root/drivers/i2c/busses/i2c-img-scb.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. img_i2c_writel
  2. img_i2c_readl
  3. img_i2c_wr_rd_fence
  4. img_i2c_switch_mode
  5. img_i2c_raw_op
  6. img_i2c_atomic_op_name
  7. img_i2c_atomic_op
  8. img_i2c_atomic_start
  9. img_i2c_soft_reset
  10. img_i2c_transaction_halt
  11. img_i2c_read_fifo
  12. img_i2c_write_fifo
  13. img_i2c_read
  14. img_i2c_write
  15. img_i2c_complete_transaction
  16. img_i2c_raw_atomic_delay_handler
  17. img_i2c_raw
  18. img_i2c_sequence
  19. img_i2c_reset_start
  20. img_i2c_stop_start
  21. img_i2c_atomic
  22. img_i2c_check_timer
  23. img_i2c_auto
  24. img_i2c_isr
  25. img_i2c_reset_bus
  26. img_i2c_xfer
  27. img_i2c_func
  28. img_i2c_init
  29. img_i2c_probe
  30. img_i2c_remove
  31. img_i2c_runtime_suspend
  32. img_i2c_runtime_resume
  33. img_i2c_suspend
  34. img_i2c_resume

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * I2C adapter for the IMG Serial Control Bus (SCB) IP block.
   4  *
   5  * Copyright (C) 2009, 2010, 2012, 2014 Imagination Technologies Ltd.
   6  *
   7  * There are three ways that this I2C controller can be driven:
   8  *
   9  * - Raw control of the SDA and SCK signals.
  10  *
  11  *   This corresponds to MODE_RAW, which takes control of the signals
  12  *   directly for a certain number of clock cycles (the INT_TIMING
  13  *   interrupt can be used for timing).
  14  *
  15  * - Atomic commands. A low level I2C symbol (such as generate
  16  *   start/stop/ack/nack bit, generate byte, receive byte, and receive
  17  *   ACK) is given to the hardware, with detection of completion by bits
  18  *   in the LINESTAT register.
  19  *
  20  *   This mode of operation is used by MODE_ATOMIC, which uses an I2C
  21  *   state machine in the interrupt handler to compose/react to I2C
  22  *   transactions using atomic mode commands, and also by MODE_SEQUENCE,
  23  *   which emits a simple fixed sequence of atomic mode commands.
  24  *
  25  *   Due to software control, the use of atomic commands usually results
  26  *   in suboptimal use of the bus, with gaps between the I2C symbols while
  27  *   the driver decides what to do next.
  28  *
  29  * - Automatic mode. A bus address, and whether to read/write is
  30  *   specified, and the hardware takes care of the I2C state machine,
  31  *   using a FIFO to send/receive bytes of data to an I2C slave. The
  32  *   driver just has to keep the FIFO drained or filled in response to the
  33  *   appropriate FIFO interrupts.
  34  *
  35  *   This corresponds to MODE_AUTOMATIC, which manages the FIFOs and deals
  36  *   with control of repeated start bits between I2C messages.
  37  *
  38  *   Use of automatic mode and the FIFO can make much more efficient use
  39  *   of the bus compared to individual atomic commands, with potentially
  40  *   no wasted time between I2C symbols or I2C messages.
  41  *
  42  * In most cases MODE_AUTOMATIC is used, however if any of the messages in
  43  * a transaction are zero byte writes (e.g. used by i2cdetect for probing
  44  * the bus), MODE_ATOMIC must be used since automatic mode is normally
  45  * started by the writing of data into the FIFO.
  46  *
  47  * The other modes are used in specific circumstances where MODE_ATOMIC and
  48  * MODE_AUTOMATIC aren't appropriate. MODE_RAW is used to implement a bus
  49  * recovery routine. MODE_SEQUENCE is used to reset the bus and make sure
  50  * it is in a sane state.
  51  *
  52  * Notice that the driver implements a timer-based timeout mechanism.
  53  * The reason for this mechanism is to reduce the number of interrupts
  54  * received in automatic mode.
  55  *
  56  * The driver would get a slave event and transaction done interrupts for
  57  * each atomic mode command that gets completed. However, these events are
  58  * not needed in automatic mode, becase those atomic mode commands are
  59  * managed automatically by the hardware.
  60  *
  61  * In practice, normal I2C transactions will be complete well before you
  62  * get the timer interrupt, as the timer is re-scheduled during FIFO
  63  * maintenance and disabled after the transaction is complete.
  64  *
  65  * In this way normal automatic mode operation isn't impacted by
  66  * unnecessary interrupts, but the exceptional abort condition can still be
  67  * detected (with a slight delay).
  68  */
  69 
  70 #include <linux/bitops.h>
  71 #include <linux/clk.h>
  72 #include <linux/completion.h>
  73 #include <linux/err.h>
  74 #include <linux/i2c.h>
  75 #include <linux/init.h>
  76 #include <linux/interrupt.h>
  77 #include <linux/io.h>
  78 #include <linux/kernel.h>
  79 #include <linux/module.h>
  80 #include <linux/of_platform.h>
  81 #include <linux/platform_device.h>
  82 #include <linux/pm_runtime.h>
  83 #include <linux/slab.h>
  84 #include <linux/timer.h>
  85 
  86 /* Register offsets */
  87 
  88 #define SCB_STATUS_REG                  0x00
  89 #define SCB_OVERRIDE_REG                0x04
  90 #define SCB_READ_ADDR_REG               0x08
  91 #define SCB_READ_COUNT_REG              0x0c
  92 #define SCB_WRITE_ADDR_REG              0x10
  93 #define SCB_READ_DATA_REG               0x14
  94 #define SCB_WRITE_DATA_REG              0x18
  95 #define SCB_FIFO_STATUS_REG             0x1c
  96 #define SCB_CONTROL_SOFT_RESET          0x1f
  97 #define SCB_CLK_SET_REG                 0x3c
  98 #define SCB_INT_STATUS_REG              0x40
  99 #define SCB_INT_CLEAR_REG               0x44
 100 #define SCB_INT_MASK_REG                0x48
 101 #define SCB_CONTROL_REG                 0x4c
 102 #define SCB_TIME_TPL_REG                0x50
 103 #define SCB_TIME_TPH_REG                0x54
 104 #define SCB_TIME_TP2S_REG               0x58
 105 #define SCB_TIME_TBI_REG                0x60
 106 #define SCB_TIME_TSL_REG                0x64
 107 #define SCB_TIME_TDL_REG                0x68
 108 #define SCB_TIME_TSDL_REG               0x6c
 109 #define SCB_TIME_TSDH_REG               0x70
 110 #define SCB_READ_XADDR_REG              0x74
 111 #define SCB_WRITE_XADDR_REG             0x78
 112 #define SCB_WRITE_COUNT_REG             0x7c
 113 #define SCB_CORE_REV_REG                0x80
 114 #define SCB_TIME_TCKH_REG               0x84
 115 #define SCB_TIME_TCKL_REG               0x88
 116 #define SCB_FIFO_FLUSH_REG              0x8c
 117 #define SCB_READ_FIFO_REG               0x94
 118 #define SCB_CLEAR_REG                   0x98
 119 
 120 /* SCB_CONTROL_REG bits */
 121 
 122 #define SCB_CONTROL_CLK_ENABLE          0x1e0
 123 #define SCB_CONTROL_TRANSACTION_HALT    0x200
 124 
 125 #define FIFO_READ_FULL                  BIT(0)
 126 #define FIFO_READ_EMPTY                 BIT(1)
