root/drivers/firewire/sbp2.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. sbp2_queue_work
  2. target_parent_device
  3. tgt_dev
  4. lu_dev
  5. free_orb
  6. sbp2_status_write
  7. complete_transaction
  8. sbp2_send_orb
  9. sbp2_cancel_orbs
  10. complete_management_orb
  11. sbp2_send_management_orb
  12. sbp2_agent_reset
  13. complete_agent_reset_write_no_wait
  14. sbp2_agent_reset_no_wait
  15. sbp2_allow_block
  16. sbp2_conditionally_block
  17. sbp2_conditionally_unblock
  18. sbp2_unblock
  19. sbp2_lun2int
  20. sbp2_set_busy_timeout
  21. sbp2_login
  22. sbp2_reconnect
  23. sbp2_lu_workfn
  24. sbp2_add_logical_unit
  25. sbp2_get_unit_unique_id
  26. sbp2_scan_logical_unit_dir
  27. sbp2_scan_unit_dir
  28. sbp2_clamp_management_orb_timeout
  29. sbp2_init_workarounds
  30. sbp2_probe
  31. sbp2_update
  32. sbp2_remove
  33. sbp2_unmap_scatterlist
  34. sbp2_status_to_sense_data
  35. complete_command_orb
  36. sbp2_map_scatterlist
  37. sbp2_scsi_queuecommand
  38. sbp2_scsi_slave_alloc
  39. sbp2_scsi_slave_configure
  40. sbp2_scsi_abort
  41. sbp2_sysfs_ieee1394_id_show
  42. sbp2_init
  43. sbp2_cleanup

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3  * SBP2 driver (SCSI over IEEE1394)
   4  *
   5  * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
   6  */
   7 
   8 /*
   9  * The basic structure of this driver is based on the old storage driver,
  10  * drivers/ieee1394/sbp2.c, originally written by
  11  *     James Goodwin <jamesg@filanet.com>
  12  * with later contributions and ongoing maintenance from
  13  *     Ben Collins <bcollins@debian.org>,
  14  *     Stefan Richter <stefanr@s5r6.in-berlin.de>
  15  * and many others.
  16  */
  17 
  18 #include <linux/blkdev.h>
  19 #include <linux/bug.h>
  20 #include <linux/completion.h>
  21 #include <linux/delay.h>
  22 #include <linux/device.h>
  23 #include <linux/dma-mapping.h>
  24 #include <linux/firewire.h>
  25 #include <linux/firewire-constants.h>
  26 #include <linux/init.h>
  27 #include <linux/jiffies.h>
  28 #include <linux/kernel.h>
  29 #include <linux/kref.h>
  30 #include <linux/list.h>
  31 #include <linux/mod_devicetable.h>
  32 #include <linux/module.h>
  33 #include <linux/moduleparam.h>
  34 #include <linux/scatterlist.h>
  35 #include <linux/slab.h>
  36 #include <linux/spinlock.h>
  37 #include <linux/string.h>
  38 #include <linux/stringify.h>
  39 #include <linux/workqueue.h>
  40 
  41 #include <asm/byteorder.h>
  42 
  43 #include <scsi/scsi.h>
  44 #include <scsi/scsi_cmnd.h>
  45 #include <scsi/scsi_device.h>
  46 #include <scsi/scsi_host.h>
  47 
  48 /*
  49  * So far only bridges from Oxford Semiconductor are known to support
  50  * concurrent logins. Depending on firmware, four or two concurrent logins
  51  * are possible on OXFW911 and newer Oxsemi bridges.
  52  *
  53  * Concurrent logins are useful together with cluster filesystems.
  54  */
  55 static bool sbp2_param_exclusive_login = 1;
  56 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
  57 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
  58                  "(default = Y, use N for concurrent initiators)");
  59 
  60 /*
  61  * Flags for firmware oddities
  62  *
  63  * - 128kB max transfer
  64  *   Limit transfer size. Necessary for some old bridges.
  65  *
  66  * - 36 byte inquiry
  67  *   When scsi_mod probes the device, let the inquiry command look like that
  68  *   from MS Windows.
  69  *
  70  * - skip mode page 8
  71  *   Suppress sending of mode_sense for mode page 8 if the device pretends to
  72  *   support the SCSI Primary Block commands instead of Reduced Block Commands.
  73  *
  74  * - fix capacity
  75  *   Tell sd_mod to correct the last sector number reported by read_capacity.
  76  *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
  77  *   Don't use this with devices which don't have this bug.
  78  *
  79  * - delay inquiry
  80  *   Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
  81  *
  82  * - power condition
  83  *   Set the power condition field in the START STOP UNIT commands sent by
  84  *   sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
  85  *   Some disks need this to spin down or to resume properly.
  86  *
  87  * - override internal blacklist
  88  *   Instead of adding to the built-in blacklist, use only the workarounds
  89  *   specified in the module load parameter.
  90  *   Useful if a blacklist entry interfered with a non-broken device.
  91  */
  92 #define SBP2_WORKAROUND_128K_MAX_TRANS  0x1
  93 #define SBP2_WORKAROUND_INQUIRY_36      0x2
  94 #define SBP2_WORKAROUND_MODE_SENSE_8    0x4
  95 #define SBP2_WORKAROUND_FIX_CAPACITY    0x8
  96 #define SBP2_WORKAROUND_DELAY_INQUIRY   0x10
  97 #define SBP2_INQUIRY_DELAY              12
  98 #define SBP2_WORKAROUND_POWER_CONDITION 0x20
  99 #define SBP2_WORKAROUND_OVERRIDE        0x100
 100 
 101 static int sbp2_param_workarounds;
 102 module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
 103 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
 104         ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
 105         ", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
 106         ", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
 107         ", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
 108         ", delay inquiry = "      __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
 109         ", set power condition in start stop unit = "
 110                                   __stringify(SBP2_WORKAROUND_POWER_CONDITION)
 111         ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
 112         ", or a combination)");
 113 
 114 /*
 115  * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
 116  * and one struct scsi_device per sbp2_logical_unit.
 117  */
 118 struct sbp2_logical_unit {
 119         struct sbp2_target *tgt;
 120         struct list_head link;
 121         struct fw_address_handler address_handler;
 122         struct list_head orb_list;
 123 
 124         u64 command_block_agent_address;
 125         u16 lun;
 126         int login_id;
 127 
 128         /*
 129          * The generation is updated once we've logged in or reconnected
 130          * to the logical unit.  Thus, I/O to the device will automatically
 131          * fail and get retried if it happens in a window where the device
 132          * is not ready, e.g. after a bus reset but before we reconnect.
 133          */
 134         int generation;
 135         int retries;
 136         work_func_t workfn;
 137         struct delayed_work work;
 138         bool has_sdev;
 139         bool blocked;
 140 };
 141 
 142 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
 143 {
 144         queue_delayed_work(fw_workqueue, &lu->work, delay);
 145 }
 146 
 147 /*
 148  * We create one struct sbp2_target per IEEE 1212 Unit Directory
 149  * and one struct Scsi_Host per sbp2_target.
 150  */
 151 struct sbp2_target {
 152         struct fw_unit *unit;
 153         struct list_head lu_list;
 154 
 155         u64 management_agent_address;
 156         u64 guid;
 157         int directory_id;
 158         int node_id;
 159         int address_high;
 160         unsigned int workarounds;
 161         unsigned int mgt_orb_timeout;
 162         unsigned int max_payload;
 163 
 164         spinlock_t lock;
 165         int dont_block; /* counter for each logical unit */
 166         int blocked;    /* ditto */
 167 };
 168 
 169 static struct fw_device *target_parent_device(struct sbp2_target *tgt)
 170 {
 171         return fw_parent_device(tgt->unit);
 172 }
 173 
 174 static const struct device *tgt_dev(const struct sbp2_target *tgt)
 175 {
 176         return &tgt->unit->device;
 177 }
 178 
 179 static const struct device *lu_dev(const struct sbp2_logical_unit *lu)
 180 {
 181         return &lu->tgt->unit->device;
 182 }
 183 
 184 /* Impossible login_id, to detect logout attempt before successful login */
 185 #define INVALID_LOGIN_ID 0x10000
 186 
 187 #define SBP2_ORB_TIMEOUT                2000U           /* Timeout in ms */
 188 #define SBP2_ORB_NULL                   0x80000000
 189 #define SBP2_RETRY_LIMIT                0xf             /* 15 retries */
 190 #define SBP2_CYCLE_LIMIT                (0xc8 << 12)    /* 200 125us cycles */
 191 
 192 /*
 193  * There is no transport protocol limit to the CDB length,  but we implement
 194  * a fixed length only.  16 bytes is enough for disks larger than 2 TB.
