root/drivers/i2c/busses/i2c-stm32f4.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. stm32f4_i2c_set_bits
  2. stm32f4_i2c_clr_bits
  3. stm32f4_i2c_disable_irq
  4. stm32f4_i2c_set_periph_clk_freq
  5. stm32f4_i2c_set_rise_time
  6. stm32f4_i2c_set_speed_mode
  7. stm32f4_i2c_hw_config
  8. stm32f4_i2c_wait_free_bus
  9. stm32f4_i2c_write_byte
  10. stm32f4_i2c_write_msg
  11. stm32f4_i2c_read_msg
  12. stm32f4_i2c_terminate_xfer
  13. stm32f4_i2c_handle_write
  14. stm32f4_i2c_handle_read
  15. stm32f4_i2c_handle_rx_done
  16. stm32f4_i2c_handle_rx_addr
  17. stm32f4_i2c_isr_event
  18. stm32f4_i2c_isr_error
  19. stm32f4_i2c_xfer_msg
  20. stm32f4_i2c_xfer
  21. stm32f4_i2c_func
  22. stm32f4_i2c_probe
  23. stm32f4_i2c_remove

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * Driver for STMicroelectronics STM32 I2C controller
   4  *
   5  * This I2C controller is described in the STM32F429/439 Soc reference manual.
   6  * Please see below a link to the documentation:
   7  * http://www.st.com/resource/en/reference_manual/DM00031020.pdf
   8  *
   9  * Copyright (C) M'boumba Cedric Madianga 2016
  10  * Copyright (C) STMicroelectronics 2017
  11  * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
  12  *
  13  * This driver is based on i2c-st.c
  14  *
  15  */
  16 
  17 #include <linux/clk.h>
  18 #include <linux/delay.h>
  19 #include <linux/err.h>
  20 #include <linux/i2c.h>
  21 #include <linux/interrupt.h>
  22 #include <linux/io.h>
  23 #include <linux/iopoll.h>
  24 #include <linux/module.h>
  25 #include <linux/of_address.h>
  26 #include <linux/of_irq.h>
  27 #include <linux/of.h>
  28 #include <linux/platform_device.h>
  29 #include <linux/reset.h>
  30 
  31 #include "i2c-stm32.h"
  32 
  33 /* STM32F4 I2C offset registers */
  34 #define STM32F4_I2C_CR1                 0x00
  35 #define STM32F4_I2C_CR2                 0x04
  36 #define STM32F4_I2C_DR                  0x10
  37 #define STM32F4_I2C_SR1                 0x14
  38 #define STM32F4_I2C_SR2                 0x18
  39 #define STM32F4_I2C_CCR                 0x1C
  40 #define STM32F4_I2C_TRISE               0x20
  41 #define STM32F4_I2C_FLTR                0x24
  42 
  43 /* STM32F4 I2C control 1*/
  44 #define STM32F4_I2C_CR1_POS             BIT(11)
  45 #define STM32F4_I2C_CR1_ACK             BIT(10)
  46 #define STM32F4_I2C_CR1_STOP            BIT(9)
  47 #define STM32F4_I2C_CR1_START           BIT(8)
  48 #define STM32F4_I2C_CR1_PE              BIT(0)
  49 
  50 /* STM32F4 I2C control 2 */
  51 #define STM32F4_I2C_CR2_FREQ_MASK       GENMASK(5, 0)
  52 #define STM32F4_I2C_CR2_FREQ(n)         ((n) & STM32F4_I2C_CR2_FREQ_MASK)
  53 #define STM32F4_I2C_CR2_ITBUFEN         BIT(10)
  54 #define STM32F4_I2C_CR2_ITEVTEN         BIT(9)
  55 #define STM32F4_I2C_CR2_ITERREN         BIT(8)
  56 #define STM32F4_I2C_CR2_IRQ_MASK        (STM32F4_I2C_CR2_ITBUFEN | \
  57                                          STM32F4_I2C_CR2_ITEVTEN | \
  58                                          STM32F4_I2C_CR2_ITERREN)
  59 
  60 /* STM32F4 I2C Status 1 */
  61 #define STM32F4_I2C_SR1_AF              BIT(10)
  62 #define STM32F4_I2C_SR1_ARLO            BIT(9)
  63 #define STM32F4_I2C_SR1_BERR            BIT(8)
  64 #define STM32F4_I2C_SR1_TXE             BIT(7)
  65 #define STM32F4_I2C_SR1_RXNE            BIT(6)
  66 #define STM32F4_I2C_SR1_BTF             BIT(2)
  67 #define STM32F4_I2C_SR1_ADDR            BIT(1)
  68 #define STM32F4_I2C_SR1_SB              BIT(0)
  69 #define STM32F4_I2C_SR1_ITEVTEN_MASK    (STM32F4_I2C_SR1_BTF | \
  70                                          STM32F4_I2C_SR1_ADDR | \
  71                                          STM32F4_I2C_SR1_SB)
  72 #define STM32F4_I2C_SR1_ITBUFEN_MASK    (STM32F4_I2C_SR1_TXE | \
  73                                          STM32F4_I2C_SR1_RXNE)
  74 #define STM32F4_I2C_SR1_ITERREN_MASK    (STM32F4_I2C_SR1_AF | \
  75                                          STM32F4_I2C_SR1_ARLO | \
  76                                          STM32F4_I2C_SR1_BERR)
  77 
  78 /* STM32F4 I2C Status 2 */
  79 #define STM32F4_I2C_SR2_BUSY            BIT(1)
  80 
  81 /* STM32F4 I2C Control Clock */
  82 #define STM32F4_I2C_CCR_CCR_MASK        GENMASK(11, 0)
  83 #define STM32F4_I2C_CCR_CCR(n)          ((n) & STM32F4_I2C_CCR_CCR_MASK)