 127 #define FIFO_WRITE_FULL                 BIT(2)
 128 #define FIFO_WRITE_EMPTY                BIT(3)
 129 
 130 /* SCB_CLK_SET_REG bits */
 131 #define SCB_FILT_DISABLE                BIT(31)
 132 #define SCB_FILT_BYPASS                 BIT(30)
 133 #define SCB_FILT_INC_MASK               0x7f
 134 #define SCB_FILT_INC_SHIFT              16
 135 #define SCB_INC_MASK                    0x7f
 136 #define SCB_INC_SHIFT                   8
 137 
 138 /* SCB_INT_*_REG bits */
 139 
 140 #define INT_BUS_INACTIVE                BIT(0)
 141 #define INT_UNEXPECTED_START            BIT(1)
 142 #define INT_SCLK_LOW_TIMEOUT            BIT(2)
 143 #define INT_SDAT_LOW_TIMEOUT            BIT(3)
 144 #define INT_WRITE_ACK_ERR               BIT(4)
 145 #define INT_ADDR_ACK_ERR                BIT(5)
 146 #define INT_FIFO_FULL                   BIT(9)
 147 #define INT_FIFO_FILLING                BIT(10)
 148 #define INT_FIFO_EMPTY                  BIT(11)
 149 #define INT_FIFO_EMPTYING               BIT(12)
 150 #define INT_TRANSACTION_DONE            BIT(15)
 151 #define INT_SLAVE_EVENT                 BIT(16)
 152 #define INT_MASTER_HALTED               BIT(17)
 153 #define INT_TIMING                      BIT(18)
 154 #define INT_STOP_DETECTED               BIT(19)
 155 
 156 #define INT_FIFO_FULL_FILLING   (INT_FIFO_FULL  | INT_FIFO_FILLING)
 157 
 158 /* Level interrupts need clearing after handling instead of before */
 159 #define INT_LEVEL                       0x01e00
 160 
 161 /* Don't allow any interrupts while the clock may be off */
 162 #define INT_ENABLE_MASK_INACTIVE        0x00000
 163 
 164 /* Interrupt masks for the different driver modes */
 165 
 166 #define INT_ENABLE_MASK_RAW             INT_TIMING
 167 
 168 #define INT_ENABLE_MASK_ATOMIC          (INT_TRANSACTION_DONE | \
 169                                          INT_SLAVE_EVENT      | \
 170                                          INT_ADDR_ACK_ERR     | \
 171                                          INT_WRITE_ACK_ERR)
 172 
 173 #define INT_ENABLE_MASK_AUTOMATIC       (INT_SCLK_LOW_TIMEOUT | \
 174                                          INT_ADDR_ACK_ERR     | \
 175                                          INT_WRITE_ACK_ERR    | \
 176                                          INT_FIFO_FULL        | \
 177                                          INT_FIFO_FILLING     | \
 178                                          INT_FIFO_EMPTY       | \
 179                                          INT_MASTER_HALTED    | \
 180                                          INT_STOP_DETECTED)
 181 
 182 #define INT_ENABLE_MASK_WAITSTOP        (INT_SLAVE_EVENT      | \
 183                                          INT_ADDR_ACK_ERR     | \
 184                                          INT_WRITE_ACK_ERR)
 185 
 186 /* SCB_STATUS_REG fields */
 187 
 188 #define LINESTAT_SCLK_LINE_STATUS       BIT(0)
 189 #define LINESTAT_SCLK_EN                BIT(1)
 190 #define LINESTAT_SDAT_LINE_STATUS       BIT(2)
 191 #define LINESTAT_SDAT_EN                BIT(3)
 192 #define LINESTAT_DET_START_STATUS       BIT(4)
 193 #define LINESTAT_DET_STOP_STATUS        BIT(5)
 194 #define LINESTAT_DET_ACK_STATUS         BIT(6)
 195 #define LINESTAT_DET_NACK_STATUS        BIT(7)
 196 #define LINESTAT_BUS_IDLE               BIT(8)
 197 #define LINESTAT_T_DONE_STATUS          BIT(9)
 198 #define LINESTAT_SCLK_OUT_STATUS        BIT(10)
 199 #define LINESTAT_SDAT_OUT_STATUS        BIT(11)
 200 #define LINESTAT_GEN_LINE_MASK_STATUS   BIT(12)
 201 #define LINESTAT_START_BIT_DET          BIT(13)
 202 #define LINESTAT_STOP_BIT_DET           BIT(14)
 203 #define LINESTAT_ACK_DET                BIT(15)
 204 #define LINESTAT_NACK_DET               BIT(16)
 205 #define LINESTAT_INPUT_HELD_V           BIT(17)
 206 #define LINESTAT_ABORT_DET              BIT(18)
 207 #define LINESTAT_ACK_OR_NACK_DET        (LINESTAT_ACK_DET | LINESTAT_NACK_DET)
 208 #define LINESTAT_INPUT_DATA             0xff000000
 209 #define LINESTAT_INPUT_DATA_SHIFT       24
 210 
 211 #define LINESTAT_CLEAR_SHIFT            13
 212 #define LINESTAT_LATCHED                (0x3f << LINESTAT_CLEAR_SHIFT)
 213 
 214 /* SCB_OVERRIDE_REG fields */
 215 
 216 #define OVERRIDE_SCLK_OVR               BIT(0)
 217 #define OVERRIDE_SCLKEN_OVR             BIT(1)
 218 #define OVERRIDE_SDAT_OVR               BIT(2)
 219 #define OVERRIDE_SDATEN_OVR             BIT(3)
 220 #define OVERRIDE_MASTER                 BIT(9)
 221 #define OVERRIDE_LINE_OVR_EN            BIT(10)
 222 #define OVERRIDE_DIRECT                 BIT(11)
 223 #define OVERRIDE_CMD_SHIFT              4
 224 #define OVERRIDE_CMD_MASK               0x1f
 225 #define OVERRIDE_DATA_SHIFT             24
 226 
 227 #define OVERRIDE_SCLK_DOWN              (OVERRIDE_LINE_OVR_EN | \
 228                                          OVERRIDE_SCLKEN_OVR)
 229 #define OVERRIDE_SCLK_UP                (OVERRIDE_LINE_OVR_EN | \
 230                                          OVERRIDE_SCLKEN_OVR | \
 231                                          OVERRIDE_SCLK_OVR)
 232 #define OVERRIDE_SDAT_DOWN              (OVERRIDE_LINE_OVR_EN | \
 233                                          OVERRIDE_SDATEN_OVR)
 234 #define OVERRIDE_SDAT_UP                (OVERRIDE_LINE_OVR_EN | \
 235                                          OVERRIDE_SDATEN_OVR | \
 236                                          OVERRIDE_SDAT_OVR)
 237 
 238 /* OVERRIDE_CMD values */
 239 
 240 #define CMD_PAUSE                       0x00
 241 #define CMD_GEN_DATA                    0x01
 242 #define CMD_GEN_START                   0x02
 243 #define CMD_GEN_STOP                    0x03
 244 #define CMD_GEN_ACK                     0x04
 245 #define CMD_GEN_NACK                    0x05
 246 #define CMD_RET_DATA                    0x08
 247 #define CMD_RET_ACK                     0x09
 248 
 249 /* Fixed timing values */
 250 
 251 #define TIMEOUT_TBI                     0x0
 252 #define TIMEOUT_TSL                     0xffff
 253 #define TIMEOUT_TDL                     0x0
 254 
 255 /* Transaction timeout */
 256 
 257 #define IMG_I2C_TIMEOUT                 (msecs_to_jiffies(1000))
 258 
 259 /*
 260  * Worst incs are 1 (innacurate) and 16*256 (irregular).
 261  * So a sensible inc is the logarithmic mean: 64 (2^6), which is
 262  * in the middle of the valid range (0-127).
 263  */
 264 #define SCB_OPT_INC             64
 265 
 266 /* Setup the clock enable filtering for 25 ns */
 267 #define SCB_FILT_GLITCH         25
 268 
 269 /*
 270  * Bits to return from interrupt handler functions for different modes.
 271  * This delays completion until we've finished with the registers, so that the
 272  * function waiting for completion can safely disable the clock to save power.