 195  */
 196 #define SBP2_MAX_CDB_SIZE               16
 197 
 198 /*
 199  * The maximum SBP-2 data buffer size is 0xffff.  We quadlet-align this
 200  * for compatibility with earlier versions of this driver.
 201  */
 202 #define SBP2_MAX_SEG_SIZE               0xfffc
 203 
 204 /* Unit directory keys */
 205 #define SBP2_CSR_UNIT_CHARACTERISTICS   0x3a
 206 #define SBP2_CSR_FIRMWARE_REVISION      0x3c
 207 #define SBP2_CSR_LOGICAL_UNIT_NUMBER    0x14
 208 #define SBP2_CSR_UNIT_UNIQUE_ID         0x8d
 209 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
 210 
 211 /* Management orb opcodes */
 212 #define SBP2_LOGIN_REQUEST              0x0
 213 #define SBP2_QUERY_LOGINS_REQUEST       0x1
 214 #define SBP2_RECONNECT_REQUEST          0x3
 215 #define SBP2_SET_PASSWORD_REQUEST       0x4
 216 #define SBP2_LOGOUT_REQUEST             0x7
 217 #define SBP2_ABORT_TASK_REQUEST         0xb
 218 #define SBP2_ABORT_TASK_SET             0xc
 219 #define SBP2_LOGICAL_UNIT_RESET         0xe
 220 #define SBP2_TARGET_RESET_REQUEST       0xf
 221 
 222 /* Offsets for command block agent registers */
 223 #define SBP2_AGENT_STATE                0x00
 224 #define SBP2_AGENT_RESET                0x04
 225 #define SBP2_ORB_POINTER                0x08
 226 #define SBP2_DOORBELL                   0x10
 227 #define SBP2_UNSOLICITED_STATUS_ENABLE  0x14
 228 
 229 /* Status write response codes */
 230 #define SBP2_STATUS_REQUEST_COMPLETE    0x0
 231 #define SBP2_STATUS_TRANSPORT_FAILURE   0x1
 232 #define SBP2_STATUS_ILLEGAL_REQUEST     0x2
 233 #define SBP2_STATUS_VENDOR_DEPENDENT    0x3
 234 
 235 #define STATUS_GET_ORB_HIGH(v)          ((v).status & 0xffff)
 236 #define STATUS_GET_SBP_STATUS(v)        (((v).status >> 16) & 0xff)
 237 #define STATUS_GET_LEN(v)               (((v).status >> 24) & 0x07)
 238 #define STATUS_GET_DEAD(v)              (((v).status >> 27) & 0x01)
 239 #define STATUS_GET_RESPONSE(v)          (((v).status >> 28) & 0x03)
 240 #define STATUS_GET_SOURCE(v)            (((v).status >> 30) & 0x03)
 241 #define STATUS_GET_ORB_LOW(v)           ((v).orb_low)
 242 #define STATUS_GET_DATA(v)              ((v).data)
 243 
 244 struct sbp2_status {
 245         u32 status;
 246         u32 orb_low;
 247         u8 data[24];
 248 };
 249 
 250 struct sbp2_pointer {
 251         __be32 high;
 252         __be32 low;
 253 };
 254 
 255 struct sbp2_orb {
 256         struct fw_transaction t;
 257         struct kref kref;
 258         dma_addr_t request_bus;
 259         int rcode;
 260         void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
 261         struct sbp2_logical_unit *lu;
 262         struct list_head link;
 263 };
 264 
 265 #define MANAGEMENT_ORB_LUN(v)                   ((v))
 266 #define MANAGEMENT_ORB_FUNCTION(v)              ((v) << 16)
 267 #define MANAGEMENT_ORB_RECONNECT(v)             ((v) << 20)
 268 #define MANAGEMENT_ORB_EXCLUSIVE(v)             ((v) ? 1 << 28 : 0)
 269 #define MANAGEMENT_ORB_REQUEST_FORMAT(v)        ((v) << 29)
 270 #define MANAGEMENT_ORB_NOTIFY                   ((1) << 31)
 271 
 272 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v)       ((v))
 273 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v)       ((v) << 16)
 274 
 275 struct sbp2_management_orb {
 276         struct sbp2_orb base;
 277         struct {
 278                 struct sbp2_pointer password;
 279                 struct sbp2_pointer response;
 280                 __be32 misc;
 281                 __be32 length;
 282                 struct sbp2_pointer status_fifo;
 283         } request;
 284         __be32 response[4];
 285         dma_addr_t response_bus;
 286         struct completion done;
 287         struct sbp2_status status;
 288 };
 289 
 290 struct sbp2_login_response {
 291         __be32 misc;
 292         struct sbp2_pointer command_block_agent;
 293         __be32 reconnect_hold;
 294 };
 295 #define COMMAND_ORB_DATA_SIZE(v)        ((v))
 296 #define COMMAND_ORB_PAGE_SIZE(v)        ((v) << 16)
 297 #define COMMAND_ORB_PAGE_TABLE_PRESENT  ((1) << 19)
 298 #define COMMAND_ORB_MAX_PAYLOAD(v)      ((v) << 20)
 299 #define COMMAND_ORB_SPEED(v)            ((v) << 24)
 300 #define COMMAND_ORB_DIRECTION           ((1) << 27)
 301 #define COMMAND_ORB_REQUEST_FORMAT(v)   ((v) << 29)
 302 #define COMMAND_ORB_NOTIFY              ((1) << 31)
 303 
 304 struct sbp2_command_orb {
 305         struct sbp2_orb base;
 306         struct {
 307                 struct sbp2_pointer next;
 308                 struct sbp2_pointer data_descriptor;
 309                 __be32 misc;
 310                 u8 command_block[SBP2_MAX_CDB_SIZE];
 311         } request;
 312         struct scsi_cmnd *cmd;
 313 
 314         struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
 315         dma_addr_t page_table_bus;
 316 };
 317 
 318 #define SBP2_ROM_VALUE_WILDCARD ~0         /* match all */
 319 #define SBP2_ROM_VALUE_MISSING  0xff000000 /* not present in the unit dir. */
 320 
 321 /*
 322  * List of devices with known bugs.
 323  *
 324  * The firmware_revision field, masked with 0xffff00, is the best
 325  * indicator for the type of bridge chip of a device.  It yields a few
 326  * false positives but this did not break correctly behaving devices
 327  * so far.
