root/drivers/i2c/busses/i2c-at91-master.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. at91_init_twi_bus_master
  2. at91_calc_twi_clock
  3. at91_twi_dma_cleanup
  4. at91_twi_write_next_byte
  5. at91_twi_write_data_dma_callback
  6. at91_twi_write_data_dma
  7. at91_twi_read_next_byte
  8. at91_twi_read_data_dma_callback
  9. at91_twi_read_data_dma
  10. atmel_twi_interrupt
  11. at91_do_twi_transfer
  12. at91_twi_xfer
  13. at91_twi_func
  14. at91_twi_configure_dma
  15. at91_twi_probe_master

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  *  i2c Support for Atmel's AT91 Two-Wire Interface (TWI)
   4  *
   5  *  Copyright (C) 2011 Weinmann Medical GmbH
   6  *  Author: Nikolaus Voss <n.voss@weinmann.de>
   7  *
   8  *  Evolved from original work by:
   9  *  Copyright (C) 2004 Rick Bronson
  10  *  Converted to 2.6 by Andrew Victor <andrew@sanpeople.com>
  11  *
  12  *  Borrowed heavily from original work by:
  13  *  Copyright (C) 2000 Philip Edelbrock <phil@stimpy.netroedge.com>
  14  */
  15 
  16 #include <linux/clk.h>
  17 #include <linux/completion.h>
  18 #include <linux/dma-mapping.h>
  19 #include <linux/dmaengine.h>
  20 #include <linux/err.h>
  21 #include <linux/i2c.h>
  22 #include <linux/interrupt.h>
  23 #include <linux/io.h>
  24 #include <linux/of.h>
  25 #include <linux/of_device.h>
  26 #include <linux/platform_device.h>
  27 #include <linux/platform_data/dma-atmel.h>
  28 #include <linux/pm_runtime.h>
  29 
  30 #include "i2c-at91.h"
  31 
  32 void at91_init_twi_bus_master(struct at91_twi_dev *dev)
  33 {
  34         /* FIFO should be enabled immediately after the software reset */
  35         if (dev->fifo_size)
  36                 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_FIFOEN);
  37         at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_MSEN);
  38         at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_SVDIS);
  39         at91_twi_write(dev, AT91_TWI_CWGR, dev->twi_cwgr_reg);
  40 }
  41 
  42 /*
  43  * Calculate symmetric clock as stated in datasheet:
  44  * twi_clk = F_MAIN / (2 * (cdiv * (1 << ckdiv) + offset))
  45  */
  46 static void at91_calc_twi_clock(struct at91_twi_dev *dev)
  47 {
  48         int ckdiv, cdiv, div, hold = 0;
  49         struct at91_twi_pdata *pdata = dev->pdata;
  50         int offset = pdata->clk_offset;
  51         int max_ckdiv = pdata->clk_max_div;
  52         struct i2c_timings timings, *t = &timings;
  53 
  54         i2c_parse_fw_timings(dev->dev, t, true);
  55 
  56         div = max(0, (int)DIV_ROUND_UP(clk_get_rate(dev->clk),
  57                                        2 * t->bus_freq_hz) - offset);
  58         ckdiv = fls(div >> 8);
  59         cdiv = div >> ckdiv;
  60 
  61         if (ckdiv > max_ckdiv) {
  62                 dev_warn(dev->dev, "%d exceeds ckdiv max value which is %d.\n",
  63                          ckdiv, max_ckdiv);
  64                 ckdiv = max_ckdiv;
  65                 cdiv = 255;
  66         }
  67 
  68         if (pdata->has_hold_field) {
  69                 /*
  70                  * hold time = HOLD + 3 x T_peripheral_clock
  71                  * Use clk rate in kHz to prevent overflows when computing
  72                  * hold.