  84 #define STM32F4_I2C_CCR_FS              BIT(15)
  85 #define STM32F4_I2C_CCR_DUTY            BIT(14)
  86 
  87 /* STM32F4 I2C Trise */
  88 #define STM32F4_I2C_TRISE_VALUE_MASK    GENMASK(5, 0)
  89 #define STM32F4_I2C_TRISE_VALUE(n)      ((n) & STM32F4_I2C_TRISE_VALUE_MASK)
  90 
  91 #define STM32F4_I2C_MIN_STANDARD_FREQ   2U
  92 #define STM32F4_I2C_MIN_FAST_FREQ       6U
  93 #define STM32F4_I2C_MAX_FREQ            46U
  94 #define HZ_TO_MHZ                       1000000
  95 
  96 /**
  97  * struct stm32f4_i2c_msg - client specific data
  98  * @addr: 8-bit slave addr, including r/w bit
  99  * @count: number of bytes to be transferred
 100  * @buf: data buffer
 101  * @result: result of the transfer
 102  * @stop: last I2C msg to be sent, i.e. STOP to be generated
 103  */
 104 struct stm32f4_i2c_msg {
 105         u8 addr;
 106         u32 count;
 107         u8 *buf;
 108         int result;
 109         bool stop;
 110 };
 111 
 112 /**
 113  * struct stm32f4_i2c_dev - private data of the controller
 114  * @adap: I2C adapter for this controller
 115  * @dev: device for this controller
 116  * @base: virtual memory area
 117  * @complete: completion of I2C message
 118  * @clk: hw i2c clock
 119  * @speed: I2C clock frequency of the controller. Standard or Fast are supported
 120  * @parent_rate: I2C clock parent rate in MHz
 121  * @msg: I2C transfer information
 122  */
 123 struct stm32f4_i2c_dev {
 124         struct i2c_adapter adap;
 125         struct device *dev;
 126         void __iomem *base;
 127         struct completion complete;
 128         struct clk *clk;
 129         int speed;
 130         int parent_rate;
 131         struct stm32f4_i2c_msg msg;
 132 };
 133 
 134 static inline void stm32f4_i2c_set_bits(void __iomem *reg, u32 mask)
 135 {
 136         writel_relaxed(readl_relaxed(reg) | mask, reg);
 137 }
 138 
 139 static inline void stm32f4_i2c_clr_bits(void __iomem *reg, u32 mask)
 140 {
 141         writel_relaxed(readl_relaxed(reg) & ~mask, reg);
 142 }
 143 
 144 static void stm32f4_i2c_disable_irq(struct stm32f4_i2c_dev *i2c_dev)
 145 {
 146         void __iomem *reg = i2c_dev->base + STM32F4_I2C_CR2;
 147 
 148         stm32f4_i2c_clr_bits(reg, STM32F4_I2C_CR2_IRQ_MASK);
 149 }
 150 
 151 static int stm32f4_i2c_set_periph_clk_freq(struct stm32f4_i2c_dev *i2c_dev)
 152 {
 153         u32 freq;
 154         u32 cr2 = 0;
 155 
 156         i2c_dev->parent_rate = clk_get_rate(i2c_dev->clk);
 157         freq = DIV_ROUND_UP(i2c_dev->parent_rate, HZ_TO_MHZ);
 158 
 159         if (i2c_dev->speed == STM32_I2C_SPEED_STANDARD) {
 160                 /*
 161                  * To reach 100 kHz, the parent clk frequency should be between
 162                  * a minimum value of 2 MHz and a maximum value of 46 MHz due
 163                  * to hardware limitation
 164                  */
 165                 if (freq < STM32F4_I2C_MIN_STANDARD_FREQ ||
 166                     freq > STM32F4_I2C_MAX_FREQ) {
 167                         dev_err(i2c_dev->dev,
 168                                 "bad parent clk freq for standard mode\n");
 169                         return -EINVAL;
 170                 }
 171         } else {
 172                 /*
 173                  * To be as close as possible to 400 kHz, the parent clk
 174                  * frequency should be between a minimum value of 6 MHz and a
 175                  * maximum value of 46 MHz due to hardware limitation
 176                  */
 177                 if (freq < STM32F4_I2C_MIN_FAST_FREQ ||
 178                     freq > STM32F4_I2C_MAX_FREQ) {
 179                         dev_err(i2c_dev->dev,
 180                                 "bad parent clk freq for fast mode\n");
 181                         return -EINVAL;
 182                 }
 183         }
 184 
 185         cr2 |= STM32F4_I2C_CR2_FREQ(freq);
 186         writel_relaxed(cr2, i2c_dev->base + STM32F4_I2C_CR2);
 187 
 188         return 0;
 189 }
 190 
 191 static void stm32f4_i2c_set_rise_time(struct stm32f4_i2c_dev *i2c_dev)
 192 {
 193         u32 freq = DIV_ROUND_UP(i2c_dev->parent_rate, HZ_TO_MHZ);
 194         u32 trise;
 195 
 196         /*
 197          * These bits must be programmed with the maximum SCL rise time given in
 198          * the I2C bus specification, incremented by 1.
