root/drivers/rtc/rtc-ab-b5ze-s3.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. abb5zes3_i2c_validate_chip
  2. _abb5zes3_rtc_clear_alarm
  3. _abb5zes3_rtc_update_alarm
  4. _abb5zes3_rtc_update_timer
  5. _abb5zes3_rtc_read_time
  6. abb5zes3_rtc_set_time
  7. sec_to_timer_a
  8. sec_from_timer_a
  9. _abb5zes3_rtc_read_timer
  10. _abb5zes3_rtc_read_alarm
  11. abb5zes3_rtc_read_alarm
  12. _abb5zes3_rtc_set_alarm
  13. _abb5zes3_rtc_set_timer
  14. abb5zes3_rtc_set_alarm
  15. _abb5zes3_rtc_battery_low_irq_enable
  16. abb5zes3_rtc_check_setup
  17. abb5zes3_rtc_alarm_irq_enable
  18. _abb5zes3_rtc_interrupt
  19. abb5zes3_probe
  20. abb5zes3_remove
  21. abb5zes3_rtc_suspend
  22. abb5zes3_rtc_resume

   1 // SPDX-License-Identifier: GPL-2.0+
   2 /*
   3  * rtc-ab-b5ze-s3 - Driver for Abracon AB-RTCMC-32.768Khz-B5ZE-S3
   4  *                  I2C RTC / Alarm chip
   5  *
   6  * Copyright (C) 2014, Arnaud EBALARD <arno@natisbad.org>
   7  *
   8  * Detailed datasheet of the chip is available here:
   9  *
  10  *  http://www.abracon.com/realtimeclock/AB-RTCMC-32.768kHz-B5ZE-S3-Application-Manual.pdf
  11  *
  12  * This work is based on ISL12057 driver (drivers/rtc/rtc-isl12057.c).
  13  *
  14  */
  15 
  16 #include <linux/module.h>
  17 #include <linux/rtc.h>
  18 #include <linux/i2c.h>
  19 #include <linux/bcd.h>
  20 #include <linux/of.h>
  21 #include <linux/regmap.h>
  22 #include <linux/interrupt.h>
  23 
  24 #define DRV_NAME "rtc-ab-b5ze-s3"
  25 
  26 /* Control section */
  27 #define ABB5ZES3_REG_CTRL1         0x00    /* Control 1 register */
  28 #define ABB5ZES3_REG_CTRL1_CIE     BIT(0)  /* Pulse interrupt enable */
  29 #define ABB5ZES3_REG_CTRL1_AIE     BIT(1)  /* Alarm interrupt enable */
  30 #define ABB5ZES3_REG_CTRL1_SIE     BIT(2)  /* Second interrupt enable */
  31 #define ABB5ZES3_REG_CTRL1_PM      BIT(3)  /* 24h/12h mode */
  32 #define ABB5ZES3_REG_CTRL1_SR      BIT(4)  /* Software reset */
  33 #define ABB5ZES3_REG_CTRL1_STOP    BIT(5)  /* RTC circuit enable */
  34 #define ABB5ZES3_REG_CTRL1_CAP     BIT(7)
  35 
  36 #define ABB5ZES3_REG_CTRL2         0x01    /* Control 2 register */
  37 #define ABB5ZES3_REG_CTRL2_CTBIE   BIT(0)  /* Countdown timer B int. enable */
  38 #define ABB5ZES3_REG_CTRL2_CTAIE   BIT(1)  /* Countdown timer A int. enable */
  39 #define ABB5ZES3_REG_CTRL2_WTAIE   BIT(2)  /* Watchdog timer A int. enable */
  40 #define ABB5ZES3_REG_CTRL2_AF      BIT(3)  /* Alarm interrupt status */
  41 #define ABB5ZES3_REG_CTRL2_SF      BIT(4)  /* Second interrupt status */
  42 #define ABB5ZES3_REG_CTRL2_CTBF    BIT(5)  /* Countdown timer B int. status */
  43 #define ABB5ZES3_REG_CTRL2_CTAF    BIT(6)  /* Countdown timer A int. status */
  44 #define ABB5ZES3_REG_CTRL2_WTAF    BIT(7)  /* Watchdog timer A int. status */
  45 
  46 #define ABB5ZES3_REG_CTRL3         0x02    /* Control 3 register */
  47 #define ABB5ZES3_REG_CTRL3_PM2     BIT(7)  /* Power Management bit 2 */
  48 #define ABB5ZES3_REG_CTRL3_PM1     BIT(6)  /* Power Management bit 1 */
  49 #define ABB5ZES3_REG_CTRL3_PM0     BIT(5)  /* Power Management bit 0 */
  50 #define ABB5ZES3_REG_CTRL3_BSF     BIT(3)  /* Battery switchover int. status */
  51 #define ABB5ZES3_REG_CTRL3_BLF     BIT(2)  /* Battery low int. status */
  52 #define ABB5ZES3_REG_CTRL3_BSIE    BIT(1)  /* Battery switchover int. enable */
  53 #define ABB5ZES3_REG_CTRL3_BLIE    BIT(0)  /* Battery low int. enable */
  54 
  55 #define ABB5ZES3_CTRL_SEC_LEN      3
  56 
  57 /* RTC section */
  58 #define ABB5ZES3_REG_RTC_SC        0x03    /* RTC Seconds register */