  73                  */
  74                 hold = DIV_ROUND_UP(t->sda_hold_ns
  75                                     * (clk_get_rate(dev->clk) / 1000), 1000000);
  76                 hold -= 3;
  77                 if (hold < 0)
  78                         hold = 0;
  79                 if (hold > AT91_TWI_CWGR_HOLD_MAX) {
  80                         dev_warn(dev->dev,
  81                                  "HOLD field set to its maximum value (%d instead of %d)\n",
  82                                  AT91_TWI_CWGR_HOLD_MAX, hold);
  83                         hold = AT91_TWI_CWGR_HOLD_MAX;
  84                 }
  85         }
  86 
  87         dev->twi_cwgr_reg = (ckdiv << 16) | (cdiv << 8) | cdiv
  88                             | AT91_TWI_CWGR_HOLD(hold);
  89 
  90         dev_dbg(dev->dev, "cdiv %d ckdiv %d hold %d (%d ns)\n",
  91                 cdiv, ckdiv, hold, t->sda_hold_ns);
  92 }
  93 
  94 static void at91_twi_dma_cleanup(struct at91_twi_dev *dev)
  95 {
  96         struct at91_twi_dma *dma = &dev->dma;
  97 
  98         at91_twi_irq_save(dev);
  99 
 100         if (dma->xfer_in_progress) {
 101                 if (dma->direction == DMA_FROM_DEVICE)
 102                         dmaengine_terminate_all(dma->chan_rx);
 103                 else
 104                         dmaengine_terminate_all(dma->chan_tx);
 105                 dma->xfer_in_progress = false;
 106         }
 107         if (dma->buf_mapped) {
 108                 dma_unmap_single(dev->dev, sg_dma_address(&dma->sg[0]),
 109                                  dev->buf_len, dma->direction);
 110                 dma->buf_mapped = false;
 111         }
 112 
 113         at91_twi_irq_restore(dev);
 114 }
 115 
 116 static void at91_twi_write_next_byte(struct at91_twi_dev *dev)
 117 {
 118         if (!dev->buf_len)
 119                 return;
 120 
 121         /* 8bit write works with and without FIFO */
 122         writeb_relaxed(*dev->buf, dev->base + AT91_TWI_THR);
 123 
 124         /* send stop when last byte has been written */
 125         if (--dev->buf_len == 0) {
 126                 if (!dev->use_alt_cmd)
 127                         at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
 128                 at91_twi_write(dev, AT91_TWI_IDR, AT91_TWI_TXRDY);
 129         }
 130 
 131         dev_dbg(dev->dev, "wrote 0x%x, to go %zu\n", *dev->buf, dev->buf_len);
 132 
 133         ++dev->buf;
 134 }
 135 
 136 static void at91_twi_write_data_dma_callback(void *data)
 137 {
 138         struct at91_twi_dev *dev = (struct at91_twi_dev *)data;
 139 
 140         dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg[0]),
 141                          dev->buf_len, DMA_TO_DEVICE);
 142 
 143         /*
 144          * When this callback is called, THR/TX FIFO is likely not to be empty
 145          * yet. So we have to wait for TXCOMP or NACK bits to be set into the
 146          * Status Register to be sure that the STOP bit has been sent and the
 147          * transfer is completed. The NACK interrupt has already been enabled,
 148          * we just have to enable TXCOMP one.
 149          */
 150         at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP);
 151         if (!dev->use_alt_cmd)
 152                 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
 153 }
 154 
 155 static void at91_twi_write_data_dma(struct at91_twi_dev *dev)
 156 {
 157         dma_addr_t dma_addr;
 158         struct dma_async_tx_descriptor *txdesc;
 159         struct at91_twi_dma *dma = &dev->dma;
 160         struct dma_chan *chan_tx = dma->chan_tx;
 161         unsigned int sg_len = 1;
 162 
 163         if (!dev->buf_len)
 164                 return;
 165 
 166         dma->direction = DMA_TO_DEVICE;
 167 
 168         at91_twi_irq_save(dev);
 169         dma_addr = dma_map_single(dev->dev, dev->buf, dev->buf_len,
 170                                   DMA_TO_DEVICE);
 171         if (dma_mapping_error(dev->dev, dma_addr)) {
 172                 dev_err(dev->dev, "dma map failed\n");
 173                 return;
 174         }
 175         dma->buf_mapped = true;
 176         at91_twi_irq_restore(dev);
 177 
 178         if (dev->fifo_size) {
 179                 size_t part1_len, part2_len;
 180                 struct scatterlist *sg;
 181                 unsigned fifo_mr;
 182 
 183                 sg_len = 0;
 184 
 185                 part1_len = dev->buf_len & ~0x3;
 186                 if (part1_len) {
 187                         sg = &dma->sg[sg_len++];
 188                         sg_dma_len(sg) = part1_len;
 189                         sg_dma_address(sg) = dma_addr;
 190                 }
 191 
 192                 part2_len = dev->buf_len & 0x3;