 273  */
 274 #define ISR_COMPLETE_M          BIT(31)
 275 #define ISR_FATAL_M             BIT(30)
 276 #define ISR_WAITSTOP            BIT(29)
 277 #define ISR_STATUS_M            0x0000ffff      /* contains +ve errno */
 278 #define ISR_COMPLETE(err)       (ISR_COMPLETE_M | (ISR_STATUS_M & (err)))
 279 #define ISR_FATAL(err)          (ISR_COMPLETE(err) | ISR_FATAL_M)
 280 
 281 #define IMG_I2C_PM_TIMEOUT      1000 /* ms */
 282 
 283 enum img_i2c_mode {
 284         MODE_INACTIVE,
 285         MODE_RAW,
 286         MODE_ATOMIC,
 287         MODE_AUTOMATIC,
 288         MODE_SEQUENCE,
 289         MODE_FATAL,
 290         MODE_WAITSTOP,
 291         MODE_SUSPEND,
 292 };
 293 
 294 /* Timing parameters for i2c modes (in ns) */
 295 struct img_i2c_timings {
 296         const char *name;
 297         unsigned int max_bitrate;
 298         unsigned int tckh, tckl, tsdh, tsdl;
 299         unsigned int tp2s, tpl, tph;
 300 };
 301 
 302 /* The timings array must be ordered from slower to faster */
 303 static struct img_i2c_timings timings[] = {
 304         /* Standard mode */
 305         {
 306                 .name = "standard",
 307                 .max_bitrate = 100000,
 308                 .tckh = 4000,
 309                 .tckl = 4700,
 310                 .tsdh = 4700,
 311                 .tsdl = 8700,
 312                 .tp2s = 4700,
 313                 .tpl = 4700,
 314                 .tph = 4000,
 315         },
 316         /* Fast mode */
 317         {
 318                 .name = "fast",
 319                 .max_bitrate = 400000,
 320                 .tckh = 600,
 321                 .tckl = 1300,
 322                 .tsdh = 600,
 323                 .tsdl = 1200,
 324                 .tp2s = 1300,
 325                 .tpl = 600,
 326                 .tph = 600,
 327         },
 328 };
 329 
 330 /* Reset dance */
 331 static u8 img_i2c_reset_seq[] = { CMD_GEN_START,
 332                                   CMD_GEN_DATA, 0xff,
 333                                   CMD_RET_ACK,
 334                                   CMD_GEN_START,
 335                                   CMD_GEN_STOP,
 336                                   0 };
 337 /* Just issue a stop (after an abort condition) */
 338 static u8 img_i2c_stop_seq[] = {  CMD_GEN_STOP,
 339                                   0 };
 340 
 341 /* We're interested in different interrupts depending on the mode */
 342 static unsigned int img_i2c_int_enable_by_mode[] = {
 343         [MODE_INACTIVE]  = INT_ENABLE_MASK_INACTIVE,
 344         [MODE_RAW]       = INT_ENABLE_MASK_RAW,
 345         [MODE_ATOMIC]    = INT_ENABLE_MASK_ATOMIC,
 346         [MODE_AUTOMATIC] = INT_ENABLE_MASK_AUTOMATIC,
 347         [MODE_SEQUENCE]  = INT_ENABLE_MASK_ATOMIC,
 348         [MODE_FATAL]     = 0,
 349         [MODE_WAITSTOP]  = INT_ENABLE_MASK_WAITSTOP,
 350         [MODE_SUSPEND]   = 0,
 351 };
 352 
 353 /* Atomic command names */
 354 static const char * const img_i2c_atomic_cmd_names[] = {
 355         [CMD_PAUSE]     = "PAUSE",
 356         [CMD_GEN_DATA]  = "GEN_DATA",
 357         [CMD_GEN_START] = "GEN_START",
 358         [CMD_GEN_STOP]  = "GEN_STOP",
 359         [CMD_GEN_ACK]   = "GEN_ACK",
 360         [CMD_GEN_NACK]  = "GEN_NACK",
 361         [CMD_RET_DATA]  = "RET_DATA",
 362         [CMD_RET_ACK]   = "RET_ACK",
 363 };
 364 
 365 struct img_i2c {
 366         struct i2c_adapter adap;
 367 
 368         void __iomem *base;
 369 
 370         /*
 371          * The scb core clock is used to get the input frequency, and to disable
 372          * it after every set of transactions to save some power.
 373          */
 374         struct clk *scb_clk, *sys_clk;
 375         unsigned int bitrate;
 376         bool need_wr_rd_fence;
 377 
 378         /* state */
 379         struct completion msg_complete;
 380         spinlock_t lock;        /* lock before doing anything with the state */
 381         struct i2c_msg msg;
 382 
 383         /* After the last transaction, wait for a stop bit */
 384         bool last_msg;
 385         int msg_status;
 386 
 387         enum img_i2c_mode mode;
 388         u32 int_enable;         /* depends on mode */
 389         u32 line_status;        /* line status over command */
 390 
 391         /*
 392          * To avoid slave event interrupts in automatic mode, use a timer to
 393          * poll the abort condition if we don't get an interrupt for too long.
 394          */
 395         struct timer_list check_timer;
 396         bool t_halt;
 397 
 398         /* atomic mode state */
 399         bool at_t_done;
 400         bool at_slave_event;
 401         int at_cur_cmd;
 402         u8 at_cur_data;
 403 
 404         /* Sequence: either reset or stop. See img_i2c_sequence. */
 405         u8 *seq;
 406 
 407         /* raw mode */
 408         unsigned int raw_timeout;
 409 };
 410 
 411 static int img_i2c_runtime_suspend(struct device *dev);
 412 static int img_i2c_runtime_resume(struct device *dev);
 413 
 414 static void img_i2c_writel(struct img_i2c *i2c, u32 offset, u32 value)
 415 {
 416         writel(value, i2c->base + offset);
 417 }
 418 
 419 static u32 img_i2c_readl(struct img_i2c *i2c, u32 offset)
 420 {
 421         return readl(i2c->base + offset);
 422 }
 423 
 424 /*
 425  * The code to read from the master read fifo, and write to the master
 426  * write fifo, checks a bit in an SCB register before every byte to
 427  * ensure that the fifo is not full (write fifo) or empty (read fifo).
 428  * Due to clock domain crossing inside the SCB block the updated value
 429  * of this bit is only visible after 2 cycles.
 430  *
 431  * The scb_wr_rd_fence() function does 2 dummy writes (to the read-only
 432  * revision register), and it's called after reading from or writing to the
 433  * fifos to ensure that subsequent reads of the fifo status bits do not read
 434  * stale values.
 435  */
 436 static void img_i2c_wr_rd_fence(struct img_i2c *i2c)
 437 {
 438         if (i2c->need_wr_rd_fence) {
 439                 img_i2c_writel(i2c, SCB_CORE_REV_REG, 0);
 440                 img_i2c_writel(i2c, SCB_CORE_REV_REG, 0);
 441         }
 442 }
 443 
 444 static void img_i2c_switch_mode(struct img_i2c *i2c, enum img_i2c_mode mode)
 445 {
 446         i2c->mode = mode;
 447         i2c->int_enable = img_i2c_int_enable_by_mode[mode];
 448         i2c->line_status = 0;
 449 }
 450 
 451 static void img_i2c_raw_op(struct img_i2c *i2c)
 452 {
 453         i2c->raw_timeout = 0;
 454         img_i2c_writel(i2c, SCB_OVERRIDE_REG,
 455                 OVERRIDE_SCLKEN_OVR |
 456                 OVERRIDE_SDATEN_OVR |
 457                 OVERRIDE_MASTER |
 458                 OVERRIDE_LINE_OVR_EN |
 459                 OVERRIDE_DIRECT |
 460                 ((i2c->at_cur_cmd & OVERRIDE_CMD_MASK) << OVERRIDE_CMD_SHIFT) |
 461                 (i2c->at_cur_data << OVERRIDE_DATA_SHIFT));
 462 }
 463 
 464 static const char *img_i2c_atomic_op_name(unsigned int cmd)
 465 {
 466         if (unlikely(cmd >= ARRAY_SIZE(img_i2c_atomic_cmd_names)))
 467                 return "UNKNOWN";
 468         return img_i2c_atomic_cmd_names[cmd];
 469 }
 470 
 471 /* Send a single atomic mode command to the hardware */
 472 static void img_i2c_atomic_op(struct img_i2c *i2c, int cmd, u8 data)
 473 {
 474         i2c->at_cur_cmd = cmd;
 475         i2c->at_cur_data = data;
 476 
 477         /* work around lack of data setup time when generating data */
 478         if (cmd == CMD_GEN_DATA && i2c->mode == MODE_ATOMIC) {
 479                 u32 line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
 480 
 481                 if (line_status & LINESTAT_SDAT_LINE_STATUS && !(data & 0x80)) {
 482                         /* hold the data line down for a moment */
 483                         img_i2c_switch_mode(i2c, MODE_RAW);
 484                         img_i2c_raw_op(i2c);
 485                         return;
 486                 }
 487         }
 488 
 489         dev_dbg(i2c->adap.dev.parent,
 490                 "atomic cmd=%s (%d) data=%#x\n",
 491                 img_i2c_atomic_op_name(cmd), cmd, data);
 492         i2c->at_t_done = (cmd == CMD_RET_DATA || cmd == CMD_RET_ACK);
 493         i2c->at_slave_event = false;
 494         i2c->line_status = 0;
 495 
 496         img_i2c_writel(i2c, SCB_OVERRIDE_REG,
 497                 ((cmd & OVERRIDE_CMD_MASK) << OVERRIDE_CMD_SHIFT) |
 498                 OVERRIDE_MASTER |
 499                 OVERRIDE_DIRECT |
 500                 (data << OVERRIDE_DATA_SHIFT));
 501 }
 502 
 503 /* Start a transaction in atomic mode */
 504 static void img_i2c_atomic_start(struct img_i2c *i2c)
 505 {
 506         img_i2c_switch_mode(i2c, MODE_ATOMIC);
 507         img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
 508         img_i2c_atomic_op(i2c, CMD_GEN_START, 0x00);
 509 }
 510 
 511 static void img_i2c_soft_reset(struct img_i2c *i2c)
 512 {
 513         i2c->t_halt = false;
 514         img_i2c_writel(i2c, SCB_CONTROL_REG, 0);
 515         img_i2c_writel(i2c, SCB_CONTROL_REG,
 516                        SCB_CONTROL_CLK_ENABLE | SCB_CONTROL_SOFT_RESET);
 517 }
 518 
 519 /*
 520  * Enable or release transaction halt for control of repeated starts.