 328  */
 329 static const struct {
 330         u32 firmware_revision;
 331         u32 model;
 332         unsigned int workarounds;
 333 } sbp2_workarounds_table[] = {
 334         /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
 335                 .firmware_revision      = 0x002800,
 336                 .model                  = 0x001010,
 337                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36 |
 338                                           SBP2_WORKAROUND_MODE_SENSE_8 |
 339                                           SBP2_WORKAROUND_POWER_CONDITION,
 340         },
 341         /* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
 342                 .firmware_revision      = 0x002800,
 343                 .model                  = 0x000000,
 344                 .workarounds            = SBP2_WORKAROUND_POWER_CONDITION,
 345         },
 346         /* Initio bridges, actually only needed for some older ones */ {
 347                 .firmware_revision      = 0x000200,
 348                 .model                  = SBP2_ROM_VALUE_WILDCARD,
 349                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36,
 350         },
 351         /* PL-3507 bridge with Prolific firmware */ {
 352                 .firmware_revision      = 0x012800,
 353                 .model                  = SBP2_ROM_VALUE_WILDCARD,
 354                 .workarounds            = SBP2_WORKAROUND_POWER_CONDITION,
 355         },
 356         /* Symbios bridge */ {
 357                 .firmware_revision      = 0xa0b800,
 358                 .model                  = SBP2_ROM_VALUE_WILDCARD,
 359                 .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS,
 360         },
 361         /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
 362                 .firmware_revision      = 0x002600,
 363                 .model                  = SBP2_ROM_VALUE_WILDCARD,
 364                 .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS,
 365         },
 366         /*
 367          * iPod 2nd generation: needs 128k max transfer size workaround
 368          * iPod 3rd generation: needs fix capacity workaround
 369          */
 370         {
 371                 .firmware_revision      = 0x0a2700,
 372                 .model                  = 0x000000,
 373                 .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS |
 374                                           SBP2_WORKAROUND_FIX_CAPACITY,
 375         },
 376         /* iPod 4th generation */ {
 377                 .firmware_revision      = 0x0a2700,
 378                 .model                  = 0x000021,
 379                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
 380         },
 381         /* iPod mini */ {
 382                 .firmware_revision      = 0x0a2700,
 383                 .model                  = 0x000022,
 384                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
 385         },
 386         /* iPod mini */ {
 387                 .firmware_revision      = 0x0a2700,
 388                 .model                  = 0x000023,
 389                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
 390         },
 391         /* iPod Photo */ {
 392                 .firmware_revision      = 0x0a2700,
 393                 .model                  = 0x00007e,
 394                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
 395         }
 396 };
 397 
 398 static void free_orb(struct kref *kref)
 399 {
 400         struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
 401 
 402         kfree(orb);
 403 }
 404 
 405 static void sbp2_status_write(struct fw_card *card, struct fw_request *request,
 406                               int tcode, int destination, int source,
 407                               int generation, unsigned long long offset,
 408                               void *payload, size_t length, void *callback_data)
 409 {
 410         struct sbp2_logical_unit *lu = callback_data;
 411         struct sbp2_orb *orb;
 412         struct sbp2_status status;
 413         unsigned long flags;
 414 
 415         if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
 416             length < 8 || length > sizeof(status)) {
 417                 fw_send_response(card, request, RCODE_TYPE_ERROR);
 418                 return;
 419         }
 420 
 421         status.status  = be32_to_cpup(payload);
 422         status.orb_low = be32_to_cpup(payload + 4);
 423         memset(status.data, 0, sizeof(status.data));
 424         if (length > 8)
 425                 memcpy(status.data, payload + 8, length - 8);
 426 
 427         if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
 428                 dev_notice(lu_dev(lu),
 429                            "non-ORB related status write, not handled\n");
 430                 fw_send_response(card, request, RCODE_COMPLETE);
 431                 return;
 432         }
 433 
 434         /* Lookup the orb corresponding to this status write. */
 435         spin_lock_irqsave(&lu->tgt->lock, flags);
 436         list_for_each_entry(orb, &lu->orb_list, link) {
 437                 if (STATUS_GET_ORB_HIGH(status) == 0 &&
 438                     STATUS_GET_ORB_LOW(status) == orb->request_bus) {
 439                         orb->rcode = RCODE_COMPLETE;
 440                         list_del(&orb->link);
 441                         break;
 442                 }
 443         }
 444         spin_unlock_irqrestore(&lu->tgt->lock, flags);
 445 
 446         if (&orb->link != &lu->orb_list) {
 447                 orb->callback(orb, &status);
 448                 kref_put(&orb->kref, free_orb); /* orb callback reference */
 449         } else {
 450                 dev_err(lu_dev(lu), "status write for unknown ORB\n");
 451         }
 452 
 453         fw_send_response(card, request, RCODE_COMPLETE);
 454 }
 455 
 456 static void complete_transaction(struct fw_card *card, int rcode,
 457                                  void *payload, size_t length, void *data)
 458 {
 459         struct sbp2_orb *orb = data;
 460         unsigned long flags;
 461 
 462         /*
 463          * This is a little tricky.  We can get the status write for
 464          * the orb before we get this callback.  The status write
 465          * handler above will assume the orb pointer transaction was
 466          * successful and set the rcode to RCODE_COMPLETE for the orb.
 467          * So this callback only sets the rcode if it hasn't already
 468          * been set and only does the cleanup if the transaction
 469          * failed and we didn't already get a status write.
 470          */
 471         spin_lock_irqsave(&orb->lu->tgt->lock, flags);
 472 
 473         if (orb->rcode == -1)
 474                 orb->rcode = rcode;
 475         if (orb->rcode != RCODE_COMPLETE) {
 476                 list_del(&orb->link);
 477                 spin_unlock_irqrestore(&orb->lu->tgt->lock, flags);
 478 
 479                 orb->callback(orb, NULL);
 480                 kref_put(&orb->kref, free_orb); /* orb callback reference */
 481         } else {
 482                 spin_unlock_irqrestore(&orb->lu->tgt->lock, flags);
 483         }
 484 
 485         kref_put(&orb->kref, free_orb); /* transaction callback reference */
 486 }
 487 
 488 static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
 489                           int node_id, int generation, u64 offset)
 490 {
 491         struct fw_device *device = target_parent_device(lu->tgt);
 492         struct sbp2_pointer orb_pointer;
 493         unsigned long flags;
 494 
 495         orb_pointer.high = 0;
 496         orb_pointer.low = cpu_to_be32(orb->request_bus);
 497 
 498         orb->lu = lu;
 499         spin_lock_irqsave(&lu->tgt->lock, flags);
 500         list_add_tail(&orb->link, &lu->orb_list);
 501         spin_unlock_irqrestore(&lu->tgt->lock, flags);
 502 
 503         kref_get(&orb->kref); /* transaction callback reference */
 504         kref_get(&orb->kref); /* orb callback reference */
 505 
 506         fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
 507                         node_id, generation, device->max_speed, offset,
 508                         &orb_pointer, 8, complete_transaction, orb);
 509 }
 510 
 511 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
 512 {
 513         struct fw_device *device = target_parent_device(lu->tgt);
 514         struct sbp2_orb *orb, *next;
 515         struct list_head list;
 516         int retval = -ENOENT;
 517 
 518         INIT_LIST_HEAD(&list);
 519         spin_lock_irq(&lu->tgt->lock);
 520         list_splice_init(&lu->orb_list, &list);
 521         spin_unlock_irq(&lu->tgt->lock);
 522 
 523         list_for_each_entry_safe(orb, next, &list, link) {
 524                 retval = 0;
 525                 if (fw_cancel_transaction(device->card, &orb->t) == 0)
 526                         continue;
 527 
 528                 orb->rcode = RCODE_CANCELLED;
 529                 orb->callback(orb, NULL);
 530                 kref_put(&orb->kref, free_orb); /* orb callback reference */
 531         }
 532 
 533         return retval;
 534 }
 535 
 536 static void complete_management_orb(struct sbp2_orb *base_orb,