  59 #define ABB5ZES3_REG_RTC_SC_OSC    BIT(7)  /* Clock integrity status */
  60 #define ABB5ZES3_REG_RTC_MN        0x04    /* RTC Minutes register */
  61 #define ABB5ZES3_REG_RTC_HR        0x05    /* RTC Hours register */
  62 #define ABB5ZES3_REG_RTC_HR_PM     BIT(5)  /* RTC Hours PM bit */
  63 #define ABB5ZES3_REG_RTC_DT        0x06    /* RTC Date register */
  64 #define ABB5ZES3_REG_RTC_DW        0x07    /* RTC Day of the week register */
  65 #define ABB5ZES3_REG_RTC_MO        0x08    /* RTC Month register */
  66 #define ABB5ZES3_REG_RTC_YR        0x09    /* RTC Year register */
  67 
  68 #define ABB5ZES3_RTC_SEC_LEN       7
  69 
  70 /* Alarm section (enable bits are all active low) */
  71 #define ABB5ZES3_REG_ALRM_MN       0x0A    /* Alarm - minute register */
  72 #define ABB5ZES3_REG_ALRM_MN_AE    BIT(7)  /* Minute enable */
  73 #define ABB5ZES3_REG_ALRM_HR       0x0B    /* Alarm - hours register */
  74 #define ABB5ZES3_REG_ALRM_HR_AE    BIT(7)  /* Hour enable */
  75 #define ABB5ZES3_REG_ALRM_DT       0x0C    /* Alarm - date register */
  76 #define ABB5ZES3_REG_ALRM_DT_AE    BIT(7)  /* Date (day of the month) enable */
  77 #define ABB5ZES3_REG_ALRM_DW       0x0D    /* Alarm - day of the week reg. */
  78 #define ABB5ZES3_REG_ALRM_DW_AE    BIT(7)  /* Day of the week enable */
  79 
  80 #define ABB5ZES3_ALRM_SEC_LEN      4
  81 
  82 /* Frequency offset section */
  83 #define ABB5ZES3_REG_FREQ_OF       0x0E    /* Frequency offset register */
  84 #define ABB5ZES3_REG_FREQ_OF_MODE  0x0E    /* Offset mode: 2 hours / minute */
  85 
  86 /* CLOCKOUT section */
  87 #define ABB5ZES3_REG_TIM_CLK       0x0F    /* Timer & Clockout register */
  88 #define ABB5ZES3_REG_TIM_CLK_TAM   BIT(7)  /* Permanent/pulsed timer A/int. 2 */
  89 #define ABB5ZES3_REG_TIM_CLK_TBM   BIT(6)  /* Permanent/pulsed timer B */
  90 #define ABB5ZES3_REG_TIM_CLK_COF2  BIT(5)  /* Clkout Freq bit 2 */
  91 #define ABB5ZES3_REG_TIM_CLK_COF1  BIT(4)  /* Clkout Freq bit 1 */
  92 #define ABB5ZES3_REG_TIM_CLK_COF0  BIT(3)  /* Clkout Freq bit 0 */
  93 #define ABB5ZES3_REG_TIM_CLK_TAC1  BIT(2)  /* Timer A: - 01 : countdown */
  94 #define ABB5ZES3_REG_TIM_CLK_TAC0  BIT(1)  /*          - 10 : timer     */
  95 #define ABB5ZES3_REG_TIM_CLK_TBC   BIT(0)  /* Timer B enable */
  96 
  97 /* Timer A Section */
  98 #define ABB5ZES3_REG_TIMA_CLK      0x10    /* Timer A clock register */
  99 #define ABB5ZES3_REG_TIMA_CLK_TAQ2 BIT(2)  /* Freq bit 2 */
 100 #define ABB5ZES3_REG_TIMA_CLK_TAQ1 BIT(1)  /* Freq bit 1 */
 101 #define ABB5ZES3_REG_TIMA_CLK_TAQ0 BIT(0)  /* Freq bit 0 */
 102 #define ABB5ZES3_REG_TIMA          0x11    /* Timer A register */
 103 
 104 #define ABB5ZES3_TIMA_SEC_LEN      2
 105 
 106 /* Timer B Section */
 107 #define ABB5ZES3_REG_TIMB_CLK      0x12    /* Timer B clock register */
 108 #define ABB5ZES3_REG_TIMB_CLK_TBW2 BIT(6)
 109 #define ABB5ZES3_REG_TIMB_CLK_TBW1 BIT(5)
 110 #define ABB5ZES3_REG_TIMB_CLK_TBW0 BIT(4)
 111 #define ABB5ZES3_REG_TIMB_CLK_TAQ2 BIT(2)
 112 #define ABB5ZES3_REG_TIMB_CLK_TAQ1 BIT(1)
 113 #define ABB5ZES3_REG_TIMB_CLK_TAQ0 BIT(0)
 114 #define ABB5ZES3_REG_TIMB          0x13    /* Timer B register */
 115 #define ABB5ZES3_TIMB_SEC_LEN      2
 116 
 117 #define ABB5ZES3_MEM_MAP_LEN       0x14
 118 
 119 struct abb5zes3_rtc_data {
 120         struct rtc_device *rtc;
 121         struct regmap *regmap;
 122 
 123         int irq;
 124 
 125         bool battery_low;
 126         bool timer_alarm; /* current alarm is via timer A */
 127 };
 128 
 129 /*
 130  * Try and match register bits w/ fixed null values to see whether we
 131  * are dealing with an ABB5ZES3.
