root/drivers/i2c/busses/i2c-qup.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. qup_i2c_interrupt
  2. qup_i2c_poll_state_mask
  3. qup_i2c_poll_state
  4. qup_i2c_flush
  5. qup_i2c_poll_state_valid
  6. qup_i2c_poll_state_i2c_master
  7. qup_i2c_change_state
  8. qup_i2c_bus_active
  9. qup_i2c_write_tx_fifo_v1
  10. qup_i2c_set_blk_data
  11. qup_i2c_get_data_len
  12. qup_i2c_check_msg_len
  13. qup_i2c_set_tags_smb
  14. qup_i2c_set_tags
  15. qup_i2c_bam_cb
  16. qup_sg_set_buf
  17. qup_i2c_rel_dma
  18. qup_i2c_req_dma
  19. qup_i2c_bam_make_desc
  20. qup_i2c_bam_schedule_desc
  21. qup_i2c_bam_clear_tag_buffers
  22. qup_i2c_bam_xfer
  23. qup_i2c_wait_for_complete
  24. qup_i2c_read_rx_fifo_v1
  25. qup_i2c_write_rx_tags_v1
  26. qup_i2c_conf_v1
  27. qup_i2c_clear_blk_v1
  28. qup_i2c_conf_xfer_v1
  29. qup_i2c_write_one
  30. qup_i2c_read_one
  31. qup_i2c_xfer
  32. qup_i2c_conf_count_v2
  33. qup_i2c_conf_mode_v2
  34. qup_i2c_clear_blk_v2
  35. qup_i2c_recv_data
  36. qup_i2c_recv_tags
  37. qup_i2c_read_rx_fifo_v2
  38. qup_i2c_write_blk_data
  39. qup_i2c_write_rx_tags_v2
  40. qup_i2c_write_tx_fifo_v2
  41. qup_i2c_conf_xfer_v2
  42. qup_i2c_xfer_v2_msg
  43. qup_i2c_determine_mode_v2
  44. qup_i2c_xfer_v2
  45. qup_i2c_func
  46. qup_i2c_enable_clocks
  47. qup_i2c_disable_clocks
  48. qup_i2c_probe
  49. qup_i2c_remove
  50. qup_i2c_pm_suspend_runtime
  51. qup_i2c_pm_resume_runtime
  52. qup_i2c_suspend
  53. qup_i2c_resume

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * Copyright (c) 2009-2013, 2016-2018, The Linux Foundation. All rights reserved.
   4  * Copyright (c) 2014, Sony Mobile Communications AB.
   5  *
   6  */
   7 
   8 #include <linux/acpi.h>
   9 #include <linux/atomic.h>
  10 #include <linux/clk.h>
  11 #include <linux/delay.h>
  12 #include <linux/dmaengine.h>
  13 #include <linux/dmapool.h>
  14 #include <linux/dma-mapping.h>
  15 #include <linux/err.h>
  16 #include <linux/i2c.h>
  17 #include <linux/interrupt.h>
  18 #include <linux/io.h>
  19 #include <linux/module.h>
  20 #include <linux/of.h>
  21 #include <linux/platform_device.h>
  22 #include <linux/pm_runtime.h>
  23 #include <linux/scatterlist.h>
  24 
  25 /* QUP Registers */
  26 #define QUP_CONFIG              0x000
  27 #define QUP_STATE               0x004
  28 #define QUP_IO_MODE             0x008
  29 #define QUP_SW_RESET            0x00c
  30 #define QUP_OPERATIONAL         0x018
  31 #define QUP_ERROR_FLAGS         0x01c
  32 #define QUP_ERROR_FLAGS_EN      0x020
  33 #define QUP_OPERATIONAL_MASK    0x028
  34 #define QUP_HW_VERSION          0x030
  35 #define QUP_MX_OUTPUT_CNT       0x100
  36 #define QUP_OUT_FIFO_BASE       0x110
  37 #define QUP_MX_WRITE_CNT        0x150
  38 #define QUP_MX_INPUT_CNT        0x200
  39 #define QUP_MX_READ_CNT         0x208
  40 #define QUP_IN_FIFO_BASE        0x218
  41 #define QUP_I2C_CLK_CTL         0x400
  42 #define QUP_I2C_STATUS          0x404
  43 #define QUP_I2C_MASTER_GEN      0x408
  44 
  45 /* QUP States and reset values */
  46 #define QUP_RESET_STATE         0
  47 #define QUP_RUN_STATE           1
  48 #define QUP_PAUSE_STATE         3
  49 #define QUP_STATE_MASK          3
  50 
  51 #define QUP_STATE_VALID         BIT(2)
  52 #define QUP_I2C_MAST_GEN        BIT(4)
  53 #define QUP_I2C_FLUSH           BIT(6)
  54 
  55 #define QUP_OPERATIONAL_RESET   0x000ff0
  56 #define QUP_I2C_STATUS_RESET    0xfffffc
  57 
  58 /* QUP OPERATIONAL FLAGS */
  59 #define QUP_I2C_NACK_FLAG       BIT(3)
  60 #define QUP_OUT_NOT_EMPTY       BIT(4)
  61 #define QUP_IN_NOT_EMPTY        BIT(5)
  62 #define QUP_OUT_FULL            BIT(6)
  63 #define QUP_OUT_SVC_FLAG        BIT(8)
  64 #define QUP_IN_SVC_FLAG         BIT(9)
  65 #define QUP_MX_OUTPUT_DONE      BIT(10)
  66 #define QUP_MX_INPUT_DONE       BIT(11)
  67 #define OUT_BLOCK_WRITE_REQ     BIT(12)
  68 #define IN_BLOCK_READ_REQ       BIT(13)
  69 
  70 /* I2C mini core related values */
  71 #define QUP_NO_INPUT            BIT(7)
  72 #define QUP_CLOCK_AUTO_GATE     BIT(13)
  73 #define I2C_MINI_CORE           (2 << 8)
  74 #define I2C_N_VAL               15
  75 #define I2C_N_VAL_V2            7
  76 
  77 /* Most significant word offset in FIFO port */
  78 #define QUP_MSW_SHIFT           (I2C_N_VAL + 1)
  79 
  80 /* Packing/Unpacking words in FIFOs, and IO modes */
  81 #define QUP_OUTPUT_BLK_MODE     (1 << 10)
  82 #define QUP_OUTPUT_BAM_MODE     (3 << 10)
  83 #define QUP_INPUT_BLK_MODE      (1 << 12)
  84 #define QUP_INPUT_BAM_MODE      (3 << 12)
  85 #define QUP_BAM_MODE            (QUP_OUTPUT_BAM_MODE | QUP_INPUT_BAM_MODE)
  86 #define QUP_UNPACK_EN           BIT(14)
  87 #define QUP_PACK_EN             BIT(15)
  88 
  89 #define QUP_REPACK_EN           (QUP_UNPACK_EN | QUP_PACK_EN)
  90 #define QUP_V2_TAGS_EN          1
  91 
  92 #define QUP_OUTPUT_BLOCK_SIZE(x)(((x) >> 0) & 0x03)
  93 #define QUP_OUTPUT_FIFO_SIZE(x) (((x) >> 2) & 0x07)
  94 #define QUP_INPUT_BLOCK_SIZE(x) (((x) >> 5) & 0x03)
  95 #define QUP_INPUT_FIFO_SIZE(x)  (((x) >> 7) & 0x07)
  96 
  97 /* QUP tags */
  98 #define QUP_TAG_START           (1 << 8)
  99 #define QUP_TAG_DATA            (2 << 8)
 100 #define QUP_TAG_STOP            (3 << 8)
 101 #define QUP_TAG_REC             (4 << 8)
 102 #define QUP_BAM_INPUT_EOT               0x93
 103 #define QUP_BAM_FLUSH_STOP              0x96
 104 
 105 /* QUP v2 tags */
 106 #define QUP_TAG_V2_START               0x81
 107 #define QUP_TAG_V2_DATAWR              0x82
 108 #define QUP_TAG_V2_DATAWR_STOP         0x83
 109 #define QUP_TAG_V2_DATARD              0x85
 110 #define QUP_TAG_V2_DATARD_NACK         0x86
 111 #define QUP_TAG_V2_DATARD_STOP         0x87
 112 
 113 /* Status, Error flags */
 114 #define I2C_STATUS_WR_BUFFER_FULL       BIT(0)
 115 #define I2C_STATUS_BUS_ACTIVE           BIT(8)
 116 #define I2C_STATUS_ERROR_MASK           0x38000fc
 117 #define QUP_STATUS_ERROR_FLAGS          0x7c
 118 
 119 #define QUP_READ_LIMIT                  256
 120 #define SET_BIT                         0x1
 121 #define RESET_BIT                       0x0
 122 #define ONE_BYTE                        0x1
 123 #define QUP_I2C_MX_CONFIG_DURING_RUN   BIT(31)
 124 
 125 /* Maximum transfer length for single DMA descriptor */
 126 #define MX_TX_RX_LEN                    SZ_64K
 127 #define MX_BLOCKS                       (MX_TX_RX_LEN / QUP_READ_LIMIT)
 128 /* Maximum transfer length for all DMA descriptors */
 129 #define MX_DMA_TX_RX_LEN                (2 * MX_TX_RX_LEN)
 130 #define MX_DMA_BLOCKS                   (MX_DMA_TX_RX_LEN / QUP_READ_LIMIT)
 131 
 132 /*
 133  * Minimum transfer timeout for i2c transfers in seconds. It will be added on
 134  * the top of maximum transfer time calculated from i2c bus speed to compensate
 135  * the overheads.
 136  */
 137 #define TOUT_MIN                        2
 138 
 139 /* I2C Frequency Modes */
 140 #define I2C_STANDARD_FREQ               100000
 141 #define I2C_FAST_MODE_FREQ              400000
 142 #define I2C_FAST_MODE_PLUS_FREQ         1000000
 143 
 144 /* Default values. Use these if FW query fails */
 145 #define DEFAULT_CLK_FREQ I2C_STANDARD_FREQ
 146 #define DEFAULT_SRC_CLK 20000000
 147 
 148 /*
 149  * Max tags length (start, stop and maximum 2 bytes address) for each QUP
 150  * data transfer
 151  */
 152 #define QUP_MAX_TAGS_LEN                4
 153 /* Max data length for each DATARD tags */
 154 #define RECV_MAX_DATA_LEN               254
 155 /* TAG length for DATA READ in RX FIFO  */
 156 #define READ_RX_TAGS_LEN                2
 157 
 158 static unsigned int scl_freq;
 159 module_param_named(scl_freq, scl_freq, uint, 0444);
 160 MODULE_PARM_DESC(scl_freq, "SCL frequency override");
 161 
 162 /*
 163  * count: no of blocks
 164  * pos: current block number
 165  * tx_tag_len: tx tag length for current block
 166  * rx_tag_len: rx tag length for current block
 167  * data_len: remaining data length for current message
 168  * cur_blk_len: data length for current block
 169  * total_tx_len: total tx length including tag bytes for current QUP transfer
 170  * total_rx_len: total rx length including tag bytes for current QUP transfer
 171  * tx_fifo_data_pos: current byte number in TX FIFO word
 172  * tx_fifo_free: number of free bytes in current QUP block write.
