root/drivers/acpi/osl.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. acpi_request_region
  2. acpi_reserve_resources
  3. acpi_os_printf
  4. acpi_os_vprintf
  5. setup_acpi_rsdp
  6. acpi_os_get_root_pointer
  7. acpi_map_lookup
  8. acpi_map_vaddr_lookup
  9. acpi_os_get_iomem
  10. acpi_map_lookup_virt
  11. acpi_map
  12. acpi_unmap
  13. acpi_os_map_iomem
  14. acpi_os_map_memory
  15. acpi_os_drop_map_ref
  16. acpi_os_map_cleanup
  17. acpi_os_unmap_iomem
  18. acpi_os_unmap_memory
  19. acpi_os_map_generic_address
  20. acpi_os_unmap_generic_address
  21. acpi_os_get_physical_address
  22. acpi_rev_override_setup
  23. acpi_os_predefined_override
  24. acpi_irq
  25. acpi_os_install_interrupt_handler
  26. acpi_os_remove_interrupt_handler
  27. acpi_os_sleep
  28. acpi_os_stall
  29. acpi_os_get_timer
  30. acpi_os_read_port
  31. acpi_os_write_port
  32. acpi_os_read_iomem
  33. acpi_os_read_memory
  34. acpi_os_write_memory
  35. acpi_os_read_pci_configuration
  36. acpi_os_write_pci_configuration
  37. acpi_os_execute_deferred
  38. acpi_register_debugger
  39. acpi_unregister_debugger
  40. acpi_debugger_create_thread
  41. acpi_debugger_write_log
  42. acpi_debugger_read_cmd
  43. acpi_debugger_wait_command_ready
  44. acpi_debugger_notify_command_complete
  45. acpi_debugger_init
  46. acpi_os_execute
  47. acpi_os_wait_events_complete
  48. acpi_hotplug_work_fn
  49. acpi_hotplug_schedule
  50. acpi_queue_hotplug_work
  51. acpi_os_create_semaphore
  52. acpi_os_delete_semaphore
  53. acpi_os_wait_semaphore
  54. acpi_os_signal_semaphore
  55. acpi_os_get_line
  56. acpi_os_wait_command_ready
  57. acpi_os_notify_command_complete
  58. acpi_os_signal
  59. acpi_os_name_setup
  60. acpi_no_auto_serialize_setup
  61. acpi_enforce_resources_setup
  62. acpi_check_resource_conflict
  63. acpi_check_region
  64. acpi_deactivate_mem_region
  65. acpi_release_memory
  66. acpi_resources_are_enforced
  67. acpi_os_delete_lock
  68. acpi_os_acquire_lock
  69. acpi_os_release_lock
  70. acpi_os_create_cache
  71. acpi_os_purge_cache
  72. acpi_os_delete_cache
  73. acpi_os_release_object
  74. acpi_no_static_ssdt_setup
  75. acpi_disable_return_repair
  76. acpi_os_initialize
  77. acpi_os_initialize1
  78. acpi_os_terminate
  79. acpi_os_prepare_sleep
  80. acpi_os_set_prepare_sleep
  81. acpi_os_prepare_extended_sleep
  82. acpi_os_prepare_extended_sleep
  83. acpi_os_set_prepare_extended_sleep
  84. acpi_os_enter_sleep

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
   4  *
   5  *  Copyright (C) 2000       Andrew Henroid
   6  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   7  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   8  *  Copyright (c) 2008 Intel Corporation
   9  *   Author: Matthew Wilcox <willy@linux.intel.com>
  10  */
  11 
  12 #include <linux/module.h>
  13 #include <linux/kernel.h>
  14 #include <linux/slab.h>
  15 #include <linux/mm.h>
  16 #include <linux/highmem.h>
  17 #include <linux/lockdep.h>
  18 #include <linux/pci.h>
  19 #include <linux/interrupt.h>
  20 #include <linux/kmod.h>
  21 #include <linux/delay.h>
  22 #include <linux/workqueue.h>
  23 #include <linux/nmi.h>
  24 #include <linux/acpi.h>
  25 #include <linux/efi.h>
  26 #include <linux/ioport.h>
  27 #include <linux/list.h>
  28 #include <linux/jiffies.h>
  29 #include <linux/semaphore.h>
  30 #include <linux/security.h>
  31 
  32 #include <asm/io.h>
  33 #include <linux/uaccess.h>
  34 #include <linux/io-64-nonatomic-lo-hi.h>
  35 
  36 #include "acpica/accommon.h"
  37 #include "acpica/acnamesp.h"
  38 #include "internal.h"
  39 
  40 #define _COMPONENT              ACPI_OS_SERVICES
  41 ACPI_MODULE_NAME("osl");
  42 
  43 struct acpi_os_dpc {
  44         acpi_osd_exec_callback function;
  45         void *context;
  46         struct work_struct work;
  47 };
  48 
  49 #ifdef ENABLE_DEBUGGER
  50 #include <linux/kdb.h>
  51 
  52 /* stuff for debugger support */
  53 int acpi_in_debugger;
  54 EXPORT_SYMBOL(acpi_in_debugger);
  55 #endif                          /*ENABLE_DEBUGGER */
  56 
  57 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
  58                                       u32 pm1b_ctrl);
  59 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
  60                                       u32 val_b);
  61 
  62 static acpi_osd_handler acpi_irq_handler;
  63 static void *acpi_irq_context;
  64 static struct workqueue_struct *kacpid_wq;
  65 static struct workqueue_struct *kacpi_notify_wq;
  66 static struct workqueue_struct *kacpi_hotplug_wq;
  67 static bool acpi_os_initialized;
  68 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
  69 bool acpi_permanent_mmap = false;
  70 
  71 /*
  72  * This list of permanent mappings is for memory that may be accessed from
  73  * interrupt context, where we can't do the ioremap().
  74  */
  75 struct acpi_ioremap {
  76         struct list_head list;
  77         void __iomem *virt;
  78         acpi_physical_address phys;
  79         acpi_size size;
  80         unsigned long refcount;
  81 };
  82 
  83 static LIST_HEAD(acpi_ioremaps);
  84 static DEFINE_MUTEX(acpi_ioremap_lock);
  85 #define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
  86 
  87 static void __init acpi_request_region (struct acpi_generic_address *gas,
  88         unsigned int length, char *desc)
  89 {
  90         u64 addr;
  91 
  92         /* Handle possible alignment issues */
  93         memcpy(&addr, &gas->address, sizeof(addr));
  94         if (!addr || !length)
  95                 return;
  96 
  97         /* Resources are never freed */
  98         if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
  99                 request_region(addr, length, desc);
 100         else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
 101                 request_mem_region(addr, length, desc);
 102 }
 103 
 104 static int __init acpi_reserve_resources(void)
 105 {
 106         acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
 107                 "ACPI PM1a_EVT_BLK");
 108 
 109         acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
 110                 "ACPI PM1b_EVT_BLK");
 111 
 112         acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
 113                 "ACPI PM1a_CNT_BLK");
 114 
 115         acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
 116                 "ACPI PM1b_CNT_BLK");
 117 
 118         if (acpi_gbl_FADT.pm_timer_length == 4)
 119                 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
 120 
 121         acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
 122                 "ACPI PM2_CNT_BLK");
 123 
 124         /* Length of GPE blocks must be a non-negative multiple of 2 */
 125 
 126         if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
 127                 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
 128                                acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
 129 
 130         if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
 131                 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
 132                                acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
 133 
 134         return 0;
 135 }
 136 fs_initcall_sync(acpi_reserve_resources);
 137 
 138 void acpi_os_printf(const char *fmt, ...)