 132  */
 133 static int abb5zes3_i2c_validate_chip(struct regmap *regmap)
 134 {
 135         u8 regs[ABB5ZES3_MEM_MAP_LEN];
 136         static const u8 mask[ABB5ZES3_MEM_MAP_LEN] = { 0x00, 0x00, 0x10, 0x00,
 137                                                        0x80, 0xc0, 0xc0, 0xf8,
 138                                                        0xe0, 0x00, 0x00, 0x40,
 139                                                        0x40, 0x78, 0x00, 0x00,
 140                                                        0xf8, 0x00, 0x88, 0x00 };
 141         int ret, i;
 142 
 143         ret = regmap_bulk_read(regmap, 0, regs, ABB5ZES3_MEM_MAP_LEN);
 144         if (ret)
 145                 return ret;
 146 
 147         for (i = 0; i < ABB5ZES3_MEM_MAP_LEN; ++i) {
 148                 if (regs[i] & mask[i]) /* check if bits are cleared */
 149                         return -ENODEV;
 150         }
 151 
 152         return 0;
 153 }
 154 
 155 /* Clear alarm status bit. */
 156 static int _abb5zes3_rtc_clear_alarm(struct device *dev)
 157 {
 158         struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
 159         int ret;
 160 
 161         ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2,
 162                                  ABB5ZES3_REG_CTRL2_AF, 0);
 163         if (ret)
 164                 dev_err(dev, "%s: clearing alarm failed (%d)\n", __func__, ret);
 165 
 166         return ret;
 167 }
 168 
 169 /* Enable or disable alarm (i.e. alarm interrupt generation) */
 170 static int _abb5zes3_rtc_update_alarm(struct device *dev, bool enable)
 171 {
 172         struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
 173         int ret;
 174 
 175         ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL1,
 176                                  ABB5ZES3_REG_CTRL1_AIE,
 177                                  enable ? ABB5ZES3_REG_CTRL1_AIE : 0);
 178         if (ret)
 179                 dev_err(dev, "%s: writing alarm INT failed (%d)\n",
 180                         __func__, ret);
 181 
 182         return ret;
 183 }
 184 
 185 /* Enable or disable timer (watchdog timer A interrupt generation) */
 186 static int _abb5zes3_rtc_update_timer(struct device *dev, bool enable)
 187 {
 188         struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
 189         int ret;
 190 
 191         ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2,
 192                                  ABB5ZES3_REG_CTRL2_WTAIE,
 193                                  enable ? ABB5ZES3_REG_CTRL2_WTAIE : 0);
 194         if (ret)
 195                 dev_err(dev, "%s: writing timer INT failed (%d)\n",
 196                         __func__, ret);
 197 
 198         return ret;
 199 }
 200 
 201 /*
 202  * Note: we only read, so regmap inner lock protection is sufficient, i.e.
 203  * we do not need driver's main lock protection.
 204  */
 205 static int _abb5zes3_rtc_read_time(struct device *dev, struct rtc_time *tm)
 206 {
 207         struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
 208         u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN];
 209         int ret = 0;
 210 
 211         /*
 212          * As we need to read CTRL1 register anyway to access 24/12h
 213          * mode bit, we do a single bulk read of both control and RTC
 214          * sections (they are consecutive). This also ease indexing
 215          * of register values after bulk read.
 216          */
 217         ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_CTRL1, regs,
 218                                sizeof(regs));
 219         if (ret) {
 220                 dev_err(dev, "%s: reading RTC time failed (%d)\n",
 221                         __func__, ret);
 222                 return ret;
 223         }
 224 
 225         /* If clock integrity is not guaranteed, do not return a time value */
 226         if (regs[ABB5ZES3_REG_RTC_SC] & ABB5ZES3_REG_RTC_SC_OSC)
 227                 return -ENODATA;
 228 
 229         tm->tm_sec = bcd2bin(regs[ABB5ZES3_REG_RTC_SC] & 0x7F);
 230         tm->tm_min = bcd2bin(regs[ABB5ZES3_REG_RTC_MN]);
 231 
 232         if (regs[ABB5ZES3_REG_CTRL1] & ABB5ZES3_REG_CTRL1_PM) { /* 12hr mode */
 233                 tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR] & 0x1f);
 234                 if (regs[ABB5ZES3_REG_RTC_HR] & ABB5ZES3_REG_RTC_HR_PM) /* PM */
 235                         tm->tm_hour += 12;
 236         } else {                                                /* 24hr mode */
 237                 tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR]);
 238         }
 239 
 240         tm->tm_mday = bcd2bin(regs[ABB5ZES3_REG_RTC_DT]);
 241         tm->tm_wday = bcd2bin(regs[ABB5ZES3_REG_RTC_DW]);
 242         tm->tm_mon  = bcd2bin(regs[ABB5ZES3_REG_RTC_MO]) - 1; /* starts at 1 */
 243         tm->tm_year = bcd2bin(regs[ABB5ZES3_REG_RTC_YR]) + 100;
 244 
 245         return ret;
 246 }
 247 
 248 static int abb5zes3_rtc_set_time(struct device *dev, struct rtc_time *tm)
 249 {
 250         struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
 251         u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN];
 252         int ret;
 253 
 254         regs[ABB5ZES3_REG_RTC_SC] = bin2bcd(tm->tm_sec); /* MSB=0 clears OSC */
 255         regs[ABB5ZES3_REG_RTC_MN] = bin2bcd(tm->tm_min);
 256         regs[ABB5ZES3_REG_RTC_HR] = bin2bcd(tm->tm_hour); /* 24-hour format */
 257         regs[ABB5ZES3_REG_RTC_DT] = bin2bcd(tm->tm_mday);
 258         regs[ABB5ZES3_REG_RTC_DW] = bin2bcd(tm->tm_wday);
 259         regs[ABB5ZES3_REG_RTC_MO] = bin2bcd(tm->tm_mon + 1);
 260         regs[ABB5ZES3_REG_RTC_YR] = bin2bcd(tm->tm_year - 100);
 261 
 262         ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_RTC_SC,
 263                                 regs + ABB5ZES3_REG_RTC_SC,
 264                                 ABB5ZES3_RTC_SEC_LEN);
 265 
 266         return ret;
 267 }
 268 
 269 /*
 270  * Set provided TAQ and Timer A registers (TIMA_CLK and TIMA) based on
 271  * given number of seconds.