 173  * rx_fifo_data_pos: current byte number in RX FIFO word
 174  * fifo_available: number of available bytes in RX FIFO for current
 175  *                 QUP block read
 176  * tx_fifo_data: QUP TX FIFO write works on word basis (4 bytes). New byte write
 177  *               to TX FIFO will be appended in this data and will be written to
 178  *               TX FIFO when all the 4 bytes are available.
 179  * rx_fifo_data: QUP RX FIFO read works on word basis (4 bytes). This will
 180  *               contains the 4 bytes of RX data.
 181  * cur_data: pointer to tell cur data position for current message
 182  * cur_tx_tags: pointer to tell cur position in tags
 183  * tx_tags_sent: all tx tag bytes have been written in FIFO word
 184  * send_last_word: for tx FIFO, last word send is pending in current block
 185  * rx_bytes_read: if all the bytes have been read from rx FIFO.
 186  * rx_tags_fetched: all the rx tag bytes have been fetched from rx fifo word
 187  * is_tx_blk_mode: whether tx uses block or FIFO mode in case of non BAM xfer.
 188  * is_rx_blk_mode: whether rx uses block or FIFO mode in case of non BAM xfer.
 189  * tags: contains tx tag bytes for current QUP transfer
 190  */
 191 struct qup_i2c_block {
 192         int             count;
 193         int             pos;
 194         int             tx_tag_len;
 195         int             rx_tag_len;
 196         int             data_len;
 197         int             cur_blk_len;
 198         int             total_tx_len;
 199         int             total_rx_len;
 200         int             tx_fifo_data_pos;
 201         int             tx_fifo_free;
 202         int             rx_fifo_data_pos;
 203         int             fifo_available;
 204         u32             tx_fifo_data;
 205         u32             rx_fifo_data;
 206         u8              *cur_data;
 207         u8              *cur_tx_tags;
 208         bool            tx_tags_sent;
 209         bool            send_last_word;
 210         bool            rx_tags_fetched;
 211         bool            rx_bytes_read;
 212         bool            is_tx_blk_mode;
 213         bool            is_rx_blk_mode;
 214         u8              tags[6];
 215 };
 216 
 217 struct qup_i2c_tag {
 218         u8 *start;
 219         dma_addr_t addr;
 220 };
 221 
 222 struct qup_i2c_bam {
 223         struct  qup_i2c_tag tag;
 224         struct  dma_chan *dma;
 225         struct  scatterlist *sg;
 226         unsigned int sg_cnt;
 227 };
 228 
 229 struct qup_i2c_dev {
 230         struct device           *dev;
 231         void __iomem            *base;
 232         int                     irq;
 233         struct clk              *clk;
 234         struct clk              *pclk;
 235         struct i2c_adapter      adap;
 236 
 237         int                     clk_ctl;
 238         int                     out_fifo_sz;
 239         int                     in_fifo_sz;
 240         int                     out_blk_sz;
 241         int                     in_blk_sz;
 242 
 243         int                     blk_xfer_limit;
 244         unsigned long           one_byte_t;
 245         unsigned long           xfer_timeout;
 246         struct qup_i2c_block    blk;
 247 
 248         struct i2c_msg          *msg;
 249         /* Current posion in user message buffer */
 250         int                     pos;
 251         /* I2C protocol errors */
 252         u32                     bus_err;
 253         /* QUP core errors */
 254         u32                     qup_err;
 255 
 256         /* To check if this is the last msg */
 257         bool                    is_last;
 258         bool                    is_smbus_read;
 259 
 260         /* To configure when bus is in run state */
 261         u32                     config_run;
 262 
 263         /* dma parameters */
 264         bool                    is_dma;
 265         /* To check if the current transfer is using DMA */
 266         bool                    use_dma;
 267         unsigned int            max_xfer_sg_len;
 268         unsigned int            tag_buf_pos;
 269         /* The threshold length above which block mode will be used */
 270         unsigned int            blk_mode_threshold;
 271         struct                  dma_pool *dpool;
 272         struct                  qup_i2c_tag start_tag;
 273         struct                  qup_i2c_bam brx;
 274         struct                  qup_i2c_bam btx;
 275 
 276         struct completion       xfer;
 277         /* function to write data in tx fifo */
 278         void (*write_tx_fifo)(struct qup_i2c_dev *qup);
 279         /* function to read data from rx fifo */
 280         void (*read_rx_fifo)(struct qup_i2c_dev *qup);
 281         /* function to write tags in tx fifo for i2c read transfer */
 282         void (*write_rx_tags)(struct qup_i2c_dev *qup);
 283 };
 284 
 285 static irqreturn_t qup_i2c_interrupt(int irq, void *dev)
 286 {
 287         struct qup_i2c_dev *qup = dev;
 288         struct qup_i2c_block *blk = &qup->blk;
 289         u32 bus_err;
 290         u32 qup_err;
 291         u32 opflags;
 292 
 293         bus_err = readl(qup->base + QUP_I2C_STATUS);
 294         qup_err = readl(qup->base + QUP_ERROR_FLAGS);
 295         opflags = readl(qup->base + QUP_OPERATIONAL);
 296 
 297         if (!qup->msg) {
 298                 /* Clear Error interrupt */
 299                 writel(QUP_RESET_STATE, qup->base + QUP_STATE);
 300                 return IRQ_HANDLED;
 301         }
 302 
 303         bus_err &= I2C_STATUS_ERROR_MASK;
 304         qup_err &= QUP_STATUS_ERROR_FLAGS;
 305 
 306         /* Clear the error bits in QUP_ERROR_FLAGS */
 307         if (qup_err)
 308                 writel(qup_err, qup->base + QUP_ERROR_FLAGS);
 309 
 310         /* Clear the error bits in QUP_I2C_STATUS */
 311         if (bus_err)
 312                 writel(bus_err, qup->base + QUP_I2C_STATUS);
 313 
 314         /*
 315          * Check for BAM mode and returns if already error has come for current
 316          * transfer. In Error case, sometimes, QUP generates more than one
 317          * interrupt.
 318          */
 319         if (qup->use_dma && (qup->qup_err || qup->bus_err))
 320                 return IRQ_HANDLED;
 321 
 322         /* Reset the QUP State in case of error */
 323         if (qup_err || bus_err) {
 324                 /*
 325                  * Don’t reset the QUP state in case of BAM mode. The BAM
 326                  * flush operation needs to be scheduled in transfer function
 327                  * which will clear the remaining schedule descriptors in BAM
 328                  * HW FIFO and generates the BAM interrupt.
 329                  */
 330                 if (!qup->use_dma)
 331                         writel(QUP_RESET_STATE, qup->base + QUP_STATE);
 332                 goto done;
 333         }
 334 
 335         if (opflags & QUP_OUT_SVC_FLAG) {
 336                 writel(QUP_OUT_SVC_FLAG, qup->base + QUP_OPERATIONAL);
 337 
 338                 if (opflags & OUT_BLOCK_WRITE_REQ) {
 339                         blk->tx_fifo_free += qup->out_blk_sz;
 340                         if (qup->msg->flags & I2C_M_RD)
 341                                 qup->write_rx_tags(qup);
 342                         else
 343                                 qup->write_tx_fifo(qup);
 344                 }
 345         }
 346 
 347         if (opflags & QUP_IN_SVC_FLAG) {
 348                 writel(QUP_IN_SVC_FLAG, qup->base + QUP_OPERATIONAL);
 349 
 350                 if (!blk->is_rx_blk_mode) {
 351                         blk->fifo_available += qup->in_fifo_sz;
 352                         qup->read_rx_fifo(qup);
 353                 } else if (opflags & IN_BLOCK_READ_REQ) {
 354                         blk->fifo_available += qup->in_blk_sz;
 355                         qup->read_rx_fifo(qup);
 356                 }
 357         }
 358 
 359         if (qup->msg->flags & I2C_M_RD) {
 360                 if (!blk->rx_bytes_read)
 361                         return IRQ_HANDLED;
 362         } else {
 363                 /*
 364                  * Ideally, QUP_MAX_OUTPUT_DONE_FLAG should be checked
 365                  * for FIFO mode also. But, QUP_MAX_OUTPUT_DONE_FLAG lags
 366                  * behind QUP_OUTPUT_SERVICE_FLAG sometimes. The only reason
 367                  * of interrupt for write message in FIFO mode is
 368                  * QUP_MAX_OUTPUT_DONE_FLAG condition.
 369                  */
 370                 if (blk->is_tx_blk_mode && !(opflags & QUP_MX_OUTPUT_DONE))
 371                         return IRQ_HANDLED;
 372         }
 373 
 374 done:
 375         qup->qup_err = qup_err;
 376         qup->bus_err = bus_err;
 377         complete(&qup->xfer);
 378         return IRQ_HANDLED;
 379 }
 380 
 381 static int qup_i2c_poll_state_mask(struct qup_i2c_dev *qup,
 382                                    u32 req_state, u32 req_mask)
 383 {
 384         int retries = 1;
 385         u32 state;
 386 
 387         /*
 388          * State transition takes 3 AHB clocks cycles + 3 I2C master clock
 389          * cycles. So retry once after a 1uS delay.