 521  * In version 3.3 of the IP when transaction halt is set, an interrupt
 522  * will be generated after each byte of a transfer instead of after
 523  * every transfer but before the stop bit.
 524  * Due to this behaviour we have to be careful that every time we
 525  * release the transaction halt we have to re-enable it straight away
 526  * so that we only process a single byte, not doing so will result in
 527  * all remaining bytes been processed and a stop bit being issued,
 528  * which will prevent us having a repeated start.
 529  */
 530 static void img_i2c_transaction_halt(struct img_i2c *i2c, bool t_halt)
 531 {
 532         u32 val;
 533 
 534         if (i2c->t_halt == t_halt)
 535                 return;
 536         i2c->t_halt = t_halt;
 537         val = img_i2c_readl(i2c, SCB_CONTROL_REG);
 538         if (t_halt)
 539                 val |= SCB_CONTROL_TRANSACTION_HALT;
 540         else
 541                 val &= ~SCB_CONTROL_TRANSACTION_HALT;
 542         img_i2c_writel(i2c, SCB_CONTROL_REG, val);
 543 }
 544 
 545 /* Drain data from the FIFO into the buffer (automatic mode) */
 546 static void img_i2c_read_fifo(struct img_i2c *i2c)
 547 {
 548         while (i2c->msg.len) {
 549                 u32 fifo_status;
 550                 u8 data;
 551 
 552                 img_i2c_wr_rd_fence(i2c);
 553                 fifo_status = img_i2c_readl(i2c, SCB_FIFO_STATUS_REG);
 554                 if (fifo_status & FIFO_READ_EMPTY)
 555                         break;
 556 
 557                 data = img_i2c_readl(i2c, SCB_READ_DATA_REG);
 558                 *i2c->msg.buf = data;
 559 
 560                 img_i2c_writel(i2c, SCB_READ_FIFO_REG, 0xff);
 561                 i2c->msg.len--;
 562                 i2c->msg.buf++;
 563         }
 564 }
 565 
 566 /* Fill the FIFO with data from the buffer (automatic mode) */
 567 static void img_i2c_write_fifo(struct img_i2c *i2c)
 568 {
 569         while (i2c->msg.len) {
 570                 u32 fifo_status;
 571 
 572                 img_i2c_wr_rd_fence(i2c);
 573                 fifo_status = img_i2c_readl(i2c, SCB_FIFO_STATUS_REG);
 574                 if (fifo_status & FIFO_WRITE_FULL)
 575                         break;
 576 
 577                 img_i2c_writel(i2c, SCB_WRITE_DATA_REG, *i2c->msg.buf);
 578                 i2c->msg.len--;
 579                 i2c->msg.buf++;
 580         }
 581 
 582         /* Disable fifo emptying interrupt if nothing more to write */
 583         if (!i2c->msg.len)
 584                 i2c->int_enable &= ~INT_FIFO_EMPTYING;
 585 }
 586 
 587 /* Start a read transaction in automatic mode */
 588 static void img_i2c_read(struct img_i2c *i2c)
 589 {
 590         img_i2c_switch_mode(i2c, MODE_AUTOMATIC);
 591         if (!i2c->last_msg)
 592                 i2c->int_enable |= INT_SLAVE_EVENT;
 593 
 594         img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
 595         img_i2c_writel(i2c, SCB_READ_ADDR_REG, i2c->msg.addr);
 596         img_i2c_writel(i2c, SCB_READ_COUNT_REG, i2c->msg.len);
 597 
 598         mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
 599 }
 600 
 601 /* Start a write transaction in automatic mode */
 602 static void img_i2c_write(struct img_i2c *i2c)
 603 {
 604         img_i2c_switch_mode(i2c, MODE_AUTOMATIC);
 605         if (!i2c->last_msg)
 606                 i2c->int_enable |= INT_SLAVE_EVENT;
 607 
 608         img_i2c_writel(i2c, SCB_WRITE_ADDR_REG, i2c->msg.addr);
 609         img_i2c_writel(i2c, SCB_WRITE_COUNT_REG, i2c->msg.len);
 610 
 611         mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
 612         img_i2c_write_fifo(i2c);
 613 
 614         /* img_i2c_write_fifo() may modify int_enable */
 615         img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
 616 }
 617 
 618 /*
 619  * Indicate that the transaction is complete. This is called from the
 620  * ISR to wake up the waiting thread, after which the ISR must not
 621  * access any more SCB registers.
 622  */
 623 static void img_i2c_complete_transaction(struct img_i2c *i2c, int status)
 624 {
 625         img_i2c_switch_mode(i2c, MODE_INACTIVE);
 626         if (status) {
 627                 i2c->msg_status = status;
 628                 img_i2c_transaction_halt(i2c, false);
 629         }
 630         complete(&i2c->msg_complete);
 631 }
 632 
 633 static unsigned int img_i2c_raw_atomic_delay_handler(struct img_i2c *i2c,
 634                                         u32 int_status, u32 line_status)
 635 {
 636         /* Stay in raw mode for this, so we don't just loop infinitely */
 637         img_i2c_atomic_op(i2c, i2c->at_cur_cmd, i2c->at_cur_data);
 638         img_i2c_switch_mode(i2c, MODE_ATOMIC);
 639         return 0;
 640 }
 641 
 642 static unsigned int img_i2c_raw(struct img_i2c *i2c, u32 int_status,
 643                                 u32 line_status)
 644 {
 645         if (int_status & INT_TIMING) {
 646                 if (i2c->raw_timeout == 0)
 647                         return img_i2c_raw_atomic_delay_handler(i2c,
 648                                 int_status, line_status);
 649                 --i2c->raw_timeout;
 650         }
 651         return 0;
 652 }
 653 
 654 static unsigned int img_i2c_sequence(struct img_i2c *i2c, u32 int_status)
 655 {
 656         static const unsigned int continue_bits[] = {
 657                 [CMD_GEN_START] = LINESTAT_START_BIT_DET,
 658                 [CMD_GEN_DATA]  = LINESTAT_INPUT_HELD_V,
 659                 [CMD_RET_ACK]   = LINESTAT_ACK_DET | LINESTAT_NACK_DET,
 660                 [CMD_RET_DATA]  = LINESTAT_INPUT_HELD_V,
 661                 [CMD_GEN_STOP]  = LINESTAT_STOP_BIT_DET,
 662         };
 663         int next_cmd = -1;
 664         u8 next_data = 0x00;
 665 
 666         if (int_status & INT_SLAVE_EVENT)
 667                 i2c->at_slave_event = true;
 668         if (int_status & INT_TRANSACTION_DONE)
 669                 i2c->at_t_done = true;
 670 
 671         if (!i2c->at_slave_event || !i2c->at_t_done)
 672                 return 0;
 673 
 674         /* wait if no continue bits are set */
 675         if (i2c->at_cur_cmd >= 0 &&
 676             i2c->at_cur_cmd < ARRAY_SIZE(continue_bits)) {
 677                 unsigned int cont_bits = continue_bits[i2c->at_cur_cmd];
 678 
 679                 if (cont_bits) {
 680                         cont_bits |= LINESTAT_ABORT_DET;
 681                         if (!(i2c->line_status & cont_bits))
 682                                 return 0;
 683                 }
 684         }
 685 
 686         /* follow the sequence of commands in i2c->seq */
 687         next_cmd = *i2c->seq;
 688         /* stop on a nil */
 689         if (!next_cmd) {
 690                 img_i2c_writel(i2c, SCB_OVERRIDE_REG, 0);
 691                 return ISR_COMPLETE(0);
 692         }
 693         /* when generating data, the next byte is the data */
 694         if (next_cmd == CMD_GEN_DATA) {
 695                 ++i2c->seq;
 696                 next_data = *i2c->seq;
 697         }
 698         ++i2c->seq;
 699         img_i2c_atomic_op(i2c, next_cmd, next_data);
 700 
 701         return 0;
 702 }
 703 
 704 static void img_i2c_reset_start(struct img_i2c *i2c)
 705 {
 706         /* Initiate the magic dance */
 707         img_i2c_switch_mode(i2c, MODE_SEQUENCE);
 708         img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
 709         i2c->seq = img_i2c_reset_seq;
 710         i2c->at_slave_event = true;
 711         i2c->at_t_done = true;
 712         i2c->at_cur_cmd = -1;
 713 
 714         /* img_i2c_reset_seq isn't empty so the following won't fail */
 715         img_i2c_sequence(i2c, 0);
 716 }
 717 
 718 static void img_i2c_stop_start(struct img_i2c *i2c)
 719 {
 720         /* Initiate a stop bit sequence */
 721         img_i2c_switch_mode(i2c, MODE_SEQUENCE);
 722         img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
 723         i2c->seq = img_i2c_stop_seq;
 724         i2c->at_slave_event = true;