 272  */
 273 static inline void sec_to_timer_a(u8 secs, u8 *taq, u8 *timer_a)
 274 {
 275         *taq = ABB5ZES3_REG_TIMA_CLK_TAQ1; /* 1Hz */
 276         *timer_a = secs;
 277 }
 278 
 279 /*
 280  * Return current number of seconds in Timer A. As we only use
 281  * timer A with a 1Hz freq, this is what we expect to have.
 282  */
 283 static inline int sec_from_timer_a(u8 *secs, u8 taq, u8 timer_a)
 284 {
 285         if (taq != ABB5ZES3_REG_TIMA_CLK_TAQ1) /* 1Hz */
 286                 return -EINVAL;
 287 
 288         *secs = timer_a;
 289 
 290         return 0;
 291 }
 292 
 293 /*
 294  * Read alarm currently configured via a watchdog timer using timer A. This
 295  * is done by reading current RTC time and adding remaining timer time.
 296  */
 297 static int _abb5zes3_rtc_read_timer(struct device *dev,
 298                                     struct rtc_wkalrm *alarm)
 299 {
 300         struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
 301         struct rtc_time rtc_tm, *alarm_tm = &alarm->time;
 302         u8 regs[ABB5ZES3_TIMA_SEC_LEN + 1];
 303         unsigned long rtc_secs;
 304         unsigned int reg;
 305         u8 timer_secs;
 306         int ret;
 307 
 308         /*
 309          * Instead of doing two separate calls, because they are consecutive,
 310          * we grab both clockout register and Timer A section. The latter is
 311          * used to decide if timer A is enabled (as a watchdog timer).
 312          */
 313         ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_TIM_CLK, regs,
 314                                ABB5ZES3_TIMA_SEC_LEN + 1);
 315         if (ret) {
 316                 dev_err(dev, "%s: reading Timer A section failed (%d)\n",
 317                         __func__, ret);
 318                 return ret;
 319         }
 320 
 321         /* get current time ... */
 322         ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
 323         if (ret)
 324                 return ret;
 325 
 326         /* ... convert to seconds ... */
 327         rtc_secs = rtc_tm_to_time64(&rtc_tm);
 328 
 329         /* ... add remaining timer A time ... */
 330         ret = sec_from_timer_a(&timer_secs, regs[1], regs[2]);
 331         if (ret)
 332                 return ret;
 333 
 334         /* ... and convert back. */
 335         rtc_time64_to_tm(rtc_secs + timer_secs, alarm_tm);
 336 
 337         ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL2, &reg);
 338         if (ret) {
 339                 dev_err(dev, "%s: reading ctrl reg failed (%d)\n",
 340                         __func__, ret);
 341                 return ret;
 342         }
 343 
 344         alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL2_WTAIE);
 345 
 346         return 0;
 347 }
 348 
 349 /* Read alarm currently configured via a RTC alarm registers. */
 350 static int _abb5zes3_rtc_read_alarm(struct device *dev,
 351                                     struct rtc_wkalrm *alarm)
 352 {
 353         struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
 354         struct rtc_time rtc_tm, *alarm_tm = &alarm->time;
 355         unsigned long rtc_secs, alarm_secs;
 356         u8 regs[ABB5ZES3_ALRM_SEC_LEN];
 357         unsigned int reg;
 358         int ret;
 359 
 360         ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_ALRM_MN, regs,
 361                                ABB5ZES3_ALRM_SEC_LEN);
 362         if (ret) {
 363                 dev_err(dev, "%s: reading alarm section failed (%d)\n",
 364                         __func__, ret);
 365                 return ret;
 366         }
 367 
 368         alarm_tm->tm_sec  = 0;
 369         alarm_tm->tm_min  = bcd2bin(regs[0] & 0x7f);
 370         alarm_tm->tm_hour = bcd2bin(regs[1] & 0x3f);
 371         alarm_tm->tm_mday = bcd2bin(regs[2] & 0x3f);
 372         alarm_tm->tm_wday = -1;
 373 
 374         /*
 375          * The alarm section does not store year/month. We use the ones in rtc
 376          * section as a basis and increment month and then year if needed to get
 377          * alarm after current time.
 378          */
 379         ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
 380         if (ret)
 381                 return ret;
 382 
 383         alarm_tm->tm_year = rtc_tm.tm_year;
 384         alarm_tm->tm_mon = rtc_tm.tm_mon;
 385 
 386         rtc_secs = rtc_tm_to_time64(&rtc_tm);
 387         alarm_secs = rtc_tm_to_time64(alarm_tm);
 388 
 389         if (alarm_secs < rtc_secs) {
 390                 if (alarm_tm->tm_mon == 11) {
 391                         alarm_tm->tm_mon = 0;
 392                         alarm_tm->tm_year += 1;
 393                 } else {
 394                         alarm_tm->tm_mon += 1;
 395                 }
 396         }
 397 
 398         ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL1, &reg);
 399         if (ret) {
 400                 dev_err(dev, "%s: reading ctrl reg failed (%d)\n",
 401                         __func__, ret);
 402                 return ret;
 403         }
 404 
 405         alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL1_AIE);
 406 
 407         return 0;
 408 }
 409 
 410 /*
 411  * As the Alarm mechanism supported by the chip is only accurate to the
 412  * minute, we use the watchdog timer mechanism provided by timer A
 413  * (up to 256 seconds w/ a second accuracy) for low alarm values (below
 414  * 4 minutes). Otherwise, we use the common alarm mechanism provided
 415  * by the chip. In order for that to work, we keep track of currently
 416  * configured timer type via 'timer_alarm' flag in our private data
 417  * structure.