 199          *
 200          * In standard mode, the maximum allowed SCL rise time is 1000 ns.
 201          * If, in the I2C_CR2 register, the value of FREQ[5:0] bits is equal to
 202          * 0x08 so period = 125 ns therefore the TRISE[5:0] bits must be
 203          * programmed with 0x9. (1000 ns / 125 ns + 1)
 204          * So, for I2C standard mode TRISE = FREQ[5:0] + 1
 205          *
 206          * In fast mode, the maximum allowed SCL rise time is 300 ns.
 207          * If, in the I2C_CR2 register, the value of FREQ[5:0] bits is equal to
 208          * 0x08 so period = 125 ns therefore the TRISE[5:0] bits must be
 209          * programmed with 0x3. (300 ns / 125 ns + 1)
 210          * So, for I2C fast mode TRISE = FREQ[5:0] * 300 / 1000 + 1
 211          *
 212          * Function stm32f4_i2c_set_periph_clk_freq made sure that parent rate
 213          * is not higher than 46 MHz . As a result trise is at most 4 bits wide
 214          * and so fits into the TRISE bits [5:0].
 215          */
 216         if (i2c_dev->speed == STM32_I2C_SPEED_STANDARD)
 217                 trise = freq + 1;
 218         else
 219                 trise = freq * 3 / 10 + 1;
 220 
 221         writel_relaxed(STM32F4_I2C_TRISE_VALUE(trise),
 222                        i2c_dev->base + STM32F4_I2C_TRISE);
 223 }
 224 
 225 static void stm32f4_i2c_set_speed_mode(struct stm32f4_i2c_dev *i2c_dev)
 226 {
 227         u32 val;
 228         u32 ccr = 0;
 229 
 230         if (i2c_dev->speed == STM32_I2C_SPEED_STANDARD) {
 231                 /*
 232                  * In standard mode:
 233                  * t_scl_high = t_scl_low = CCR * I2C parent clk period
 234                  * So to reach 100 kHz, we have:
 235                  * CCR = I2C parent rate / 100 kHz >> 1
 236                  *
 237                  * For example with parent rate = 2 MHz:
 238                  * CCR = 2000000 / (100000 << 1) = 10
 239                  * t_scl_high = t_scl_low = 10 * (1 / 2000000) = 5000 ns
 240                  * t_scl_high + t_scl_low = 10000 ns so 100 kHz is reached
 241                  *
 242                  * Function stm32f4_i2c_set_periph_clk_freq made sure that
 243                  * parent rate is not higher than 46 MHz . As a result val
 244                  * is at most 8 bits wide and so fits into the CCR bits [11:0].
 245                  */
 246                 val = i2c_dev->parent_rate / (100000 << 1);
 247         } else {
 248                 /*
 249                  * In fast mode, we compute CCR with duty = 0 as with low
 250                  * frequencies we are not able to reach 400 kHz.
 251                  * In that case:
 252                  * t_scl_high = CCR * I2C parent clk period
 253                  * t_scl_low = 2 * CCR * I2C parent clk period
 254                  * So, CCR = I2C parent rate / (400 kHz * 3)
 255                  *
 256                  * For example with parent rate = 6 MHz:
 257                  * CCR = 6000000 / (400000 * 3) = 5
 258                  * t_scl_high = 5 * (1 / 6000000) = 833 ns > 600 ns
 259                  * t_scl_low = 2 * 5 * (1 / 6000000) = 1667 ns > 1300 ns
 260                  * t_scl_high + t_scl_low = 2500 ns so 400 kHz is reached
 261                  *
 262                  * Function stm32f4_i2c_set_periph_clk_freq made sure that
 263                  * parent rate is not higher than 46 MHz . As a result val
 264                  * is at most 6 bits wide and so fits into the CCR bits [11:0].