 139 {
 140         va_list args;
 141         va_start(args, fmt);
 142         acpi_os_vprintf(fmt, args);
 143         va_end(args);
 144 }
 145 EXPORT_SYMBOL(acpi_os_printf);
 146 
 147 void acpi_os_vprintf(const char *fmt, va_list args)
 148 {
 149         static char buffer[512];
 150 
 151         vsprintf(buffer, fmt, args);
 152 
 153 #ifdef ENABLE_DEBUGGER
 154         if (acpi_in_debugger) {
 155                 kdb_printf("%s", buffer);
 156         } else {
 157                 if (printk_get_level(buffer))
 158                         printk("%s", buffer);
 159                 else
 160                         printk(KERN_CONT "%s", buffer);
 161         }
 162 #else
 163         if (acpi_debugger_write_log(buffer) < 0) {
 164                 if (printk_get_level(buffer))
 165                         printk("%s", buffer);
 166                 else
 167                         printk(KERN_CONT "%s", buffer);
 168         }
 169 #endif
 170 }
 171 
 172 #ifdef CONFIG_KEXEC
 173 static unsigned long acpi_rsdp;
 174 static int __init setup_acpi_rsdp(char *arg)
 175 {
 176         return kstrtoul(arg, 16, &acpi_rsdp);
 177 }
 178 early_param("acpi_rsdp", setup_acpi_rsdp);
 179 #endif
 180 
 181 acpi_physical_address __init acpi_os_get_root_pointer(void)
 182 {
 183         acpi_physical_address pa;
 184 
 185 #ifdef CONFIG_KEXEC
 186         /*
 187          * We may have been provided with an RSDP on the command line,
 188          * but if a malicious user has done so they may be pointing us
 189          * at modified ACPI tables that could alter kernel behaviour -
 190          * so, we check the lockdown status before making use of
 191          * it. If we trust it then also stash it in an architecture
 192          * specific location (if appropriate) so it can be carried
 193          * over further kexec()s.
 194          */
 195         if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
 196                 acpi_arch_set_root_pointer(acpi_rsdp);
 197                 return acpi_rsdp;
 198         }
 199 #endif
 200         pa = acpi_arch_get_root_pointer();
 201         if (pa)
 202                 return pa;
 203 
 204         if (efi_enabled(EFI_CONFIG_TABLES)) {
 205                 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
 206                         return efi.acpi20;
 207                 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
 208                         return efi.acpi;
 209                 pr_err(PREFIX "System description tables not found\n");
 210         } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
 211                 acpi_find_root_pointer(&pa);
 212         }
 213 
 214         return pa;
 215 }
 216 
 217 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 218 static struct acpi_ioremap *
 219 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
 220 {
 221         struct acpi_ioremap *map;
 222 
 223         list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
 224                 if (map->phys <= phys &&
 225                     phys + size <= map->phys + map->size)
 226                         return map;
 227 
 228         return NULL;
 229 }
 230 
 231 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 232 static void __iomem *
 233 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
 234 {
 235         struct acpi_ioremap *map;
 236 
 237         map = acpi_map_lookup(phys, size);
 238         if (map)
 239                 return map->virt + (phys - map->phys);
 240 
 241         return NULL;
 242 }
 243 
 244 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
 245 {
 246         struct acpi_ioremap *map;
 247         void __iomem *virt = NULL;
 248 
 249         mutex_lock(&acpi_ioremap_lock);
 250         map = acpi_map_lookup(phys, size);
 251         if (map) {
 252                 virt = map->virt + (phys - map->phys);
 253                 map->refcount++;
 254         }
 255         mutex_unlock(&acpi_ioremap_lock);
 256         return virt;
 257 }
 258 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
 259 
 260 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 261 static struct acpi_ioremap *
 262 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
 263 {
 264         struct acpi_ioremap *map;
 265 
 266         list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
 267                 if (map->virt <= virt &&
 268                     virt + size <= map->virt + map->size)
 269                         return map;
 270 
 271         return NULL;
 272 }
 273 
 274 #if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
 275 /* ioremap will take care of cache attributes */
 276 #define should_use_kmap(pfn)   0
 277 #else
 278 #define should_use_kmap(pfn)   page_is_ram(pfn)
 279 #endif
 280 
 281 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
 282 {
 283         unsigned long pfn;
 284 
 285         pfn = pg_off >> PAGE_SHIFT;
 286         if (should_use_kmap(pfn)) {
 287                 if (pg_sz > PAGE_SIZE)
 288                         return NULL;
 289                 return (void __iomem __force *)kmap(pfn_to_page(pfn));
 290         } else
 291                 return acpi_os_ioremap(pg_off, pg_sz);
 292 }
 293 
 294 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
 295 {
 296         unsigned long pfn;
 297 
 298         pfn = pg_off >> PAGE_SHIFT;
 299         if (should_use_kmap(pfn))
 300                 kunmap(pfn_to_page(pfn));
 301         else
 302                 iounmap(vaddr);
 303 }
 304 
 305 /**
 306  * acpi_os_map_iomem - Get a virtual address for a given physical address range.
 307  * @phys: Start of the physical address range to map.
 308  * @size: Size of the physical address range to map.
 309  *
 310  * Look up the given physical address range in the list of existing ACPI memory
 311  * mappings.  If found, get a reference to it and return a pointer to it (its
 312  * virtual address).  If not found, map it, add it to that list and return a
 313  * pointer to it.
 314  *
 315  * During early init (when acpi_permanent_mmap has not been set yet) this
 316  * routine simply calls __acpi_map_table() to get the job done.
 317  */
 318 void __iomem __ref
 319 *acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
 320 {
 321         struct acpi_ioremap *map;
 322         void __iomem *virt;
 323         acpi_physical_address pg_off;
 324         acpi_size pg_sz;
 325 
 326         if (phys > ULONG_MAX) {
 327                 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
 328                 return NULL;
 329         }
 330 
 331         if (!acpi_permanent_mmap)
 332                 return __acpi_map_table((unsigned long)phys, size);
 333 
 334         mutex_lock(&acpi_ioremap_lock);
 335         /* Check if there's a suitable mapping already. */
 336         map = acpi_map_lookup(phys, size);
 337         if (map) {
 338                 map->refcount++;
 339                 goto out;
 340         }
 341 
 342         map = kzalloc(sizeof(*map), GFP_KERNEL);
 343         if (!map) {
 344                 mutex_unlock(&acpi_ioremap_lock);
 345                 return NULL;
 346         }
 347 
 348         pg_off = round_down(phys, PAGE_SIZE);
 349         pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
 350         virt = acpi_map(pg_off, pg_sz);
 351         if (!virt) {
 352                 mutex_unlock(&acpi_ioremap_lock);
 353                 kfree(map);
 354                 return NULL;
 355         }
 356 
 357         INIT_LIST_HEAD(&map->list);
 358         map->virt = virt;
 359         map->phys = pg_off;
 360         map->size = pg_sz;
 361         map->refcount = 1;
 362 
 363         list_add_tail_rcu(&map->list, &acpi_ioremaps);
 364 
 365 out:
 366         mutex_unlock(&acpi_ioremap_lock);
 367         return map->virt + (phys - map->phys);
 368 }
 369 EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
 370 
 371 void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
 372 {
 373         return (void *)acpi_os_map_iomem(phys, size);
 374 }
 375 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
 376 
 377 /* Must be called with mutex_lock(&acpi_ioremap_lock) */
 378 static unsigned long acpi_os_drop_map_ref(struct acpi_ioremap *map)
 379 {
 380         unsigned long refcount = --map->refcount;
 381 
 382         if (!refcount)
 383                 list_del_rcu(&map->list);
 384         return refcount;
 385 }
 386 
 387 static void acpi_os_map_cleanup(struct acpi_ioremap *map)
 388 {
 389         synchronize_rcu_expedited();
 390         acpi_unmap(map->phys, map->virt);
 391         kfree(map);
 392 }
 393 
 394 /**
 395  * acpi_os_unmap_iomem - Drop a memory mapping reference.
