root/arch/ia64/include/asm/uv/uv_hub.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. uv_soc_phys_ram_to_gpa
  2. uv_gpa
  3. uv_vgpa
  4. uv_va
  5. uv_pnode_offset_to_vaddr
  6. uv_global_mmr32_address
  7. uv_write_global_mmr32
  8. uv_read_global_mmr32
  9. uv_global_mmr64_address
  10. uv_write_global_mmr64
  11. uv_read_global_mmr64
  12. uv_local_mmr_address
  13. uv_read_local_mmr
  14. uv_write_local_mmr
  15. uv_blade_processor_id
  16. uv_numa_blade_id
  17. uv_cpu_to_blade_id
  18. uv_node_to_blade_id
  19. uv_blade_to_pnode
  20. uv_blade_nr_possible_cpus
  21. uv_blade_nr_online_cpus
  22. uv_cpu_to_pnode
  23. uv_node_to_pnode
  24. uv_num_possible_blades
  25. uv_hub_send_ipi

   1 /*
   2  * This file is subject to the terms and conditions of the GNU General Public
   3  * License.  See the file "COPYING" in the main directory of this archive
   4  * for more details.
   5  *
   6  * SGI UV architectural definitions
   7  *
   8  * Copyright (C) 2008 Silicon Graphics, Inc. All rights reserved.
   9  */
  10 
  11 #ifndef __ASM_IA64_UV_HUB_H__
  12 #define __ASM_IA64_UV_HUB_H__
  13 
  14 #include <linux/numa.h>
  15 #include <linux/percpu.h>
  16 #include <asm/types.h>
  17 #include <asm/percpu.h>
  18 
  19 
  20 /*
  21  * Addressing Terminology
  22  *
  23  *      M       - The low M bits of a physical address represent the offset
  24  *                into the blade local memory. RAM memory on a blade is physically
  25  *                contiguous (although various IO spaces may punch holes in
  26  *                it)..
  27  *
  28  *      N       - Number of bits in the node portion of a socket physical
  29  *                address.
  30  *
  31  *      NASID   - network ID of a router, Mbrick or Cbrick. Nasid values of
  32  *                routers always have low bit of 1, C/MBricks have low bit
  33  *                equal to 0. Most addressing macros that target UV hub chips
  34  *                right shift the NASID by 1 to exclude the always-zero bit.
  35  *                NASIDs contain up to 15 bits.
  36  *
  37  *      GNODE   - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
  38  *                of nasids.
  39  *
  40  *      PNODE   - the low N bits of the GNODE. The PNODE is the most useful variant
  41  *                of the nasid for socket usage.
  42  *
  43  *
  44  *  NumaLink Global Physical Address Format:
  45  *  +--------------------------------+---------------------+
  46  *  |00..000|      GNODE             |      NodeOffset     |
  47  *  +--------------------------------+---------------------+
  48  *          |<-------53 - M bits --->|<--------M bits ----->
  49  *
  50  *      M - number of node offset bits (35 .. 40)
  51  *
  52  *
  53  *  Memory/UV-HUB Processor Socket Address Format:
  54  *  +----------------+---------------+---------------------+
  55  *  |00..000000000000|   PNODE       |      NodeOffset     |
  56  *  +----------------+---------------+---------------------+
  57  *                   <--- N bits --->|<--------M bits ----->
  58  *
  59  *      M - number of node offset bits (35 .. 40)
  60  *      N - number of PNODE bits (0 .. 10)
  61  *
  62  *              Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
  63  *              The actual values are configuration dependent and are set at
  64  *              boot time. M & N values are set by the hardware/BIOS at boot.
  65  */
  66 
  67 
  68 /*
  69  * Maximum number of bricks in all partitions and in all coherency domains.
  70  * This is the total number of bricks accessible in the numalink fabric. It
  71  * includes all C & M bricks. Routers are NOT included.
  72  *
  73  * This value is also the value of the maximum number of non-router NASIDs
  74  * in the numalink fabric.
  75  *
  76  * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
  77  */
  78 #define UV_MAX_NUMALINK_BLADES  16384
  79 
  80 /*
  81  * Maximum number of C/Mbricks within a software SSI (hardware may support
  82  * more).