 193                 if (part2_len) {
 194                         sg = &dma->sg[sg_len++];
 195                         sg_dma_len(sg) = part2_len;
 196                         sg_dma_address(sg) = dma_addr + part1_len;
 197                 }
 198 
 199                 /*
 200                  * DMA controller is triggered when at least 4 data can be
 201                  * written into the TX FIFO
 202                  */
 203                 fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
 204                 fifo_mr &= ~AT91_TWI_FMR_TXRDYM_MASK;
 205                 fifo_mr |= AT91_TWI_FMR_TXRDYM(AT91_TWI_FOUR_DATA);
 206                 at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
 207         } else {
 208                 sg_dma_len(&dma->sg[0]) = dev->buf_len;
 209                 sg_dma_address(&dma->sg[0]) = dma_addr;
 210         }
 211 
 212         txdesc = dmaengine_prep_slave_sg(chan_tx, dma->sg, sg_len,
 213                                          DMA_MEM_TO_DEV,
 214                                          DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 215         if (!txdesc) {
 216                 dev_err(dev->dev, "dma prep slave sg failed\n");
 217                 goto error;
 218         }
 219 
 220         txdesc->callback = at91_twi_write_data_dma_callback;
 221         txdesc->callback_param = dev;
 222 
 223         dma->xfer_in_progress = true;
 224         dmaengine_submit(txdesc);
 225         dma_async_issue_pending(chan_tx);
 226 
 227         return;
 228 
 229 error:
 230         at91_twi_dma_cleanup(dev);
 231 }
 232 
 233 static void at91_twi_read_next_byte(struct at91_twi_dev *dev)
 234 {
 235         /*
 236          * If we are in this case, it means there is garbage data in RHR, so
 237          * delete them.
 238          */
 239         if (!dev->buf_len) {
 240                 at91_twi_read(dev, AT91_TWI_RHR);
 241                 return;
 242         }
 243 
 244         /* 8bit read works with and without FIFO */
 245         *dev->buf = readb_relaxed(dev->base + AT91_TWI_RHR);
 246         --dev->buf_len;
 247 
 248         /* return if aborting, we only needed to read RHR to clear RXRDY*/
 249         if (dev->recv_len_abort)
 250                 return;
 251 
 252         /* handle I2C_SMBUS_BLOCK_DATA */
 253         if (unlikely(dev->msg->flags & I2C_M_RECV_LEN)) {
 254                 /* ensure length byte is a valid value */
 255                 if (*dev->buf <= I2C_SMBUS_BLOCK_MAX && *dev->buf > 0) {
 256                         dev->msg->flags &= ~I2C_M_RECV_LEN;
 257                         dev->buf_len += *dev->buf;
 258                         dev->msg->len = dev->buf_len + 1;
 259                         dev_dbg(dev->dev, "received block length %zu\n",
 260                                          dev->buf_len);
 261                 } else {
 262                         /* abort and send the stop by reading one more byte */
 263                         dev->recv_len_abort = true;
 264                         dev->buf_len = 1;
 265                 }
 266         }
 267 
 268         /* send stop if second but last byte has been read */
 269         if (!dev->use_alt_cmd && dev->buf_len == 1)
 270                 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
 271 
 272         dev_dbg(dev->dev, "read 0x%x, to go %zu\n", *dev->buf, dev->buf_len);
 273 
 274         ++dev->buf;
 275 }
 276 
 277 static void at91_twi_read_data_dma_callback(void *data)
 278 {
 279         struct at91_twi_dev *dev = (struct at91_twi_dev *)data;
 280         unsigned ier = AT91_TWI_TXCOMP;
 281 
 282         dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg[0]),
 283                          dev->buf_len, DMA_FROM_DEVICE);
 284 
 285         if (!dev->use_alt_cmd) {
 286                 /* The last two bytes have to be read without using dma */
 287                 dev->buf += dev->buf_len - 2;
 288                 dev->buf_len = 2;
 289                 ier |= AT91_TWI_RXRDY;
 290         }
 291         at91_twi_write(dev, AT91_TWI_IER, ier);
 292 }
 293 
 294 static void at91_twi_read_data_dma(struct at91_twi_dev *dev)
 295 {
 296         dma_addr_t dma_addr;
 297         struct dma_async_tx_descriptor *rxdesc;
 298         struct at91_twi_dma *dma = &dev->dma;
 299         struct dma_chan *chan_rx = dma->chan_rx;
 300         size_t buf_len;
 301 
 302         buf_len = (dev->use_alt_cmd) ? dev->buf_len : dev->buf_len - 2;
 303         dma->direction = DMA_FROM_DEVICE;
 304 
 305         /* Keep in mind that we won't use dma to read the last two bytes */
 306         at91_twi_irq_save(dev);
 307         dma_addr = dma_map_single(dev->dev, dev->buf, buf_len, DMA_FROM_DEVICE);