 418  */
 419 static int abb5zes3_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
 420 {
 421         struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
 422         int ret;
 423 
 424         if (data->timer_alarm)
 425                 ret = _abb5zes3_rtc_read_timer(dev, alarm);
 426         else
 427                 ret = _abb5zes3_rtc_read_alarm(dev, alarm);
 428 
 429         return ret;
 430 }
 431 
 432 /*
 433  * Set alarm using chip alarm mechanism. It is only accurate to the
 434  * minute (not the second). The function expects alarm interrupt to
 435  * be disabled.
 436  */
 437 static int _abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
 438 {
 439         struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
 440         struct rtc_time *alarm_tm = &alarm->time;
 441         u8 regs[ABB5ZES3_ALRM_SEC_LEN];
 442         struct rtc_time rtc_tm;
 443         int ret, enable = 1;
 444 
 445         if (!alarm->enabled) {
 446                 enable = 0;
 447         } else {
 448                 unsigned long rtc_secs, alarm_secs;
 449 
 450                 /*
 451                  * Chip only support alarms up to one month in the future. Let's
 452                  * return an error if we get something after that limit.
 453                  * Comparison is done by incrementing rtc_tm month field by one
 454                  * and checking alarm value is still below.
 455                  */
 456                 ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
 457                 if (ret)
 458                         return ret;
 459 
 460                 if (rtc_tm.tm_mon == 11) { /* handle year wrapping */
 461                         rtc_tm.tm_mon = 0;
 462                         rtc_tm.tm_year += 1;
 463                 } else {
 464                         rtc_tm.tm_mon += 1;
 465                 }
 466 
 467                 rtc_secs = rtc_tm_to_time64(&rtc_tm);
 468                 alarm_secs = rtc_tm_to_time64(alarm_tm);
 469 
 470                 if (alarm_secs > rtc_secs) {
 471                         dev_err(dev, "%s: alarm maximum is one month in the future (%d)\n",
 472                                 __func__, ret);
 473                         return -EINVAL;
 474                 }
 475         }
 476 
 477         /*
 478          * Program all alarm registers but DW one. For each register, setting
 479          * MSB to 0 enables associated alarm.
 480          */
 481         regs[0] = bin2bcd(alarm_tm->tm_min) & 0x7f;
 482         regs[1] = bin2bcd(alarm_tm->tm_hour) & 0x3f;
 483         regs[2] = bin2bcd(alarm_tm->tm_mday) & 0x3f;
 484         regs[3] = ABB5ZES3_REG_ALRM_DW_AE; /* do not match day of the week */
 485 
 486         ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_ALRM_MN, regs,
 487                                 ABB5ZES3_ALRM_SEC_LEN);
 488         if (ret < 0) {
 489                 dev_err(dev, "%s: writing ALARM section failed (%d)\n",
 490                         __func__, ret);
 491                 return ret;
 492         }
 493 
 494         /* Record currently configured alarm is not a timer */
 495         data->timer_alarm = 0;
 496 
 497         /* Enable or disable alarm interrupt generation */
 498         return _abb5zes3_rtc_update_alarm(dev, enable);
 499 }
 500 
 501 /*
 502  * Set alarm using timer watchdog (via timer A) mechanism. The function expects
 503  * timer A interrupt to be disabled.
 504  */
 505 static int _abb5zes3_rtc_set_timer(struct device *dev, struct rtc_wkalrm *alarm,
 506                                    u8 secs)
 507 {
 508         struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
 509         u8 regs[ABB5ZES3_TIMA_SEC_LEN];
 510         u8 mask = ABB5ZES3_REG_TIM_CLK_TAC0 | ABB5ZES3_REG_TIM_CLK_TAC1;
 511         int ret = 0;
 512 
 513         /* Program given number of seconds to Timer A registers */
 514         sec_to_timer_a(secs, &regs[0], &regs[1]);
 515         ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_TIMA_CLK, regs,
 516                                 ABB5ZES3_TIMA_SEC_LEN);
 517         if (ret < 0) {
 518                 dev_err(dev, "%s: writing timer section failed\n", __func__);
 519                 return ret;
 520         }
 521 
 522         /* Configure Timer A as a watchdog timer */
 523         ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_TIM_CLK,
 524                                  mask, ABB5ZES3_REG_TIM_CLK_TAC1);
 525         if (ret)
 526                 dev_err(dev, "%s: failed to update timer\n", __func__);
 527 
 528         /* Record currently configured alarm is a timer */
 529         data->timer_alarm = 1;
 530 
 531         /* Enable or disable timer interrupt generation */
 532         return _abb5zes3_rtc_update_timer(dev, alarm->enabled);
 533 }
 534 
 535 /*
 536  * The chip has an alarm which is only accurate to the minute. In order to
 537  * handle alarms below that limit, we use the watchdog timer function of
 538  * timer A. More precisely, the timer method is used for alarms below 240
 539  * seconds.
 540  */
 541 static int abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
 542 {
 543         struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
 544         struct rtc_time *alarm_tm = &alarm->time;
 545         unsigned long rtc_secs, alarm_secs;
 546         struct rtc_time rtc_tm;
 547         int ret;
 548 
 549         ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
 550         if (ret)
 551                 return ret;
 552 
 553         rtc_secs = rtc_tm_to_time64(&rtc_tm);
 554         alarm_secs = rtc_tm_to_time64(alarm_tm);
 555 
 556         /* Let's first disable both the alarm and the timer interrupts */
 557         ret = _abb5zes3_rtc_update_alarm(dev, false);
 558         if (ret < 0) {
 559                 dev_err(dev, "%s: unable to disable alarm (%d)\n", __func__,
 560                         ret);
 561                 return ret;
 562         }
 563         ret = _abb5zes3_rtc_update_timer(dev, false);
 564         if (ret < 0) {
 565                 dev_err(dev, "%s: unable to disable timer (%d)\n", __func__,
 566                         ret);
 567                 return ret;
 568         }
 569 
 570         data->timer_alarm = 0;
 571 
 572         /*
 573          * Let's now configure the alarm; if we are expected to ring in
 574          * more than 240s, then we setup an alarm. Otherwise, a timer.