 390          */
 391         do {
 392                 state = readl(qup->base + QUP_STATE);
 393 
 394                 if (state & QUP_STATE_VALID &&
 395                     (state & req_mask) == req_state)
 396                         return 0;
 397 
 398                 udelay(1);
 399         } while (retries--);
 400 
 401         return -ETIMEDOUT;
 402 }
 403 
 404 static int qup_i2c_poll_state(struct qup_i2c_dev *qup, u32 req_state)
 405 {
 406         return qup_i2c_poll_state_mask(qup, req_state, QUP_STATE_MASK);
 407 }
 408 
 409 static void qup_i2c_flush(struct qup_i2c_dev *qup)
 410 {
 411         u32 val = readl(qup->base + QUP_STATE);
 412 
 413         val |= QUP_I2C_FLUSH;
 414         writel(val, qup->base + QUP_STATE);
 415 }
 416 
 417 static int qup_i2c_poll_state_valid(struct qup_i2c_dev *qup)
 418 {
 419         return qup_i2c_poll_state_mask(qup, 0, 0);
 420 }
 421 
 422 static int qup_i2c_poll_state_i2c_master(struct qup_i2c_dev *qup)
 423 {
 424         return qup_i2c_poll_state_mask(qup, QUP_I2C_MAST_GEN, QUP_I2C_MAST_GEN);
 425 }
 426 
 427 static int qup_i2c_change_state(struct qup_i2c_dev *qup, u32 state)
 428 {
 429         if (qup_i2c_poll_state_valid(qup) != 0)
 430                 return -EIO;
 431 
 432         writel(state, qup->base + QUP_STATE);
 433 
 434         if (qup_i2c_poll_state(qup, state) != 0)
 435                 return -EIO;
 436         return 0;
 437 }
 438 
 439 /* Check if I2C bus returns to IDLE state */
 440 static int qup_i2c_bus_active(struct qup_i2c_dev *qup, int len)
 441 {
 442         unsigned long timeout;
 443         u32 status;
 444         int ret = 0;
 445 
 446         timeout = jiffies + len * 4;
 447         for (;;) {
 448                 status = readl(qup->base + QUP_I2C_STATUS);
 449                 if (!(status & I2C_STATUS_BUS_ACTIVE))
 450                         break;
 451 
 452                 if (time_after(jiffies, timeout))
 453                         ret = -ETIMEDOUT;
 454 
 455                 usleep_range(len, len * 2);
 456         }
 457 
 458         return ret;
 459 }
 460 
 461 static void qup_i2c_write_tx_fifo_v1(struct qup_i2c_dev *qup)
 462 {
 463         struct qup_i2c_block *blk = &qup->blk;
 464         struct i2c_msg *msg = qup->msg;
 465         u32 addr = i2c_8bit_addr_from_msg(msg);
 466         u32 qup_tag;
 467         int idx;
 468         u32 val;
 469 
 470         if (qup->pos == 0) {
 471                 val = QUP_TAG_START | addr;
 472                 idx = 1;
 473                 blk->tx_fifo_free--;
 474         } else {
 475                 val = 0;
 476                 idx = 0;
 477         }
 478 
 479         while (blk->tx_fifo_free && qup->pos < msg->len) {
 480                 if (qup->pos == msg->len - 1)
 481                         qup_tag = QUP_TAG_STOP;
 482                 else
 483                         qup_tag = QUP_TAG_DATA;
 484 
 485                 if (idx & 1)
 486                         val |= (qup_tag | msg->buf[qup->pos]) << QUP_MSW_SHIFT;
 487                 else
 488                         val = qup_tag | msg->buf[qup->pos];
 489 
 490                 /* Write out the pair and the last odd value */
 491                 if (idx & 1 || qup->pos == msg->len - 1)
 492                         writel(val, qup->base + QUP_OUT_FIFO_BASE);
 493 
 494                 qup->pos++;
 495                 idx++;
 496                 blk->tx_fifo_free--;
 497         }
 498 }
 499 
 500 static void qup_i2c_set_blk_data(struct qup_i2c_dev *qup,
 501                                  struct i2c_msg *msg)
 502 {
 503         qup->blk.pos = 0;
 504         qup->blk.data_len = msg->len;
 505         qup->blk.count = DIV_ROUND_UP(msg->len, qup->blk_xfer_limit);
 506 }
 507 
 508 static int qup_i2c_get_data_len(struct qup_i2c_dev *qup)
 509 {
 510         int data_len;
 511 
 512         if (qup->blk.data_len > qup->blk_xfer_limit)
 513                 data_len = qup->blk_xfer_limit;
 514         else
 515                 data_len = qup->blk.data_len;
 516 
 517         return data_len;
 518 }
 519 
 520 static bool qup_i2c_check_msg_len(struct i2c_msg *msg)
 521 {
 522         return ((msg->flags & I2C_M_RD) && (msg->flags & I2C_M_RECV_LEN));
 523 }
 524 
 525 static int qup_i2c_set_tags_smb(u16 addr, u8 *tags, struct qup_i2c_dev *qup,
 526                         struct i2c_msg *msg)
 527 {
 528         int len = 0;
 529 
 530         if (qup->is_smbus_read) {
 531                 tags[len++] = QUP_TAG_V2_DATARD_STOP;
 532                 tags[len++] = qup_i2c_get_data_len(qup);
 533         } else {
 534                 tags[len++] = QUP_TAG_V2_START;
 535                 tags[len++] = addr & 0xff;
 536 
 537                 if (msg->flags & I2C_M_TEN)
 538                         tags[len++] = addr >> 8;
 539 
 540                 tags[len++] = QUP_TAG_V2_DATARD;
 541                 /* Read 1 byte indicating the length of the SMBus message */
 542                 tags[len++] = 1;
 543         }
 544         return len;
 545 }
 546 
 547 static int qup_i2c_set_tags(u8 *tags, struct qup_i2c_dev *qup,
 548                             struct i2c_msg *msg)
 549 {
 550         u16 addr = i2c_8bit_addr_from_msg(msg);
 551         int len = 0;
 552         int data_len;
 553 
 554         int last = (qup->blk.pos == (qup->blk.count - 1)) && (qup->is_last);
 555 
 556         /* Handle tags for SMBus block read */
 557         if (qup_i2c_check_msg_len(msg))
 558                 return qup_i2c_set_tags_smb(addr, tags, qup, msg);
 559 
 560         if (qup->blk.pos == 0) {
 561                 tags[len++] = QUP_TAG_V2_START;
 562                 tags[len++] = addr & 0xff;
 563 
 564                 if (msg->flags & I2C_M_TEN)
 565                         tags[len++] = addr >> 8;
 566         }
 567 
 568         /* Send _STOP commands for the last block */
 569         if (last) {
 570                 if (msg->flags & I2C_M_RD)
 571                         tags[len++] = QUP_TAG_V2_DATARD_STOP;
 572                 else
 573                         tags[len++] = QUP_TAG_V2_DATAWR_STOP;
 574         } else {
 575                 if (msg->flags & I2C_M_RD)
 576                         tags[len++] = qup->blk.pos == (qup->blk.count - 1) ?
 577                                       QUP_TAG_V2_DATARD_NACK :
 578                                       QUP_TAG_V2_DATARD;
 579                 else
 580                         tags[len++] = QUP_TAG_V2_DATAWR;
 581         }
 582 
 583         data_len = qup_i2c_get_data_len(qup);
 584 
 585         /* 0 implies 256 bytes */
 586         if (data_len == QUP_READ_LIMIT)
 587                 tags[len++] = 0;
 588         else
 589                 tags[len++] = data_len;
 590 
 591         return len;
 592 }
 593 
 594 
 595 static void qup_i2c_bam_cb(void *data)
 596 {
 597         struct qup_i2c_dev *qup = data;
 598 
 599         complete(&qup->xfer);
 600 }
 601 
 602 static int qup_sg_set_buf(struct scatterlist *sg, void *buf,
 603                           unsigned int buflen, struct qup_i2c_dev *qup,
 604                           int dir)
 605 {
 606         int ret;
 607 
 608         sg_set_buf(sg, buf, buflen);
 609         ret = dma_map_sg(qup->dev, sg, 1, dir);
 610         if (!ret)
 611                 return -EINVAL;
 612 
 613         return 0;
 614 }
 615 
 616 static void qup_i2c_rel_dma(struct qup_i2c_dev *qup)
 617 {
 618         if (qup->btx.dma)
 619                 dma_release_channel(qup->btx.dma);
 620         if (qup->brx.dma)
 621                 dma_release_channel(qup->brx.dma);
 622         qup->btx.dma = NULL;
 623         qup->brx.dma = NULL;
 624 }
 625 
 626 static int qup_i2c_req_dma(struct qup_i2c_dev *qup)
 627 {
 628         int err;
 629 
 630         if (!qup->btx.dma) {
 631                 qup->btx.dma = dma_request_slave_channel_reason(qup->dev, "tx");
 632                 if (IS_ERR(qup->btx.dma)) {
 633                         err = PTR_ERR(qup->btx.dma);
 634                         qup->btx.dma = NULL;
 635                         dev_err(qup->dev, "\n tx channel not available");
 636                         return err;
 637                 }
 638         }
 639 
 640         if (!qup->brx.dma) {
 641                 qup->brx.dma = dma_request_slave_channel_reason(qup->dev, "rx");
 642                 if (IS_ERR(qup->brx.dma)) {
 643                         dev_err(qup->dev, "\n rx channel not available");
 644                         err = PTR_ERR(qup->brx.dma);
 645                         qup->brx.dma = NULL;
 646                         qup_i2c_rel_dma(qup);
 647                         return err;
 648                 }
 649         }
 650         return 0;
 651 }
 652 
 653 static int qup_i2c_bam_make_desc(struct qup_i2c_dev *qup, struct i2c_msg *msg)
 654 {
 655         int ret = 0, limit = QUP_READ_LIMIT;
 656         u32 len = 0, blocks, rem;
 657         u32 i = 0, tlen, tx_len = 0;
 658         u8 *tags;
 659 
 660         qup->blk_xfer_limit = QUP_READ_LIMIT;
 661         qup_i2c_set_blk_data(qup, msg);
 662 
 663         blocks = qup->blk.count;
 664         rem = msg->len - (blocks - 1) * limit;
 665 
 666         if (msg->flags & I2C_M_RD) {
 667                 while (qup->blk.pos < blocks) {
 668                         tlen = (i == (blocks - 1)) ? rem : limit;
 669                         tags = &qup->start_tag.start[qup->tag_buf_pos + len];
 670                         len += qup_i2c_set_tags(tags, qup, msg);
 671                         qup->blk.data_len -= tlen;
 672 
 673                         /* scratch buf to read the start and len tags */
 674                         ret = qup_sg_set_buf(&qup->brx.sg[qup->brx.sg_cnt++],
 675                                              &qup->brx.tag.start[0],
 676                                              2, qup, DMA_FROM_DEVICE);
 677 
 678                         if (ret)
 679                                 return ret;
 680 
 681                         ret = qup_sg_set_buf(&qup->brx.sg[qup->brx.sg_cnt++],
 682                                              &msg->buf[limit * i],
 683                                              tlen, qup,