 396  * @virt: Start of the address range to drop a reference to.
 397  * @size: Size of the address range to drop a reference to.
 398  *
 399  * Look up the given virtual address range in the list of existing ACPI memory
 400  * mappings, drop a reference to it and unmap it if there are no more active
 401  * references to it.
 402  *
 403  * During early init (when acpi_permanent_mmap has not been set yet) this
 404  * routine simply calls __acpi_unmap_table() to get the job done.  Since
 405  * __acpi_unmap_table() is an __init function, the __ref annotation is needed
 406  * here.
 407  */
 408 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
 409 {
 410         struct acpi_ioremap *map;
 411         unsigned long refcount;
 412 
 413         if (!acpi_permanent_mmap) {
 414                 __acpi_unmap_table(virt, size);
 415                 return;
 416         }
 417 
 418         mutex_lock(&acpi_ioremap_lock);
 419         map = acpi_map_lookup_virt(virt, size);
 420         if (!map) {
 421                 mutex_unlock(&acpi_ioremap_lock);
 422                 WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
 423                 return;
 424         }
 425         refcount = acpi_os_drop_map_ref(map);
 426         mutex_unlock(&acpi_ioremap_lock);
 427 
 428         if (!refcount)
 429                 acpi_os_map_cleanup(map);
 430 }
 431 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
 432 
 433 void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
 434 {
 435         return acpi_os_unmap_iomem((void __iomem *)virt, size);
 436 }
 437 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
 438 
 439 int acpi_os_map_generic_address(struct acpi_generic_address *gas)
 440 {
 441         u64 addr;
 442         void __iomem *virt;
 443 
 444         if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
 445                 return 0;
 446 
 447         /* Handle possible alignment issues */
 448         memcpy(&addr, &gas->address, sizeof(addr));
 449         if (!addr || !gas->bit_width)
 450                 return -EINVAL;
 451 
 452         virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
 453         if (!virt)
 454                 return -EIO;
 455 
 456         return 0;
 457 }
 458 EXPORT_SYMBOL(acpi_os_map_generic_address);
 459 
 460 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
 461 {
 462         u64 addr;
 463         struct acpi_ioremap *map;
 464         unsigned long refcount;
 465 
 466         if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
 467                 return;
 468 
 469         /* Handle possible alignment issues */
 470         memcpy(&addr, &gas->address, sizeof(addr));
 471         if (!addr || !gas->bit_width)
 472                 return;
 473 
 474         mutex_lock(&acpi_ioremap_lock);
 475         map = acpi_map_lookup(addr, gas->bit_width / 8);
 476         if (!map) {
 477                 mutex_unlock(&acpi_ioremap_lock);
 478                 return;
 479         }
 480         refcount = acpi_os_drop_map_ref(map);
 481         mutex_unlock(&acpi_ioremap_lock);
 482 
 483         if (!refcount)
 484                 acpi_os_map_cleanup(map);
 485 }
 486 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
 487 
 488 #ifdef ACPI_FUTURE_USAGE
 489 acpi_status
 490 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
 491 {
 492         if (!phys || !virt)
 493                 return AE_BAD_PARAMETER;
 494 
 495         *phys = virt_to_phys(virt);
 496 
 497         return AE_OK;
 498 }
 499 #endif
 500 
 501 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
 502 static bool acpi_rev_override;
 503 
 504 int __init acpi_rev_override_setup(char *str)
 505 {
 506         acpi_rev_override = true;
 507         return 1;
 508 }
 509 __setup("acpi_rev_override", acpi_rev_override_setup);
 510 #else
 511 #define acpi_rev_override       false
 512 #endif
 513 
 514 #define ACPI_MAX_OVERRIDE_LEN 100
 515 
 516 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
 517 
 518 acpi_status
 519 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
 520                             acpi_string *new_val)
 521 {
 522         if (!init_val || !new_val)
 523                 return AE_BAD_PARAMETER;
 524 
 525         *new_val = NULL;
 526         if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
 527                 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
 528                        acpi_os_name);
 529                 *new_val = acpi_os_name;
 530         }
 531 
 532         if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
 533                 printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
 534                 *new_val = (char *)5;
 535         }
 536 
 537         return AE_OK;
 538 }
 539 
 540 static irqreturn_t acpi_irq(int irq, void *dev_id)
 541 {
 542         u32 handled;
 543 
 544         handled = (*acpi_irq_handler) (acpi_irq_context);
 545 
 546         if (handled) {
 547                 acpi_irq_handled++;
 548                 return IRQ_HANDLED;
 549         } else {
 550                 acpi_irq_not_handled++;
 551                 return IRQ_NONE;
 552         }
 553 }
 554 
 555 acpi_status
 556 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
 557                                   void *context)
 558 {
 559         unsigned int irq;
 560 
 561         acpi_irq_stats_init();
 562 
 563         /*
 564          * ACPI interrupts different from the SCI in our copy of the FADT are
 565          * not supported.
 566          */
 567         if (gsi != acpi_gbl_FADT.sci_interrupt)
 568                 return AE_BAD_PARAMETER;
 569 
 570         if (acpi_irq_handler)
 571                 return AE_ALREADY_ACQUIRED;
 572 
 573         if (acpi_gsi_to_irq(gsi, &irq) < 0) {
 574                 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
 575                        gsi);
 576                 return AE_OK;
 577         }
 578 
 579         acpi_irq_handler = handler;
 580         acpi_irq_context = context;
 581         if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
 582                 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
 583                 acpi_irq_handler = NULL;
 584                 return AE_NOT_ACQUIRED;
 585         }
 586         acpi_sci_irq = irq;
 587 
 588         return AE_OK;
 589 }
 590 
 591 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
 592 {
 593         if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
 594                 return AE_BAD_PARAMETER;
 595 
 596         free_irq(acpi_sci_irq, acpi_irq);
 597         acpi_irq_handler = NULL;
 598         acpi_sci_irq = INVALID_ACPI_IRQ;
 599 
 600         return AE_OK;
 601 }
 602 
 603 /*
 604  * Running in interpreter thread context, safe to sleep
 605  */
 606 
 607 void acpi_os_sleep(u64 ms)
 608 {
 609         msleep(ms);
 610 }
 611 
 612 void acpi_os_stall(u32 us)
 613 {
 614         while (us) {
 615                 u32 delay = 1000;
 616 
 617                 if (delay > us)
 618                         delay = us;
 619                 udelay(delay);
 620                 touch_nmi_watchdog();
 621                 us -= delay;
 622         }
 623 }
 624 
 625 /*
 626  * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
 627  * monotonically increasing timer with 100ns granularity. Do not use
 628  * ktime_get() to implement this function because this function may get
 629  * called after timekeeping has been suspended. Note: calling this function
 630  * after timekeeping has been suspended may lead to unexpected results
 631  * because when timekeeping is suspended the jiffies counter is not
 632  * incremented. See also timekeeping_suspend().