 308         if (dma_mapping_error(dev->dev, dma_addr)) {
 309                 dev_err(dev->dev, "dma map failed\n");
 310                 return;
 311         }
 312         dma->buf_mapped = true;
 313         at91_twi_irq_restore(dev);
 314 
 315         if (dev->fifo_size && IS_ALIGNED(buf_len, 4)) {
 316                 unsigned fifo_mr;
 317 
 318                 /*
 319                  * DMA controller is triggered when at least 4 data can be
 320                  * read from the RX FIFO
 321                  */
 322                 fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
 323                 fifo_mr &= ~AT91_TWI_FMR_RXRDYM_MASK;
 324                 fifo_mr |= AT91_TWI_FMR_RXRDYM(AT91_TWI_FOUR_DATA);
 325                 at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
 326         }
 327 
 328         sg_dma_len(&dma->sg[0]) = buf_len;
 329         sg_dma_address(&dma->sg[0]) = dma_addr;
 330 
 331         rxdesc = dmaengine_prep_slave_sg(chan_rx, dma->sg, 1, DMA_DEV_TO_MEM,
 332                                          DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 333         if (!rxdesc) {
 334                 dev_err(dev->dev, "dma prep slave sg failed\n");
 335                 goto error;
 336         }
 337 
 338         rxdesc->callback = at91_twi_read_data_dma_callback;
 339         rxdesc->callback_param = dev;
 340 
 341         dma->xfer_in_progress = true;
 342         dmaengine_submit(rxdesc);
 343         dma_async_issue_pending(dma->chan_rx);
 344 
 345         return;
 346 
 347 error:
 348         at91_twi_dma_cleanup(dev);
 349 }
 350 
 351 static irqreturn_t atmel_twi_interrupt(int irq, void *dev_id)
 352 {
 353         struct at91_twi_dev *dev = dev_id;
 354         const unsigned status = at91_twi_read(dev, AT91_TWI_SR);
 355         const unsigned irqstatus = status & at91_twi_read(dev, AT91_TWI_IMR);
 356 
 357         if (!irqstatus)
 358                 return IRQ_NONE;
 359         /*
 360          * In reception, the behavior of the twi device (before sama5d2) is
 361          * weird. There is some magic about RXRDY flag! When a data has been
 362          * almost received, the reception of a new one is anticipated if there
 363          * is no stop command to send. That is the reason why ask for sending
 364          * the stop command not on the last data but on the second last one.
 365          *
 366          * Unfortunately, we could still have the RXRDY flag set even if the
 367          * transfer is done and we have read the last data. It might happen
 368          * when the i2c slave device sends too quickly data after receiving the
 369          * ack from the master. The data has been almost received before having
 370          * the order to send stop. In this case, sending the stop command could
 371          * cause a RXRDY interrupt with a TXCOMP one. It is better to manage
 372          * the RXRDY interrupt first in order to not keep garbage data in the
 373          * Receive Holding Register for the next transfer.
 374          */
 375         if (irqstatus & AT91_TWI_RXRDY) {
 376                 /*
 377                  * Read all available bytes at once by polling RXRDY usable w/
 378                  * and w/o FIFO. With FIFO enabled we could also read RXFL and
 379                  * avoid polling RXRDY.
 380                  */
 381                 do {
 382                         at91_twi_read_next_byte(dev);
 383                 } while (at91_twi_read(dev, AT91_TWI_SR) & AT91_TWI_RXRDY);
 384         }
 385 
 386         /*
 387          * When a NACK condition is detected, the I2C controller sets the NACK,
 388          * TXCOMP and TXRDY bits all together in the Status Register (SR).
 389          *
 390          * 1 - Handling NACK errors with CPU write transfer.
 391          *
 392          * In such case, we should not write the next byte into the Transmit
 393          * Holding Register (THR) otherwise the I2C controller would start a new
 394          * transfer and the I2C slave is likely to reply by another NACK.
 395          *
 396          * 2 - Handling NACK errors with DMA write transfer.
 397          *
 398          * By setting the TXRDY bit in the SR, the I2C controller also triggers
 399          * the DMA controller to write the next data into the THR. Then the
 400          * result depends on the hardware version of the I2C controller.
 401          *
 402          * 2a - Without support of the Alternative Command mode.
 403          *
 404          * This is the worst case: the DMA controller is triggered to write the
 405          * next data into the THR, hence starting a new transfer: the I2C slave
 406          * is likely to reply by another NACK.