 575          */
 576         if ((alarm_secs > rtc_secs) && ((alarm_secs - rtc_secs) <= 240))
 577                 ret = _abb5zes3_rtc_set_timer(dev, alarm,
 578                                               alarm_secs - rtc_secs);
 579         else
 580                 ret = _abb5zes3_rtc_set_alarm(dev, alarm);
 581 
 582         if (ret)
 583                 dev_err(dev, "%s: unable to configure alarm (%d)\n", __func__,
 584                         ret);
 585 
 586         return ret;
 587 }
 588 
 589 /* Enable or disable battery low irq generation */
 590 static inline int _abb5zes3_rtc_battery_low_irq_enable(struct regmap *regmap,
 591                                                        bool enable)
 592 {
 593         return regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3,
 594                                   ABB5ZES3_REG_CTRL3_BLIE,
 595                                   enable ? ABB5ZES3_REG_CTRL3_BLIE : 0);
 596 }
 597 
 598 /*
 599  * Check current RTC status and enable/disable what needs to be. Return 0 if
 600  * everything went ok and a negative value upon error.
 601  */
 602 static int abb5zes3_rtc_check_setup(struct device *dev)
 603 {
 604         struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
 605         struct regmap *regmap = data->regmap;
 606         unsigned int reg;
 607         int ret;
 608         u8 mask;
 609 
 610         /*
 611          * By default, the devices generates a 32.768KHz signal on IRQ#1 pin. It
 612          * is disabled here to prevent polluting the interrupt line and
 613          * uselessly triggering the IRQ handler we install for alarm and battery
 614          * low events. Note: this is done before clearing int. status below
 615          * in this function.
 616          * We also disable all timers and set timer interrupt to permanent (not
 617          * pulsed).
 618          */
 619         mask = (ABB5ZES3_REG_TIM_CLK_TBC | ABB5ZES3_REG_TIM_CLK_TAC0 |
 620                 ABB5ZES3_REG_TIM_CLK_TAC1 | ABB5ZES3_REG_TIM_CLK_COF0 |
 621                 ABB5ZES3_REG_TIM_CLK_COF1 | ABB5ZES3_REG_TIM_CLK_COF2 |
 622                 ABB5ZES3_REG_TIM_CLK_TBM | ABB5ZES3_REG_TIM_CLK_TAM);
 623         ret = regmap_update_bits(regmap, ABB5ZES3_REG_TIM_CLK, mask,
 624                                  ABB5ZES3_REG_TIM_CLK_COF0 |
 625                                  ABB5ZES3_REG_TIM_CLK_COF1 |
 626                                  ABB5ZES3_REG_TIM_CLK_COF2);
 627         if (ret < 0) {
 628                 dev_err(dev, "%s: unable to initialize clkout register (%d)\n",
 629                         __func__, ret);
 630                 return ret;
 631         }
 632 
 633         /*
 634          * Each component of the alarm (MN, HR, DT, DW) can be enabled/disabled
 635          * individually by clearing/setting MSB of each associated register. So,
 636          * we set all alarm enable bits to disable current alarm setting.
 637          */
 638         mask = (ABB5ZES3_REG_ALRM_MN_AE | ABB5ZES3_REG_ALRM_HR_AE |
 639                 ABB5ZES3_REG_ALRM_DT_AE | ABB5ZES3_REG_ALRM_DW_AE);
 640         ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, mask);
 641         if (ret < 0) {
 642                 dev_err(dev, "%s: unable to disable alarm setting (%d)\n",
 643                         __func__, ret);
 644                 return ret;
 645         }
 646 
 647         /* Set Control 1 register (RTC enabled, 24hr mode, all int. disabled) */
 648         mask = (ABB5ZES3_REG_CTRL1_CIE | ABB5ZES3_REG_CTRL1_AIE |
 649                 ABB5ZES3_REG_CTRL1_SIE | ABB5ZES3_REG_CTRL1_PM |
 650                 ABB5ZES3_REG_CTRL1_CAP | ABB5ZES3_REG_CTRL1_STOP);
 651         ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL1, mask, 0);
 652         if (ret < 0) {
 653                 dev_err(dev, "%s: unable to initialize CTRL1 register (%d)\n",
 654                         __func__, ret);
 655                 return ret;
 656         }
 657 
 658         /*
 659          * Set Control 2 register (timer int. disabled, alarm status cleared).
 660          * WTAF is read-only and cleared automatically by reading the register.
 661          */
 662         mask = (ABB5ZES3_REG_CTRL2_CTBIE | ABB5ZES3_REG_CTRL2_CTAIE |
 663                 ABB5ZES3_REG_CTRL2_WTAIE | ABB5ZES3_REG_CTRL2_AF |
 664                 ABB5ZES3_REG_CTRL2_SF | ABB5ZES3_REG_CTRL2_CTBF |
 665                 ABB5ZES3_REG_CTRL2_CTAF);
 666         ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, 0);
 667         if (ret < 0) {
 668                 dev_err(dev, "%s: unable to initialize CTRL2 register (%d)\n",
 669                         __func__, ret);
 670                 return ret;
 671         }
 672 
 673         /*
 674          * Enable battery low detection function and battery switchover function
 675          * (standard mode). Disable associated interrupts. Clear battery
 676          * switchover flag but not battery low flag. The latter is checked
 677          * later below.