 537                                     struct sbp2_status *status)
 538 {
 539         struct sbp2_management_orb *orb =
 540                 container_of(base_orb, struct sbp2_management_orb, base);
 541 
 542         if (status)
 543                 memcpy(&orb->status, status, sizeof(*status));
 544         complete(&orb->done);
 545 }
 546 
 547 static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
 548                                     int generation, int function,
 549                                     int lun_or_login_id, void *response)
 550 {
 551         struct fw_device *device = target_parent_device(lu->tgt);
 552         struct sbp2_management_orb *orb;
 553         unsigned int timeout;
 554         int retval = -ENOMEM;
 555 
 556         if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
 557                 return 0;
 558 
 559         orb = kzalloc(sizeof(*orb), GFP_NOIO);
 560         if (orb == NULL)
 561                 return -ENOMEM;
 562 
 563         kref_init(&orb->base.kref);
 564         orb->response_bus =
 565                 dma_map_single(device->card->device, &orb->response,
 566                                sizeof(orb->response), DMA_FROM_DEVICE);
 567         if (dma_mapping_error(device->card->device, orb->response_bus))
 568                 goto fail_mapping_response;
 569 
 570         orb->request.response.high = 0;
 571         orb->request.response.low  = cpu_to_be32(orb->response_bus);
 572 
 573         orb->request.misc = cpu_to_be32(
 574                 MANAGEMENT_ORB_NOTIFY |
 575                 MANAGEMENT_ORB_FUNCTION(function) |
 576                 MANAGEMENT_ORB_LUN(lun_or_login_id));
 577         orb->request.length = cpu_to_be32(
 578                 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
 579 
 580         orb->request.status_fifo.high =
 581                 cpu_to_be32(lu->address_handler.offset >> 32);
 582         orb->request.status_fifo.low  =
 583                 cpu_to_be32(lu->address_handler.offset);
 584 
 585         if (function == SBP2_LOGIN_REQUEST) {
 586                 /* Ask for 2^2 == 4 seconds reconnect grace period */
 587                 orb->request.misc |= cpu_to_be32(
 588                         MANAGEMENT_ORB_RECONNECT(2) |
 589                         MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
 590                 timeout = lu->tgt->mgt_orb_timeout;
 591         } else {
 592                 timeout = SBP2_ORB_TIMEOUT;
 593         }
 594 
 595         init_completion(&orb->done);
 596         orb->base.callback = complete_management_orb;
 597 
 598         orb->base.request_bus =
 599                 dma_map_single(device->card->device, &orb->request,
 600                                sizeof(orb->request), DMA_TO_DEVICE);
 601         if (dma_mapping_error(device->card->device, orb->base.request_bus))
 602                 goto fail_mapping_request;
 603 
 604         sbp2_send_orb(&orb->base, lu, node_id, generation,
 605                       lu->tgt->management_agent_address);
 606 
 607         wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
 608 
 609         retval = -EIO;
 610         if (sbp2_cancel_orbs(lu) == 0) {
 611                 dev_err(lu_dev(lu), "ORB reply timed out, rcode 0x%02x\n",
 612                         orb->base.rcode);
 613                 goto out;
 614         }
 615 
 616         if (orb->base.rcode != RCODE_COMPLETE) {
 617                 dev_err(lu_dev(lu), "management write failed, rcode 0x%02x\n",
 618                         orb->base.rcode);
 619                 goto out;
 620         }
 621 
 622         if (STATUS_GET_RESPONSE(orb->status) != 0 ||
 623             STATUS_GET_SBP_STATUS(orb->status) != 0) {
 624                 dev_err(lu_dev(lu), "error status: %d:%d\n",
 625                          STATUS_GET_RESPONSE(orb->status),
 626                          STATUS_GET_SBP_STATUS(orb->status));
 627                 goto out;
 628         }
 629 
 630         retval = 0;
 631  out:
 632         dma_unmap_single(device->card->device, orb->base.request_bus,
 633                          sizeof(orb->request), DMA_TO_DEVICE);
 634  fail_mapping_request:
 635         dma_unmap_single(device->card->device, orb->response_bus,
 636                          sizeof(orb->response), DMA_FROM_DEVICE);
 637  fail_mapping_response:
 638         if (response)
 639                 memcpy(response, orb->response, sizeof(orb->response));
 640         kref_put(&orb->base.kref, free_orb);
 641 
 642         return retval;
 643 }
 644 
 645 static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
 646 {
 647         struct fw_device *device = target_parent_device(lu->tgt);
 648         __be32 d = 0;
 649 
 650         fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
 651                            lu->tgt->node_id, lu->generation, device->max_speed,
 652                            lu->command_block_agent_address + SBP2_AGENT_RESET,
 653                            &d, 4);
 654 }
 655 
 656 static void complete_agent_reset_write_no_wait(struct fw_card *card,
 657                 int rcode, void *payload, size_t length, void *data)
 658 {
 659         kfree(data);
 660 }
 661 
 662 static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
 663 {
 664         struct fw_device *device = target_parent_device(lu->tgt);
 665         struct fw_transaction *t;
 666         static __be32 d;
 667 
 668         t = kmalloc(sizeof(*t), GFP_ATOMIC);
 669         if (t == NULL)
 670                 return;
 671 
 672         fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
 673                         lu->tgt->node_id, lu->generation, device->max_speed,
 674                         lu->command_block_agent_address + SBP2_AGENT_RESET,
 675                         &d, 4, complete_agent_reset_write_no_wait, t);
 676 }
 677 
 678 static inline void sbp2_allow_block(struct sbp2_target *tgt)
 679 {
 680         spin_lock_irq(&tgt->lock);
 681         --tgt->dont_block;
 682         spin_unlock_irq(&tgt->lock);
 683 }
 684 
 685 /*
 686  * Blocks lu->tgt if all of the following conditions are met:
 687  *   - Login, INQUIRY, and high-level SCSI setup of all of the target's
 688  *     logical units have been finished (indicated by dont_block == 0).
 689  *   - lu->generation is stale.
 690  *
 691  * Note, scsi_block_requests() must be called while holding tgt->lock,
 692  * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
 693  * unblock the target.
 694  */
 695 static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
 696 {
 697         struct sbp2_target *tgt = lu->tgt;
 698         struct fw_card *card = target_parent_device(tgt)->card;
 699         struct Scsi_Host *shost =
 700                 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
 701         unsigned long flags;
 702 
 703         spin_lock_irqsave(&tgt->lock, flags);
 704         if (!tgt->dont_block && !lu->blocked &&
 705             lu->generation != card->generation) {
 706                 lu->blocked = true;
 707                 if (++tgt->blocked == 1)
 708                         scsi_block_requests(shost);
 709         }
 710         spin_unlock_irqrestore(&tgt->lock, flags);
 711 }
 712 
 713 /*
 714  * Unblocks lu->tgt as soon as all its logical units can be unblocked.
 715  * Note, it is harmless to run scsi_unblock_requests() outside the
 716  * tgt->lock protected section.  On the other hand, running it inside
 717  * the section might clash with shost->host_lock.
 718  */
 719 static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
 720 {
 721         struct sbp2_target *tgt = lu->tgt;
 722         struct fw_card *card = target_parent_device(tgt)->card;
 723         struct Scsi_Host *shost =
 724                 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
 725         bool unblock = false;
 726 
 727         spin_lock_irq(&tgt->lock);
 728         if (lu->blocked && lu->generation == card->generation) {
 729                 lu->blocked = false;
 730                 unblock = --tgt->blocked == 0;
 731         }
 732         spin_unlock_irq(&tgt->lock);
 733 
 734         if (unblock)
 735                 scsi_unblock_requests(shost);
 736 }
 737 
 738 /*
 739  * Prevents future blocking of tgt and unblocks it.
 740  * Note, it is harmless to run scsi_unblock_requests() outside the
 741  * tgt->lock protected section.  On the other hand, running it inside
 742  * the section might clash with shost->host_lock.
 743  */
 744 static void sbp2_unblock(struct sbp2_target *tgt)
 745 {
 746         struct Scsi_Host *shost =
 747                 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
 748 
 749         spin_lock_irq(&tgt->lock);
 750         ++tgt->dont_block;
 751         spin_unlock_irq(&tgt->lock);
 752 
 753         scsi_unblock_requests(shost);
 754 }
 755 
 756 static int sbp2_lun2int(u16 lun)
 757 {
 758         struct scsi_lun eight_bytes_lun;
 759 
 760         memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
 761         eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
 762         eight_bytes_lun.scsi_lun[1] = lun & 0xff;
 763 
 764         return scsilun_to_int(&eight_bytes_lun);
 765 }
 766 
 767 /*
 768  * Write retransmit retry values into the BUSY_TIMEOUT register.