 684                                              DMA_FROM_DEVICE);
 685                         if (ret)
 686                                 return ret;
 687 
 688                         i++;
 689                         qup->blk.pos = i;
 690                 }
 691                 ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++],
 692                                      &qup->start_tag.start[qup->tag_buf_pos],
 693                                      len, qup, DMA_TO_DEVICE);
 694                 if (ret)
 695                         return ret;
 696 
 697                 qup->tag_buf_pos += len;
 698         } else {
 699                 while (qup->blk.pos < blocks) {
 700                         tlen = (i == (blocks - 1)) ? rem : limit;
 701                         tags = &qup->start_tag.start[qup->tag_buf_pos + tx_len];
 702                         len = qup_i2c_set_tags(tags, qup, msg);
 703                         qup->blk.data_len -= tlen;
 704 
 705                         ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++],
 706                                              tags, len,
 707                                              qup, DMA_TO_DEVICE);
 708                         if (ret)
 709                                 return ret;
 710 
 711                         tx_len += len;
 712                         ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++],
 713                                              &msg->buf[limit * i],
 714                                              tlen, qup, DMA_TO_DEVICE);
 715                         if (ret)
 716                                 return ret;
 717                         i++;
 718                         qup->blk.pos = i;
 719                 }
 720 
 721                 qup->tag_buf_pos += tx_len;
 722         }
 723 
 724         return 0;
 725 }
 726 
 727 static int qup_i2c_bam_schedule_desc(struct qup_i2c_dev *qup)
 728 {
 729         struct dma_async_tx_descriptor *txd, *rxd = NULL;
 730         int ret = 0;
 731         dma_cookie_t cookie_rx, cookie_tx;
 732         u32 len = 0;
 733         u32 tx_cnt = qup->btx.sg_cnt, rx_cnt = qup->brx.sg_cnt;
 734 
 735         /* schedule the EOT and FLUSH I2C tags */
 736         len = 1;
 737         if (rx_cnt) {
 738                 qup->btx.tag.start[0] = QUP_BAM_INPUT_EOT;
 739                 len++;
 740 
 741                 /* scratch buf to read the BAM EOT FLUSH tags */
 742                 ret = qup_sg_set_buf(&qup->brx.sg[rx_cnt++],
 743                                      &qup->brx.tag.start[0],
 744                                      1, qup, DMA_FROM_DEVICE);
 745                 if (ret)
 746                         return ret;
 747         }
 748 
 749         qup->btx.tag.start[len - 1] = QUP_BAM_FLUSH_STOP;
 750         ret = qup_sg_set_buf(&qup->btx.sg[tx_cnt++], &qup->btx.tag.start[0],
 751                              len, qup, DMA_TO_DEVICE);
 752         if (ret)
 753                 return ret;
 754 
 755         txd = dmaengine_prep_slave_sg(qup->btx.dma, qup->btx.sg, tx_cnt,
 756                                       DMA_MEM_TO_DEV,
 757                                       DMA_PREP_INTERRUPT | DMA_PREP_FENCE);
 758         if (!txd) {
 759                 dev_err(qup->dev, "failed to get tx desc\n");
 760                 ret = -EINVAL;
 761                 goto desc_err;
 762         }
 763 
 764         if (!rx_cnt) {
 765                 txd->callback = qup_i2c_bam_cb;
 766                 txd->callback_param = qup;
 767         }
 768 
 769         cookie_tx = dmaengine_submit(txd);
 770         if (dma_submit_error(cookie_tx)) {
 771                 ret = -EINVAL;
 772                 goto desc_err;
 773         }
 774 
 775         dma_async_issue_pending(qup->btx.dma);
 776 
 777         if (rx_cnt) {
 778                 rxd = dmaengine_prep_slave_sg(qup->brx.dma, qup->brx.sg,
 779                                               rx_cnt, DMA_DEV_TO_MEM,
 780                                               DMA_PREP_INTERRUPT);
 781                 if (!rxd) {
 782                         dev_err(qup->dev, "failed to get rx desc\n");
 783                         ret = -EINVAL;
 784 
 785                         /* abort TX descriptors */
 786                         dmaengine_terminate_all(qup->btx.dma);
 787                         goto desc_err;
 788                 }
 789 
 790                 rxd->callback = qup_i2c_bam_cb;
 791                 rxd->callback_param = qup;
 792                 cookie_rx = dmaengine_submit(rxd);
 793                 if (dma_submit_error(cookie_rx)) {
 794                         ret = -EINVAL;
 795                         goto desc_err;
 796                 }
 797 
 798                 dma_async_issue_pending(qup->brx.dma);
 799         }
 800 
 801         if (!wait_for_completion_timeout(&qup->xfer, qup->xfer_timeout)) {
 802                 dev_err(qup->dev, "normal trans timed out\n");
 803                 ret = -ETIMEDOUT;
 804         }
 805 
 806         if (ret || qup->bus_err || qup->qup_err) {
 807                 reinit_completion(&qup->xfer);
 808 
 809                 if (qup_i2c_change_state(qup, QUP_RUN_STATE)) {
 810                         dev_err(qup->dev, "change to run state timed out");
 811                         goto desc_err;
 812                 }
 813 
 814                 qup_i2c_flush(qup);
 815 
 816                 /* wait for remaining interrupts to occur */
 817                 if (!wait_for_completion_timeout(&qup->xfer, HZ))
 818                         dev_err(qup->dev, "flush timed out\n");
 819 
 820                 ret =  (qup->bus_err & QUP_I2C_NACK_FLAG) ? -ENXIO : -EIO;
 821         }
 822 
 823 desc_err:
 824         dma_unmap_sg(qup->dev, qup->btx.sg, tx_cnt, DMA_TO_DEVICE);
 825 
 826         if (rx_cnt)
 827                 dma_unmap_sg(qup->dev, qup->brx.sg, rx_cnt,
 828                              DMA_FROM_DEVICE);
 829 
 830         return ret;
 831 }
 832 
 833 static void qup_i2c_bam_clear_tag_buffers(struct qup_i2c_dev *qup)
 834 {
 835         qup->btx.sg_cnt = 0;
 836         qup->brx.sg_cnt = 0;
 837         qup->tag_buf_pos = 0;
 838 }
 839 
 840 static int qup_i2c_bam_xfer(struct i2c_adapter *adap, struct i2c_msg *msg,
 841                             int num)
 842 {
 843         struct qup_i2c_dev *qup = i2c_get_adapdata(adap);
 844         int ret = 0;
 845         int idx = 0;
 846 
 847         enable_irq(qup->irq);
 848         ret = qup_i2c_req_dma(qup);
 849 
 850         if (ret)
 851                 goto out;
 852 
 853         writel(0, qup->base + QUP_MX_INPUT_CNT);
 854         writel(0, qup->base + QUP_MX_OUTPUT_CNT);
 855 
 856         /* set BAM mode */
 857         writel(QUP_REPACK_EN | QUP_BAM_MODE, qup->base + QUP_IO_MODE);
 858 
 859         /* mask fifo irqs */
 860         writel((0x3 << 8), qup->base + QUP_OPERATIONAL_MASK);
 861 
 862         /* set RUN STATE */
 863         ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
 864         if (ret)
 865                 goto out;
 866 
 867         writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);
 868         qup_i2c_bam_clear_tag_buffers(qup);
 869 
 870         for (idx = 0; idx < num; idx++) {
 871                 qup->msg = msg + idx;
 872                 qup->is_last = idx == (num - 1);
 873 
 874                 ret = qup_i2c_bam_make_desc(qup, qup->msg);
 875                 if (ret)
 876                         break;
 877 
 878                 /*
 879                  * Make DMA descriptor and schedule the BAM transfer if its
 880                  * already crossed the maximum length. Since the memory for all
 881                  * tags buffers have been taken for 2 maximum possible
 882                  * transfers length so it will never cross the buffer actual
 883                  * length.
 884                  */
 885                 if (qup->btx.sg_cnt > qup->max_xfer_sg_len ||
 886                     qup->brx.sg_cnt > qup->max_xfer_sg_len ||
 887                     qup->is_last) {
 888                         ret = qup_i2c_bam_schedule_desc(qup);
 889                         if (ret)
 890                                 break;
 891 
 892                         qup_i2c_bam_clear_tag_buffers(qup);
 893                 }
 894         }
 895 
 896 out:
 897         disable_irq(qup->irq);
 898 
 899         qup->msg = NULL;
 900         return ret;
 901 }
 902 
 903 static int qup_i2c_wait_for_complete(struct qup_i2c_dev *qup,
 904                                      struct i2c_msg *msg)
 905 {
 906         unsigned long left;
 907         int ret = 0;
 908 
 909         left = wait_for_completion_timeout(&qup->xfer, qup->xfer_timeout);
 910         if (!left) {
 911                 writel(1, qup->base + QUP_SW_RESET);
 912                 ret = -ETIMEDOUT;
 913         }
 914 
 915         if (qup->bus_err || qup->qup_err)
 916                 ret =  (qup->bus_err & QUP_I2C_NACK_FLAG) ? -ENXIO : -EIO;
 917 
 918         return ret;
 919 }
 920 
 921 static void qup_i2c_read_rx_fifo_v1(struct qup_i2c_dev *qup)
 922 {
 923         struct qup_i2c_block *blk = &qup->blk;
 924         struct i2c_msg *msg = qup->msg;
 925         u32 val = 0;
 926         int idx = 0;
 927 
 928         while (blk->fifo_available && qup->pos < msg->len) {
 929                 if ((idx & 1) == 0) {
 930                         /* Reading 2 words at time */
 931                         val = readl(qup->base + QUP_IN_FIFO_BASE);
 932                         msg->buf[qup->pos++] = val & 0xFF;
 933                 } else {
 934                         msg->buf[qup->pos++] = val >> QUP_MSW_SHIFT;
 935                 }
 936                 idx++;
 937                 blk->fifo_available--;
 938         }
 939 
 940         if (qup->pos == msg->len)
 941                 blk->rx_bytes_read = true;
 942 }
 943 
 944 static void qup_i2c_write_rx_tags_v1(struct qup_i2c_dev *qup)
 945 {
 946         struct i2c_msg *msg = qup->msg;
 947         u32 addr, len, val;
 948 
 949         addr = i2c_8bit_addr_from_msg(msg);
 950 
 951         /* 0 is used to specify a length 256 (QUP_READ_LIMIT) */