  83  */
  84 #define UV_MAX_SSI_BLADES       1
  85 
  86 /*
  87  * The largest possible NASID of a C or M brick (+ 2)
  88  */
  89 #define UV_MAX_NASID_VALUE      (UV_MAX_NUMALINK_NODES * 2)
  90 
  91 /*
  92  * The following defines attributes of the HUB chip. These attributes are
  93  * frequently referenced and are kept in the per-cpu data areas of each cpu.
  94  * They are kept together in a struct to minimize cache misses.
  95  */
  96 struct uv_hub_info_s {
  97         unsigned long   global_mmr_base;
  98         unsigned long   gpa_mask;
  99         unsigned long   gnode_upper;
 100         unsigned long   lowmem_remap_top;
 101         unsigned long   lowmem_remap_base;
 102         unsigned short  pnode;
 103         unsigned short  pnode_mask;
 104         unsigned short  coherency_domain_number;
 105         unsigned short  numa_blade_id;
 106         unsigned char   blade_processor_id;
 107         unsigned char   m_val;
 108         unsigned char   n_val;
 109 };
 110 DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
 111 #define uv_hub_info             this_cpu_ptr(&__uv_hub_info)
 112 #define uv_cpu_hub_info(cpu)    (&per_cpu(__uv_hub_info, cpu))
 113 
 114 /*
 115  * Local & Global MMR space macros.
 116  *      Note: macros are intended to be used ONLY by inline functions
 117  *      in this file - not by other kernel code.
 118  *              n -  NASID (full 15-bit global nasid)
 119  *              g -  GNODE (full 15-bit global nasid, right shifted 1)
 120  *              p -  PNODE (local part of nsids, right shifted 1)
 121  */
 122 #define UV_NASID_TO_PNODE(n)            (((n) >> 1) & uv_hub_info->pnode_mask)
 123 #define UV_PNODE_TO_NASID(p)            (((p) << 1) | uv_hub_info->gnode_upper)
 124 
 125 #define UV_LOCAL_MMR_BASE               0xf4000000UL
 126 #define UV_GLOBAL_MMR32_BASE            0xf8000000UL
 127 #define UV_GLOBAL_MMR64_BASE            (uv_hub_info->global_mmr_base)
 128 
 129 #define UV_GLOBAL_MMR32_PNODE_SHIFT     15
 130 #define UV_GLOBAL_MMR64_PNODE_SHIFT     26
 131 
 132 #define UV_GLOBAL_MMR32_PNODE_BITS(p)   ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
 133 
 134 #define UV_GLOBAL_MMR64_PNODE_BITS(p)                                   \
 135         ((unsigned long)(p) << UV_GLOBAL_MMR64_PNODE_SHIFT)
 136 
 137 /*
 138  * Macros for converting between kernel virtual addresses, socket local physical
 139  * addresses, and UV global physical addresses.
 140  *      Note: use the standard __pa() & __va() macros for converting
 141  *            between socket virtual and socket physical addresses.
 142  */
 143 
 144 /* socket phys RAM --> UV global physical address */
 145 static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
 146 {
 147         if (paddr < uv_hub_info->lowmem_remap_top)
 148                 paddr += uv_hub_info->lowmem_remap_base;
 149         return paddr | uv_hub_info->gnode_upper;
 150 }
 151 
 152 
 153 /* socket virtual --> UV global physical address */
 154 static inline unsigned long uv_gpa(void *v)
 155 {
 156         return __pa(v) | uv_hub_info->gnode_upper;
 157 }
 158 
 159 /* socket virtual --> UV global physical address */
 160 static inline void *uv_vgpa(void *v)
 161 {
 162         return (void *)uv_gpa(v);
 163 }
 164 
 165 /* UV global physical address --> socket virtual */
 166 static inline void *uv_va(unsigned long gpa)
 167 {
 168         return __va(gpa & uv_hub_info->gpa_mask);
 169 }
 170 
 171 /* pnode, offset --> socket virtual */
 172 static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
 173 {
 174         return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
 175 }
 176 
 177 
 178 /*
 179  * Access global MMRs using the low memory MMR32 space. This region supports
 180  * faster MMR access but not all MMRs are accessible in this space.