 265                  */
 266                 val = DIV_ROUND_UP(i2c_dev->parent_rate, 400000 * 3);
 267 
 268                 /* Select Fast mode */
 269                 ccr |= STM32F4_I2C_CCR_FS;
 270         }
 271 
 272         ccr |= STM32F4_I2C_CCR_CCR(val);
 273         writel_relaxed(ccr, i2c_dev->base + STM32F4_I2C_CCR);
 274 }
 275 
 276 /**
 277  * stm32f4_i2c_hw_config() - Prepare I2C block
 278  * @i2c_dev: Controller's private data
 279  */
 280 static int stm32f4_i2c_hw_config(struct stm32f4_i2c_dev *i2c_dev)
 281 {
 282         int ret;
 283 
 284         ret = stm32f4_i2c_set_periph_clk_freq(i2c_dev);
 285         if (ret)
 286                 return ret;
 287 
 288         stm32f4_i2c_set_rise_time(i2c_dev);
 289 
 290         stm32f4_i2c_set_speed_mode(i2c_dev);
 291 
 292         /* Enable I2C */
 293         writel_relaxed(STM32F4_I2C_CR1_PE, i2c_dev->base + STM32F4_I2C_CR1);
 294 
 295         return 0;
 296 }
 297 
 298 static int stm32f4_i2c_wait_free_bus(struct stm32f4_i2c_dev *i2c_dev)
 299 {
 300         u32 status;
 301         int ret;
 302 
 303         ret = readl_relaxed_poll_timeout(i2c_dev->base + STM32F4_I2C_SR2,
 304                                          status,
 305                                          !(status & STM32F4_I2C_SR2_BUSY),
 306                                          10, 1000);
 307         if (ret) {
 308                 dev_dbg(i2c_dev->dev, "bus not free\n");
 309                 ret = -EBUSY;
 310         }
 311 
 312         return ret;
 313 }
 314 
 315 /**
 316  * stm32f4_i2c_write_ byte() - Write a byte in the data register
 317  * @i2c_dev: Controller's private data
 318  * @byte: Data to write in the register
 319  */
 320 static void stm32f4_i2c_write_byte(struct stm32f4_i2c_dev *i2c_dev, u8 byte)
 321 {
 322         writel_relaxed(byte, i2c_dev->base + STM32F4_I2C_DR);
 323 }
 324 
 325 /**
 326  * stm32f4_i2c_write_msg() - Fill the data register in write mode
 327  * @i2c_dev: Controller's private data
 328  *
 329  * This function fills the data register with I2C transfer buffer
 330  */
 331 static void stm32f4_i2c_write_msg(struct stm32f4_i2c_dev *i2c_dev)
 332 {
 333         struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
 334 
 335         stm32f4_i2c_write_byte(i2c_dev, *msg->buf++);
 336         msg->count--;
 337 }
 338 
 339 static void stm32f4_i2c_read_msg(struct stm32f4_i2c_dev *i2c_dev)
 340 {
 341         struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
 342         u32 rbuf;
 343 
 344         rbuf = readl_relaxed(i2c_dev->base + STM32F4_I2C_DR);
 345         *msg->buf++ = rbuf;
 346         msg->count--;
 347 }
 348 
 349 static void stm32f4_i2c_terminate_xfer(struct stm32f4_i2c_dev *i2c_dev)
 350 {
 351         struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
 352         void __iomem *reg;
 353 
 354         stm32f4_i2c_disable_irq(i2c_dev);
 355 
 356         reg = i2c_dev->base + STM32F4_I2C_CR1;
 357         if (msg->stop)
 358                 stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_STOP);
 359         else
 360                 stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_START);
 361 
 362         complete(&i2c_dev->complete);
 363 }
 364 
 365 /**
 366  * stm32f4_i2c_handle_write() - Handle FIFO empty interrupt in case of write
 367  * @i2c_dev: Controller's private data
 368  */
 369 static void stm32f4_i2c_handle_write(struct stm32f4_i2c_dev *i2c_dev)
 370 {
 371         struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
 372         void __iomem *reg = i2c_dev->base + STM32F4_I2C_CR2;
 373 
 374         if (msg->count) {
 375                 stm32f4_i2c_write_msg(i2c_dev);
 376                 if (!msg->count) {
 377                         /*
 378                          * Disable buffer interrupts for RX not empty and TX
 379                          * empty events
 380                          */
 381                         stm32f4_i2c_clr_bits(reg, STM32F4_I2C_CR2_ITBUFEN);
 382                 }
 383         } else {
 384                 stm32f4_i2c_terminate_xfer(i2c_dev);
 385         }
 386 }
 387 
 388 /**
 389  * stm32f4_i2c_handle_read() - Handle FIFO empty interrupt in case of read
 390  * @i2c_dev: Controller's private data
 391  *
 392  * This function is called when a new data is received in data register
 393  */
 394 static void stm32f4_i2c_handle_read(struct stm32f4_i2c_dev *i2c_dev)
 395 {
 396         struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
 397         void __iomem *reg = i2c_dev->base + STM32F4_I2C_CR2;
 398 
 399         switch (msg->count) {
 400         case 1:
 401                 stm32f4_i2c_disable_irq(i2c_dev);
 402                 stm32f4_i2c_read_msg(i2c_dev);
 403                 complete(&i2c_dev->complete);
 404                 break;
 405         /*
 406          * For 2-byte reception, 3-byte reception and for Data N-2, N-1 and N
 407          * for N-byte reception with N > 3, we do not have to read the data
 408          * register when RX not empty event occurs as we have to wait for byte
 409          * transferred finished event before reading data.
 410          * So, here we just disable buffer interrupt in order to avoid another
 411          * system preemption due to RX not empty event.