 952         len = (msg->len == QUP_READ_LIMIT) ? 0 : msg->len;
 953 
 954         val = ((QUP_TAG_REC | len) << QUP_MSW_SHIFT) | QUP_TAG_START | addr;
 955         writel(val, qup->base + QUP_OUT_FIFO_BASE);
 956 }
 957 
 958 static void qup_i2c_conf_v1(struct qup_i2c_dev *qup)
 959 {
 960         struct qup_i2c_block *blk = &qup->blk;
 961         u32 qup_config = I2C_MINI_CORE | I2C_N_VAL;
 962         u32 io_mode = QUP_REPACK_EN;
 963 
 964         blk->is_tx_blk_mode =
 965                 blk->total_tx_len > qup->out_fifo_sz ? true : false;
 966         blk->is_rx_blk_mode =
 967                 blk->total_rx_len > qup->in_fifo_sz ? true : false;
 968 
 969         if (blk->is_tx_blk_mode) {
 970                 io_mode |= QUP_OUTPUT_BLK_MODE;
 971                 writel(0, qup->base + QUP_MX_WRITE_CNT);
 972                 writel(blk->total_tx_len, qup->base + QUP_MX_OUTPUT_CNT);
 973         } else {
 974                 writel(0, qup->base + QUP_MX_OUTPUT_CNT);
 975                 writel(blk->total_tx_len, qup->base + QUP_MX_WRITE_CNT);
 976         }
 977 
 978         if (blk->total_rx_len) {
 979                 if (blk->is_rx_blk_mode) {
 980                         io_mode |= QUP_INPUT_BLK_MODE;
 981                         writel(0, qup->base + QUP_MX_READ_CNT);
 982                         writel(blk->total_rx_len, qup->base + QUP_MX_INPUT_CNT);
 983                 } else {
 984                         writel(0, qup->base + QUP_MX_INPUT_CNT);
 985                         writel(blk->total_rx_len, qup->base + QUP_MX_READ_CNT);
 986                 }
 987         } else {
 988                 qup_config |= QUP_NO_INPUT;
 989         }
 990 
 991         writel(qup_config, qup->base + QUP_CONFIG);
 992         writel(io_mode, qup->base + QUP_IO_MODE);
 993 }
 994 
 995 static void qup_i2c_clear_blk_v1(struct qup_i2c_block *blk)
 996 {
 997         blk->tx_fifo_free = 0;
 998         blk->fifo_available = 0;
 999         blk->rx_bytes_read = false;
1000 }
1001 
1002 static int qup_i2c_conf_xfer_v1(struct qup_i2c_dev *qup, bool is_rx)
1003 {
1004         struct qup_i2c_block *blk = &qup->blk;
1005         int ret;
1006 
1007         qup_i2c_clear_blk_v1(blk);
1008         qup_i2c_conf_v1(qup);
1009         ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
1010         if (ret)
1011                 return ret;
1012 
1013         writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);
1014 
1015         ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE);
1016         if (ret)
1017                 return ret;
1018 
1019         reinit_completion(&qup->xfer);
1020         enable_irq(qup->irq);
1021         if (!blk->is_tx_blk_mode) {
1022                 blk->tx_fifo_free = qup->out_fifo_sz;
1023 
1024                 if (is_rx)
1025                         qup_i2c_write_rx_tags_v1(qup);
1026                 else
1027                         qup_i2c_write_tx_fifo_v1(qup);
1028         }
1029 
1030         ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
1031         if (ret)
1032                 goto err;
1033 
1034         ret = qup_i2c_wait_for_complete(qup, qup->msg);
1035         if (ret)
1036                 goto err;
1037 
1038         ret = qup_i2c_bus_active(qup, ONE_BYTE);
1039 
1040 err:
1041         disable_irq(qup->irq);
1042         return ret;
1043 }
1044 
1045 static int qup_i2c_write_one(struct qup_i2c_dev *qup)
1046 {
1047         struct i2c_msg *msg = qup->msg;
1048         struct qup_i2c_block *blk = &qup->blk;
1049 
1050         qup->pos = 0;
1051         blk->total_tx_len = msg->len + 1;
1052         blk->total_rx_len = 0;
1053 
1054         return qup_i2c_conf_xfer_v1(qup, false);
1055 }
1056 
1057 static int qup_i2c_read_one(struct qup_i2c_dev *qup)
1058 {
1059         struct qup_i2c_block *blk = &qup->blk;
1060 
1061         qup->pos = 0;
1062         blk->total_tx_len = 2;
1063         blk->total_rx_len = qup->msg->len;
1064 
1065         return qup_i2c_conf_xfer_v1(qup, true);
1066 }
1067 
1068 static int qup_i2c_xfer(struct i2c_adapter *adap,
1069                         struct i2c_msg msgs[],
1070                         int num)
1071 {
1072         struct qup_i2c_dev *qup = i2c_get_adapdata(adap);
1073         int ret, idx;
1074 
1075         ret = pm_runtime_get_sync(qup->dev);
1076         if (ret < 0)
1077                 goto out;
1078 
1079         qup->bus_err = 0;
1080         qup->qup_err = 0;
1081 
1082         writel(1, qup->base + QUP_SW_RESET);
1083         ret = qup_i2c_poll_state(qup, QUP_RESET_STATE);
1084         if (ret)
1085                 goto out;
1086 
1087         /* Configure QUP as I2C mini core */
1088         writel(I2C_MINI_CORE | I2C_N_VAL, qup->base + QUP_CONFIG);
1089 
1090         for (idx = 0; idx < num; idx++) {
1091                 if (qup_i2c_poll_state_i2c_master(qup)) {
1092                         ret = -EIO;
1093                         goto out;
1094                 }
1095 
1096                 if (qup_i2c_check_msg_len(&msgs[idx])) {
1097                         ret = -EINVAL;
1098                         goto out;
1099                 }
1100 
1101                 qup->msg = &msgs[idx];
1102                 if (msgs[idx].flags & I2C_M_RD)
1103                         ret = qup_i2c_read_one(qup);
1104                 else
1105                         ret = qup_i2c_write_one(qup);
1106 
1107                 if (ret)
1108                         break;
1109 
1110                 ret = qup_i2c_change_state(qup, QUP_RESET_STATE);
1111                 if (ret)
1112                         break;
1113         }
1114 
1115         if (ret == 0)
1116                 ret = num;
1117 out:
1118 
1119         pm_runtime_mark_last_busy(qup->dev);
1120         pm_runtime_put_autosuspend(qup->dev);
1121 
1122         return ret;
1123 }
1124 
1125 /*
1126  * Configure registers related with reconfiguration during run and call it
1127  * before each i2c sub transfer.
1128  */
1129 static void qup_i2c_conf_count_v2(struct qup_i2c_dev *qup)
1130 {
1131         struct qup_i2c_block *blk = &qup->blk;
1132         u32 qup_config = I2C_MINI_CORE | I2C_N_VAL_V2;
1133 
1134         if (blk->is_tx_blk_mode)
1135                 writel(qup->config_run | blk->total_tx_len,
1136                        qup->base + QUP_MX_OUTPUT_CNT);
1137         else
1138                 writel(qup->config_run | blk->total_tx_len,
1139                        qup->base + QUP_MX_WRITE_CNT);
1140 
1141         if (blk->total_rx_len) {
1142                 if (blk->is_rx_blk_mode)
1143                         writel(qup->config_run | blk->total_rx_len,
1144                                qup->base + QUP_MX_INPUT_CNT);
1145                 else
1146                         writel(qup->config_run | blk->total_rx_len,
1147                                qup->base + QUP_MX_READ_CNT);
1148         } else {
1149                 qup_config |= QUP_NO_INPUT;
1150         }
1151 
1152         writel(qup_config, qup->base + QUP_CONFIG);
1153 }
1154 
1155 /*
1156  * Configure registers related with transfer mode (FIFO/Block)
1157  * before starting of i2c transfer. It will be called only once in
1158  * QUP RESET state.
1159  */
1160 static void qup_i2c_conf_mode_v2(struct qup_i2c_dev *qup)
1161 {
1162         struct qup_i2c_block *blk = &qup->blk;
1163         u32 io_mode = QUP_REPACK_EN;
1164 
1165         if (blk->is_tx_blk_mode) {
1166                 io_mode |= QUP_OUTPUT_BLK_MODE;
1167                 writel(0, qup->base + QUP_MX_WRITE_CNT);
1168         } else {
1169                 writel(0, qup->base + QUP_MX_OUTPUT_CNT);
1170         }
1171 
1172         if (blk->is_rx_blk_mode) {
1173                 io_mode |= QUP_INPUT_BLK_MODE;
1174                 writel(0, qup->base + QUP_MX_READ_CNT);
1175         } else {
1176                 writel(0, qup->base + QUP_MX_INPUT_CNT);
1177         }
1178 
1179         writel(io_mode, qup->base + QUP_IO_MODE);
1180 }
1181 
1182 /* Clear required variables before starting of any QUP v2 sub transfer. */
1183 static void qup_i2c_clear_blk_v2(struct qup_i2c_block *blk)
1184 {
1185         blk->send_last_word = false;
1186         blk->tx_tags_sent = false;
1187         blk->tx_fifo_data = 0;
1188         blk->tx_fifo_data_pos = 0;
1189         blk->tx_fifo_free = 0;
1190 
1191         blk->rx_tags_fetched = false;
1192         blk->rx_bytes_read = false;
1193         blk->rx_fifo_data = 0;
1194         blk->rx_fifo_data_pos = 0;
1195         blk->fifo_available = 0;
1196 }
1197 
1198 /* Receive data from RX FIFO for read message in QUP v2 i2c transfer. */
1199 static void qup_i2c_recv_data(struct qup_i2c_dev *qup)
1200 {
1201         struct qup_i2c_block *blk = &qup->blk;
1202         int j;
1203 
1204         for (j = blk->rx_fifo_data_pos;
1205              blk->cur_blk_len && blk->fifo_available;
1206              blk->cur_blk_len--, blk->fifo_available--) {
1207                 if (j == 0)
1208                         blk->rx_fifo_data = readl(qup->base + QUP_IN_FIFO_BASE);
1209 
1210                 *(blk->cur_data++) = blk->rx_fifo_data;
1211                 blk->rx_fifo_data >>= 8;
1212 
1213                 if (j == 3)
1214                         j = 0;
1215                 else
1216                         j++;
1217         }
1218 
1219         blk->rx_fifo_data_pos = j;
1220 }
1221 
1222 /* Receive tags for read message in QUP v2 i2c transfer. */
1223 static void qup_i2c_recv_tags(struct qup_i2c_dev *qup)
1224 {
1225         struct qup_i2c_block *blk = &qup->blk;
1226 
1227         blk->rx_fifo_data = readl(qup->base + QUP_IN_FIFO_BASE);
1228         blk->rx_fifo_data >>= blk->rx_tag_len  * 8;
1229         blk->rx_fifo_data_pos = blk->rx_tag_len;
1230         blk->fifo_available -= blk->rx_tag_len;
1231 }
1232 
1233 /*
1234  * Read the data and tags from RX FIFO. Since in read case, the tags will be
1235  * preceded by received data bytes so
1236  * 1. Check if rx_tags_fetched is false i.e. the start of QUP block so receive
1237  *    all tag bytes and discard that.
1238  * 2. Read the data from RX FIFO. When all the data bytes have been read then
1239  *    set rx_bytes_read to true.
