline void use_acpi_alarm_quirks(void) { }
1216 #endif
1217
1218
1219
1220
1221
1222
1223 static struct cmos_rtc_board_info acpi_rtc_info;
1224
1225 static void cmos_wake_setup(struct device *dev)
1226 {
1227 if (acpi_disabled)
1228 return;
1229
1230 use_acpi_alarm_quirks();
1231
1232 rtc_wake_setup(dev);
1233 acpi_rtc_info.wake_on = rtc_wake_on;
1234 acpi_rtc_info.wake_off = rtc_wake_off;
1235
1236
1237 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1238 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1239 acpi_gbl_FADT.month_alarm);
1240 acpi_gbl_FADT.month_alarm = 0;
1241 }
1242
1243 acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1244 acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1245 acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1246
1247
1248 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1249 dev_info(dev, "RTC can wake from S4\n");
1250
1251 dev->platform_data = &acpi_rtc_info;
1252
1253
1254 device_init_wakeup(dev, 1);
1255 }
1256
1257 static void cmos_check_acpi_rtc_status(struct device *dev,
1258 unsigned char *rtc_control)
1259 {
1260 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1261 acpi_event_status rtc_status;
1262 acpi_status status;
1263
1264 if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
1265 return;
1266
1267 status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
1268 if (ACPI_FAILURE(status)) {
1269 dev_err(dev, "Could not get RTC status\n");
1270 } else if (rtc_status & ACPI_EVENT_FLAG_SET) {
1271 unsigned char mask;
1272 *rtc_control &= ~RTC_AIE;
1273 CMOS_WRITE(*rtc_control, RTC_CONTROL);
1274 mask = CMOS_READ(RTC_INTR_FLAGS);
1275 rtc_update_irq(cmos->rtc, 1, mask);
1276 }
1277 }
1278
1279 #else
1280
1281 static void cmos_wake_setup(struct device *dev)
1282 {
1283 }
1284
1285 static void cmos_check_acpi_rtc_status(struct device *dev,
1286 unsigned char *rtc_control)
1287 {
1288 }
1289
1290 #endif
1291
1292 #ifdef CONFIG_PNP
1293
1294 #include <linux/pnp.h>
1295
1296 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1297 {
1298 cmos_wake_setup(&pnp->dev);
1299
1300 if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1301 unsigned int irq = 0;
1302 #ifdef CONFIG_X86
1303
1304
1305
1306
1307 if (nr_legacy_irqs())
1308 irq = 8;
1309 #endif
1310 return cmos_do_probe(&pnp->dev,
1311 pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1312 } else {
1313 return cmos_do_probe(&pnp->dev,
1314 pnp_get_resource(pnp, IORESOURCE_IO, 0),
1315 pnp_irq(pnp, 0));
1316 }
1317 }
1318
1319 static void cmos_pnp_remove(struct pnp_dev *pnp)
1320 {
1321 cmos_do_remove(&pnp->dev);
1322 }
1323
1324 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1325 {
1326 struct device *dev = &pnp->dev;
1327 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1328
1329 if (system_state == SYSTEM_POWER_OFF) {
1330 int retval = cmos_poweroff(dev);
1331
1332 if (cmos_aie_poweroff(dev) < 0 && !retval)
1333 return;
1334 }
1335
1336 cmos_do_shutdown(cmos->irq);
1337 }
1338
1339 static const struct pnp_device_id rtc_ids[] = {
1340 { .id = "PNP0b00", },
1341 { .id = "PNP0b01", },
1342 { .id = "PNP0b02", },
1343 { },
1344 };
1345 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1346
1347 static struct pnp_driver cmos_pnp_driver = {
1348 .name = (char *) driver_name,
1349 .id_table = rtc_ids,
1350 .probe = cmos_pnp_probe,
1351 .remove = cmos_pnp_remove,
1352 .shutdown = cmos_pnp_shutdown,
1353
1354