 725         i2c->at_t_done = true;
 726         i2c->at_cur_cmd = -1;
 727 
 728         /* img_i2c_stop_seq isn't empty so the following won't fail */
 729         img_i2c_sequence(i2c, 0);
 730 }
 731 
 732 static unsigned int img_i2c_atomic(struct img_i2c *i2c,
 733                                    u32 int_status,
 734                                    u32 line_status)
 735 {
 736         int next_cmd = -1;
 737         u8 next_data = 0x00;
 738 
 739         if (int_status & INT_SLAVE_EVENT)
 740                 i2c->at_slave_event = true;
 741         if (int_status & INT_TRANSACTION_DONE)
 742                 i2c->at_t_done = true;
 743 
 744         if (!i2c->at_slave_event || !i2c->at_t_done)
 745                 goto next_atomic_cmd;
 746         if (i2c->line_status & LINESTAT_ABORT_DET) {
 747                 dev_dbg(i2c->adap.dev.parent, "abort condition detected\n");
 748                 next_cmd = CMD_GEN_STOP;
 749                 i2c->msg_status = -EIO;
 750                 goto next_atomic_cmd;
 751         }
 752 
 753         /* i2c->at_cur_cmd may have completed */
 754         switch (i2c->at_cur_cmd) {
 755         case CMD_GEN_START:
 756                 next_cmd = CMD_GEN_DATA;
 757                 next_data = i2c_8bit_addr_from_msg(&i2c->msg);
 758                 break;
 759         case CMD_GEN_DATA:
 760                 if (i2c->line_status & LINESTAT_INPUT_HELD_V)
 761                         next_cmd = CMD_RET_ACK;
 762                 break;
 763         case CMD_RET_ACK:
 764                 if (i2c->line_status & LINESTAT_ACK_DET ||
 765                     (i2c->line_status & LINESTAT_NACK_DET &&
 766                     i2c->msg.flags & I2C_M_IGNORE_NAK)) {
 767                         if (i2c->msg.len == 0) {
 768                                 next_cmd = CMD_GEN_STOP;
 769                         } else if (i2c->msg.flags & I2C_M_RD) {
 770                                 next_cmd = CMD_RET_DATA;
 771                         } else {
 772                                 next_cmd = CMD_GEN_DATA;
 773                                 next_data = *i2c->msg.buf;
 774                                 --i2c->msg.len;
 775                                 ++i2c->msg.buf;
 776                         }
 777                 } else if (i2c->line_status & LINESTAT_NACK_DET) {
 778                         i2c->msg_status = -EIO;
 779                         next_cmd = CMD_GEN_STOP;
 780                 }
 781                 break;
 782         case CMD_RET_DATA:
 783                 if (i2c->line_status & LINESTAT_INPUT_HELD_V) {
 784                         *i2c->msg.buf = (i2c->line_status &
 785                                                 LINESTAT_INPUT_DATA)
 786                                         >> LINESTAT_INPUT_DATA_SHIFT;
 787                         --i2c->msg.len;
 788                         ++i2c->msg.buf;
 789                         if (i2c->msg.len)
 790                                 next_cmd = CMD_GEN_ACK;
 791                         else
 792                                 next_cmd = CMD_GEN_NACK;
 793                 }
 794                 break;
 795         case CMD_GEN_ACK:
 796                 if (i2c->line_status & LINESTAT_ACK_DET) {
 797                         next_cmd = CMD_RET_DATA;
 798                 } else {
 799                         i2c->msg_status = -EIO;
 800                         next_cmd = CMD_GEN_STOP;
 801                 }
 802                 break;
 803         case CMD_GEN_NACK:
 804                 next_cmd = CMD_GEN_STOP;
 805                 break;
 806         case CMD_GEN_STOP:
 807                 img_i2c_writel(i2c, SCB_OVERRIDE_REG, 0);
 808                 return ISR_COMPLETE(0);
 809         default:
 810                 dev_err(i2c->adap.dev.parent, "bad atomic command %d\n",
 811                         i2c->at_cur_cmd);
 812                 i2c->msg_status = -EIO;
 813                 next_cmd = CMD_GEN_STOP;
 814                 break;
 815         }
 816 
 817 next_atomic_cmd:
 818         if (next_cmd != -1) {
 819                 /* don't actually stop unless we're the last transaction */
 820                 if (next_cmd == CMD_GEN_STOP && !i2c->msg_status &&
 821                                                 !i2c->last_msg)
 822                         return ISR_COMPLETE(0);
 823                 img_i2c_atomic_op(i2c, next_cmd, next_data);
 824         }
 825         return 0;
 826 }
 827 
 828 /*
 829  * Timer function to check if something has gone wrong in automatic mode (so we
 830  * don't have to handle so many interrupts just to catch an exception).
 831  */
 832 static void img_i2c_check_timer(struct timer_list *t)
 833 {
 834         struct img_i2c *i2c = from_timer(i2c, t, check_timer);
 835         unsigned long flags;
 836         unsigned int line_status;
 837 
 838         spin_lock_irqsave(&i2c->lock, flags);
 839         line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
 840 
 841         /* check for an abort condition */
 842         if (line_status & LINESTAT_ABORT_DET) {
 843                 dev_dbg(i2c->adap.dev.parent,
 844                         "abort condition detected by check timer\n");
 845                 /* enable slave event interrupt mask to trigger irq */
 846                 img_i2c_writel(i2c, SCB_INT_MASK_REG,
 847                                i2c->int_enable | INT_SLAVE_EVENT);
 848         }
 849 
 850         spin_unlock_irqrestore(&i2c->lock, flags);
 851 }
 852 
 853 static unsigned int img_i2c_auto(struct img_i2c *i2c,
 854                                  unsigned int int_status,
 855                                  unsigned int line_status)
 856 {
 857         if (int_status & (INT_WRITE_ACK_ERR | INT_ADDR_ACK_ERR))
 858                 return ISR_COMPLETE(EIO);
 859 
 860         if (line_status & LINESTAT_ABORT_DET) {
 861                 dev_dbg(i2c->adap.dev.parent, "abort condition detected\n");
 862                 /* empty the read fifo */
 863                 if ((i2c->msg.flags & I2C_M_RD) &&
 864                     (int_status & INT_FIFO_FULL_FILLING))
 865                         img_i2c_read_fifo(i2c);
 866                 /* use atomic mode and try to force a stop bit */
 867                 i2c->msg_status = -EIO;
 868                 img_i2c_stop_start(i2c);
 869                 return 0;
 870         }
 871 
 872         /* Enable transaction halt on start bit */
 873         if (!i2c->last_msg && line_status & LINESTAT_START_BIT_DET) {
 874                 img_i2c_transaction_halt(i2c, !i2c->last_msg);
 875                 /* we're no longer interested in the slave event */
 876                 i2c->int_enable &= ~INT_SLAVE_EVENT;
 877         }
 878 
 879         mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
 880 
 881         if (int_status & INT_STOP_DETECTED) {
 882                 /* Drain remaining data in FIFO and complete transaction */
 883                 if (i2c->msg.flags & I2C_M_RD)
 884                         img_i2c_read_fifo(i2c);
 885                 return ISR_COMPLETE(0);
 886         }
 887 
 888         if (i2c->msg.flags & I2C_M_RD) {
 889                 if (int_status & (INT_FIFO_FULL_FILLING | INT_MASTER_HALTED)) {
 890                         img_i2c_read_fifo(i2c);
 891                         if (i2c->msg.len == 0)
 892                                 return ISR_WAITSTOP;
 893                 }
 894         } else {
 895                 if (int_status & (INT_FIFO_EMPTY | INT_MASTER_HALTED)) {
 896                         if ((int_status & INT_FIFO_EMPTY) &&
 897                             i2c->msg.len == 0)
 898                                 return ISR_WAITSTOP;
 899                         img_i2c_write_fifo(i2c);
 900                 }
 901         }
 902         if (int_status & INT_MASTER_HALTED) {
 903                 /*
 904                  * Release and then enable transaction halt, to
 905                  * allow only a single byte to proceed.