1240  */
1241 static void qup_i2c_read_rx_fifo_v2(struct qup_i2c_dev *qup)
1242 {
1243         struct qup_i2c_block *blk = &qup->blk;
1244 
1245         if (!blk->rx_tags_fetched) {
1246                 qup_i2c_recv_tags(qup);
1247                 blk->rx_tags_fetched = true;
1248         }
1249 
1250         qup_i2c_recv_data(qup);
1251         if (!blk->cur_blk_len)
1252                 blk->rx_bytes_read = true;
1253 }
1254 
1255 /*
1256  * Write bytes in TX FIFO for write message in QUP v2 i2c transfer. QUP TX FIFO
1257  * write works on word basis (4 bytes). Append new data byte write for TX FIFO
1258  * in tx_fifo_data and write to TX FIFO when all the 4 bytes are present.
1259  */
1260 static void
1261 qup_i2c_write_blk_data(struct qup_i2c_dev *qup, u8 **data, unsigned int *len)
1262 {
1263         struct qup_i2c_block *blk = &qup->blk;
1264         unsigned int j;
1265 
1266         for (j = blk->tx_fifo_data_pos; *len && blk->tx_fifo_free;
1267              (*len)--, blk->tx_fifo_free--) {
1268                 blk->tx_fifo_data |= *(*data)++ << (j * 8);
1269                 if (j == 3) {
1270                         writel(blk->tx_fifo_data,
1271                                qup->base + QUP_OUT_FIFO_BASE);
1272                         blk->tx_fifo_data = 0x0;
1273                         j = 0;
1274                 } else {
1275                         j++;
1276                 }
1277         }
1278 
1279         blk->tx_fifo_data_pos = j;
1280 }
1281 
1282 /* Transfer tags for read message in QUP v2 i2c transfer. */
1283 static void qup_i2c_write_rx_tags_v2(struct qup_i2c_dev *qup)
1284 {
1285         struct qup_i2c_block *blk = &qup->blk;
1286 
1287         qup_i2c_write_blk_data(qup, &blk->cur_tx_tags, &blk->tx_tag_len);
1288         if (blk->tx_fifo_data_pos)
1289                 writel(blk->tx_fifo_data, qup->base + QUP_OUT_FIFO_BASE);
1290 }
1291 
1292 /*
1293  * Write the data and tags in TX FIFO. Since in write case, both tags and data
1294  * need to be written and QUP write tags can have maximum 256 data length, so
1295  *
1296  * 1. Check if tx_tags_sent is false i.e. the start of QUP block so write the
1297  *    tags to TX FIFO and set tx_tags_sent to true.
1298  * 2. Check if send_last_word is true. It will be set when last few data bytes
1299  *    (less than 4 bytes) are reamining to be written in FIFO because of no FIFO
1300  *    space. All this data bytes are available in tx_fifo_data so write this
1301  *    in FIFO.
1302  * 3. Write the data to TX FIFO and check for cur_blk_len. If it is non zero
1303  *    then more data is pending otherwise following 3 cases can be possible
1304  *    a. if tx_fifo_data_pos is zero i.e. all the data bytes in this block
1305  *       have been written in TX FIFO so nothing else is required.
1306  *    b. tx_fifo_free is non zero i.e tx FIFO is free so copy the remaining data
1307  *       from tx_fifo_data to tx FIFO. Since, qup_i2c_write_blk_data do write
1308  *       in 4 bytes and FIFO space is in multiple of 4 bytes so tx_fifo_free
1309  *       will be always greater than or equal to 4 bytes.
1310  *    c. tx_fifo_free is zero. In this case, last few bytes (less than 4
1311  *       bytes) are copied to tx_fifo_data but couldn't be sent because of
1312  *       FIFO full so make send_last_word true.
1313  */
1314 static void qup_i2c_write_tx_fifo_v2(struct qup_i2c_dev *qup)
1315 {
1316         struct qup_i2c_block *blk = &qup->blk;
1317 
1318         if (!blk->tx_tags_sent) {
1319                 qup_i2c_write_blk_data(qup, &blk->cur_tx_tags,
1320                                        &blk->tx_tag_len);
1321                 blk->tx_tags_sent = true;
1322         }
1323 
1324         if (blk->send_last_word)
1325                 goto send_last_word;
1326 
1327         qup_i2c_write_blk_data(qup, &blk->cur_data, &blk->cur_blk_len);
1328         if (!blk->cur_blk_len) {
1329                 if (!blk->tx_fifo_data_pos)
1330                         return;
1331 
1332                 if (blk->tx_fifo_free)
1333                         goto send_last_word;
1334 
1335                 blk->send_last_word = true;
1336         }
1337 
1338         return;
1339 
1340 send_last_word:
1341         writel(blk->tx_fifo_data, qup->base + QUP_OUT_FIFO_BASE);
1342 }
1343 
1344 /*
1345  * Main transfer function which read or write i2c data.
1346  * The QUP v2 supports reconfiguration during run in which multiple i2c sub
1347  * transfers can be scheduled.
1348  */
1349 static int
1350 qup_i2c_conf_xfer_v2(struct qup_i2c_dev *qup, bool is_rx, bool is_first,
1351                      bool change_pause_state)
1352 {
1353         struct qup_i2c_block *blk = &qup->blk;
1354         struct i2c_msg *msg = qup->msg;
1355         int ret;
1356 
1357         /*
1358          * Check if its SMBus Block read for which the top level read will be
1359          * done into 2 QUP reads. One with message length 1 while other one is
1360          * with actual length.
1361          */
1362         if (qup_i2c_check_msg_len(msg)) {
1363                 if (qup->is_smbus_read) {
1364                         /*
1365                          * If the message length is already read in
1366                          * the first byte of the buffer, account for
1367                          * that by setting the offset
1368                          */
1369                         blk->cur_data += 1;
1370                         is_first = false;
1371                 } else {
1372                         change_pause_state = false;
1373                 }
1374         }
1375 
1376         qup->config_run = is_first ? 0 : QUP_I2C_MX_CONFIG_DURING_RUN;
1377 
1378         qup_i2c_clear_blk_v2(blk);
1379         qup_i2c_conf_count_v2(qup);
1380 
1381         /* If it is first sub transfer, then configure i2c bus clocks */
1382         if (is_first) {
1383                 ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
1384                 if (ret)
1385                         return ret;
1386 
1387                 writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);
1388 
1389                 ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE);
1390                 if (ret)
1391                         return ret;
1392         }
1393 
1394         reinit_completion(&qup->xfer);
1395         enable_irq(qup->irq);
1396         /*
1397          * In FIFO mode, tx FIFO can be written directly while in block mode the
1398          * it will be written after getting OUT_BLOCK_WRITE_REQ interrupt
1399          */
1400         if (!blk->is_tx_blk_mode) {
1401                 blk->tx_fifo_free = qup->out_fifo_sz;
1402 
1403                 if (is_rx)
1404                         qup_i2c_write_rx_tags_v2(qup);
1405                 else
1406                         qup_i2c_write_tx_fifo_v2(qup);
1407         }
1408 
1409         ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
1410         if (ret)
1411                 goto err;
1412 
1413         ret = qup_i2c_wait_for_complete(qup, msg);
1414         if (ret)
1415                 goto err;
1416 
1417         /* Move to pause state for all the transfers, except last one */
1418         if (change_pause_state) {
1419                 ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE);
1420                 if (ret)
1421                         goto err;
1422         }
1423 
1424 err:
1425         disable_irq(qup->irq);
1426         return ret;
1427 }
1428 
1429 /*
1430  * Transfer one read/write message in i2c transfer. It splits the message into
1431  * multiple of blk_xfer_limit data length blocks and schedule each
1432  * QUP block individually.
1433  */
1434 static int qup_i2c_xfer_v2_msg(struct qup_i2c_dev *qup, int msg_id, bool is_rx)
1435 {
1436         int ret = 0;
1437         unsigned int data_len, i;
1438         struct i2c_msg *msg = qup->msg;
1439         struct qup_i2c_block *blk = &qup->blk;
1440         u8 *msg_buf = msg->buf;
1441 
1442         qup->blk_xfer_limit = is_rx ? RECV_MAX_DATA_LEN : QUP_READ_LIMIT;
1443         qup_i2c_set_blk_data(qup, msg);
1444 
1445         for (i = 0; i < blk->count; i++) {
1446                 data_len =  qup_i2c_get_data_len(qup);
1447                 blk->pos = i;
1448                 blk->cur_tx_tags = blk->tags;
1449                 blk->cur_blk_len = data_len;
1450                 blk->tx_tag_len =
1451                         qup_i2c_set_tags(blk->cur_tx_tags, qup, qup->msg);
1452 
1453                 blk->cur_data = msg_buf;
1454 
1455                 if (is_rx) {
1456                         blk->total_tx_len = blk->tx_tag_len;
1457                         blk->rx_tag_len = 2;
1458                         blk->total_rx_len = blk->rx_tag_len + data_len;
1459                 } else {
1460                         blk->total_tx_len = blk->tx_tag_len + data_len;
1461                         blk->total_rx_len = 0;
1462                 }
1463 
1464                 ret = qup_i2c_conf_xfer_v2(qup, is_rx, !msg_id && !i,
1465                                            !qup->is_last || i < blk->count - 1);
1466                 if (ret)
1467                         return ret;
1468 
1469                 /* Handle SMBus block read length */
1470                 if (qup_i2c_check_msg_len(msg) && msg->len == 1 &&
1471                     !qup->is_smbus_read) {
1472                         if (msg->buf[0] > I2C_SMBUS_BLOCK_MAX)
1473                                 return -EPROTO;
1474 
1475                         msg->len = msg->buf[0];
1476                         qup->is_smbus_read = true;
1477                         ret = qup_i2c_xfer_v2_msg(qup, msg_id, true);
1478                         qup->is_smbus_read = false;
1479                         if (ret)
1480                                 return ret;
1481 
1482                         msg->len += 1;
1483                 }
1484 
1485                 msg_buf += data_len;
1486                 blk->data_len -= qup->blk_xfer_limit;
1487         }
1488 
1489         return ret;
1490 }
1491 
1492 /*
1493  * QUP v2 supports 3 modes
1494  * Programmed IO using FIFO mode : Less than FIFO size
1495  * Programmed IO using Block mode : Greater than FIFO size
1496  * DMA using BAM : Appropriate for any transaction size but the address should
1497  *                 be DMA applicable
1498  *
1499  * This function determines the mode which will be used for this transfer. An
1500  * i2c transfer contains multiple message. Following are the rules to determine
1501  * the mode used.
1502  * 1. Determine complete length, maximum tx and rx length for complete transfer.