 412          */
 413         case 2:
 414         case 3:
 415                 stm32f4_i2c_clr_bits(reg, STM32F4_I2C_CR2_ITBUFEN);
 416                 break;
 417         /*
 418          * For N byte reception with N > 3 we directly read data register
 419          * until N-2 data.
 420          */
 421         default:
 422                 stm32f4_i2c_read_msg(i2c_dev);
 423         }
 424 }
 425 
 426 /**
 427  * stm32f4_i2c_handle_rx_done() - Handle byte transfer finished interrupt
 428  * in case of read
 429  * @i2c_dev: Controller's private data
 430  *
 431  * This function is called when a new data is received in the shift register
 432  * but data register has not been read yet.
 433  */
 434 static void stm32f4_i2c_handle_rx_done(struct stm32f4_i2c_dev *i2c_dev)
 435 {
 436         struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
 437         void __iomem *reg;
 438         u32 mask;
 439         int i;
 440 
 441         switch (msg->count) {
 442         case 2:
 443                 /*
 444                  * In order to correctly send the Stop or Repeated Start
 445                  * condition on the I2C bus, the STOP/START bit has to be set
 446                  * before reading the last two bytes (data N-1 and N).
 447                  * After that, we could read the last two bytes, disable
 448                  * remaining interrupts and notify the end of xfer to the
 449                  * client
 450                  */
 451                 reg = i2c_dev->base + STM32F4_I2C_CR1;
 452                 if (msg->stop)
 453                         stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_STOP);
 454                 else
 455                         stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_START);
 456 
 457                 for (i = 2; i > 0; i--)
 458                         stm32f4_i2c_read_msg(i2c_dev);
 459 
 460                 reg = i2c_dev->base + STM32F4_I2C_CR2;
 461                 mask = STM32F4_I2C_CR2_ITEVTEN | STM32F4_I2C_CR2_ITERREN;
 462                 stm32f4_i2c_clr_bits(reg, mask);
 463 
 464                 complete(&i2c_dev->complete);
 465                 break;
 466         case 3:
 467                 /*
 468                  * In order to correctly generate the NACK pulse after the last
 469                  * received data byte, we have to enable NACK before reading N-2
 470                  * data
 471                  */
 472                 reg = i2c_dev->base + STM32F4_I2C_CR1;
 473                 stm32f4_i2c_clr_bits(reg, STM32F4_I2C_CR1_ACK);
 474                 stm32f4_i2c_read_msg(i2c_dev);
 475                 break;
 476         default:
 477                 stm32f4_i2c_read_msg(i2c_dev);
 478         }
 479 }
 480 
 481 /**
 482  * stm32f4_i2c_handle_rx_addr() - Handle address matched interrupt in case of
 483  * master receiver
 484  * @i2c_dev: Controller's private data
 485  */
 486 static void stm32f4_i2c_handle_rx_addr(struct stm32f4_i2c_dev *i2c_dev)
 487 {
 488         struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
 489         u32 cr1;
 490 
 491         switch (msg->count) {
 492         case 0:
 493                 stm32f4_i2c_terminate_xfer(i2c_dev);
 494 
 495                 /* Clear ADDR flag */
 496                 readl_relaxed(i2c_dev->base + STM32F4_I2C_SR2);
 497                 break;
 498         case 1:
 499                 /*
 500                  * Single byte reception:
 501                  * Enable NACK and reset POS (Acknowledge position).
 502                  * Then, clear ADDR flag and set STOP or RepSTART.
 503                  * In that way, the NACK and STOP or RepStart pulses will be
 504                  * sent as soon as the byte will be received in shift register
 505                  */
 506                 cr1 = readl_relaxed(i2c_dev->base + STM32F4_I2C_CR1);
 507                 cr1 &= ~(STM32F4_I2C_CR1_ACK | STM32F4_I2C_CR1_POS);
 508                 writel_relaxed(cr1, i2c_dev->base + STM32F4_I2C_CR1);
 509 
 510                 readl_relaxed(i2c_dev->base + STM32F4_I2C_SR2);
 511 
 512                 if (msg->stop)
 513                         cr1 |= STM32F4_I2C_CR1_STOP;
 514                 else
 515                         cr1 |= STM32F4_I2C_CR1_START;
 516                 writel_relaxed(cr1, i2c_dev->base + STM32F4_I2C_CR1);
 517                 break;
 518         case 2:
 519                 /*
 520                  * 2-byte reception:
 521                  * Enable NACK, set POS (NACK position) and clear ADDR flag.
 522                  * In that way, NACK will be sent for the next byte which will
 523                  * be received in the shift register instead of the current
 524                  * one.
 525                  */
 526                 cr1 = readl_relaxed(i2c_dev->base + STM32F4_I2C_CR1);
 527                 cr1 &= ~STM32F4_I2C_CR1_ACK;
 528                 cr1 |= STM32F4_I2C_CR1_POS;
 529                 writel_relaxed(cr1, i2c_dev->base + STM32F4_I2C_CR1);
 530 
 531                 readl_relaxed(i2c_dev->base + STM32F4_I2C_SR2);
 532                 break;
 533 
 534         default:
 535                 /*
 536                  * N-byte reception:
 537                  * Enable ACK, reset POS (ACK postion) and clear ADDR flag.