 678          */
 679         mask = (ABB5ZES3_REG_CTRL3_PM0  | ABB5ZES3_REG_CTRL3_PM1 |
 680                 ABB5ZES3_REG_CTRL3_PM2  | ABB5ZES3_REG_CTRL3_BLIE |
 681                 ABB5ZES3_REG_CTRL3_BSIE | ABB5ZES3_REG_CTRL3_BSF);
 682         ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3, mask, 0);
 683         if (ret < 0) {
 684                 dev_err(dev, "%s: unable to initialize CTRL3 register (%d)\n",
 685                         __func__, ret);
 686                 return ret;
 687         }
 688 
 689         /* Check oscillator integrity flag */
 690         ret = regmap_read(regmap, ABB5ZES3_REG_RTC_SC, &reg);
 691         if (ret < 0) {
 692                 dev_err(dev, "%s: unable to read osc. integrity flag (%d)\n",
 693                         __func__, ret);
 694                 return ret;
 695         }
 696 
 697         if (reg & ABB5ZES3_REG_RTC_SC_OSC) {
 698                 dev_err(dev, "clock integrity not guaranteed. Osc. has stopped or has been interrupted.\n");
 699                 dev_err(dev, "change battery (if not already done) and then set time to reset osc. failure flag.\n");
 700         }
 701 
 702         /*
 703          * Check battery low flag at startup: this allows reporting battery
 704          * is low at startup when IRQ line is not connected. Note: we record
 705          * current status to avoid reenabling this interrupt later in probe
 706          * function if battery is low.
 707          */
 708         ret = regmap_read(regmap, ABB5ZES3_REG_CTRL3, &reg);
 709         if (ret < 0) {
 710                 dev_err(dev, "%s: unable to read battery low flag (%d)\n",
 711                         __func__, ret);
 712                 return ret;
 713         }
 714 
 715         data->battery_low = reg & ABB5ZES3_REG_CTRL3_BLF;
 716         if (data->battery_low) {
 717                 dev_err(dev, "RTC battery is low; please, consider changing it!\n");
 718 
 719                 ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, false);
 720                 if (ret)
 721                         dev_err(dev, "%s: disabling battery low interrupt generation failed (%d)\n",
 722                                 __func__, ret);
 723         }
 724 
 725         return ret;
 726 }
 727 
 728 static int abb5zes3_rtc_alarm_irq_enable(struct device *dev,
 729                                          unsigned int enable)
 730 {
 731         struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
 732         int ret = 0;
 733 
 734         if (rtc_data->irq) {
 735                 if (rtc_data->timer_alarm)
 736                         ret = _abb5zes3_rtc_update_timer(dev, enable);
 737                 else
 738                         ret = _abb5zes3_rtc_update_alarm(dev, enable);
 739         }
 740 
 741         return ret;
 742 }
 743 
 744 static irqreturn_t _abb5zes3_rtc_interrupt(int irq, void *data)
 745 {
 746         struct i2c_client *client = data;
 747         struct device *dev = &client->dev;
 748         struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
 749         struct rtc_device *rtc = rtc_data->rtc;
 750         u8 regs[ABB5ZES3_CTRL_SEC_LEN];
 751         int ret, handled = IRQ_NONE;
 752 
 753         ret = regmap_bulk_read(rtc_data->regmap, 0, regs,
 754                                ABB5ZES3_CTRL_SEC_LEN);
 755         if (ret) {
 756                 dev_err(dev, "%s: unable to read control section (%d)!\n",
 757                         __func__, ret);
 758                 return handled;
 759         }
 760 
 761         /*
 762          * Check battery low detection flag and disable battery low interrupt
 763          * generation if flag is set (interrupt can only be cleared when
 764          * battery is replaced).
 765          */
 766         if (regs[ABB5ZES3_REG_CTRL3] & ABB5ZES3_REG_CTRL3_BLF) {
 767                 dev_err(dev, "RTC battery is low; please change it!\n");
 768 
 769                 _abb5zes3_rtc_battery_low_irq_enable(rtc_data->regmap, false);
 770 
 771                 handled = IRQ_HANDLED;
 772         }
 773 
 774         /* Check alarm flag */
 775         if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_AF) {
 776                 dev_dbg(dev, "RTC alarm!\n");
 777 
 778                 rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF);
 779 
 780                 /* Acknowledge and disable the alarm */
 781                 _abb5zes3_rtc_clear_alarm(dev);
 782                 _abb5zes3_rtc_update_alarm(dev, 0);
 783 
 784                 handled = IRQ_HANDLED;
 785         }
 786 
 787         /* Check watchdog Timer A flag */
 788         if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_WTAF) {
 789                 dev_dbg(dev, "RTC timer!\n");
 790 
 791                 rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF);
 792 
 793                 /*
 794                  * Acknowledge and disable the alarm. Note: WTAF
 795                  * flag had been cleared when reading CTRL2
 796                  */
 797                 _abb5zes3_rtc_update_timer(dev, 0);
 798 
 799                 rtc_data->timer_alarm = 0;
 800 
 801                 handled = IRQ_HANDLED;
 802         }
 803 
 804         return handled;
 805 }
 806 
 807 static const struct rtc_class_ops rtc_ops = {
 808         .read_time = _abb5zes3_rtc_read_time,
 809         .set_time = abb5zes3_rtc_set_time,
 810         .read_alarm = abb5zes3_rtc_read_alarm,
 811         .set_alarm = abb5zes3_rtc_set_alarm,
 812         .alarm_irq_enable = abb5zes3_rtc_alarm_irq_enable,