1503  * 2. If complete transfer length is greater than fifo size then use the DMA
1504  *    mode.
1505  * 3. In FIFO or block mode, tx and rx can operate in different mode so check
1506  *    for maximum tx and rx length to determine mode.
1507  */
1508 static int
1509 qup_i2c_determine_mode_v2(struct qup_i2c_dev *qup,
1510                           struct i2c_msg msgs[], int num)
1511 {
1512         int idx;
1513         bool no_dma = false;
1514         unsigned int max_tx_len = 0, max_rx_len = 0, total_len = 0;
1515 
1516         /* All i2c_msgs should be transferred using either dma or cpu */
1517         for (idx = 0; idx < num; idx++) {
1518                 if (msgs[idx].flags & I2C_M_RD)
1519                         max_rx_len = max_t(unsigned int, max_rx_len,
1520                                            msgs[idx].len);
1521                 else
1522                         max_tx_len = max_t(unsigned int, max_tx_len,
1523                                            msgs[idx].len);
1524 
1525                 if (is_vmalloc_addr(msgs[idx].buf))
1526                         no_dma = true;
1527 
1528                 total_len += msgs[idx].len;
1529         }
1530 
1531         if (!no_dma && qup->is_dma &&
1532             (total_len > qup->out_fifo_sz || total_len > qup->in_fifo_sz)) {
1533                 qup->use_dma = true;
1534         } else {
1535                 qup->blk.is_tx_blk_mode = max_tx_len > qup->out_fifo_sz -
1536                         QUP_MAX_TAGS_LEN ? true : false;
1537                 qup->blk.is_rx_blk_mode = max_rx_len > qup->in_fifo_sz -
1538                         READ_RX_TAGS_LEN ? true : false;
1539         }
1540 
1541         return 0;
1542 }
1543 
1544 static int qup_i2c_xfer_v2(struct i2c_adapter *adap,
1545                            struct i2c_msg msgs[],
1546                            int num)
1547 {
1548         struct qup_i2c_dev *qup = i2c_get_adapdata(adap);
1549         int ret, idx = 0;
1550 
1551         qup->bus_err = 0;
1552         qup->qup_err = 0;
1553 
1554         ret = pm_runtime_get_sync(qup->dev);
1555         if (ret < 0)
1556                 goto out;
1557 
1558         ret = qup_i2c_determine_mode_v2(qup, msgs, num);
1559         if (ret)
1560                 goto out;
1561 
1562         writel(1, qup->base + QUP_SW_RESET);
1563         ret = qup_i2c_poll_state(qup, QUP_RESET_STATE);
1564         if (ret)
1565                 goto out;
1566 
1567         /* Configure QUP as I2C mini core */
1568         writel(I2C_MINI_CORE | I2C_N_VAL_V2, qup->base + QUP_CONFIG);
1569         writel(QUP_V2_TAGS_EN, qup->base + QUP_I2C_MASTER_GEN);
1570 
1571         if (qup_i2c_poll_state_i2c_master(qup)) {
1572                 ret = -EIO;
1573                 goto out;
1574         }
1575 
1576         if (qup->use_dma) {
1577                 reinit_completion(&qup->xfer);
1578                 ret = qup_i2c_bam_xfer(adap, &msgs[0], num);
1579                 qup->use_dma = false;
1580         } else {
1581                 qup_i2c_conf_mode_v2(qup);
1582 
1583                 for (idx = 0; idx < num; idx++) {
1584                         qup->msg = &msgs[idx];
1585                         qup->is_last = idx == (num - 1);
1586 
1587                         ret = qup_i2c_xfer_v2_msg(qup, idx,
1588                                         !!(msgs[idx].flags & I2C_M_RD));
1589                         if (ret)
1590                                 break;
1591                 }
1592                 qup->msg = NULL;
1593         }
1594 
1595         if (!ret)
1596                 ret = qup_i2c_bus_active(qup, ONE_BYTE);
1597 
1598         if (!ret)
1599                 qup_i2c_change_state(qup, QUP_RESET_STATE);
1600 
1601         if (ret == 0)
1602                 ret = num;
1603 out:
1604         pm_runtime_mark_last_busy(qup->dev);
1605         pm_runtime_put_autosuspend(qup->dev);
1606 
1607         return ret;
1608 }
1609 
1610 static u32 qup_i2c_func(struct i2c_adapter *adap)
1611 {
1612         return I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK);
1613 }
1614 
1615 static const struct i2c_algorithm qup_i2c_algo = {
1616         .master_xfer    = qup_i2c_xfer,
1617         .functionality  = qup_i2c_func,
1618 };
1619 
1620 static const struct i2c_algorithm qup_i2c_algo_v2 = {
1621         .master_xfer    = qup_i2c_xfer_v2,
1622         .functionality  = qup_i2c_func,
1623 };
1624 
1625 /*
1626  * The QUP block will issue a NACK and STOP on the bus when reaching
1627  * the end of the read, the length of the read is specified as one byte
1628  * which limits the possible read to 256 (QUP_READ_LIMIT) bytes.
1629  */
1630 static const struct i2c_adapter_quirks qup_i2c_quirks = {
1631         .flags = I2C_AQ_NO_ZERO_LEN,
1632         .max_read_len = QUP_READ_LIMIT,
1633 };
1634 
1635 static const struct i2c_adapter_quirks qup_i2c_quirks_v2 = {
1636         .flags = I2C_AQ_NO_ZERO_LEN,
1637 };
1638 
1639 static void qup_i2c_enable_clocks(struct qup_i2c_dev *qup)
1640 {
1641         clk_prepare_enable(qup->clk);
1642         clk_prepare_enable(qup->pclk);
1643 }
1644 
1645 static void qup_i2c_disable_clocks(struct qup_i2c_dev *qup)
1646 {
1647         u32 config;
1648 
1649         qup_i2c_change_state(qup, QUP_RESET_STATE);
1650         clk_disable_unprepare(qup->clk);
1651         config = readl(qup->base + QUP_CONFIG);
1652         config |= QUP_CLOCK_AUTO_GATE;
1653         writel(config, qup->base + QUP_CONFIG);
1654         clk_disable_unprepare(qup->pclk);
1655 }
1656 
1657 static const struct acpi_device_id qup_i2c_acpi_match[] = {
1658         { "QCOM8010"},
1659         { },
1660 };
1661 MODULE_DEVICE_TABLE(acpi, qup_i2c_acpi_match);
1662 
1663 static int qup_i2c_probe(struct platform_device *pdev)
1664 {
1665         static const int blk_sizes[] = {4, 16, 32};
1666         struct qup_i2c_dev *qup;
1667         unsigned long one_bit_t;
1668         struct resource *res;
1669         u32 io_mode, hw_ver, size;
1670         int ret, fs_div, hs_div;
1671         u32 src_clk_freq = DEFAULT_SRC_CLK;
1672         u32 clk_freq = DEFAULT_CLK_FREQ;
1673         int blocks;
1674         bool is_qup_v1;
1675 
1676         qup = devm_kzalloc(&pdev->dev, sizeof(*qup), GFP_KERNEL);
1677         if (!qup)
1678                 return -ENOMEM;
1679 
1680         qup->dev = &pdev->dev;
1681         init_completion(&qup->xfer);
1682         platform_set_drvdata(pdev, qup);
1683 
1684         if (scl_freq) {
1685                 dev_notice(qup->dev, "Using override frequency of %u\n", scl_freq);
1686                 clk_freq = scl_freq;
1687         } else {
1688                 ret = device_property_read_u32(qup->dev, "clock-frequency", &clk_freq);
1689                 if (ret) {
1690                         dev_notice(qup->dev, "using default clock-frequency %d",
1691                                 DEFAULT_CLK_FREQ);
1692                 }
1693         }
1694 
1695         if (of_device_is_compatible(pdev->dev.of_node, "qcom,i2c-qup-v1.1.1")) {
1696                 qup->adap.algo = &qup_i2c_algo;
1697                 qup->adap.quirks = &qup_i2c_quirks;
1698                 is_qup_v1 = true;
1699         } else {
1700                 qup->adap.algo = &qup_i2c_algo_v2;
1701                 qup->adap.quirks = &qup_i2c_quirks_v2;
1702                 is_qup_v1 = false;
1703                 if (acpi_match_device(qup_i2c_acpi_match, qup->dev))
1704                         goto nodma;
1705                 else
1706                         ret = qup_i2c_req_dma(qup);
1707 
1708                 if (ret == -EPROBE_DEFER)
1709                         goto fail_dma;
1710                 else if (ret != 0)
1711                         goto nodma;
1712 
1713                 qup->max_xfer_sg_len = (MX_BLOCKS << 1);
1714                 blocks = (MX_DMA_BLOCKS << 1) + 1;
1715                 qup->btx.sg = devm_kcalloc(&pdev->dev,
1716                                            blocks, sizeof(*qup->btx.sg),
1717                                            GFP_KERNEL);
1718                 if (!qup->btx.sg) {
1719                         ret = -ENOMEM;
1720                         goto fail_dma;
1721                 }
1722                 sg_init_table(qup->btx.sg, blocks);
1723 
1724                 qup->brx.sg = devm_kcalloc(&pdev->dev,
1725                                            blocks, sizeof(*qup->brx.sg),
1726                                            GFP_KERNEL);
1727                 if (!qup->brx.sg) {
1728                         ret = -ENOMEM;
1729                         goto fail_dma;
1730                 }
1731                 sg_init_table(qup->brx.sg, blocks);
1732 
1733                 /* 2 tag bytes for each block + 5 for start, stop tags */
1734                 size = blocks * 2 + 5;
1735 
1736                 qup->start_tag.start = devm_kzalloc(&pdev->dev,
1737                                                     size, GFP_KERNEL);
1738                 if (!qup->start_tag.start) {
1739                         ret = -ENOMEM;
1740                         goto fail_dma;
1741                 }
1742 
1743                 qup->brx.tag.start = devm_kzalloc(&pdev->dev, 2, GFP_KERNEL);
1744                 if (!qup->brx.tag.start) {
1745                         ret = -ENOMEM;
1746                         goto fail_dma;
1747                 }
1748 
1749                 qup->btx.tag.start = devm_kzalloc(&pdev->dev, 2, GFP_KERNEL);
1750                 if (!qup->btx.tag.start) {
1751                         ret = -ENOMEM;
1752                         goto fail_dma;
1753                 }
1754                 qup->is_dma = true;
1755         }
1756 
1757 nodma:
1758         /* We support frequencies up to FAST Mode Plus (1MHz) */
1759         if (!clk_freq || clk_freq > I2C_FAST_MODE_PLUS_FREQ) {
1760                 dev_err(qup->dev, "clock frequency not supported %d\n",
1761                         clk_freq);
1762                 return -EINVAL;
1763         }
1764 
1765         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1766         qup->base = devm_ioremap_resource(qup->dev, res);
1767         if (IS_ERR(qup->base))
1768                 return PTR_ERR(qup->base);
1769 
1770         qup->irq = platform_get_irq(pdev, 0);
1771         if (qup->irq < 0) {
1772                 dev_err(qup->dev, "No IRQ defined\n");
1773                 return qup->irq;
1774         }
1775 
1776         if (has_acpi_companion(qup->dev)) {
1777                 ret = device_property_read_u32(qup->dev,
1778                                 "src-clock-hz", &src_clk_freq);
1779                 if (ret) {
1780                         dev_notice(qup->dev, "using default src-clock-hz %d",
1781                                 DEFAULT_SRC_CLK);
1782                 }
1783                 ACPI_COMPANION_SET(&qup->adap.dev, ACPI_COMPANION(qup->dev));
1784         } else {
1785                 qup->clk = devm_clk_get(qup->dev, "core");
1786                 if (IS_ERR(qup->clk)) {
1787                         dev_err(qup->dev, "Could not get core clock\n");
1788                         return PTR_ERR(qup->clk);
1789                 }
1790 
1791                 qup->pclk = devm_clk_get(qup->dev, "iface");
1792                 if (IS_ERR(qup->pclk)) {
1793                         dev_err(qup->dev, "Could not get iface clock\n");
1794                         return PTR_ERR(qup->pclk);
1795                 }
1796                 qup_i2c_enable_clocks(qup);
1797                 src_clk_freq = clk_get_rate(qup->clk);
1798         }
1799 
1800         /*
1801          * Bootloaders might leave a pending interrupt on certain QUP's,
1802          * so we reset the core before registering for interrupts.