 407          * Concurrently, this interrupt handler is likely to be called to manage
 408          * the first NACK before the I2C controller detects the second NACK and
 409          * sets once again the NACK bit into the SR.
 410          * When handling the first NACK, this interrupt handler disables the I2C
 411          * controller interruptions, especially the NACK interrupt.
 412          * Hence, the NACK bit is pending into the SR. This is why we should
 413          * read the SR to clear all pending interrupts at the beginning of
 414          * at91_do_twi_transfer() before actually starting a new transfer.
 415          *
 416          * 2b - With support of the Alternative Command mode.
 417          *
 418          * When a NACK condition is detected, the I2C controller also locks the
 419          * THR (and sets the LOCK bit in the SR): even though the DMA controller
 420          * is triggered by the TXRDY bit to write the next data into the THR,
 421          * this data actually won't go on the I2C bus hence a second NACK is not
 422          * generated.
 423          */
 424         if (irqstatus & (AT91_TWI_TXCOMP | AT91_TWI_NACK)) {
 425                 at91_disable_twi_interrupts(dev);
 426                 complete(&dev->cmd_complete);
 427         } else if (irqstatus & AT91_TWI_TXRDY) {
 428                 at91_twi_write_next_byte(dev);
 429         }
 430 
 431         /* catch error flags */
 432         dev->transfer_status |= status;
 433 
 434         return IRQ_HANDLED;
 435 }
 436 
 437 static int at91_do_twi_transfer(struct at91_twi_dev *dev)
 438 {
 439         int ret;
 440         unsigned long time_left;
 441         bool has_unre_flag = dev->pdata->has_unre_flag;
 442         bool has_alt_cmd = dev->pdata->has_alt_cmd;
 443 
 444         /*
 445          * WARNING: the TXCOMP bit in the Status Register is NOT a clear on
 446          * read flag but shows the state of the transmission at the time the
 447          * Status Register is read. According to the programmer datasheet,
 448          * TXCOMP is set when both holding register and internal shifter are
 449          * empty and STOP condition has been sent.
 450          * Consequently, we should enable NACK interrupt rather than TXCOMP to
 451          * detect transmission failure.
 452          * Indeed let's take the case of an i2c write command using DMA.
 453          * Whenever the slave doesn't acknowledge a byte, the LOCK, NACK and
 454          * TXCOMP bits are set together into the Status Register.
 455          * LOCK is a clear on write bit, which is set to prevent the DMA
 456          * controller from sending new data on the i2c bus after a NACK
 457          * condition has happened. Once locked, this i2c peripheral stops
 458          * triggering the DMA controller for new data but it is more than
 459          * likely that a new DMA transaction is already in progress, writing
 460          * into the Transmit Holding Register. Since the peripheral is locked,
 461          * these new data won't be sent to the i2c bus but they will remain
 462          * into the Transmit Holding Register, so TXCOMP bit is cleared.
 463          * Then when the interrupt handler is called, the Status Register is
 464          * read: the TXCOMP bit is clear but NACK bit is still set. The driver
 465          * manage the error properly, without waiting for timeout.
 466          * This case can be reproduced easyly when writing into an at24 eeprom.
 467          *
 468          * Besides, the TXCOMP bit is already set before the i2c transaction
 469          * has been started. For read transactions, this bit is cleared when
 470          * writing the START bit into the Control Register. So the
 471          * corresponding interrupt can safely be enabled just after.
 472          * However for write transactions managed by the CPU, we first write
 473          * into THR, so TXCOMP is cleared. Then we can safely enable TXCOMP
 474          * interrupt. If TXCOMP interrupt were enabled before writing into THR,
 475          * the interrupt handler would be called immediately and the i2c command
 476          * would be reported as completed.
 477          * Also when a write transaction is managed by the DMA controller,
 478          * enabling the TXCOMP interrupt in this function may lead to a race
 479          * condition since we don't know whether the TXCOMP interrupt is enabled
 480          * before or after the DMA has started to write into THR. So the TXCOMP
 481          * interrupt is enabled later by at91_twi_write_data_dma_callback().
 482          * Immediately after in that DMA callback, if the alternative command
 483          * mode is not used, we still need to send the STOP condition manually
 484          * writing the corresponding bit into the Control Register.