 633  */
 634 u64 acpi_os_get_timer(void)
 635 {
 636         return (get_jiffies_64() - INITIAL_JIFFIES) *
 637                 (ACPI_100NSEC_PER_SEC / HZ);
 638 }
 639 
 640 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
 641 {
 642         u32 dummy;
 643 
 644         if (!value)
 645                 value = &dummy;
 646 
 647         *value = 0;
 648         if (width <= 8) {
 649                 *(u8 *) value = inb(port);
 650         } else if (width <= 16) {
 651                 *(u16 *) value = inw(port);
 652         } else if (width <= 32) {
 653                 *(u32 *) value = inl(port);
 654         } else {
 655                 BUG();
 656         }
 657 
 658         return AE_OK;
 659 }
 660 
 661 EXPORT_SYMBOL(acpi_os_read_port);
 662 
 663 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
 664 {
 665         if (width <= 8) {
 666                 outb(value, port);
 667         } else if (width <= 16) {
 668                 outw(value, port);
 669         } else if (width <= 32) {
 670                 outl(value, port);
 671         } else {
 672                 BUG();
 673         }
 674 
 675         return AE_OK;
 676 }
 677 
 678 EXPORT_SYMBOL(acpi_os_write_port);
 679 
 680 int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
 681 {
 682 
 683         switch (width) {
 684         case 8:
 685                 *(u8 *) value = readb(virt_addr);
 686                 break;
 687         case 16:
 688                 *(u16 *) value = readw(virt_addr);
 689                 break;
 690         case 32:
 691                 *(u32 *) value = readl(virt_addr);
 692                 break;
 693         case 64:
 694                 *(u64 *) value = readq(virt_addr);
 695                 break;
 696         default:
 697                 return -EINVAL;
 698         }
 699 
 700         return 0;
 701 }
 702 
 703 acpi_status
 704 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
 705 {
 706         void __iomem *virt_addr;
 707         unsigned int size = width / 8;
 708         bool unmap = false;
 709         u64 dummy;
 710         int error;
 711 
 712         rcu_read_lock();
 713         virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
 714         if (!virt_addr) {
 715                 rcu_read_unlock();
 716                 virt_addr = acpi_os_ioremap(phys_addr, size);
 717                 if (!virt_addr)
 718                         return AE_BAD_ADDRESS;
 719                 unmap = true;
 720         }
 721 
 722         if (!value)
 723                 value = &dummy;
 724 
 725         error = acpi_os_read_iomem(virt_addr, value, width);
 726         BUG_ON(error);
 727 
 728         if (unmap)
 729                 iounmap(virt_addr);
 730         else
 731                 rcu_read_unlock();
 732 
 733         return AE_OK;
 734 }
 735 
 736 acpi_status
 737 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
 738 {
 739         void __iomem *virt_addr;
 740         unsigned int size = width / 8;
 741         bool unmap = false;
 742 
 743         rcu_read_lock();
 744         virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
 745         if (!virt_addr) {
 746                 rcu_read_unlock();
 747                 virt_addr = acpi_os_ioremap(phys_addr, size);
 748                 if (!virt_addr)
 749                         return AE_BAD_ADDRESS;
 750                 unmap = true;
 751         }
 752 
 753         switch (width) {
 754         case 8:
 755                 writeb(value, virt_addr);
 756                 break;
 757         case 16:
 758                 writew(value, virt_addr);
 759                 break;
 760         case 32:
 761                 writel(value, virt_addr);
 762                 break;
 763         case 64:
 764                 writeq(value, virt_addr);
 765                 break;
 766         default:
 767                 BUG();
 768         }
 769 
 770         if (unmap)
 771                 iounmap(virt_addr);
 772         else
 773                 rcu_read_unlock();
 774 
 775         return AE_OK;
 776 }
 777 
 778 #ifdef CONFIG_PCI
 779 acpi_status
 780 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
 781                                u64 *value, u32 width)
 782 {
 783         int result, size;
 784         u32 value32;
 785 
 786         if (!value)
 787                 return AE_BAD_PARAMETER;
 788 
 789         switch (width) {
 790         case 8:
 791                 size = 1;
 792                 break;
 793         case 16:
 794                 size = 2;
 795                 break;
 796         case 32:
 797                 size = 4;
 798                 break;
 799         default:
 800                 return AE_ERROR;
 801         }
 802 
 803         result = raw_pci_read(pci_id->segment, pci_id->bus,
 804                                 PCI_DEVFN(pci_id->device, pci_id->function),
 805                                 reg, size, &value32);
 806         *value = value32;
 807 
 808         return (result ? AE_ERROR : AE_OK);
 809 }
 810 
 811 acpi_status
 812 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
 813                                 u64 value, u32 width)
 814 {
 815         int result, size;
 816 
 817         switch (width) {
 818         case 8:
 819                 size = 1;
 820                 break;
 821         case 16:
 822                 size = 2;
 823                 break;
 824         case 32:
 825                 size = 4;
 826                 break;
 827         default:
 828                 return AE_ERROR;
 829         }
 830 
 831         result = raw_pci_write(pci_id->segment, pci_id->bus,
 832                                 PCI_DEVFN(pci_id->device, pci_id->function),
 833                                 reg, size, value);
 834 
 835         return (result ? AE_ERROR : AE_OK);
 836 }
 837 #endif
 838 
 839 static void acpi_os_execute_deferred(struct work_struct *work)
 840 {
 841         struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
 842 
 843         dpc->function(dpc->context);
 844         kfree(dpc);
 845 }
 846 
 847 #ifdef CONFIG_ACPI_DEBUGGER
 848 static struct acpi_debugger acpi_debugger;
 849 static bool acpi_debugger_initialized;
 850 
 851 int acpi_register_debugger(struct module *owner,
 852                            const struct acpi_debugger_ops *ops)
 853 {
 854         int ret = 0;
 855 
 856         mutex_lock(&acpi_debugger.lock);
 857         if (acpi_debugger.ops) {
 858                 ret = -EBUSY;
 859                 goto err_lock;
 860         }
 861 
 862         acpi_debugger.owner = owner;
 863         acpi_debugger.ops = ops;
 864 
 865 err_lock:
 866         mutex_unlock(&acpi_debugger.lock);
 867         return ret;
 868 }
 869 EXPORT_SYMBOL(acpi_register_debugger);
 870 
 871 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
 872 {
 873         mutex_lock(&acpi_debugger.lock);
 874         if (ops == acpi_debugger.ops) {
 875                 acpi_debugger.ops = NULL;
 876                 acpi_debugger.owner = NULL;
 877         }
 878         mutex_unlock(&acpi_debugger.lock);
 879 }
 880 EXPORT_SYMBOL(acpi_unregister_debugger);
 881 
 882 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
 883 {
 884         int ret;
 885         int (*func)(acpi_osd_exec_callback, void *);