 538                  * In that way, ACK will be sent as soon as the current byte
 539                  * will be received in the shift register
 540                  */
 541                 cr1 = readl_relaxed(i2c_dev->base + STM32F4_I2C_CR1);
 542                 cr1 |= STM32F4_I2C_CR1_ACK;
 543                 cr1 &= ~STM32F4_I2C_CR1_POS;
 544                 writel_relaxed(cr1, i2c_dev->base + STM32F4_I2C_CR1);
 545 
 546                 readl_relaxed(i2c_dev->base + STM32F4_I2C_SR2);
 547                 break;
 548         }
 549 }
 550 
 551 /**
 552  * stm32f4_i2c_isr_event() - Interrupt routine for I2C bus event
 553  * @irq: interrupt number
 554  * @data: Controller's private data
 555  */
 556 static irqreturn_t stm32f4_i2c_isr_event(int irq, void *data)
 557 {
 558         struct stm32f4_i2c_dev *i2c_dev = data;
 559         struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
 560         u32 possible_status = STM32F4_I2C_SR1_ITEVTEN_MASK;
 561         u32 status, ien, event, cr2;
 562 
 563         cr2 = readl_relaxed(i2c_dev->base + STM32F4_I2C_CR2);
 564         ien = cr2 & STM32F4_I2C_CR2_IRQ_MASK;
 565 
 566         /* Update possible_status if buffer interrupt is enabled */
 567         if (ien & STM32F4_I2C_CR2_ITBUFEN)
 568                 possible_status |= STM32F4_I2C_SR1_ITBUFEN_MASK;
 569 
 570         status = readl_relaxed(i2c_dev->base + STM32F4_I2C_SR1);
 571         event = status & possible_status;
 572         if (!event) {
 573                 dev_dbg(i2c_dev->dev,
 574                         "spurious evt irq (status=0x%08x, ien=0x%08x)\n",
 575                         status, ien);
 576                 return IRQ_NONE;
 577         }
 578 
 579         /* Start condition generated */
 580         if (event & STM32F4_I2C_SR1_SB)
 581                 stm32f4_i2c_write_byte(i2c_dev, msg->addr);
 582 
 583         /* I2C Address sent */
 584         if (event & STM32F4_I2C_SR1_ADDR) {
 585                 if (msg->addr & I2C_M_RD)
 586                         stm32f4_i2c_handle_rx_addr(i2c_dev);
 587                 else
 588                         readl_relaxed(i2c_dev->base + STM32F4_I2C_SR2);
 589 
 590                 /*
 591                  * Enable buffer interrupts for RX not empty and TX empty
 592                  * events
 593                  */
 594                 cr2 |= STM32F4_I2C_CR2_ITBUFEN;
 595                 writel_relaxed(cr2, i2c_dev->base + STM32F4_I2C_CR2);
 596         }
 597 
 598         /* TX empty */
 599         if ((event & STM32F4_I2C_SR1_TXE) && !(msg->addr & I2C_M_RD))
 600                 stm32f4_i2c_handle_write(i2c_dev);
 601 
 602         /* RX not empty */
 603         if ((event & STM32F4_I2C_SR1_RXNE) && (msg->addr & I2C_M_RD))
 604                 stm32f4_i2c_handle_read(i2c_dev);
 605 
 606         /*
 607          * The BTF (Byte Transfer finished) event occurs when:
 608          * - in reception : a new byte is received in the shift register
 609          * but the previous byte has not been read yet from data register
 610          * - in transmission: a new byte should be sent but the data register
 611          * has not been written yet
 612          */
 613         if (event & STM32F4_I2C_SR1_BTF) {
 614                 if (msg->addr & I2C_M_RD)
 615                         stm32f4_i2c_handle_rx_done(i2c_dev);
 616                 else
 617                         stm32f4_i2c_handle_write(i2c_dev);
 618         }
 619 
 620         return IRQ_HANDLED;
 621 }
 622 
 623 /**
 624  * stm32f4_i2c_isr_error() - Interrupt routine for I2C bus error
 625  * @irq: interrupt number
 626  * @data: Controller's private data
 627  */
 628 static irqreturn_t stm32f4_i2c_isr_error(int irq, void *data)
 629 {
 630         struct stm32f4_i2c_dev *i2c_dev = data;
 631         struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
 632         void __iomem *reg;
 633         u32 status;
 634 
 635         status = readl_relaxed(i2c_dev->base + STM32F4_I2C_SR1);
 636 
 637         /* Arbitration lost */
 638         if (status & STM32F4_I2C_SR1_ARLO) {
 639                 status &= ~STM32F4_I2C_SR1_ARLO;
 640                 writel_relaxed(status, i2c_dev->base + STM32F4_I2C_SR1);
 641                 msg->result = -EAGAIN;
 642         }
 643 
 644         /*
 645          * Acknowledge failure:
 646          * In master transmitter mode a Stop must be generated by software
 647          */
 648         if (status & STM32F4_I2C_SR1_AF) {