 769  * - The single-phase retry protocol is supported by all SBP-2 devices, but the
 770  *   default retry_limit value is 0 (i.e. never retry transmission). We write a
 771  *   saner value after logging into the device.
 772  * - The dual-phase retry protocol is optional to implement, and if not
 773  *   supported, writes to the dual-phase portion of the register will be
 774  *   ignored. We try to write the original 1394-1995 default here.
 775  * - In the case of devices that are also SBP-3-compliant, all writes are
 776  *   ignored, as the register is read-only, but contains single-phase retry of
 777  *   15, which is what we're trying to set for all SBP-2 device anyway, so this
 778  *   write attempt is safe and yields more consistent behavior for all devices.
 779  *
 780  * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec,
 781  * and section 6.4 of the SBP-3 spec for further details.
 782  */
 783 static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
 784 {
 785         struct fw_device *device = target_parent_device(lu->tgt);
 786         __be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT);
 787 
 788         fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
 789                            lu->tgt->node_id, lu->generation, device->max_speed,
 790                            CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &d, 4);
 791 }
 792 
 793 static void sbp2_reconnect(struct work_struct *work);
 794 
 795 static void sbp2_login(struct work_struct *work)
 796 {
 797         struct sbp2_logical_unit *lu =
 798                 container_of(work, struct sbp2_logical_unit, work.work);
 799         struct sbp2_target *tgt = lu->tgt;
 800         struct fw_device *device = target_parent_device(tgt);
 801         struct Scsi_Host *shost;
 802         struct scsi_device *sdev;
 803         struct sbp2_login_response response;
 804         int generation, node_id, local_node_id;
 805 
 806         if (fw_device_is_shutdown(device))
 807                 return;
 808 
 809         generation    = device->generation;
 810         smp_rmb();    /* node IDs must not be older than generation */
 811         node_id       = device->node_id;
 812         local_node_id = device->card->node_id;
 813 
 814         /* If this is a re-login attempt, log out, or we might be rejected. */
 815         if (lu->has_sdev)
 816                 sbp2_send_management_orb(lu, device->node_id, generation,
 817                                 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
 818 
 819         if (sbp2_send_management_orb(lu, node_id, generation,
 820                                 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
 821                 if (lu->retries++ < 5) {
 822                         sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
 823                 } else {
 824                         dev_err(tgt_dev(tgt), "failed to login to LUN %04x\n",
 825                                 lu->lun);
 826                         /* Let any waiting I/O fail from now on. */
 827                         sbp2_unblock(lu->tgt);
 828                 }
 829                 return;
 830         }
 831 
 832         tgt->node_id      = node_id;
 833         tgt->address_high = local_node_id << 16;
 834         smp_wmb();        /* node IDs must not be older than generation */
 835         lu->generation    = generation;
 836 
 837         lu->command_block_agent_address =
 838                 ((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
 839                       << 32) | be32_to_cpu(response.command_block_agent.low);
 840         lu->login_id = be32_to_cpu(response.misc) & 0xffff;
 841 
 842         dev_notice(tgt_dev(tgt), "logged in to LUN %04x (%d retries)\n",
 843                    lu->lun, lu->retries);
 844 
 845         /* set appropriate retry limit(s) in BUSY_TIMEOUT register */
 846         sbp2_set_busy_timeout(lu);
 847 
 848         lu->workfn = sbp2_reconnect;
 849         sbp2_agent_reset(lu);
 850 
 851         /* This was a re-login. */
 852         if (lu->has_sdev) {
 853                 sbp2_cancel_orbs(lu);
 854                 sbp2_conditionally_unblock(lu);
 855 
 856                 return;
 857         }
 858 
 859         if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
 860                 ssleep(SBP2_INQUIRY_DELAY);
 861 
 862         shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
 863         sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
 864         /*
 865          * FIXME:  We are unable to perform reconnects while in sbp2_login().
 866          * Therefore __scsi_add_device() will get into trouble if a bus reset
 867          * happens in parallel.  It will either fail or leave us with an
 868          * unusable sdev.  As a workaround we check for this and retry the
 869          * whole login and SCSI probing.
 870          */
 871 
 872         /* Reported error during __scsi_add_device() */
 873         if (IS_ERR(sdev))
 874                 goto out_logout_login;
 875 
 876         /* Unreported error during __scsi_add_device() */
 877         smp_rmb(); /* get current card generation */
 878         if (generation != device->card->generation) {
 879                 scsi_remove_device(sdev);
 880                 scsi_device_put(sdev);
 881                 goto out_logout_login;
 882         }
 883 
 884         /* No error during __scsi_add_device() */
 885         lu->has_sdev = true;
 886         scsi_device_put(sdev);
 887         sbp2_allow_block(tgt);
 888 
 889         return;
 890 
 891  out_logout_login:
 892         smp_rmb(); /* generation may have changed */
 893         generation = device->generation;
 894         smp_rmb(); /* node_id must not be older than generation */
 895 
 896         sbp2_send_management_orb(lu, device->node_id, generation,
 897                                  SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
 898         /*
 899          * If a bus reset happened, sbp2_update will have requeued
 900          * lu->work already.  Reset the work from reconnect to login.
 901          */
 902         lu->workfn = sbp2_login;
 903 }
 904 
 905 static void sbp2_reconnect(struct work_struct *work)
 906 {
 907         struct sbp2_logical_unit *lu =
 908                 container_of(work, struct sbp2_logical_unit, work.work);
 909         struct sbp2_target *tgt = lu->tgt;
 910         struct fw_device *device = target_parent_device(tgt);
 911         int generation, node_id, local_node_id;
 912 
 913         if (fw_device_is_shutdown(device))
 914                 return;
 915 
 916         generation    = device->generation;
 917         smp_rmb();    /* node IDs must not be older than generation */
 918         node_id       = device->node_id;
 919         local_node_id = device->card->node_id;
 920 
 921         if (sbp2_send_management_orb(lu, node_id, generation,
 922                                      SBP2_RECONNECT_REQUEST,
 923                                      lu->login_id, NULL) < 0) {
 924                 /*
 925                  * If reconnect was impossible even though we are in the
 926                  * current generation, fall back and try to log in again.
 927                  *
 928                  * We could check for "Function rejected" status, but
 929                  * looking at the bus generation as simpler and more general.