 886         struct module *owner;
 887 
 888         if (!acpi_debugger_initialized)
 889                 return -ENODEV;
 890         mutex_lock(&acpi_debugger.lock);
 891         if (!acpi_debugger.ops) {
 892                 ret = -ENODEV;
 893                 goto err_lock;
 894         }
 895         if (!try_module_get(acpi_debugger.owner)) {
 896                 ret = -ENODEV;
 897                 goto err_lock;
 898         }
 899         func = acpi_debugger.ops->create_thread;
 900         owner = acpi_debugger.owner;
 901         mutex_unlock(&acpi_debugger.lock);
 902 
 903         ret = func(function, context);
 904 
 905         mutex_lock(&acpi_debugger.lock);
 906         module_put(owner);
 907 err_lock:
 908         mutex_unlock(&acpi_debugger.lock);
 909         return ret;
 910 }
 911 
 912 ssize_t acpi_debugger_write_log(const char *msg)
 913 {
 914         ssize_t ret;
 915         ssize_t (*func)(const char *);
 916         struct module *owner;
 917 
 918         if (!acpi_debugger_initialized)
 919                 return -ENODEV;
 920         mutex_lock(&acpi_debugger.lock);
 921         if (!acpi_debugger.ops) {
 922                 ret = -ENODEV;
 923                 goto err_lock;
 924         }
 925         if (!try_module_get(acpi_debugger.owner)) {
 926                 ret = -ENODEV;
 927                 goto err_lock;
 928         }
 929         func = acpi_debugger.ops->write_log;
 930         owner = acpi_debugger.owner;
 931         mutex_unlock(&acpi_debugger.lock);
 932 
 933         ret = func(msg);
 934 
 935         mutex_lock(&acpi_debugger.lock);
 936         module_put(owner);
 937 err_lock:
 938         mutex_unlock(&acpi_debugger.lock);
 939         return ret;
 940 }
 941 
 942 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
 943 {
 944         ssize_t ret;
 945         ssize_t (*func)(char *, size_t);
 946         struct module *owner;
 947 
 948         if (!acpi_debugger_initialized)
 949                 return -ENODEV;
 950         mutex_lock(&acpi_debugger.lock);
 951         if (!acpi_debugger.ops) {
 952                 ret = -ENODEV;
 953                 goto err_lock;
 954         }
 955         if (!try_module_get(acpi_debugger.owner)) {
 956                 ret = -ENODEV;
 957                 goto err_lock;
 958         }
 959         func = acpi_debugger.ops->read_cmd;
 960         owner = acpi_debugger.owner;
 961         mutex_unlock(&acpi_debugger.lock);
 962 
 963         ret = func(buffer, buffer_length);
 964 
 965         mutex_lock(&acpi_debugger.lock);
 966         module_put(owner);
 967 err_lock:
 968         mutex_unlock(&acpi_debugger.lock);
 969         return ret;
 970 }
 971 
 972 int acpi_debugger_wait_command_ready(void)
 973 {
 974         int ret;
 975         int (*func)(bool, char *, size_t);
 976         struct module *owner;
 977 
 978         if (!acpi_debugger_initialized)
 979                 return -ENODEV;
 980         mutex_lock(&acpi_debugger.lock);
 981         if (!acpi_debugger.ops) {
 982                 ret = -ENODEV;
 983                 goto err_lock;
 984         }
 985         if (!try_module_get(acpi_debugger.owner)) {
 986                 ret = -ENODEV;
 987                 goto err_lock;
 988         }
 989         func = acpi_debugger.ops->wait_command_ready;
 990         owner = acpi_debugger.owner;
 991         mutex_unlock(&acpi_debugger.lock);
 992 
 993         ret = func(acpi_gbl_method_executing,
 994                    acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
 995 
 996         mutex_lock(&acpi_debugger.lock);
 997         module_put(owner);
 998 err_lock:
 999         mutex_unlock(&acpi_debugger.lock);
1000         return ret;
1001 }
1002 
1003 int acpi_debugger_notify_command_complete(void)
1004 {
1005         int ret;
1006         int (*func)(void);
1007         struct module *owner;
1008 
1009         if (!acpi_debugger_initialized)
1010                 return -ENODEV;
1011         mutex_lock(&acpi_debugger.lock);
1012         if (!acpi_debugger.ops) {
1013                 ret = -ENODEV;
1014                 goto err_lock;
1015         }
1016         if (!try_module_get(acpi_debugger.owner)) {
1017                 ret = -ENODEV;
1018                 goto err_lock;
1019         }
1020         func = acpi_debugger.ops->notify_command_complete;
1021         owner = acpi_debugger.owner;
1022         mutex_unlock(&acpi_debugger.lock);
1023 
1024         ret = func();
1025 
1026         mutex_lock(&acpi_debugger.lock);
1027         module_put(owner);
1028 err_lock:
1029         mutex_unlock(&acpi_debugger.lock);
1030         return ret;
1031 }
1032 
1033 int __init acpi_debugger_init(void)
1034 {
1035         mutex_init(&acpi_debugger.lock);
1036         acpi_debugger_initialized = true;
1037         return 0;
1038 }
1039 #endif
1040 
1041 /*******************************************************************************
1042  *
1043  * FUNCTION:    acpi_os_execute
1044  *
1045  * PARAMETERS:  Type               - Type of the callback
1046  *              Function           - Function to be executed
1047  *              Context            - Function parameters
1048  *
1049  * RETURN:      Status
1050  *
1051  * DESCRIPTION: Depending on type, either queues function for deferred execution or
1052  *              immediately executes function on a separate thread.
1053  *
1054  ******************************************************************************/
1055 
1056 acpi_status acpi_os_execute(acpi_execute_type type,
1057                             acpi_osd_exec_callback function, void *context)
1058 {
1059         acpi_status status = AE_OK;
1060         struct acpi_os_dpc *dpc;
1061         struct workqueue_struct *queue;
1062         int ret;
1063         ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1064                           "Scheduling function [%p(%p)] for deferred execution.\n",
1065                           function, context));
1066 
1067         if (type == OSL_DEBUGGER_MAIN_THREAD) {
1068                 ret = acpi_debugger_create_thread(function, context);
1069                 if (ret) {
1070                         pr_err("Call to kthread_create() failed.\n");
1071                         status = AE_ERROR;
1072                 }
1073                 goto out_thread;
1074         }
1075 
1076         /*
1077          * Allocate/initialize DPC structure.  Note that this memory will be
1078          * freed by the callee.  The kernel handles the work_struct list  in a
1079          * way that allows us to also free its memory inside the callee.
1080          * Because we may want to schedule several tasks with different
1081          * parameters we can't use the approach some kernel code uses of
1082          * having a static work_struct.
1083          */
1084 
1085         dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1086         if (!dpc)
1087                 return AE_NO_MEMORY;
1088 
1089         dpc->function = function;
1090         dpc->context = context;
1091 
1092         /*
1093          * To prevent lockdep from complaining unnecessarily, make sure that
1094          * there is a different static lockdep key for each workqueue by using
1095          * INIT_WORK() for each of them separately.