1803          */
1804         writel(1, qup->base + QUP_SW_RESET);
1805         ret = qup_i2c_poll_state_valid(qup);
1806         if (ret)
1807                 goto fail;
1808 
1809         ret = devm_request_irq(qup->dev, qup->irq, qup_i2c_interrupt,
1810                                IRQF_TRIGGER_HIGH, "i2c_qup", qup);
1811         if (ret) {
1812                 dev_err(qup->dev, "Request %d IRQ failed\n", qup->irq);
1813                 goto fail;
1814         }
1815         disable_irq(qup->irq);
1816 
1817         hw_ver = readl(qup->base + QUP_HW_VERSION);
1818         dev_dbg(qup->dev, "Revision %x\n", hw_ver);
1819 
1820         io_mode = readl(qup->base + QUP_IO_MODE);
1821 
1822         /*
1823          * The block/fifo size w.r.t. 'actual data' is 1/2 due to 'tag'
1824          * associated with each byte written/received
1825          */
1826         size = QUP_OUTPUT_BLOCK_SIZE(io_mode);
1827         if (size >= ARRAY_SIZE(blk_sizes)) {
1828                 ret = -EIO;
1829                 goto fail;
1830         }
1831         qup->out_blk_sz = blk_sizes[size];
1832 
1833         size = QUP_INPUT_BLOCK_SIZE(io_mode);
1834         if (size >= ARRAY_SIZE(blk_sizes)) {
1835                 ret = -EIO;
1836                 goto fail;
1837         }
1838         qup->in_blk_sz = blk_sizes[size];
1839 
1840         if (is_qup_v1) {
1841                 /*
1842                  * in QUP v1, QUP_CONFIG uses N as 15 i.e 16 bits constitutes a
1843                  * single transfer but the block size is in bytes so divide the
1844                  * in_blk_sz and out_blk_sz by 2
1845                  */
1846                 qup->in_blk_sz /= 2;
1847                 qup->out_blk_sz /= 2;
1848                 qup->write_tx_fifo = qup_i2c_write_tx_fifo_v1;
1849                 qup->read_rx_fifo = qup_i2c_read_rx_fifo_v1;
1850                 qup->write_rx_tags = qup_i2c_write_rx_tags_v1;
1851         } else {
1852                 qup->write_tx_fifo = qup_i2c_write_tx_fifo_v2;
1853                 qup->read_rx_fifo = qup_i2c_read_rx_fifo_v2;
1854                 qup->write_rx_tags = qup_i2c_write_rx_tags_v2;
1855         }
1856 
1857         size = QUP_OUTPUT_FIFO_SIZE(io_mode);
1858         qup->out_fifo_sz = qup->out_blk_sz * (2 << size);
1859 
1860         size = QUP_INPUT_FIFO_SIZE(io_mode);
1861         qup->in_fifo_sz = qup->in_blk_sz * (2 << size);
1862 
1863         hs_div = 3;
1864         if (clk_freq <= I2C_STANDARD_FREQ) {
1865                 fs_div = ((src_clk_freq / clk_freq) / 2) - 3;
1866                 qup->clk_ctl = (hs_div << 8) | (fs_div & 0xff);
1867         } else {
1868                 /* 33%/66% duty cycle */
1869                 fs_div = ((src_clk_freq / clk_freq) - 6) * 2 / 3;
1870                 qup->clk_ctl = ((fs_div / 2) << 16) | (hs_div << 8) | (fs_div & 0xff);
1871         }
1872 
1873         /*
1874          * Time it takes for a byte to be clocked out on the bus.
1875          * Each byte takes 9 clock cycles (8 bits + 1 ack).
1876          */
1877         one_bit_t = (USEC_PER_SEC / clk_freq) + 1;
1878         qup->one_byte_t = one_bit_t * 9;
1879         qup->xfer_timeout = TOUT_MIN * HZ +
1880                 usecs_to_jiffies(MX_DMA_TX_RX_LEN * qup->one_byte_t);
1881 
1882         dev_dbg(qup->dev, "IN:block:%d, fifo:%d, OUT:block:%d, fifo:%d\n",
1883                 qup->in_blk_sz, qup->in_fifo_sz,
1884                 qup->out_blk_sz, qup->out_fifo_sz);
1885 
1886         i2c_set_adapdata(&qup->adap, qup);
1887         qup->adap.dev.parent = qup->dev;
1888         qup->adap.dev.of_node = pdev->dev.of_node;
1889         qup->is_last = true;
1890 
1891         strlcpy(qup->adap.name, "QUP I2C adapter", sizeof(qup->adap.name));
1892 
1893         pm_runtime_set_autosuspend_delay(qup->dev, MSEC_PER_SEC);
1894         pm_runtime_use_autosuspend(qup->dev);
1895         pm_runtime_set_active(qup->dev);
1896         pm_runtime_enable(qup->dev);
1897 
1898         ret = i2c_add_adapter(&qup->adap);
1899         if (ret)
1900                 goto fail_runtime;
1901 
1902         return 0;
1903 
1904 fail_runtime:
1905         pm_runtime_disable(qup->dev);
1906         pm_runtime_set_suspended(qup->dev);
1907 fail:
1908         qup_i2c_disable_clocks(qup);
1909 fail_dma:
1910         if (qup->btx.dma)
1911                 dma_release_channel(qup->btx.dma);
1912         if (qup->brx.dma)
1913                 dma_release_channel(qup->brx.dma);
1914         return ret;
1915 }
1916 
1917 static int qup_i2c_remove(struct platform_device *pdev)
1918 {
1919         struct qup_i2c_dev *qup = platform_get_drvdata(pdev);
1920 
1921         if (qup->is_dma) {
1922                 dma_release_channel(qup->btx.dma);
1923                 dma_release_channel(qup->brx.dma);
1924         }
1925 
1926         disable_irq(qup->irq);
1927         qup_i2c_disable_clocks(qup);
1928         i2c_del_adapter(&qup->adap);
1929         pm_runtime_disable(qup->dev);
1930         pm_runtime_set_suspended(qup->dev);
1931         return 0;
1932 }
1933 
1934 #ifdef CONFIG_PM
1935 static int qup_i2c_pm_suspend_runtime(struct device *device)
1936 {
1937         struct qup_i2c_dev *qup = dev_get_drvdata(device);
1938 
1939         dev_dbg(device, "pm_runtime: suspending...\n");
1940         qup_i2c_disable_clocks(qup);
1941         return 0;
1942 }
1943 
1944 static int qup_i2c_pm_resume_runtime(struct device *device)
1945 {
1946         struct qup_i2c_dev *qup = dev_get_drvdata(device);
1947 
1948         dev_dbg(device, "pm_runtime: resuming...\n");
1949         qup_i2c_enable_clocks(qup);
1950         return 0;
1951 }
1952 #endif
1953 
1954 #ifdef CONFIG_PM_SLEEP
1955 static int qup_i2c_suspend(struct device *device)
1956 {
1957         if (!pm_runtime_suspended(device))
1958                 return qup_i2c_pm_suspend_runtime(device);
1959         return 0;
1960 }
1961 
1962 static int qup_i2c_resume(struct device *device)
1963 {
1964         qup_i2c_pm_resume_runtime(device);
1965         pm_runtime_mark_last_busy(device);
1966         pm_request_autosuspend(device);
1967         return 0;
1968 }
1969 #endif
1970 
1971 static const struct dev_pm_ops qup_i2c_qup_pm_ops = {
1972         SET_SYSTEM_SLEEP_PM_OPS(
1973                 qup_i2c_suspend,
1974                 qup_i2c_resume)
1975         SET_RUNTIME_PM_OPS(
1976                 qup_i2c_pm_suspend_runtime,
1977                 qup_i2c_pm_resume_runtime,
1978                 NULL)
1979 };
1980 
1981 static const struct of_device_id qup_i2c_dt_match[] = {
1982         { .compatible = "qcom,i2c-qup-v1.1.1" },
1983         { .compatible = "qcom,i2c-qup-v2.1.1" },
1984         { .compatible = "qcom,i2c-qup-v2.2.1" },
1985         {}
1986 };
1987 MODULE_DEVICE_TABLE(of, qup_i2c_dt_match);
1988 
1989 static struct platform_driver qup_i2c_driver = {
1990         .probe  = qup_i2c_probe,
1991         .remove = qup_i2c_remove,
1992         .driver = {
1993                 .name = "i2c_qup",
1994                 .pm = &qup_i2c_qup_pm_ops,
1995                 .of_match_table = qup_i2c_dt_match,
1996                 .acpi_match_table = ACPI_PTR(qup_i2c_acpi_match),
1997         },
1998 };
1999 
2000 module_platform_driver(qup_i2c_driver);
2001 
2002 MODULE_LICENSE("GPL v2");
2003 MODULE_ALIAS("platform:i2c_qup");

/* [<][>][^][v][top][bottom][index][help] */