 649                 if (!(msg->addr & I2C_M_RD)) {
 650                         reg = i2c_dev->base + STM32F4_I2C_CR1;
 651                         stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_STOP);
 652                 }
 653                 status &= ~STM32F4_I2C_SR1_AF;
 654                 writel_relaxed(status, i2c_dev->base + STM32F4_I2C_SR1);
 655                 msg->result = -EIO;
 656         }
 657 
 658         /* Bus error */
 659         if (status & STM32F4_I2C_SR1_BERR) {
 660                 status &= ~STM32F4_I2C_SR1_BERR;
 661                 writel_relaxed(status, i2c_dev->base + STM32F4_I2C_SR1);
 662                 msg->result = -EIO;
 663         }
 664 
 665         stm32f4_i2c_disable_irq(i2c_dev);
 666         complete(&i2c_dev->complete);
 667 
 668         return IRQ_HANDLED;
 669 }
 670 
 671 /**
 672  * stm32f4_i2c_xfer_msg() - Transfer a single I2C message
 673  * @i2c_dev: Controller's private data
 674  * @msg: I2C message to transfer
 675  * @is_first: first message of the sequence
 676  * @is_last: last message of the sequence
 677  */
 678 static int stm32f4_i2c_xfer_msg(struct stm32f4_i2c_dev *i2c_dev,
 679                                 struct i2c_msg *msg, bool is_first,
 680                                 bool is_last)
 681 {
 682         struct stm32f4_i2c_msg *f4_msg = &i2c_dev->msg;
 683         void __iomem *reg = i2c_dev->base + STM32F4_I2C_CR1;
 684         unsigned long timeout;
 685         u32 mask;
 686         int ret;
 687 
 688         f4_msg->addr = i2c_8bit_addr_from_msg(msg);
 689         f4_msg->buf = msg->buf;
 690         f4_msg->count = msg->len;
 691         f4_msg->result = 0;
 692         f4_msg->stop = is_last;
 693 
 694         reinit_completion(&i2c_dev->complete);
 695 
 696         /* Enable events and errors interrupts */
 697         mask = STM32F4_I2C_CR2_ITEVTEN | STM32F4_I2C_CR2_ITERREN;
 698         stm32f4_i2c_set_bits(i2c_dev->base + STM32F4_I2C_CR2, mask);
 699 
 700         if (is_first) {
 701                 ret = stm32f4_i2c_wait_free_bus(i2c_dev);
 702                 if (ret)
 703                         return ret;
 704 
 705                 /* START generation */
 706                 stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_START);
 707         }
 708 
 709         timeout = wait_for_completion_timeout(&i2c_dev->complete,
 710                                               i2c_dev->adap.timeout);
 711         ret = f4_msg->result;
 712 
 713         if (!timeout)
 714                 ret = -ETIMEDOUT;
 715 
 716         return ret;
 717 }
 718 
 719 /**
 720  * stm32f4_i2c_xfer() - Transfer combined I2C message
 721  * @i2c_adap: Adapter pointer to the controller
 722  * @msgs: Pointer to data to be written.
 723  * @num: Number of messages to be executed
 724  */
 725 static int stm32f4_i2c_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msgs[],
 726                             int num)
 727 {
 728         struct stm32f4_i2c_dev *i2c_dev = i2c_get_adapdata(i2c_adap);
 729         int ret, i;
 730 
 731         ret = clk_enable(i2c_dev->clk);
 732         if (ret) {
 733                 dev_err(i2c_dev->dev, "Failed to enable clock\n");
 734                 return ret;
 735         }
 736 
 737         for (i = 0; i < num && !ret; i++)
 738                 ret = stm32f4_i2c_xfer_msg(i2c_dev, &msgs[i], i == 0,
 739                                            i == num - 1);
 740 
 741         clk_disable(i2c_dev->clk);
 742 
 743         return (ret < 0) ? ret : num;
 744 }
 745 
 746 static u32 stm32f4_i2c_func(struct i2c_adapter *adap)
 747 {
 748         return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
 749 }
 750 
 751 static const struct i2c_algorithm stm32f4_i2c_algo = {
 752         .master_xfer = stm32f4_i2c_xfer,
 753         .functionality = stm32f4_i2c_func,
 754 };
 755 
 756 static int stm32f4_i2c_probe(struct platform_device *pdev)
 757 {
 758         struct device_node *np = pdev->dev.of_node;
 759         struct stm32f4_i2c_dev *i2c_dev;
 760         struct resource *res;
 761         u32 irq_event, irq_error, clk_rate;
 762         struct i2c_adapter *adap;
 763         struct reset_control *rst;
 764         int ret;
 765 
 766         i2c_dev = devm_kzalloc(&pdev->dev, sizeof(*i2c_dev), GFP_KERNEL);
 767         if (!i2c_dev)
 768                 return -ENOMEM;
 769 
 770         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 771         i2c_dev->base = devm_ioremap_resource(&pdev->dev, res);