1096          */
1097         if (type == OSL_NOTIFY_HANDLER) {
1098                 queue = kacpi_notify_wq;
1099                 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1100         } else if (type == OSL_GPE_HANDLER) {
1101                 queue = kacpid_wq;
1102                 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1103         } else {
1104                 pr_err("Unsupported os_execute type %d.\n", type);
1105                 status = AE_ERROR;
1106         }
1107 
1108         if (ACPI_FAILURE(status))
1109                 goto err_workqueue;
1110 
1111         /*
1112          * On some machines, a software-initiated SMI causes corruption unless
1113          * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
1114          * typically it's done in GPE-related methods that are run via
1115          * workqueues, so we can avoid the known corruption cases by always
1116          * queueing on CPU 0.
1117          */
1118         ret = queue_work_on(0, queue, &dpc->work);
1119         if (!ret) {
1120                 printk(KERN_ERR PREFIX
1121                           "Call to queue_work() failed.\n");
1122                 status = AE_ERROR;
1123         }
1124 err_workqueue:
1125         if (ACPI_FAILURE(status))
1126                 kfree(dpc);
1127 out_thread:
1128         return status;
1129 }
1130 EXPORT_SYMBOL(acpi_os_execute);
1131 
1132 void acpi_os_wait_events_complete(void)
1133 {
1134         /*
1135          * Make sure the GPE handler or the fixed event handler is not used
1136          * on another CPU after removal.
1137          */
1138         if (acpi_sci_irq_valid())
1139                 synchronize_hardirq(acpi_sci_irq);
1140         flush_workqueue(kacpid_wq);
1141         flush_workqueue(kacpi_notify_wq);
1142 }
1143 EXPORT_SYMBOL(acpi_os_wait_events_complete);
1144 
1145 struct acpi_hp_work {
1146         struct work_struct work;
1147         struct acpi_device *adev;
1148         u32 src;
1149 };
1150 
1151 static void acpi_hotplug_work_fn(struct work_struct *work)
1152 {
1153         struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1154 
1155         acpi_os_wait_events_complete();
1156         acpi_device_hotplug(hpw->adev, hpw->src);
1157         kfree(hpw);
1158 }
1159 
1160 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1161 {
1162         struct acpi_hp_work *hpw;
1163 
1164         ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1165                   "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1166                   adev, src));
1167 
1168         hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1169         if (!hpw)
1170                 return AE_NO_MEMORY;
1171 
1172         INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1173         hpw->adev = adev;
1174         hpw->src = src;
1175         /*
1176          * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1177          * the hotplug code may call driver .remove() functions, which may
1178          * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1179          * these workqueues.
1180          */
1181         if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1182                 kfree(hpw);
1183                 return AE_ERROR;
1184         }
1185         return AE_OK;
1186 }
1187 
1188 bool acpi_queue_hotplug_work(struct work_struct *work)
1189 {
1190         return queue_work(kacpi_hotplug_wq, work);
1191 }
1192 
1193 acpi_status
1194 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1195 {
1196         struct semaphore *sem = NULL;
1197 
1198         sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1199         if (!sem)
1200                 return AE_NO_MEMORY;
1201 
1202         sema_init(sem, initial_units);
1203 
1204         *handle = (acpi_handle *) sem;
1205 
1206         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1207                           *handle, initial_units));
1208 
1209         return AE_OK;
1210 }
1211 
1212 /*
1213  * TODO: A better way to delete semaphores?  Linux doesn't have a
1214  * 'delete_semaphore()' function -- may result in an invalid
1215  * pointer dereference for non-synchronized consumers.  Should
1216  * we at least check for blocked threads and signal/cancel them?
1217  */
1218 
1219 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1220 {
1221         struct semaphore *sem = (struct semaphore *)handle;
1222 
1223         if (!sem)
1224                 return AE_BAD_PARAMETER;
1225 
1226         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1227 
1228         BUG_ON(!list_empty(&sem->wait_list));
1229         kfree(sem);
1230         sem = NULL;
1231 
1232         return AE_OK;
1233 }
1234 
1235 /*
1236  * TODO: Support for units > 1?
1237  */
1238 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1239 {
1240         acpi_status status = AE_OK;
1241         struct semaphore *sem = (struct semaphore *)handle;
1242         long jiffies;
1243         int ret = 0;
1244 
1245         if (!acpi_os_initialized)
1246                 return AE_OK;
1247 
1248         if (!sem || (units < 1))
1249                 return AE_BAD_PARAMETER;
1250 
1251         if (units > 1)
1252                 return AE_SUPPORT;
1253 
1254         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1255                           handle, units, timeout));
1256 
1257         if (timeout == ACPI_WAIT_FOREVER)
1258                 jiffies = MAX_SCHEDULE_TIMEOUT;
1259         else
1260                 jiffies = msecs_to_jiffies(timeout);
1261 
1262         ret = down_timeout(sem, jiffies);
1263         if (ret)
1264                 status = AE_TIME;
1265 
1266         if (ACPI_FAILURE(status)) {
1267                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1268                                   "Failed to acquire semaphore[%p|%d|%d], %s",
1269                                   handle, units, timeout,
1270                                   acpi_format_exception(status)));
1271         } else {
1272                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1273                                   "Acquired semaphore[%p|%d|%d]", handle,
1274                                   units, timeout));
1275         }
1276 
1277         return status;
1278 }
1279 
1280 /*
1281  * TODO: Support for units > 1?
1282  */
1283 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1284 {
1285         struct semaphore *sem = (struct semaphore *)handle;
1286 
1287         if (!acpi_os_initialized)
1288                 return AE_OK;
1289 
1290         if (!sem || (units < 1))
1291                 return AE_BAD_PARAMETER;
1292 
1293         if (units > 1)
1294                 return AE_SUPPORT;
1295 
1296         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1297                           units));
1298 
1299         up(sem);
1300 
1301         return AE_OK;
1302 }
1303 
1304 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1305 {
1306 #ifdef ENABLE_DEBUGGER
1307         if (acpi_in_debugger) {
1308                 u32 chars;
1309 
1310                 kdb_read(buffer, buffer_length);
1311 
1312                 /* remove the CR kdb includes */
1313                 chars = strlen(buffer) - 1;
1314                 buffer[chars] = '\0';
1315         }
1316 #else
1317         int ret;
1318 
1319         ret = acpi_debugger_read_cmd(buffer, buffer_length);
1320         if (ret < 0)
1321                 return AE_ERROR;
1322         if (bytes_read)
1323                 *bytes_read = ret;
1324 #endif
1325 
1326         return AE_OK;
1327 }
1328 EXPORT_SYMBOL(acpi_os_get_line);
1329 
1330 acpi_status acpi_os_wait_command_ready(void)
1331 {
1332         int ret;
1333 
1334         ret = acpi_debugger_wait_command_ready();
1335         if (ret < 0)
1336                 return AE_ERROR;
1337         return AE_OK;
1338 }
1339 
1340 acpi_status acpi_os_notify_command_complete(void)
1341 {
1342         int ret;
1343 
1344         ret = acpi_debugger_notify_command_complete();
1345         if (ret < 0)
1346                 return AE_ERROR;
1347         return AE_OK;
1348 }
1349 
1350 acpi_status acpi_os_signal(u32 function, void *info)
1351 {
1352         switch (function) {
1353         case ACPI_SIGNAL_FATAL:
1354                 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1355                 break;
1356         case ACPI_SIGNAL_BREAKPOINT:
1357                 /*
1358                  * AML Breakpoint
1359                  * ACPI spec. says to treat it as a NOP unless
1360                  * you are debugging.  So if/when we integrate
1361                  * AML debugger into the kernel debugger its
1362                  * hook will go here.  But until then it is
1363                  * not useful to print anything on breakpoints.