 485          */
 486 
 487         dev_dbg(dev->dev, "transfer: %s %zu bytes.\n",
 488                 (dev->msg->flags & I2C_M_RD) ? "read" : "write", dev->buf_len);
 489 
 490         reinit_completion(&dev->cmd_complete);
 491         dev->transfer_status = 0;
 492 
 493         /* Clear pending interrupts, such as NACK. */
 494         at91_twi_read(dev, AT91_TWI_SR);
 495 
 496         if (dev->fifo_size) {
 497                 unsigned fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
 498 
 499                 /* Reset FIFO mode register */
 500                 fifo_mr &= ~(AT91_TWI_FMR_TXRDYM_MASK |
 501                              AT91_TWI_FMR_RXRDYM_MASK);
 502                 fifo_mr |= AT91_TWI_FMR_TXRDYM(AT91_TWI_ONE_DATA);
 503                 fifo_mr |= AT91_TWI_FMR_RXRDYM(AT91_TWI_ONE_DATA);
 504                 at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
 505 
 506                 /* Flush FIFOs */
 507                 at91_twi_write(dev, AT91_TWI_CR,
 508                                AT91_TWI_THRCLR | AT91_TWI_RHRCLR);
 509         }
 510 
 511         if (!dev->buf_len) {
 512                 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_QUICK);
 513                 at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP);
 514         } else if (dev->msg->flags & I2C_M_RD) {
 515                 unsigned start_flags = AT91_TWI_START;
 516 
 517                 /* if only one byte is to be read, immediately stop transfer */
 518                 if (!dev->use_alt_cmd && dev->buf_len <= 1 &&
 519                     !(dev->msg->flags & I2C_M_RECV_LEN))
 520                         start_flags |= AT91_TWI_STOP;
 521                 at91_twi_write(dev, AT91_TWI_CR, start_flags);
 522                 /*
 523                  * When using dma without alternative command mode, the last
 524                  * byte has to be read manually in order to not send the stop
 525                  * command too late and then to receive extra data.
 526                  * In practice, there are some issues if you use the dma to
 527                  * read n-1 bytes because of latency.
 528                  * Reading n-2 bytes with dma and the two last ones manually
 529                  * seems to be the best solution.
 530                  */
 531                 if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) {
 532                         at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK);
 533                         at91_twi_read_data_dma(dev);
 534                 } else {
 535                         at91_twi_write(dev, AT91_TWI_IER,
 536                                        AT91_TWI_TXCOMP |
 537                                        AT91_TWI_NACK |
 538                                        AT91_TWI_RXRDY);
 539                 }
 540         } else {
 541                 if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) {
 542                         at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK);
 543                         at91_twi_write_data_dma(dev);
 544                 } else {
 545                         at91_twi_write_next_byte(dev);
 546                         at91_twi_write(dev, AT91_TWI_IER,
 547                                        AT91_TWI_TXCOMP | AT91_TWI_NACK |
 548                                        (dev->buf_len ? AT91_TWI_TXRDY : 0));
 549                 }
 550         }
 551 
 552         time_left = wait_for_completion_timeout(&dev->cmd_complete,
 553                                               dev->adapter.timeout);
 554         if (time_left == 0) {
 555                 dev->transfer_status |= at91_twi_read(dev, AT91_TWI_SR);
 556                 dev_err(dev->dev, "controller timed out\n");
 557                 at91_init_twi_bus(dev);
 558                 ret = -ETIMEDOUT;
 559                 goto error;
 560         }
 561         if (dev->transfer_status & AT91_TWI_NACK) {
 562                 dev_dbg(dev->dev, "received nack\n");
 563                 ret = -EREMOTEIO;
 564                 goto error;
 565         }
 566         if (dev->transfer_status & AT91_TWI_OVRE) {
 567                 dev_err(dev->dev, "overrun while reading\n");
 568                 ret = -EIO;
 569                 goto error;
 570         }
 571         if (has_unre_flag && dev->transfer_status & AT91_TWI_UNRE) {
 572                 dev_err(dev->dev, "underrun while writing\n");
 573                 ret = -EIO;
 574                 goto error;
 575         }
 576         if ((has_alt_cmd || dev->fifo_size) &&
 577             (dev->transfer_status & AT91_TWI_LOCK)) {
 578                 dev_err(dev->dev, "tx locked\n");
 579                 ret = -EIO;
 580                 goto error;
 581         }
 582         if (dev->recv_len_abort) {