1355 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
1356 .driver = {
1357 .pm = &cmos_pm_ops,
1358 },
1359 };
1360
1361 #endif
1362
1363 #ifdef CONFIG_OF
1364 static const struct of_device_id of_cmos_match[] = {
1365 {
1366 .compatible = "motorola,mc146818",
1367 },
1368 { },
1369 };
1370 MODULE_DEVICE_TABLE(of, of_cmos_match);
1371
1372 static __init void cmos_of_init(struct platform_device *pdev)
1373 {
1374 struct device_node *node = pdev->dev.of_node;
1375 const __be32 *val;
1376
1377 if (!node)
1378 return;
1379
1380 val = of_get_property(node, "ctrl-reg", NULL);
1381 if (val)
1382 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1383
1384 val = of_get_property(node, "freq-reg", NULL);
1385 if (val)
1386 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1387 }
1388 #else
1389 static inline void cmos_of_init(struct platform_device *pdev) {}
1390 #endif
1391
1392
1393
1394
1395
1396
1397 static int __init cmos_platform_probe(struct platform_device *pdev)
1398 {
1399 struct resource *resource;
1400 int irq;
1401
1402 cmos_of_init(pdev);
1403 cmos_wake_setup(&pdev->dev);
1404
1405 if (RTC_IOMAPPED)
1406 resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1407 else
1408 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1409 irq = platform_get_irq(pdev, 0);
1410 if (irq < 0)
1411 irq = -1;
1412
1413 return cmos_do_probe(&pdev->dev, resource, irq);
1414 }
1415
1416 static int cmos_platform_remove(struct platform_device *pdev)
1417 {
1418 cmos_do_remove(&pdev->dev);
1419 return 0;
1420 }
1421
1422 static void cmos_platform_shutdown(struct platform_device *pdev)
1423 {
1424 struct device *dev = &pdev->dev;
1425 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1426
1427 if (system_state == SYSTEM_POWER_OFF) {
1428 int retval = cmos_poweroff(dev);
1429
1430 if (cmos_aie_poweroff(dev) < 0 && !retval)
1431 return;
1432 }
1433
1434 cmos_do_shutdown(cmos->irq);
1435 }
1436
1437
1438 MODULE_ALIAS("platform:rtc_cmos");
1439
1440 static struct platform_driver cmos_platform_driver = {
1441 .remove = cmos_platform_remove,
1442 .shutdown = cmos_platform_shutdown,
1443 .driver = {
1444 .name = driver_name,
1445 .pm = &cmos_pm_ops,
1446 .of_match_table = of_match_ptr(of_cmos_match),
1447 }
1448 };
1449
1450 #ifdef CONFIG_PNP
1451 static bool pnp_driver_registered;
1452 #endif
1453 static bool platform_driver_registered;
1454
1455 static int __init cmos_init(void)
1456 {
1457 int retval = 0;
1458
1459 #ifdef CONFIG_PNP
1460 retval = pnp_register_driver(&cmos_pnp_driver);
1461 if (retval == 0)
1462 pnp_driver_registered = true;
1463 #endif
1464
1465 if (!cmos_rtc.dev) {
1466 retval = platform_driver_probe(&cmos_platform_driver,
1467 cmos_platform_probe);
1468 if (retval == 0)
1469 platform_driver_registered = true;
1470 }
1471
1472 if (retval == 0)
1473 return 0;
1474
1475 #ifdef CONFIG_PNP
1476 if (pnp_driver_registered)
1477 pnp_unregister_driver(&cmos_pnp_driver);
1478 #endif
1479 return retval;
1480 }
1481 module_init(cmos_init);
1482
1483 static void __exit cmos_exit(void)
1484 {
1485 #ifdef CONFIG_PNP
1486 if (pnp_driver_registered)
1487 pnp_unregister_driver(&cmos_pnp_driver);
1488 #endif
1489 if (platform_driver_registered)
1490 platform_driver_unregister(&cmos_platform_driver);
1491 }
1492 module_exit(cmos_exit);
1493
1494
1495 MODULE_AUTHOR("David Brownell");
1496 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1497 MODULE_LICENSE("GPL");