 181  */
 182 static inline unsigned long *uv_global_mmr32_address(int pnode,
 183                                 unsigned long offset)
 184 {
 185         return __va(UV_GLOBAL_MMR32_BASE |
 186                        UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
 187 }
 188 
 189 static inline void uv_write_global_mmr32(int pnode, unsigned long offset,
 190                                  unsigned long val)
 191 {
 192         *uv_global_mmr32_address(pnode, offset) = val;
 193 }
 194 
 195 static inline unsigned long uv_read_global_mmr32(int pnode,
 196                                                  unsigned long offset)
 197 {
 198         return *uv_global_mmr32_address(pnode, offset);
 199 }
 200 
 201 /*
 202  * Access Global MMR space using the MMR space located at the top of physical
 203  * memory.
 204  */
 205 static inline unsigned long *uv_global_mmr64_address(int pnode,
 206                                 unsigned long offset)
 207 {
 208         return __va(UV_GLOBAL_MMR64_BASE |
 209                     UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
 210 }
 211 
 212 static inline void uv_write_global_mmr64(int pnode, unsigned long offset,
 213                                 unsigned long val)
 214 {
 215         *uv_global_mmr64_address(pnode, offset) = val;
 216 }
 217 
 218 static inline unsigned long uv_read_global_mmr64(int pnode,
 219                                                  unsigned long offset)
 220 {
 221         return *uv_global_mmr64_address(pnode, offset);
 222 }
 223 
 224 /*
 225  * Access hub local MMRs. Faster than using global space but only local MMRs
 226  * are accessible.
 227  */
 228 static inline unsigned long *uv_local_mmr_address(unsigned long offset)
 229 {
 230         return __va(UV_LOCAL_MMR_BASE | offset);
 231 }
 232 
 233 static inline unsigned long uv_read_local_mmr(unsigned long offset)
 234 {
 235         return *uv_local_mmr_address(offset);
 236 }
 237 
 238 static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
 239 {
 240         *uv_local_mmr_address(offset) = val;
 241 }
 242 
 243 /*
 244  * Structures and definitions for converting between cpu, node, pnode, and blade
 245  * numbers.
 246  */
 247 
 248 /* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
 249 static inline int uv_blade_processor_id(void)
 250 {
 251         return smp_processor_id();
 252 }
 253 
 254 /* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
 255 static inline int uv_numa_blade_id(void)
 256 {
 257         return 0;
 258 }
 259 
 260 /* Convert a cpu number to the the UV blade number */
 261 static inline int uv_cpu_to_blade_id(int cpu)
 262 {
 263         return 0;
 264 }
 265 
 266 /* Convert linux node number to the UV blade number */
 267 static inline int uv_node_to_blade_id(int nid)
 268 {
 269         return 0;
 270 }
 271 
 272 /* Convert a blade id to the PNODE of the blade */
 273 static inline int uv_blade_to_pnode(int bid)
 274 {
 275         return 0;
 276 }
 277 
 278 /* Determine the number of possible cpus on a blade */
 279 static inline int uv_blade_nr_possible_cpus(int bid)
 280 {
 281         return num_possible_cpus();
 282 }
 283 
 284 /* Determine the number of online cpus on a blade */
 285 static inline int uv_blade_nr_online_cpus(int bid)
 286 {
 287         return num_online_cpus();
 288 }
 289 
 290 /* Convert a cpu id to the PNODE of the blade containing the cpu */
 291 static inline int uv_cpu_to_pnode(int cpu)
 292 {
 293         return 0;
 294 }
 295 
 296 /* Convert a linux node number to the PNODE of the blade */
 297 static inline int uv_node_to_pnode(int nid)
 298 {
 299         return 0;
 300 }
 301 
 302 /* Maximum possible number of blades */
 303 static inline int uv_num_possible_blades(void)
 304 {
 305         return 1;
 306 }
 307 
 308 static inline void uv_hub_send_ipi(int pnode, int apicid, int vector)
 309 {
 310         /* not currently needed on ia64 */
 311 }
 312 
 313 
 314 #endif /* __ASM_IA64_UV_HUB__ */
 315 

/* [<][>][^][v][top][bottom][index][help] */