 906                  */
 907                 img_i2c_transaction_halt(i2c, false);
 908                 img_i2c_transaction_halt(i2c, !i2c->last_msg);
 909         }
 910 
 911         return 0;
 912 }
 913 
 914 static irqreturn_t img_i2c_isr(int irq, void *dev_id)
 915 {
 916         struct img_i2c *i2c = (struct img_i2c *)dev_id;
 917         u32 int_status, line_status;
 918         /* We handle transaction completion AFTER accessing registers */
 919         unsigned int hret;
 920 
 921         /* Read interrupt status register. */
 922         int_status = img_i2c_readl(i2c, SCB_INT_STATUS_REG);
 923         /* Clear detected interrupts. */
 924         img_i2c_writel(i2c, SCB_INT_CLEAR_REG, int_status);
 925 
 926         /*
 927          * Read line status and clear it until it actually is clear.  We have
 928          * to be careful not to lose any line status bits that get latched.
 929          */
 930         line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
 931         if (line_status & LINESTAT_LATCHED) {
 932                 img_i2c_writel(i2c, SCB_CLEAR_REG,
 933                               (line_status & LINESTAT_LATCHED)
 934                                 >> LINESTAT_CLEAR_SHIFT);
 935                 img_i2c_wr_rd_fence(i2c);
 936         }
 937 
 938         spin_lock(&i2c->lock);
 939 
 940         /* Keep track of line status bits received */
 941         i2c->line_status &= ~LINESTAT_INPUT_DATA;
 942         i2c->line_status |= line_status;
 943 
 944         /*
 945          * Certain interrupts indicate that sclk low timeout is not
 946          * a problem. If any of these are set, just continue.
 947          */
 948         if ((int_status & INT_SCLK_LOW_TIMEOUT) &&
 949             !(int_status & (INT_SLAVE_EVENT |
 950                             INT_FIFO_EMPTY |
 951                             INT_FIFO_FULL))) {
 952                 dev_crit(i2c->adap.dev.parent,
 953                          "fatal: clock low timeout occurred %s addr 0x%02x\n",
 954                          (i2c->msg.flags & I2C_M_RD) ? "reading" : "writing",
 955                          i2c->msg.addr);
 956                 hret = ISR_FATAL(EIO);
 957                 goto out;
 958         }
 959 
 960         if (i2c->mode == MODE_ATOMIC)
 961                 hret = img_i2c_atomic(i2c, int_status, line_status);
 962         else if (i2c->mode == MODE_AUTOMATIC)
 963                 hret = img_i2c_auto(i2c, int_status, line_status);
 964         else if (i2c->mode == MODE_SEQUENCE)
 965                 hret = img_i2c_sequence(i2c, int_status);
 966         else if (i2c->mode == MODE_WAITSTOP && (int_status & INT_SLAVE_EVENT) &&
 967                          (line_status & LINESTAT_STOP_BIT_DET))
 968                 hret = ISR_COMPLETE(0);
 969         else if (i2c->mode == MODE_RAW)
 970                 hret = img_i2c_raw(i2c, int_status, line_status);
 971         else
 972                 hret = 0;
 973 
 974         /* Clear detected level interrupts. */
 975         img_i2c_writel(i2c, SCB_INT_CLEAR_REG, int_status & INT_LEVEL);
 976 
 977 out:
 978         if (hret & ISR_WAITSTOP) {
 979                 /*
 980                  * Only wait for stop on last message.
 981                  * Also we may already have detected the stop bit.
 982                  */
 983                 if (!i2c->last_msg || i2c->line_status & LINESTAT_STOP_BIT_DET)
 984                         hret = ISR_COMPLETE(0);
 985                 else
 986                         img_i2c_switch_mode(i2c, MODE_WAITSTOP);
 987         }
 988 
 989         /* now we've finished using regs, handle transaction completion */
 990         if (hret & ISR_COMPLETE_M) {
 991                 int status = -(hret & ISR_STATUS_M);
 992 
 993                 img_i2c_complete_transaction(i2c, status);
 994                 if (hret & ISR_FATAL_M)
 995                         img_i2c_switch_mode(i2c, MODE_FATAL);
 996         }
 997 
 998         /* Enable interrupts (int_enable may be altered by changing mode) */
 999         img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
1000 
1001         spin_unlock(&i2c->lock);
1002 
1003         return IRQ_HANDLED;
1004 }
1005 
1006 /* Force a bus reset sequence and wait for it to complete */
1007 static int img_i2c_reset_bus(struct img_i2c *i2c)
1008 {
1009         unsigned long flags;
1010         unsigned long time_left;
1011 
1012         spin_lock_irqsave(&i2c->lock, flags);
1013         reinit_completion(&i2c->msg_complete);
1014         img_i2c_reset_start(i2c);
1015         spin_unlock_irqrestore(&i2c->lock, flags);
1016 
1017         time_left = wait_for_completion_timeout(&i2c->msg_complete,
1018                                               IMG_I2C_TIMEOUT);
1019         if (time_left == 0)
1020                 return -ETIMEDOUT;
1021         return 0;
1022 }
1023 
1024 static int img_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs,
1025                         int num)
1026 {
1027         struct img_i2c *i2c = i2c_get_adapdata(adap);
1028         bool atomic = false;
1029         int i, ret;
1030         unsigned long time_left;
1031 
1032         if (i2c->mode == MODE_SUSPEND) {
1033                 WARN(1, "refusing to service transaction in suspended state\n");
1034                 return -EIO;
1035         }
1036 
1037         if (i2c->mode == MODE_FATAL)
1038                 return -EIO;
1039 
1040         for (i = 0; i < num; i++) {
1041                 /*
1042                  * 0 byte reads are not possible because the slave could try
1043                  * and pull the data line low, preventing a stop bit.
1044                  */
1045                 if (!msgs[i].len && msgs[i].flags & I2C_M_RD)
1046                         return -EIO;
1047                 /*
1048                  * 0 byte writes are possible and used for probing, but we
1049                  * cannot do them in automatic mode, so use atomic mode
1050                  * instead.
1051                  *
1052                  * Also, the I2C_M_IGNORE_NAK mode can only be implemented
1053                  * in atomic mode.
1054                  */
1055                 if (!msgs[i].len ||
1056                     (msgs[i].flags & I2C_M_IGNORE_NAK))
1057                         atomic = true;
1058         }
1059 
1060         ret = pm_runtime_get_sync(adap->dev.parent);
1061         if (ret < 0)
1062                 return ret;
1063 
1064         for (i = 0; i < num; i++) {
1065                 struct i2c_msg *msg = &msgs[i];
1066                 unsigned long flags;
1067 
1068                 spin_lock_irqsave(&i2c->lock, flags);
1069 
1070                 /*
1071                  * Make a copy of the message struct. We mustn't modify the
1072                  * original or we'll confuse drivers and i2c-dev.
1073                  */
1074                 i2c->msg = *msg;
1075                 i2c->msg_status = 0;
1076 
1077                 /*
1078                  * After the last message we must have waited for a stop bit.
1079                  * Not waiting can cause problems when the clock is disabled
1080                  * before the stop bit is sent, and the linux I2C interface
1081                  * requires separate transfers not to joined with repeated
1082                  * start.
1083                  */
1084                 i2c->last_msg = (i == num - 1);
1085                 reinit_completion(&i2c->msg_complete);
1086 
1087                 /*
1088                  * Clear line status and all interrupts before starting a
1089                  * transfer, as we may have unserviced interrupts from
1090                  * previous transfers that might be handled in the context
1091                  * of the new transfer.
1092                  */
1093                 img_i2c_writel(i2c, SCB_INT_CLEAR_REG, ~0);
1094                 img_i2c_writel(i2c, SCB_CLEAR_REG, ~0);
1095 
1096                 if (atomic) {
1097                         img_i2c_atomic_start(i2c);
1098                 } else {
1099                         /*
1100                          * Enable transaction halt if not the last message in
1101                          * the queue so that we can control repeated starts.