1364                  */
1365                 break;
1366         default:
1367                 break;
1368         }
1369 
1370         return AE_OK;
1371 }
1372 
1373 static int __init acpi_os_name_setup(char *str)
1374 {
1375         char *p = acpi_os_name;
1376         int count = ACPI_MAX_OVERRIDE_LEN - 1;
1377 
1378         if (!str || !*str)
1379                 return 0;
1380 
1381         for (; count-- && *str; str++) {
1382                 if (isalnum(*str) || *str == ' ' || *str == ':')
1383                         *p++ = *str;
1384                 else if (*str == '\'' || *str == '"')
1385                         continue;
1386                 else
1387                         break;
1388         }
1389         *p = 0;
1390 
1391         return 1;
1392 
1393 }
1394 
1395 __setup("acpi_os_name=", acpi_os_name_setup);
1396 
1397 /*
1398  * Disable the auto-serialization of named objects creation methods.
1399  *
1400  * This feature is enabled by default.  It marks the AML control methods
1401  * that contain the opcodes to create named objects as "Serialized".
1402  */
1403 static int __init acpi_no_auto_serialize_setup(char *str)
1404 {
1405         acpi_gbl_auto_serialize_methods = FALSE;
1406         pr_info("ACPI: auto-serialization disabled\n");
1407 
1408         return 1;
1409 }
1410 
1411 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1412 
1413 /* Check of resource interference between native drivers and ACPI
1414  * OperationRegions (SystemIO and System Memory only).
1415  * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1416  * in arbitrary AML code and can interfere with legacy drivers.
1417  * acpi_enforce_resources= can be set to:
1418  *
1419  *   - strict (default) (2)
1420  *     -> further driver trying to access the resources will not load
1421  *   - lax              (1)
1422  *     -> further driver trying to access the resources will load, but you
1423  *     get a system message that something might go wrong...
1424  *
1425  *   - no               (0)
1426  *     -> ACPI Operation Region resources will not be registered
1427  *
1428  */
1429 #define ENFORCE_RESOURCES_STRICT 2
1430 #define ENFORCE_RESOURCES_LAX    1
1431 #define ENFORCE_RESOURCES_NO     0
1432 
1433 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1434 
1435 static int __init acpi_enforce_resources_setup(char *str)
1436 {
1437         if (str == NULL || *str == '\0')
1438                 return 0;
1439 
1440         if (!strcmp("strict", str))
1441                 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1442         else if (!strcmp("lax", str))
1443                 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1444         else if (!strcmp("no", str))
1445                 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1446 
1447         return 1;
1448 }
1449 
1450 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1451 
1452 /* Check for resource conflicts between ACPI OperationRegions and native
1453  * drivers */
1454 int acpi_check_resource_conflict(const struct resource *res)
1455 {
1456         acpi_adr_space_type space_id;
1457         acpi_size length;
1458         u8 warn = 0;
1459         int clash = 0;
1460 
1461         if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1462                 return 0;
1463         if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1464                 return 0;
1465 
1466         if (res->flags & IORESOURCE_IO)
1467                 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1468         else
1469                 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1470 
1471         length = resource_size(res);
1472         if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1473                 warn = 1;
1474         clash = acpi_check_address_range(space_id, res->start, length, warn);
1475 
1476         if (clash) {
1477                 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1478                         if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1479                                 printk(KERN_NOTICE "ACPI: This conflict may"
1480                                        " cause random problems and system"
1481                                        " instability\n");
1482                         printk(KERN_INFO "ACPI: If an ACPI driver is available"
1483                                " for this device, you should use it instead of"
1484                                " the native driver\n");
1485                 }
1486                 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1487                         return -EBUSY;
1488         }
1489         return 0;
1490 }
1491 EXPORT_SYMBOL(acpi_check_resource_conflict);
1492 
1493 int acpi_check_region(resource_size_t start, resource_size_t n,
1494                       const char *name)
1495 {
1496         struct resource res = {
1497                 .start = start,
1498                 .end   = start + n - 1,
1499                 .name  = name,
1500                 .flags = IORESOURCE_IO,
1501         };
1502 
1503         return acpi_check_resource_conflict(&res);
1504 }
1505 EXPORT_SYMBOL(acpi_check_region);
1506 
1507 static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level,
1508                                               void *_res, void **return_value)
1509 {
1510         struct acpi_mem_space_context **mem_ctx;
1511         union acpi_operand_object *handler_obj;
1512         union acpi_operand_object *region_obj2;
1513         union acpi_operand_object *region_obj;
1514         struct resource *res = _res;
1515         acpi_status status;
1516 
1517         region_obj = acpi_ns_get_attached_object(handle);
1518         if (!region_obj)
1519                 return AE_OK;
1520 
1521         handler_obj = region_obj->region.handler;
1522         if (!handler_obj)
1523                 return AE_OK;
1524 
1525         if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
1526                 return AE_OK;
1527 
1528         if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE))
1529                 return AE_OK;
1530 
1531         region_obj2 = acpi_ns_get_secondary_object(region_obj);
1532         if (!region_obj2)
1533                 return AE_OK;
1534 
1535         mem_ctx = (void *)&region_obj2->extra.region_context;
1536 
1537         if (!(mem_ctx[0]->address >= res->start &&
1538               mem_ctx[0]->address < res->end))
1539                 return AE_OK;
1540 
1541         status = handler_obj->address_space.setup(region_obj,
1542                                                   ACPI_REGION_DEACTIVATE,
1543                                                   NULL, (void **)mem_ctx);
1544         if (ACPI_SUCCESS(status))
1545                 region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE);
1546 
1547         return status;
1548 }
1549 
1550 /**
1551  * acpi_release_memory - Release any mappings done to a memory region
1552  * @handle: Handle to namespace node
1553  * @res: Memory resource
1554  * @level: A level that terminates the search
1555  *
1556  * Walks through @handle and unmaps all SystemMemory Operation Regions that
1557  * overlap with @res and that have already been activated (mapped).
1558  *
1559  * This is a helper that allows drivers to place special requirements on memory
1560  * region that may overlap with operation regions, primarily allowing them to
1561  * safely map the region as non-cached memory.
1562  *
1563  * The unmapped Operation Regions will be automatically remapped next time they
1564  * are called, so the drivers do not need to do anything else.
1565  */
1566 acpi_status acpi_release_memory(acpi_handle handle, struct resource *res,
1567                                 u32 level)
1568 {
1569         if (!(res->flags & IORESOURCE_MEM))
1570                 return AE_TYPE;
1571 
1572         return acpi_walk_namespace(ACPI_TYPE_REGION, handle, level,
1573                                    acpi_deactivate_mem_region, NULL, res, NULL);
1574 }
1575 EXPORT_SYMBOL_GPL(acpi_release_memory);
1576 
1577 /*
1578  * Let drivers know whether the resource checks are effective
1579  */
1580 int acpi_resources_are_enforced(void)
1581 {
1582         return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1583 }
1584 EXPORT_SYMBOL(acpi_resources_are_enforced);
1585 
1586 /*
1587  * Deallocate the memory for a spinlock.