 930                  */
 931                 smp_rmb(); /* get current card generation */
 932                 if (generation == device->card->generation ||
 933                     lu->retries++ >= 5) {
 934                         dev_err(tgt_dev(tgt), "failed to reconnect\n");
 935                         lu->retries = 0;
 936                         lu->workfn = sbp2_login;
 937                 }
 938                 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
 939 
 940                 return;
 941         }
 942 
 943         tgt->node_id      = node_id;
 944         tgt->address_high = local_node_id << 16;
 945         smp_wmb();        /* node IDs must not be older than generation */
 946         lu->generation    = generation;
 947 
 948         dev_notice(tgt_dev(tgt), "reconnected to LUN %04x (%d retries)\n",
 949                    lu->lun, lu->retries);
 950 
 951         sbp2_agent_reset(lu);
 952         sbp2_cancel_orbs(lu);
 953         sbp2_conditionally_unblock(lu);
 954 }
 955 
 956 static void sbp2_lu_workfn(struct work_struct *work)
 957 {
 958         struct sbp2_logical_unit *lu = container_of(to_delayed_work(work),
 959                                                 struct sbp2_logical_unit, work);
 960         lu->workfn(work);
 961 }
 962 
 963 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
 964 {
 965         struct sbp2_logical_unit *lu;
 966 
 967         lu = kmalloc(sizeof(*lu), GFP_KERNEL);
 968         if (!lu)
 969                 return -ENOMEM;
 970 
 971         lu->address_handler.length           = 0x100;
 972         lu->address_handler.address_callback = sbp2_status_write;
 973         lu->address_handler.callback_data    = lu;
 974 
 975         if (fw_core_add_address_handler(&lu->address_handler,
 976                                         &fw_high_memory_region) < 0) {
 977                 kfree(lu);
 978                 return -ENOMEM;
 979         }
 980 
 981         lu->tgt      = tgt;
 982         lu->lun      = lun_entry & 0xffff;
 983         lu->login_id = INVALID_LOGIN_ID;
 984         lu->retries  = 0;
 985         lu->has_sdev = false;
 986         lu->blocked  = false;
 987         ++tgt->dont_block;
 988         INIT_LIST_HEAD(&lu->orb_list);
 989         lu->workfn = sbp2_login;
 990         INIT_DELAYED_WORK(&lu->work, sbp2_lu_workfn);
 991 
 992         list_add_tail(&lu->link, &tgt->lu_list);
 993         return 0;
 994 }
 995 
 996 static void sbp2_get_unit_unique_id(struct sbp2_target *tgt,
 997                                     const u32 *leaf)
 998 {
 999         if ((leaf[0] & 0xffff0000) == 0x00020000)
1000                 tgt->guid = (u64)leaf[1] << 32 | leaf[2];
1001 }
1002 
1003 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt,
1004                                       const u32 *directory)
1005 {
1006         struct fw_csr_iterator ci;
1007         int key, value;
1008 
1009         fw_csr_iterator_init(&ci, directory);
1010         while (fw_csr_iterator_next(&ci, &key, &value))
1011                 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
1012                     sbp2_add_logical_unit(tgt, value) < 0)
1013                         return -ENOMEM;
1014         return 0;
1015 }
1016 
1017 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, const u32 *directory,
1018                               u32 *model, u32 *firmware_revision)
1019 {
1020         struct fw_csr_iterator ci;
1021         int key, value;
1022 
1023         fw_csr_iterator_init(&ci, directory);
1024         while (fw_csr_iterator_next(&ci, &key, &value)) {
1025                 switch (key) {
1026 
1027                 case CSR_DEPENDENT_INFO | CSR_OFFSET:
1028                         tgt->management_agent_address =
1029                                         CSR_REGISTER_BASE + 4 * value;
1030                         break;
1031 
1032                 case CSR_DIRECTORY_ID:
1033                         tgt->directory_id = value;
1034                         break;
1035 
1036                 case CSR_MODEL:
1037                         *model = value;
1038                         break;
1039 
1040                 case SBP2_CSR_FIRMWARE_REVISION:
1041                         *firmware_revision = value;
1042                         break;
1043 
1044                 case SBP2_CSR_UNIT_CHARACTERISTICS:
1045                         /* the timeout value is stored in 500ms units */
1046                         tgt->mgt_orb_timeout = (value >> 8 & 0xff) * 500;
1047                         break;
1048 
1049                 case SBP2_CSR_LOGICAL_UNIT_NUMBER:
1050                         if (sbp2_add_logical_unit(tgt, value) < 0)
1051                                 return -ENOMEM;
1052                         break;
1053 
1054                 case SBP2_CSR_UNIT_UNIQUE_ID:
1055                         sbp2_get_unit_unique_id(tgt, ci.p - 1 + value);
1056                         break;
1057 
1058                 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
1059                         /* Adjust for the increment in the iterator */
1060                         if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0)
1061                                 return -ENOMEM;
1062                         break;
1063                 }
1064         }
1065         return 0;
1066 }
1067 
1068 /*
1069  * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
1070  * provided in the config rom. Most devices do provide a value, which
1071  * we'll use for login management orbs, but with some sane limits.
1072  */
1073 static void sbp2_clamp_management_orb_timeout(struct sbp2_target *tgt)
1074 {
1075         unsigned int timeout = tgt->mgt_orb_timeout;
1076 
1077         if (timeout > 40000)
1078                 dev_notice(tgt_dev(tgt), "%ds mgt_ORB_timeout limited to 40s\n",
1079                            timeout / 1000);
1080 
1081         tgt->mgt_orb_timeout = clamp_val(timeout, 5000, 40000);
1082 }
1083 
1084 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
1085                                   u32 firmware_revision)
1086 {
1087         int i;
1088         unsigned int w = sbp2_param_workarounds;
1089 
1090         if (w)
1091                 dev_notice(tgt_dev(tgt),
1092                            "Please notify linux1394-devel@lists.sf.net "
1093                            "if you need the workarounds parameter\n");
1094 
1095         if (w & SBP2_WORKAROUND_OVERRIDE)
1096                 goto out;
1097 
1098         for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1099 
1100                 if (sbp2_workarounds_table[i].firmware_revision !=
1101                     (firmware_revision & 0xffffff00))
1102                         continue;
1103 
1104                 if (sbp2_workarounds_table[i].model != model &&
1105                     sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD)
1106                         continue;
1107 
1108                 w |= sbp2_workarounds_table[i].workarounds;
1109                 break;
1110         }
1111  out:
1112         if (w)
1113                 dev_notice(tgt_dev(tgt), "workarounds 0x%x "
1114                            "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1115                            w, firmware_revision, model);
1116         tgt->workarounds = w;
1117 }
1118 
1119 static struct scsi_host_template scsi_driver_template;
1120 static void sbp2_remove(struct fw_unit *unit);
1121 
1122 static int sbp2_probe(struct fw_unit *unit, const struct ieee1394_device_id *id)
1123 {
1124         struct fw_device *device = fw_parent_device(unit);
1125         struct sbp2_target *tgt;
1126         struct sbp2_logical_unit *lu;
1127         struct Scsi_Host *shost;
1128         u32 model, firmware_revision;
1129 
1130         /* cannot (or should not) handle targets on the local node */
1131         if (device->is_local)
1132                 return -ENODEV;
1133 
1134         shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
1135         if (shost == NULL)
1136                 return -ENOMEM;
1137 
1138         tgt = (struct sbp2_target *)shost->hostdata;
1139         dev_set_drvdata(&unit->device, tgt);
1140         tgt->unit = unit;
1141         INIT_LIST_HEAD(&tgt->lu_list);
1142         spin_lock_init(&tgt->lock);
1143         tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1144 
1145         if (fw_device_enable_phys_dma(device) < 0)
1146                 goto fail_shost_put;
1147 
1148         shost->max_cmd_len = SBP2_MAX_CDB_SIZE;
1149 
1150         if (scsi_add_host_with_dma(shost, &unit->device,
1151                                    device->card->device) < 0)
1152                 goto fail_shost_put;
1153 
1154         /* implicit directory ID */
1155         tgt->directory_id = ((unit->directory - device->config_rom) * 4
1156                              + CSR_CONFIG_ROM) & 0xffffff;
1157 
1158         firmware_revision = SBP2_ROM_VALUE_MISSING;
1159         model             = SBP2_ROM_VALUE_MISSING;
1160 
1161         if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
1162                                &firmware_revision) < 0)
1163                 goto fail_remove;
1164 
1165         sbp2_clamp_management_orb_timeout(tgt);
1166         sbp2_init_workarounds(tgt, model, firmware_revision);
1167 
1168         /*
1169          * At S100 we can do 512 bytes per packet, at S200 1024 bytes,
1170          * and so on up to 4096 bytes.  The SBP-2 max_payload field
1171          * specifies the max payload size as 2 ^ (max_payload + 2), so
1172          * if we set this to max_speed + 7, we get the right value.