 583                 dev_err(dev->dev, "invalid smbus block length recvd\n");
 584                 ret = -EPROTO;
 585                 goto error;
 586         }
 587 
 588         dev_dbg(dev->dev, "transfer complete\n");
 589 
 590         return 0;
 591 
 592 error:
 593         /* first stop DMA transfer if still in progress */
 594         at91_twi_dma_cleanup(dev);
 595         /* then flush THR/FIFO and unlock TX if locked */
 596         if ((has_alt_cmd || dev->fifo_size) &&
 597             (dev->transfer_status & AT91_TWI_LOCK)) {
 598                 dev_dbg(dev->dev, "unlock tx\n");
 599                 at91_twi_write(dev, AT91_TWI_CR,
 600                                AT91_TWI_THRCLR | AT91_TWI_LOCKCLR);
 601         }
 602         return ret;
 603 }
 604 
 605 static int at91_twi_xfer(struct i2c_adapter *adap, struct i2c_msg *msg, int num)
 606 {
 607         struct at91_twi_dev *dev = i2c_get_adapdata(adap);
 608         int ret;
 609         unsigned int_addr_flag = 0;
 610         struct i2c_msg *m_start = msg;
 611         bool is_read;
 612 
 613         dev_dbg(&adap->dev, "at91_xfer: processing %d messages:\n", num);
 614 
 615         ret = pm_runtime_get_sync(dev->dev);
 616         if (ret < 0)
 617                 goto out;
 618 
 619         if (num == 2) {
 620                 int internal_address = 0;
 621                 int i;
 622 
 623                 /* 1st msg is put into the internal address, start with 2nd */
 624                 m_start = &msg[1];
 625                 for (i = 0; i < msg->len; ++i) {
 626                         const unsigned addr = msg->buf[msg->len - 1 - i];
 627 
 628                         internal_address |= addr << (8 * i);
 629                         int_addr_flag += AT91_TWI_IADRSZ_1;
 630                 }
 631                 at91_twi_write(dev, AT91_TWI_IADR, internal_address);
 632         }
 633 
 634         dev->use_alt_cmd = false;
 635         is_read = (m_start->flags & I2C_M_RD);
 636         if (dev->pdata->has_alt_cmd) {
 637                 if (m_start->len > 0 &&
 638                     m_start->len < AT91_I2C_MAX_ALT_CMD_DATA_SIZE) {
 639                         at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_ACMEN);
 640                         at91_twi_write(dev, AT91_TWI_ACR,
 641                                        AT91_TWI_ACR_DATAL(m_start->len) |
 642                                        ((is_read) ? AT91_TWI_ACR_DIR : 0));
 643                         dev->use_alt_cmd = true;
 644                 } else {
 645                         at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_ACMDIS);
 646                 }
 647         }
 648 
 649         at91_twi_write(dev, AT91_TWI_MMR,
 650                        (m_start->addr << 16) |
 651                        int_addr_flag |
 652                        ((!dev->use_alt_cmd && is_read) ? AT91_TWI_MREAD : 0));
 653 
 654         dev->buf_len = m_start->len;
 655         dev->buf = m_start->buf;
 656         dev->msg = m_start;
 657         dev->recv_len_abort = false;
 658 
 659         ret = at91_do_twi_transfer(dev);
 660 
 661         ret = (ret < 0) ? ret : num;
 662 out:
 663         pm_runtime_mark_last_busy(dev->dev);
 664         pm_runtime_put_autosuspend(dev->dev);
 665 
 666         return ret;
 667 }
 668 
 669 /*
 670  * The hardware can handle at most two messages concatenated by a
 671  * repeated start via it's internal address feature.
 672  */
 673 static const struct i2c_adapter_quirks at91_twi_quirks = {
 674         .flags = I2C_AQ_COMB | I2C_AQ_COMB_WRITE_FIRST | I2C_AQ_COMB_SAME_ADDR,
 675         .max_comb_1st_msg_len = 3,
 676 };
 677 
 678 static u32 at91_twi_func(struct i2c_adapter *adapter)
 679 {
 680         return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL
 681                 | I2C_FUNC_SMBUS_READ_BLOCK_DATA;
 682 }
 683 
 684 static const struct i2c_algorithm at91_twi_algorithm = {
 685         .master_xfer    = at91_twi_xfer,
 686         .functionality  = at91_twi_func,
 687 };
 688 
 689 static int at91_twi_configure_dma(struct at91_twi_dev *dev, u32 phy_addr)
 690 {
 691         int ret = 0;
 692         struct dma_slave_config slave_config;
 693         struct at91_twi_dma *dma = &dev->dma;
 694         enum dma_slave_buswidth addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 695 
 696         /*
 697          * The actual width of the access will be chosen in
 698          * dmaengine_prep_slave_sg():
 699          * for each buffer in the scatter-gather list, if its size is aligned
 700          * to addr_width then addr_width accesses will be performed to transfer
 701          * the buffer. On the other hand, if the buffer size is not aligned to
 702          * addr_width then the buffer is transferred using single byte accesses.