1588  */
1589 void acpi_os_delete_lock(acpi_spinlock handle)
1590 {
1591         ACPI_FREE(handle);
1592 }
1593 
1594 /*
1595  * Acquire a spinlock.
1596  *
1597  * handle is a pointer to the spinlock_t.
1598  */
1599 
1600 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1601 {
1602         acpi_cpu_flags flags;
1603         spin_lock_irqsave(lockp, flags);
1604         return flags;
1605 }
1606 
1607 /*
1608  * Release a spinlock. See above.
1609  */
1610 
1611 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1612 {
1613         spin_unlock_irqrestore(lockp, flags);
1614 }
1615 
1616 #ifndef ACPI_USE_LOCAL_CACHE
1617 
1618 /*******************************************************************************
1619  *
1620  * FUNCTION:    acpi_os_create_cache
1621  *
1622  * PARAMETERS:  name      - Ascii name for the cache
1623  *              size      - Size of each cached object
1624  *              depth     - Maximum depth of the cache (in objects) <ignored>
1625  *              cache     - Where the new cache object is returned
1626  *
1627  * RETURN:      status
1628  *
1629  * DESCRIPTION: Create a cache object
1630  *
1631  ******************************************************************************/
1632 
1633 acpi_status
1634 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1635 {
1636         *cache = kmem_cache_create(name, size, 0, 0, NULL);
1637         if (*cache == NULL)
1638                 return AE_ERROR;
1639         else
1640                 return AE_OK;
1641 }
1642 
1643 /*******************************************************************************
1644  *
1645  * FUNCTION:    acpi_os_purge_cache
1646  *
1647  * PARAMETERS:  Cache           - Handle to cache object
1648  *
1649  * RETURN:      Status
1650  *
1651  * DESCRIPTION: Free all objects within the requested cache.
1652  *
1653  ******************************************************************************/
1654 
1655 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1656 {
1657         kmem_cache_shrink(cache);
1658         return (AE_OK);
1659 }
1660 
1661 /*******************************************************************************
1662  *
1663  * FUNCTION:    acpi_os_delete_cache
1664  *
1665  * PARAMETERS:  Cache           - Handle to cache object
1666  *
1667  * RETURN:      Status
1668  *
1669  * DESCRIPTION: Free all objects within the requested cache and delete the
1670  *              cache object.
1671  *
1672  ******************************************************************************/
1673 
1674 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1675 {
1676         kmem_cache_destroy(cache);
1677         return (AE_OK);
1678 }
1679 
1680 /*******************************************************************************
1681  *
1682  * FUNCTION:    acpi_os_release_object
1683  *
1684  * PARAMETERS:  Cache       - Handle to cache object
1685  *              Object      - The object to be released
1686  *
1687  * RETURN:      None
1688  *
1689  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1690  *              the object is deleted.
1691  *
1692  ******************************************************************************/
1693 
1694 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1695 {
1696         kmem_cache_free(cache, object);
1697         return (AE_OK);
1698 }
1699 #endif
1700 
1701 static int __init acpi_no_static_ssdt_setup(char *s)
1702 {
1703         acpi_gbl_disable_ssdt_table_install = TRUE;
1704         pr_info("ACPI: static SSDT installation disabled\n");
1705 
1706         return 0;
1707 }
1708 
1709 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1710 
1711 static int __init acpi_disable_return_repair(char *s)
1712 {
1713         printk(KERN_NOTICE PREFIX
1714                "ACPI: Predefined validation mechanism disabled\n");
1715         acpi_gbl_disable_auto_repair = TRUE;
1716 
1717         return 1;
1718 }
1719 
1720 __setup("acpica_no_return_repair", acpi_disable_return_repair);
1721 
1722 acpi_status __init acpi_os_initialize(void)
1723 {
1724         acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1725         acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1726         acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1727         acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1728         if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1729                 /*
1730                  * Use acpi_os_map_generic_address to pre-map the reset
1731                  * register if it's in system memory.
1732                  */
1733                 int rv;
1734 
1735                 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1736                 pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1737         }
1738         acpi_os_initialized = true;
1739 
1740         return AE_OK;
1741 }
1742 
1743 acpi_status __init acpi_os_initialize1(void)
1744 {
1745         kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1746         kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1747         kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1748         BUG_ON(!kacpid_wq);
1749         BUG_ON(!kacpi_notify_wq);
1750         BUG_ON(!kacpi_hotplug_wq);
1751         acpi_osi_init();
1752         return AE_OK;
1753 }
1754 
1755 acpi_status acpi_os_terminate(void)
1756 {
1757         if (acpi_irq_handler) {
1758                 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1759                                                  acpi_irq_handler);
1760         }
1761 
1762         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1763         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1764         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1765         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1766         if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1767                 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1768 
1769         destroy_workqueue(kacpid_wq);
1770         destroy_workqueue(kacpi_notify_wq);
1771         destroy_workqueue(kacpi_hotplug_wq);
1772 
1773         return AE_OK;
1774 }
1775 
1776 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1777                                   u32 pm1b_control)
1778 {
1779         int rc = 0;
1780         if (__acpi_os_prepare_sleep)
1781                 rc = __acpi_os_prepare_sleep(sleep_state,
1782                                              pm1a_control, pm1b_control);
1783         if (rc < 0)
1784                 return AE_ERROR;
1785         else if (rc > 0)
1786                 return AE_CTRL_TERMINATE;
1787 
1788         return AE_OK;
1789 }
1790 
1791 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1792                                u32 pm1a_ctrl, u32 pm1b_ctrl))
1793 {
1794         __acpi_os_prepare_sleep = func;
1795 }
1796 
1797 #if (ACPI_REDUCED_HARDWARE)
1798 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1799                                   u32 val_b)
1800 {
1801         int rc = 0;
1802         if (__acpi_os_prepare_extended_sleep)
1803                 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1804                                              val_a, val_b);
1805         if (rc < 0)
1806                 return AE_ERROR;
1807         else if (rc > 0)
1808                 return AE_CTRL_TERMINATE;
1809 
1810         return AE_OK;
1811 }
1812 #else
1813 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1814                                   u32 val_b)
1815 {
1816         return AE_OK;
1817 }
1818 #endif
1819 
1820 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1821                                u32 val_a, u32 val_b))
1822 {
1823         __acpi_os_prepare_extended_sleep = func;
1824 }
1825 
1826 acpi_status acpi_os_enter_sleep(u8 sleep_state,
1827                                 u32 reg_a_value, u32 reg_b_value)
1828 {
1829         acpi_status status;
1830 
1831         if (acpi_gbl_reduced_hardware)
1832                 status = acpi_os_prepare_extended_sleep(sleep_state,
1833                                                         reg_a_value,
1834                                                         reg_b_value);
1835         else
1836                 status = acpi_os_prepare_sleep(sleep_state,
1837                                                reg_a_value, reg_b_value);
1838         return status;
1839 }

/* [<][>][^][v][top][bottom][index][help] */