 772         if (IS_ERR(i2c_dev->base))
 773                 return PTR_ERR(i2c_dev->base);
 774 
 775         irq_event = irq_of_parse_and_map(np, 0);
 776         if (!irq_event) {
 777                 dev_err(&pdev->dev, "IRQ event missing or invalid\n");
 778                 return -EINVAL;
 779         }
 780 
 781         irq_error = irq_of_parse_and_map(np, 1);
 782         if (!irq_error) {
 783                 dev_err(&pdev->dev, "IRQ error missing or invalid\n");
 784                 return -EINVAL;
 785         }
 786 
 787         i2c_dev->clk = devm_clk_get(&pdev->dev, NULL);
 788         if (IS_ERR(i2c_dev->clk)) {
 789                 dev_err(&pdev->dev, "Error: Missing controller clock\n");
 790                 return PTR_ERR(i2c_dev->clk);
 791         }
 792         ret = clk_prepare_enable(i2c_dev->clk);
 793         if (ret) {
 794                 dev_err(i2c_dev->dev, "Failed to prepare_enable clock\n");
 795                 return ret;
 796         }
 797 
 798         rst = devm_reset_control_get_exclusive(&pdev->dev, NULL);
 799         if (IS_ERR(rst)) {
 800                 dev_err(&pdev->dev, "Error: Missing controller reset\n");
 801                 ret = PTR_ERR(rst);
 802                 goto clk_free;
 803         }
 804         reset_control_assert(rst);
 805         udelay(2);
 806         reset_control_deassert(rst);
 807 
 808         i2c_dev->speed = STM32_I2C_SPEED_STANDARD;
 809         ret = of_property_read_u32(np, "clock-frequency", &clk_rate);
 810         if (!ret && clk_rate >= 400000)
 811                 i2c_dev->speed = STM32_I2C_SPEED_FAST;
 812 
 813         i2c_dev->dev = &pdev->dev;
 814 
 815         ret = devm_request_irq(&pdev->dev, irq_event, stm32f4_i2c_isr_event, 0,
 816                                pdev->name, i2c_dev);
 817         if (ret) {
 818                 dev_err(&pdev->dev, "Failed to request irq event %i\n",
 819                         irq_event);
 820                 goto clk_free;
 821         }
 822 
 823         ret = devm_request_irq(&pdev->dev, irq_error, stm32f4_i2c_isr_error, 0,
 824                                pdev->name, i2c_dev);
 825         if (ret) {
 826                 dev_err(&pdev->dev, "Failed to request irq error %i\n",
 827                         irq_error);
 828                 goto clk_free;
 829         }
 830 
 831         ret = stm32f4_i2c_hw_config(i2c_dev);
 832         if (ret)
 833                 goto clk_free;
 834 
 835         adap = &i2c_dev->adap;
 836         i2c_set_adapdata(adap, i2c_dev);
 837         snprintf(adap->name, sizeof(adap->name), "STM32 I2C(%pa)", &res->start);
 838         adap->owner = THIS_MODULE;
 839         adap->timeout = 2 * HZ;
 840         adap->retries = 0;
 841         adap->algo = &stm32f4_i2c_algo;
 842         adap->dev.parent = &pdev->dev;
 843         adap->dev.of_node = pdev->dev.of_node;
 844 
 845         init_completion(&i2c_dev->complete);
 846 
 847         ret = i2c_add_adapter(adap);
 848         if (ret)
 849                 goto clk_free;
 850 
 851         platform_set_drvdata(pdev, i2c_dev);
 852 
 853         clk_disable(i2c_dev->clk);
 854 
 855         dev_info(i2c_dev->dev, "STM32F4 I2C driver registered\n");
 856 
 857         return 0;
 858 
 859 clk_free:
 860         clk_disable_unprepare(i2c_dev->clk);
 861         return ret;
 862 }
 863 
 864 static int stm32f4_i2c_remove(struct platform_device *pdev)
 865 {
 866         struct stm32f4_i2c_dev *i2c_dev = platform_get_drvdata(pdev);
 867 
 868         i2c_del_adapter(&i2c_dev->adap);
 869 
 870         clk_unprepare(i2c_dev->clk);
 871 
 872         return 0;
 873 }
 874 
 875 static const struct of_device_id stm32f4_i2c_match[] = {
 876         { .compatible = "st,stm32f4-i2c", },
 877         {},
 878 };
 879 MODULE_DEVICE_TABLE(of, stm32f4_i2c_match);
 880 
 881 static struct platform_driver stm32f4_i2c_driver = {
 882         .driver = {
 883                 .name = "stm32f4-i2c",
 884                 .of_match_table = stm32f4_i2c_match,
 885         },
 886         .probe = stm32f4_i2c_probe,
 887         .remove = stm32f4_i2c_remove,
 888 };
 889 
 890 module_platform_driver(stm32f4_i2c_driver);
 891 
 892 MODULE_AUTHOR("M'boumba Cedric Madianga <cedric.madianga@gmail.com>");
 893 MODULE_DESCRIPTION("STMicroelectronics STM32F4 I2C driver");
 894 MODULE_LICENSE("GPL v2");

/* [<][>][^][v][top][bottom][index][help] */