1173          */
1174         tgt->max_payload = min3(device->max_speed + 7, 10U,
1175                                 device->card->max_receive - 1);
1176 
1177         /* Do the login in a workqueue so we can easily reschedule retries. */
1178         list_for_each_entry(lu, &tgt->lu_list, link)
1179                 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1180 
1181         return 0;
1182 
1183  fail_remove:
1184         sbp2_remove(unit);
1185         return -ENOMEM;
1186 
1187  fail_shost_put:
1188         scsi_host_put(shost);
1189         return -ENOMEM;
1190 }
1191 
1192 static void sbp2_update(struct fw_unit *unit)
1193 {
1194         struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1195         struct sbp2_logical_unit *lu;
1196 
1197         fw_device_enable_phys_dma(fw_parent_device(unit));
1198 
1199         /*
1200          * Fw-core serializes sbp2_update() against sbp2_remove().
1201          * Iteration over tgt->lu_list is therefore safe here.
1202          */
1203         list_for_each_entry(lu, &tgt->lu_list, link) {
1204                 sbp2_conditionally_block(lu);
1205                 lu->retries = 0;
1206                 sbp2_queue_work(lu, 0);
1207         }
1208 }
1209 
1210 static void sbp2_remove(struct fw_unit *unit)
1211 {
1212         struct fw_device *device = fw_parent_device(unit);
1213         struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1214         struct sbp2_logical_unit *lu, *next;
1215         struct Scsi_Host *shost =
1216                 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
1217         struct scsi_device *sdev;
1218 
1219         /* prevent deadlocks */
1220         sbp2_unblock(tgt);
1221 
1222         list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
1223                 cancel_delayed_work_sync(&lu->work);
1224                 sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
1225                 if (sdev) {
1226                         scsi_remove_device(sdev);
1227                         scsi_device_put(sdev);
1228                 }
1229                 if (lu->login_id != INVALID_LOGIN_ID) {
1230                         int generation, node_id;
1231                         /*
1232                          * tgt->node_id may be obsolete here if we failed
1233                          * during initial login or after a bus reset where
1234                          * the topology changed.
1235                          */
1236                         generation = device->generation;
1237                         smp_rmb(); /* node_id vs. generation */
1238                         node_id    = device->node_id;
1239                         sbp2_send_management_orb(lu, node_id, generation,
1240                                                  SBP2_LOGOUT_REQUEST,
1241                                                  lu->login_id, NULL);
1242                 }
1243                 fw_core_remove_address_handler(&lu->address_handler);
1244                 list_del(&lu->link);
1245                 kfree(lu);
1246         }
1247         scsi_remove_host(shost);
1248         dev_notice(&unit->device, "released target %d:0:0\n", shost->host_no);
1249 
1250         scsi_host_put(shost);
1251 }
1252 
1253 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
1254 #define SBP2_SW_VERSION_ENTRY   0x00010483
1255 
1256 static const struct ieee1394_device_id sbp2_id_table[] = {
1257         {
1258                 .match_flags  = IEEE1394_MATCH_SPECIFIER_ID |
1259                                 IEEE1394_MATCH_VERSION,
1260                 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1261                 .version      = SBP2_SW_VERSION_ENTRY,
1262         },
1263         { }
1264 };
1265 
1266 static struct fw_driver sbp2_driver = {
1267         .driver   = {
1268                 .owner  = THIS_MODULE,
1269                 .name   = KBUILD_MODNAME,
1270                 .bus    = &fw_bus_type,
1271         },
1272         .probe    = sbp2_probe,
1273         .update   = sbp2_update,
1274         .remove   = sbp2_remove,
1275         .id_table = sbp2_id_table,
1276 };
1277 
1278 static void sbp2_unmap_scatterlist(struct device *card_device,
1279                                    struct sbp2_command_orb *orb)
1280 {
1281         scsi_dma_unmap(orb->cmd);
1282 
1283         if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT))
1284                 dma_unmap_single(card_device, orb->page_table_bus,
1285                                  sizeof(orb->page_table), DMA_TO_DEVICE);
1286 }
1287 
1288 static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1289 {
1290         int sam_status;
1291         int sfmt = (sbp2_status[0] >> 6) & 0x03;
1292 
1293         if (sfmt == 2 || sfmt == 3) {
1294                 /*
1295                  * Reserved for future standardization (2) or
1296                  * Status block format vendor-dependent (3)
1297                  */
1298                 return DID_ERROR << 16;
1299         }
1300 
1301         sense_data[0] = 0x70 | sfmt | (sbp2_status[1] & 0x80);
1302         sense_data[1] = 0x0;
1303         sense_data[2] = ((sbp2_status[1] << 1) & 0xe0) | (sbp2_status[1] & 0x0f);
1304         sense_data[3] = sbp2_status[4];
1305         sense_data[4] = sbp2_status[5];
1306         sense_data[5] = sbp2_status[6];
1307         sense_data[6] = sbp2_status[7];
1308         sense_data[7] = 10;
1309         sense_data[8] = sbp2_status[8];
1310         sense_data[9] = sbp2_status[9];
1311         sense_data[10] = sbp2_status[10];
1312         sense_data[11] = sbp2_status[11];
1313         sense_data[12] = sbp2_status[2];
1314         sense_data[13] = sbp2_status[3];
1315         sense_data[14] = sbp2_status[12];
1316         sense_data[15] = sbp2_status[13];
1317 
1318         sam_status = sbp2_status[0] & 0x3f;
1319 
1320         switch (sam_status) {
1321         case SAM_STAT_GOOD:
1322         case SAM_STAT_CHECK_CONDITION:
1323         case SAM_STAT_CONDITION_MET:
1324         case SAM_STAT_BUSY:
1325         case SAM_STAT_RESERVATION_CONFLICT:
1326         case SAM_STAT_COMMAND_TERMINATED:
1327                 return DID_OK << 16 | sam_status;
1328 
1329         default:
1330                 return DID_ERROR << 16;
1331         }
1332 }
1333 
1334 static void complete_command_orb(struct sbp2_orb *base_orb,
1335                                  struct sbp2_status *status)
1336 {
1337         struct sbp2_command_orb *orb =
1338                 container_of(base_orb, struct sbp2_command_orb, base);
1339         struct fw_device *device = target_parent_device(base_orb->lu->tgt);
1340         int result;
1341 
1342         if (status != NULL) {
1343                 if (STATUS_GET_DEAD(*status))
1344                         sbp2_agent_reset_no_wait(base_orb->lu);
1345 
1346                 switch (STATUS_GET_RESPONSE(*status)) {
1347                 case SBP2_STATUS_REQUEST_COMPLETE:
1348                         result = DID_OK << 16;
1349                         break;
1350                 case SBP2_STATUS_TRANSPORT_FAILURE:
1351                         result = DID_BUS_BUSY << 16;
1352                         break;
1353                 case SBP2_STATUS_ILLEGAL_REQUEST:
1354                 case SBP2_STATUS_VENDOR_DEPENDENT:
1355                 default:
1356                         result = DID_ERROR << 16;
1357                         break;
1358                 }
1359 
1360                 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1361                         result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1362                                                            orb->cmd->sense_buffer);
1363         } else {
1364                 /*
1365                  * If the orb completes with status == NULL, something
1366                  * went wrong, typically a bus reset happened mid-orb
1367                  * or when sending the write (less likely).
1368                  */
1369                 result = DID_BUS_BUSY << 16;
1370                 sbp2_conditionally_block(base_orb->lu);
1371         }
1372 
1373         dma_unmap_single(device->card->device, orb->base.request_bus,
1374                          sizeof(orb->request), DMA_TO_DEVICE);
1375         sbp2_unmap_scatterlist(device->card->device, orb);
1376 
1377         orb->cmd->result = result;
1378         orb->cmd->scsi_done(orb->cmd);
1379 }
1380 
1381 static int sbp2_map_scatterlist(struct sbp2_command_orb *orb,
1382                 struct fw_device *device, struct sbp2_logical_unit *lu)
1383 {
1384         struct scatterlist *sg = scsi_sglist(orb->cmd);
1385         int i, n;
1386 
1387         n = scsi_dma_map(orb->cmd);
1388         if (n <= 0)
1389                 goto fail;
1390 
1391         /*
1392          * Handle the special case where there is only one element in
1393          * the scatter list by converting it to an immediate block
1394          * request. This is also a workaround for broken devices such
1395          * as the second generation iPod which doesn't support page
1396          * tables.