 813 };
 814 
 815 static const struct regmap_config abb5zes3_rtc_regmap_config = {
 816         .reg_bits = 8,
 817         .val_bits = 8,
 818 };
 819 
 820 static int abb5zes3_probe(struct i2c_client *client,
 821                           const struct i2c_device_id *id)
 822 {
 823         struct abb5zes3_rtc_data *data = NULL;
 824         struct device *dev = &client->dev;
 825         struct regmap *regmap;
 826         int ret;
 827 
 828         if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C |
 829                                      I2C_FUNC_SMBUS_BYTE_DATA |
 830                                      I2C_FUNC_SMBUS_I2C_BLOCK))
 831                 return -ENODEV;
 832 
 833         regmap = devm_regmap_init_i2c(client, &abb5zes3_rtc_regmap_config);
 834         if (IS_ERR(regmap)) {
 835                 ret = PTR_ERR(regmap);
 836                 dev_err(dev, "%s: regmap allocation failed: %d\n",
 837                         __func__, ret);
 838                 return ret;
 839         }
 840 
 841         ret = abb5zes3_i2c_validate_chip(regmap);
 842         if (ret)
 843                 return ret;
 844 
 845         data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
 846         if (!data)
 847                 return -ENOMEM;
 848 
 849         data->regmap = regmap;
 850         dev_set_drvdata(dev, data);
 851 
 852         ret = abb5zes3_rtc_check_setup(dev);
 853         if (ret)
 854                 return ret;
 855 
 856         data->rtc = devm_rtc_allocate_device(dev);
 857         ret = PTR_ERR_OR_ZERO(data->rtc);
 858         if (ret) {
 859                 dev_err(dev, "%s: unable to allocate RTC device (%d)\n",
 860                         __func__, ret);
 861                 return ret;
 862         }
 863 
 864         if (client->irq > 0) {
 865                 ret = devm_request_threaded_irq(dev, client->irq, NULL,
 866                                                 _abb5zes3_rtc_interrupt,
 867                                                 IRQF_SHARED | IRQF_ONESHOT,
 868                                                 DRV_NAME, client);
 869                 if (!ret) {
 870                         device_init_wakeup(dev, true);
 871                         data->irq = client->irq;
 872                         dev_dbg(dev, "%s: irq %d used by RTC\n", __func__,
 873                                 client->irq);
 874                 } else {
 875                         dev_err(dev, "%s: irq %d unavailable (%d)\n",
 876                                 __func__, client->irq, ret);
 877                         goto err;
 878                 }
 879         }
 880 
 881         data->rtc->ops = &rtc_ops;
 882         data->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
 883         data->rtc->range_max = RTC_TIMESTAMP_END_2099;
 884 
 885         /* Enable battery low detection interrupt if battery not already low */
 886         if (!data->battery_low && data->irq) {
 887                 ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, true);
 888                 if (ret) {
 889                         dev_err(dev, "%s: enabling battery low interrupt generation failed (%d)\n",
 890                                 __func__, ret);
 891                         goto err;
 892                 }
 893         }
 894 
 895         ret = rtc_register_device(data->rtc);
 896 
 897 err:
 898         if (ret && data->irq)
 899                 device_init_wakeup(dev, false);
 900         return ret;
 901 }
 902 
 903 static int abb5zes3_remove(struct i2c_client *client)
 904 {
 905         struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(&client->dev);
 906 
 907         if (rtc_data->irq > 0)
 908                 device_init_wakeup(&client->dev, false);
 909 
 910         return 0;
 911 }
 912 
 913 #ifdef CONFIG_PM_SLEEP
 914 static int abb5zes3_rtc_suspend(struct device *dev)
 915 {
 916         struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
 917 
 918         if (device_may_wakeup(dev))
 919                 return enable_irq_wake(rtc_data->irq);
 920 
 921         return 0;
 922 }
 923 
 924 static int abb5zes3_rtc_resume(struct device *dev)
 925 {
 926         struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
 927 
 928         if (device_may_wakeup(dev))
 929                 return disable_irq_wake(rtc_data->irq);
 930 
 931         return 0;
 932 }
 933 #endif
 934 
 935 static SIMPLE_DEV_PM_OPS(abb5zes3_rtc_pm_ops, abb5zes3_rtc_suspend,
 936                          abb5zes3_rtc_resume);
 937 
 938 #ifdef CONFIG_OF
 939 static const struct of_device_id abb5zes3_dt_match[] = {
 940         { .compatible = "abracon,abb5zes3" },
 941         { },
 942 };
 943 MODULE_DEVICE_TABLE(of, abb5zes3_dt_match);
 944 #endif
 945 
 946 static const struct i2c_device_id abb5zes3_id[] = {
 947         { "abb5zes3", 0 },
 948         { }
 949 };
 950 MODULE_DEVICE_TABLE(i2c, abb5zes3_id);
 951 
 952 static struct i2c_driver abb5zes3_driver = {
 953         .driver = {
 954                 .name = DRV_NAME,
 955                 .pm = &abb5zes3_rtc_pm_ops,
 956                 .of_match_table = of_match_ptr(abb5zes3_dt_match),
 957         },
 958         .probe    = abb5zes3_probe,
 959         .remove   = abb5zes3_remove,
 960         .id_table = abb5zes3_id,
 961 };
 962 module_i2c_driver(abb5zes3_driver);
 963 
 964 MODULE_AUTHOR("Arnaud EBALARD <arno@natisbad.org>");
 965 MODULE_DESCRIPTION("Abracon AB-RTCMC-32.768kHz-B5ZE-S3 RTC/Alarm driver");
 966 MODULE_LICENSE("GPL");

/* [<][>][^][v][top][bottom][index][help] */