 703          * Please refer to the Atmel eXtended DMA controller driver.
 704          * When FIFOs are used, the TXRDYM threshold can always be set to
 705          * trigger the XDMAC when at least 4 data can be written into the TX
 706          * FIFO, even if single byte accesses are performed.
 707          * However the RXRDYM threshold must be set to fit the access width,
 708          * deduced from buffer length, so the XDMAC is triggered properly to
 709          * read data from the RX FIFO.
 710          */
 711         if (dev->fifo_size)
 712                 addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 713 
 714         memset(&slave_config, 0, sizeof(slave_config));
 715         slave_config.src_addr = (dma_addr_t)phy_addr + AT91_TWI_RHR;
 716         slave_config.src_addr_width = addr_width;
 717         slave_config.src_maxburst = 1;
 718         slave_config.dst_addr = (dma_addr_t)phy_addr + AT91_TWI_THR;
 719         slave_config.dst_addr_width = addr_width;
 720         slave_config.dst_maxburst = 1;
 721         slave_config.device_fc = false;
 722 
 723         dma->chan_tx = dma_request_slave_channel_reason(dev->dev, "tx");
 724         if (IS_ERR(dma->chan_tx)) {
 725                 ret = PTR_ERR(dma->chan_tx);
 726                 dma->chan_tx = NULL;
 727                 goto error;
 728         }
 729 
 730         dma->chan_rx = dma_request_slave_channel_reason(dev->dev, "rx");
 731         if (IS_ERR(dma->chan_rx)) {
 732                 ret = PTR_ERR(dma->chan_rx);
 733                 dma->chan_rx = NULL;
 734                 goto error;
 735         }
 736 
 737         slave_config.direction = DMA_MEM_TO_DEV;
 738         if (dmaengine_slave_config(dma->chan_tx, &slave_config)) {
 739                 dev_err(dev->dev, "failed to configure tx channel\n");
 740                 ret = -EINVAL;
 741                 goto error;
 742         }
 743 
 744         slave_config.direction = DMA_DEV_TO_MEM;
 745         if (dmaengine_slave_config(dma->chan_rx, &slave_config)) {
 746                 dev_err(dev->dev, "failed to configure rx channel\n");
 747                 ret = -EINVAL;
 748                 goto error;
 749         }
 750 
 751         sg_init_table(dma->sg, 2);
 752         dma->buf_mapped = false;
 753         dma->xfer_in_progress = false;
 754         dev->use_dma = true;
 755 
 756         dev_info(dev->dev, "using %s (tx) and %s (rx) for DMA transfers\n",
 757                  dma_chan_name(dma->chan_tx), dma_chan_name(dma->chan_rx));
 758 
 759         return ret;
 760 
 761 error:
 762         if (ret != -EPROBE_DEFER)
 763                 dev_info(dev->dev, "can't get DMA channel, continue without DMA support\n");
 764         if (dma->chan_rx)
 765                 dma_release_channel(dma->chan_rx);
 766         if (dma->chan_tx)
 767                 dma_release_channel(dma->chan_tx);
 768         return ret;
 769 }
 770 
 771 int at91_twi_probe_master(struct platform_device *pdev,
 772                           u32 phy_addr, struct at91_twi_dev *dev)
 773 {
 774         int rc;
 775 
 776         init_completion(&dev->cmd_complete);
 777 
 778         rc = devm_request_irq(&pdev->dev, dev->irq, atmel_twi_interrupt, 0,
 779                               dev_name(dev->dev), dev);
 780         if (rc) {
 781                 dev_err(dev->dev, "Cannot get irq %d: %d\n", dev->irq, rc);
 782                 return rc;
 783         }
 784 
 785         if (dev->dev->of_node) {
 786                 rc = at91_twi_configure_dma(dev, phy_addr);
 787                 if (rc == -EPROBE_DEFER)
 788                         return rc;
 789         }
 790 
 791         if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
 792                                   &dev->fifo_size)) {
 793                 dev_info(dev->dev, "Using FIFO (%u data)\n", dev->fifo_size);
 794         }
 795 
 796         at91_calc_twi_clock(dev);
 797 
 798         dev->adapter.algo = &at91_twi_algorithm;
 799         dev->adapter.quirks = &at91_twi_quirks;
 800 
 801         return 0;
 802 }

/* [<][>][^][v][top][bottom][index][help] */