1397          */
1398         if (n == 1) {
1399                 orb->request.data_descriptor.high =
1400                         cpu_to_be32(lu->tgt->address_high);
1401                 orb->request.data_descriptor.low  =
1402                         cpu_to_be32(sg_dma_address(sg));
1403                 orb->request.misc |=
1404                         cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
1405                 return 0;
1406         }
1407 
1408         for_each_sg(sg, sg, n, i) {
1409                 orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
1410                 orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg));
1411         }
1412 
1413         orb->page_table_bus =
1414                 dma_map_single(device->card->device, orb->page_table,
1415                                sizeof(orb->page_table), DMA_TO_DEVICE);
1416         if (dma_mapping_error(device->card->device, orb->page_table_bus))
1417                 goto fail_page_table;
1418 
1419         /*
1420          * The data_descriptor pointer is the one case where we need
1421          * to fill in the node ID part of the address.  All other
1422          * pointers assume that the data referenced reside on the
1423          * initiator (i.e. us), but data_descriptor can refer to data
1424          * on other nodes so we need to put our ID in descriptor.high.
1425          */
1426         orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
1427         orb->request.data_descriptor.low  = cpu_to_be32(orb->page_table_bus);
1428         orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
1429                                          COMMAND_ORB_DATA_SIZE(n));
1430 
1431         return 0;
1432 
1433  fail_page_table:
1434         scsi_dma_unmap(orb->cmd);
1435  fail:
1436         return -ENOMEM;
1437 }
1438 
1439 /* SCSI stack integration */
1440 
1441 static int sbp2_scsi_queuecommand(struct Scsi_Host *shost,
1442                                   struct scsi_cmnd *cmd)
1443 {
1444         struct sbp2_logical_unit *lu = cmd->device->hostdata;
1445         struct fw_device *device = target_parent_device(lu->tgt);
1446         struct sbp2_command_orb *orb;
1447         int generation, retval = SCSI_MLQUEUE_HOST_BUSY;
1448 
1449         orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1450         if (orb == NULL)
1451                 return SCSI_MLQUEUE_HOST_BUSY;
1452 
1453         /* Initialize rcode to something not RCODE_COMPLETE. */
1454         orb->base.rcode = -1;
1455         kref_init(&orb->base.kref);
1456         orb->cmd = cmd;
1457         orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL);
1458         orb->request.misc = cpu_to_be32(
1459                 COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) |
1460                 COMMAND_ORB_SPEED(device->max_speed) |
1461                 COMMAND_ORB_NOTIFY);
1462 
1463         if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1464                 orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
1465 
1466         generation = device->generation;
1467         smp_rmb();    /* sbp2_map_scatterlist looks at tgt->address_high */
1468 
1469         if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1470                 goto out;
1471 
1472         memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len);
1473 
1474         orb->base.callback = complete_command_orb;
1475         orb->base.request_bus =
1476                 dma_map_single(device->card->device, &orb->request,
1477                                sizeof(orb->request), DMA_TO_DEVICE);
1478         if (dma_mapping_error(device->card->device, orb->base.request_bus)) {
1479                 sbp2_unmap_scatterlist(device->card->device, orb);
1480                 goto out;
1481         }
1482 
1483         sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation,
1484                       lu->command_block_agent_address + SBP2_ORB_POINTER);
1485         retval = 0;
1486  out:
1487         kref_put(&orb->base.kref, free_orb);
1488         return retval;
1489 }
1490 
1491 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1492 {
1493         struct sbp2_logical_unit *lu = sdev->hostdata;
1494 
1495         /* (Re-)Adding logical units via the SCSI stack is not supported. */
1496         if (!lu)
1497                 return -ENOSYS;
1498 
1499         sdev->allow_restart = 1;
1500 
1501         /*
1502          * SBP-2 does not require any alignment, but we set it anyway
1503          * for compatibility with earlier versions of this driver.
1504          */
1505         blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1506 
1507         if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1508                 sdev->inquiry_len = 36;
1509 
1510         return 0;
1511 }
1512 
1513 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1514 {
1515         struct sbp2_logical_unit *lu = sdev->hostdata;
1516 
1517         sdev->use_10_for_rw = 1;
1518 
1519         if (sbp2_param_exclusive_login)
1520                 sdev->manage_start_stop = 1;
1521 
1522         if (sdev->type == TYPE_ROM)
1523                 sdev->use_10_for_ms = 1;
1524 
1525         if (sdev->type == TYPE_DISK &&
1526             lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1527                 sdev->skip_ms_page_8 = 1;
1528 
1529         if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1530                 sdev->fix_capacity = 1;
1531 
1532         if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
1533                 sdev->start_stop_pwr_cond = 1;
1534 
1535         if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1536                 blk_queue_max_hw_sectors(sdev->request_queue, 128 * 1024 / 512);
1537 
1538         return 0;
1539 }
1540 
1541 /*
1542  * Called by scsi stack when something has really gone wrong.  Usually
1543  * called when a command has timed-out for some reason.
1544  */
1545 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1546 {
1547         struct sbp2_logical_unit *lu = cmd->device->hostdata;
1548 
1549         dev_notice(lu_dev(lu), "sbp2_scsi_abort\n");
1550         sbp2_agent_reset(lu);
1551         sbp2_cancel_orbs(lu);
1552 
1553         return SUCCESS;
1554 }
1555 
1556 /*
1557  * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1558  * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
1559  *
1560  * This is the concatenation of target port identifier and logical unit
1561  * identifier as per SAM-2...SAM-4 annex A.
1562  */
1563 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
1564                         struct device_attribute *attr, char *buf)
1565 {
1566         struct scsi_device *sdev = to_scsi_device(dev);
1567         struct sbp2_logical_unit *lu;
1568 
1569         if (!sdev)
1570                 return 0;
1571 
1572         lu = sdev->hostdata;
1573 
1574         return sprintf(buf, "%016llx:%06x:%04x\n",
1575                         (unsigned long long)lu->tgt->guid,
1576                         lu->tgt->directory_id, lu->lun);
1577 }
1578 
1579 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1580 
1581 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1582         &dev_attr_ieee1394_id,
1583         NULL
1584 };
1585 
1586 static struct scsi_host_template scsi_driver_template = {
1587         .module                 = THIS_MODULE,
1588         .name                   = "SBP-2 IEEE-1394",
1589         .proc_name              = "sbp2",
1590         .queuecommand           = sbp2_scsi_queuecommand,
1591         .slave_alloc            = sbp2_scsi_slave_alloc,
1592         .slave_configure        = sbp2_scsi_slave_configure,
1593         .eh_abort_handler       = sbp2_scsi_abort,
1594         .this_id                = -1,
1595         .sg_tablesize           = SG_ALL,
1596         .max_segment_size       = SBP2_MAX_SEG_SIZE,
1597         .can_queue              = 1,
1598         .sdev_attrs             = sbp2_scsi_sysfs_attrs,
1599 };
1600 
1601 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1602 MODULE_DESCRIPTION("SCSI over IEEE1394");
1603 MODULE_LICENSE("GPL");
1604 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1605 
1606 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1607 MODULE_ALIAS("sbp2");
1608 
1609 static int __init sbp2_init(void)
1610 {
1611         return driver_register(&sbp2_driver.driver);
1612 }
1613 
1614 static void __exit sbp2_cleanup(void)
1615 {
1616         driver_unregister(&sbp2_driver.driver);
1617 }
1618 
1619 module_init(sbp2_init);
1620 module_exit(sbp2_cleanup);

/* [<][>][^][v][top][bottom][index][help] */