1102                          */
1103                         img_i2c_transaction_halt(i2c, !i2c->last_msg);
1104 
1105                         if (msg->flags & I2C_M_RD)
1106                                 img_i2c_read(i2c);
1107                         else
1108                                 img_i2c_write(i2c);
1109 
1110                         /*
1111                          * Release and then enable transaction halt, to
1112                          * allow only a single byte to proceed.
1113                          * This doesn't have an effect on the initial transfer
1114                          * but will allow the following transfers to start
1115                          * processing if the previous transfer was marked as
1116                          * complete while the i2c block was halted.
1117                          */
1118                         img_i2c_transaction_halt(i2c, false);
1119                         img_i2c_transaction_halt(i2c, !i2c->last_msg);
1120                 }
1121                 spin_unlock_irqrestore(&i2c->lock, flags);
1122 
1123                 time_left = wait_for_completion_timeout(&i2c->msg_complete,
1124                                                       IMG_I2C_TIMEOUT);
1125                 del_timer_sync(&i2c->check_timer);
1126 
1127                 if (time_left == 0) {
1128                         dev_err(adap->dev.parent, "i2c transfer timed out\n");
1129                         i2c->msg_status = -ETIMEDOUT;
1130                         break;
1131                 }
1132 
1133                 if (i2c->msg_status)
1134                         break;
1135         }
1136 
1137         pm_runtime_mark_last_busy(adap->dev.parent);
1138         pm_runtime_put_autosuspend(adap->dev.parent);
1139 
1140         return i2c->msg_status ? i2c->msg_status : num;
1141 }
1142 
1143 static u32 img_i2c_func(struct i2c_adapter *adap)
1144 {
1145         return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
1146 }
1147 
1148 static const struct i2c_algorithm img_i2c_algo = {
1149         .master_xfer = img_i2c_xfer,
1150         .functionality = img_i2c_func,
1151 };
1152 
1153 static int img_i2c_init(struct img_i2c *i2c)
1154 {
1155         unsigned int clk_khz, bitrate_khz, clk_period, tckh, tckl, tsdh;
1156         unsigned int i, data, prescale, inc, int_bitrate, filt;
1157         struct img_i2c_timings timing;
1158         u32 rev;
1159         int ret;
1160 
1161         ret = pm_runtime_get_sync(i2c->adap.dev.parent);
1162         if (ret < 0)
1163                 return ret;
1164 
1165         rev = img_i2c_readl(i2c, SCB_CORE_REV_REG);
1166         if ((rev & 0x00ffffff) < 0x00020200) {
1167                 dev_info(i2c->adap.dev.parent,
1168                          "Unknown hardware revision (%d.%d.%d.%d)\n",
1169                          (rev >> 24) & 0xff, (rev >> 16) & 0xff,
1170                          (rev >> 8) & 0xff, rev & 0xff);
1171                 pm_runtime_mark_last_busy(i2c->adap.dev.parent);
1172                 pm_runtime_put_autosuspend(i2c->adap.dev.parent);
1173                 return -EINVAL;
1174         }
1175 
1176         /* Fencing enabled by default. */
1177         i2c->need_wr_rd_fence = true;
1178 
1179         /* Determine what mode we're in from the bitrate */
1180         timing = timings[0];
1181         for (i = 0; i < ARRAY_SIZE(timings); i++) {
1182                 if (i2c->bitrate <= timings[i].max_bitrate) {
1183                         timing = timings[i];
1184                         break;
1185                 }
1186         }
1187         if (i2c->bitrate > timings[ARRAY_SIZE(timings) - 1].max_bitrate) {
1188                 dev_warn(i2c->adap.dev.parent,
1189                          "requested bitrate (%u) is higher than the max bitrate supported (%u)\n",
1190                          i2c->bitrate,
1191                          timings[ARRAY_SIZE(timings) - 1].max_bitrate);
1192                 timing = timings[ARRAY_SIZE(timings) - 1];
1193                 i2c->bitrate = timing.max_bitrate;
1194         }
1195 
1196         bitrate_khz = i2c->bitrate / 1000;
1197         clk_khz = clk_get_rate(i2c->scb_clk) / 1000;
1198 
1199         /* Find the prescale that would give us that inc (approx delay = 0) */
1200         prescale = SCB_OPT_INC * clk_khz / (256 * 16 * bitrate_khz);
1201         prescale = clamp_t(unsigned int, prescale, 1, 8);
1202         clk_khz /= prescale;
1203 
1204         /* Setup the clock increment value */
1205         inc = (256 * 16 * bitrate_khz) / clk_khz;
1206 
1207         /*
1208          * The clock generation logic allows to filter glitches on the bus.
1209          * This filter is able to remove bus glitches shorter than 50ns.
1210          * If the clock enable rate is greater than 20 MHz, no filtering
1211          * is required, so we need to disable it.
1212          * If it's between the 20-40 MHz range, there's no need to divide
1213          * the clock to get a filter.
1214          */
1215         if (clk_khz < 20000) {
1216                 filt = SCB_FILT_DISABLE;
1217         } else if (clk_khz < 40000) {
1218                 filt = SCB_FILT_BYPASS;
1219         } else {
1220                 /* Calculate filter clock */
1221                 filt = (64000 / ((clk_khz / 1000) * SCB_FILT_GLITCH));
1222 
1223                 /* Scale up if needed */
1224                 if (64000 % ((clk_khz / 1000) * SCB_FILT_GLITCH))
1225                         inc++;
1226 
1227                 if (filt > SCB_FILT_INC_MASK)
1228                         filt = SCB_FILT_INC_MASK;
1229 
1230                 filt = (filt & SCB_FILT_INC_MASK) << SCB_FILT_INC_SHIFT;
1231         }
1232         data = filt | ((inc & SCB_INC_MASK) << SCB_INC_SHIFT) | (prescale - 1);
1233         img_i2c_writel(i2c, SCB_CLK_SET_REG, data);
1234 
1235         /* Obtain the clock period of the fx16 clock in ns */
1236         clk_period = (256 * 1000000) / (clk_khz * inc);
1237 
1238         /* Calculate the bitrate in terms of internal clock pulses */
1239         int_bitrate = 1000000 / (bitrate_khz * clk_period);
1240         if ((1000000 % (bitrate_khz * clk_period)) >=
1241             ((bitrate_khz * clk_period) / 2))
1242                 int_bitrate++;
1243 
1244         /*
1245          * Setup clock duty cycle, start with 50% and adjust TCKH and TCKL
1246          * values from there if they don't meet minimum timing requirements
1247          */
1248         tckh = int_bitrate / 2;
1249         tckl = int_bitrate - tckh;
1250 
1251         /* Adjust TCKH and TCKL values */
1252         data = DIV_ROUND_UP(timing.tckl, clk_period);
1253 
1254         if (tckl < data) {
1255                 tckl = data;
1256                 tckh = int_bitrate - tckl;
1257         }
1258 
1259         if (tckh > 0)
1260                 --tckh;
1261 
1262         if (tckl > 0)
1263                 --tckl;
1264 
1265         img_i2c_writel(i2c, SCB_TIME_TCKH_REG, tckh);
1266         img_i2c_writel(i2c, SCB_TIME_TCKL_REG, tckl);
1267 
1268         /* Setup TSDH value */
1269         tsdh = DIV_ROUND_UP(timing.tsdh, clk_period);
1270 
1271         if (tsdh > 1)
1272                 data = tsdh - 1;
1273         else
1274                 data = 0x01;
1275         img_i2c_writel(i2c, SCB_TIME_TSDH_REG, data);
1276 
1277         /* This value is used later */
1278         tsdh = data;
1279 
1280         /* Setup TPL value */
1281         data = timing.tpl / clk_period;
1282         if (data > 0)
1283                 --data;
1284         img_i2c_writel(i2c, SCB_TIME_TPL_REG, data);
1285 
1286         /* Setup TPH value */
1287         data = timing.tph / clk_period;
1288         if (data > 0)
1289                 --data;
1290         img_i2c_writel(i2c, SCB_TIME_TPH_REG, data);
1291 
1292         /* Setup TSDL value to TPL + TSDH + 2 */
1293         img_i2c_writel(i2c, SCB_TIME_TSDL_REG, data + tsdh + 2);
1294 
1295         /* Setup TP2S value */
1296         data = timing.tp2s / clk_period;
1297         if (data > 0)
1298                 --data;
1299         img_i2c_writel(i2c, SCB_TIME_TP2S_REG, data);
1300 
1301         img_i2c_writel(i2c, SCB_TIME_TBI_REG, TIMEOUT_TBI);
1302         img_i2c_writel(i2c, SCB_TIME_TSL_REG, TIMEOUT_TSL);
1303         img_i2c_writel(i2c, SCB_TIME_TDL_REG, TIMEOUT_TDL);
1304 
1305         /* Take module out of soft reset and enable clocks */
1306         img_i2c_soft_reset(i2c);
1307 
1308         /* Disable all interrupts */
1309         img_i2c_writel(i2c, SCB_INT_MASK_REG, 0);
1310 
1311         /* Clear all interrupts */
1312         img_i2c_writel(i2c, SCB_INT_CLEAR_REG, ~0);
1313 
1314         /* Clear the scb_line_status events */
1315         img_i2c_writel(i2c, SCB_CLEAR_REG, ~0);
1316 
1317         /* Enable interrupts */
1318         img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
1319 
1320         /* Perform a synchronous sequence to reset the bus */
1321         ret = img_i2c_reset_bus(i2c);
1322 
1323         pm_runtime_mark_last_busy(i2c->adap.dev.parent);
1324         pm_runtime_put_autosuspend(i2c->adap.dev.parent);
1325 
1326         return ret;
1327 }
1328 
1329 static int img_i2c_probe(struct platform_device *pdev)
1330 {
1331         struct device_node *node = pdev->dev.of_node;
1332         struct img_i2c *i2c;
1333         struct resource *res;
1334         int irq, ret;
1335         u32 val;
1336 
1337         i2c = devm_kzalloc(&pdev->dev, sizeof(struct img_i2c), GFP_KERNEL);
1338         if (!i2c)
1339                 return -ENOMEM;
1340 
1341         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1342         i2c->base = devm_ioremap_resource(&pdev->dev, res);
1343         if (IS_ERR(i2c->base))
1344                 return PTR_ERR(i2c->base);
1345 
1346         irq = platform_get_irq(pdev, 0);
1347         if (irq < 0) {
1348                 dev_err(&pdev->dev, "can't get irq number\n");
1349                 return irq;
1350         }
1351 
1352         i2c->sys_clk = devm_clk_get(&pdev->dev, "sys");
1353         if (IS_ERR(i2c->sys_clk)) {
1354                 dev_err(&pdev->dev, "can't get system clock\n");
1355                 return PTR_ERR(i2c->sys_clk);
1356         }
1357 
1358         i2c->scb_clk = devm_clk_get(&pdev->dev, "scb");
1359         if (IS_ERR(i2c->scb_clk)) {
1360                 dev_err(&pdev->dev, "can't get core clock\n");
1361                 return PTR_ERR(i2c->scb_clk);
1362         }
1363 
1364         ret = devm_request_irq(&pdev->dev, irq, img_i2c_isr, 0,
1365                                pdev->name, i2c);
1366         if (ret) {
1367                 dev_err(&pdev->dev, "can't request irq %d\n", irq);
1368                 return ret;
1369         }
1370 
1371         /* Set up the exception check timer */
1372         timer_setup(&i2c->check_timer, img_i2c_check_timer, 0);
1373 
1374         i2c->bitrate = timings[0].max_bitrate;
1375         if (!of_property_read_u32(node, "clock-frequency", &val))
1376                 i2c->bitrate = val;
1377 
1378         i2c_set_adapdata(&i2c->adap, i2c);
1379         i2c->adap.dev.parent = &pdev->dev;
1380         i2c->adap.dev.of_node = node;
1381         i2c->adap.owner = THIS_MODULE;
1382         i2c->adap.algo = &img_i2c_algo;
1383         i2c->adap.retries = 5;
1384         i2c->adap.nr = pdev->id;
1385         snprintf(i2c->adap.name, sizeof(i2c->adap.name), "IMG SCB I2C");
1386 
1387         img_i2c_switch_mode(i2c, MODE_INACTIVE);
1388         spin_lock_init(&i2c->lock);
1389         init_completion(&i2c->msg_complete);
1390 
1391         platform_set_drvdata(pdev, i2c);
1392 
1393         pm_runtime_set_autosuspend_delay(&pdev->dev, IMG_I2C_PM_TIMEOUT);
1394         pm_runtime_use_autosuspend(&pdev->dev);
1395         pm_runtime_enable(&pdev->dev);
1396         if (!pm_runtime_enabled(&pdev->dev)) {
1397                 ret = img_i2c_runtime_resume(&pdev->dev);
1398                 if (ret)
1399                         return ret;
1400         }
1401 
1402         ret = img_i2c_init(i2c);
1403         if (ret)
1404                 goto rpm_disable;
1405 
1406         ret = i2c_add_numbered_adapter(&i2c->adap);
1407         if (ret < 0)
1408                 goto rpm_disable;
1409 
1410         return 0;
1411 
1412 rpm_disable:
1413         if (!pm_runtime_enabled(&pdev->dev))
1414                 img_i2c_runtime_suspend(&pdev->dev);
1415         pm_runtime_disable(&pdev->dev);
1416         pm_runtime_dont_use_autosuspend(&pdev->dev);
1417         return ret;
1418 }
1419 
1420 static int img_i2c_remove(struct platform_device *dev)
1421 {
1422         struct img_i2c *i2c = platform_get_drvdata(dev);
1423 
1424         i2c_del_adapter(&i2c->adap);
1425         pm_runtime_disable(&dev->dev);
1426         if (!pm_runtime_status_suspended(&dev->dev))
1427                 img_i2c_runtime_suspend(&dev->dev);
1428 
1429         return 0;
1430 }
1431 
1432 static int img_i2c_runtime_suspend(struct device *dev)
1433 {
1434         struct img_i2c *i2c = dev_get_drvdata(dev);
1435 
1436         clk_disable_unprepare(i2c->scb_clk);
1437         clk_disable_unprepare(i2c->sys_clk);
1438 
1439         return 0;
1440 }
1441 
1442 static int img_i2c_runtime_resume(struct device *dev)
1443 {
1444         struct img_i2c *i2c = dev_get_drvdata(dev);
1445         int ret;
1446 
1447         ret = clk_prepare_enable(i2c->sys_clk);
1448         if (ret) {
1449                 dev_err(dev, "Unable to enable sys clock\n");
1450                 return ret;
1451         }
1452 
1453         ret = clk_prepare_enable(i2c->scb_clk);
1454         if (ret) {
1455                 dev_err(dev, "Unable to enable scb clock\n");
1456                 clk_disable_unprepare(i2c->sys_clk);
1457                 return ret;
1458         }
1459 
1460         return 0;
1461 }
1462 
1463 #ifdef CONFIG_PM_SLEEP
1464 static int img_i2c_suspend(struct device *dev)
1465 {
1466         struct img_i2c *i2c = dev_get_drvdata(dev);
1467         int ret;
1468 
1469         ret = pm_runtime_force_suspend(dev);
1470         if (ret)
1471                 return ret;
1472 
1473         img_i2c_switch_mode(i2c, MODE_SUSPEND);
1474 
1475         return 0;
1476 }
1477 
1478 static int img_i2c_resume(struct device *dev)
1479 {
1480         struct img_i2c *i2c = dev_get_drvdata(dev);
1481         int ret;
1482 
1483         ret = pm_runtime_force_resume(dev);
1484         if (ret)
1485                 return ret;
1486 
1487         img_i2c_init(i2c);
1488 
1489         return 0;
1490 }
1491 #endif /* CONFIG_PM_SLEEP */
1492 
1493 static const struct dev_pm_ops img_i2c_pm = {
1494         SET_RUNTIME_PM_OPS(img_i2c_runtime_suspend,
1495                            img_i2c_runtime_resume,
1496                            NULL)
1497         SET_SYSTEM_SLEEP_PM_OPS(img_i2c_suspend, img_i2c_resume)
1498 };
1499 
1500 static const struct of_device_id img_scb_i2c_match[] = {
1501         { .compatible = "img,scb-i2c" },
1502         { }
1503 };
1504 MODULE_DEVICE_TABLE(of, img_scb_i2c_match);
1505 
1506 static struct platform_driver img_scb_i2c_driver = {
1507         .driver = {
1508                 .name           = "img-i2c-scb",
1509                 .of_match_table = img_scb_i2c_match,
1510                 .pm             = &img_i2c_pm,
1511         },
1512         .probe = img_i2c_probe,
1513         .remove = img_i2c_remove,
1514 };
1515 module_platform_driver(img_scb_i2c_driver);
1516 
1517 MODULE_AUTHOR("James Hogan <jhogan@kernel.org>");
1518 MODULE_DESCRIPTION("IMG host I2C driver");
1519 MODULE_LICENSE("GPL v2");

/* [<][>][^][v][top][bottom][index][help] */