root/drivers/firewire/core-transaction.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. try_cancel_split_timeout
  2. close_transaction
  3. fw_cancel_transaction
  4. split_transaction_timeout_callback
  5. start_split_transaction_timeout
  6. transmit_complete_callback
  7. fw_fill_request
  8. allocate_tlabel
  9. fw_send_request
  10. transaction_callback
  11. fw_run_transaction
  12. transmit_phy_packet_callback
  13. fw_send_phy_config
  14. lookup_overlapping_address_handler
  15. is_enclosing_handler
  16. lookup_enclosing_address_handler
  17. is_in_fcp_region
  18. fw_core_add_address_handler
  19. fw_core_remove_address_handler
  20. free_response_callback
  21. fw_get_response_length
  22. fw_fill_response
  23. compute_split_timeout_timestamp
  24. allocate_request
  25. fw_send_response
  26. fw_get_request_speed
  27. handle_exclusive_region_request
  28. handle_fcp_region_request
  29. fw_core_handle_request
  30. fw_core_handle_response
  31. fw_rcode_string
  32. handle_topology_map
  33. update_split_timeout
  34. handle_registers
  35. handle_low_memory
  36. fw_core_init
  37. fw_core_cleanup

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3  * Core IEEE1394 transaction logic
   4  *
   5  * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
   6  */
   7 
   8 #include <linux/bug.h>
   9 #include <linux/completion.h>
  10 #include <linux/device.h>
  11 #include <linux/errno.h>
  12 #include <linux/firewire.h>
  13 #include <linux/firewire-constants.h>
  14 #include <linux/fs.h>
  15 #include <linux/init.h>
  16 #include <linux/idr.h>
  17 #include <linux/jiffies.h>
  18 #include <linux/kernel.h>
  19 #include <linux/list.h>
  20 #include <linux/module.h>
  21 #include <linux/rculist.h>
  22 #include <linux/slab.h>
  23 #include <linux/spinlock.h>
  24 #include <linux/string.h>
  25 #include <linux/timer.h>
  26 #include <linux/types.h>
  27 #include <linux/workqueue.h>
  28 
  29 #include <asm/byteorder.h>
  30 
  31 #include "core.h"
  32 
  33 #define HEADER_PRI(pri)                 ((pri) << 0)
  34 #define HEADER_TCODE(tcode)             ((tcode) << 4)
  35 #define HEADER_RETRY(retry)             ((retry) << 8)
  36 #define HEADER_TLABEL(tlabel)           ((tlabel) << 10)
  37 #define HEADER_DESTINATION(destination) ((destination) << 16)
  38 #define HEADER_SOURCE(source)           ((source) << 16)
  39 #define HEADER_RCODE(rcode)             ((rcode) << 12)
  40 #define HEADER_OFFSET_HIGH(offset_high) ((offset_high) << 0)
  41 #define HEADER_DATA_LENGTH(length)      ((length) << 16)
  42 #define HEADER_EXTENDED_TCODE(tcode)    ((tcode) << 0)
  43 
  44 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
  45 #define HEADER_GET_TLABEL(q)            (((q) >> 10) & 0x3f)
  46 #define HEADER_GET_RCODE(q)             (((q) >> 12) & 0x0f)
  47 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
  48 #define HEADER_GET_SOURCE(q)            (((q) >> 16) & 0xffff)
  49 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
  50 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
  51 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
  52 
  53 #define HEADER_DESTINATION_IS_BROADCAST(q) \
  54         (((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f))
  55 
  56 #define PHY_PACKET_CONFIG       0x0
  57 #define PHY_PACKET_LINK_ON      0x1
  58 #define PHY_PACKET_SELF_ID      0x2
  59 
  60 #define PHY_CONFIG_GAP_COUNT(gap_count) (((gap_count) << 16) | (1 << 22))
  61 #define PHY_CONFIG_ROOT_ID(node_id)     ((((node_id) & 0x3f) << 24) | (1 << 23))
  62 #define PHY_IDENTIFIER(id)              ((id) << 30)
  63 
  64 /* returns 0 if the split timeout handler is already running */
  65 static int try_cancel_split_timeout(struct fw_transaction *t)
  66 {
  67         if (t->is_split_transaction)
  68                 return del_timer(&t->split_timeout_timer);
  69         else
  70                 return 1;
  71 }
  72 
  73 static int close_transaction(struct fw_transaction *transaction,
  74                              struct fw_card *card, int rcode)
  75 {
  76         struct fw_transaction *t;
  77         unsigned long flags;
  78 
  79         spin_lock_irqsave(&card->lock, flags);
  80         list_for_each_entry(t, &card->transaction_list, link) {
  81                 if (t == transaction) {
  82                         if (!try_cancel_split_timeout(t)) {
  83                                 spin_unlock_irqrestore(&card->lock, flags);
  84                                 goto timed_out;
  85                         }
  86                         list_del_init(&t->link);
  87                         card->tlabel_mask &= ~(1ULL << t->tlabel);
  88                         break;
  89                 }
  90         }
  91         spin_unlock_irqrestore(&card->lock, flags);
  92 
  93         if (&t->link != &card->transaction_list) {
  94                 t->callback(card, rcode, NULL, 0, t->callback_data);
  95                 return 0;
  96         }
  97 
  98  timed_out:
  99         return -ENOENT;
 100 }
 101 
 102 /*
 103  * Only valid for transactions that are potentially pending (ie have
 104  * been sent).
 105  */
 106 int fw_cancel_transaction(struct fw_card *card,
 107                           struct fw_transaction *transaction)
 108 {
 109         /*
 110          * Cancel the packet transmission if it's still queued.  That
 111          * will call the packet transmission callback which cancels
 112          * the transaction.
 113          */
 114 
 115         if (card->driver->cancel_packet(card, &transaction->packet) == 0)
 116                 return 0;
 117 
 118         /*
 119          * If the request packet has already been sent, we need to see
 120          * if the transaction is still pending and remove it in that case.
 121          */
 122 
 123         return close_transaction(transaction, card, RCODE_CANCELLED);
 124 }
 125 EXPORT_SYMBOL(fw_cancel_transaction);
 126 
 127 static void split_transaction_timeout_callback(struct timer_list *timer)
 128 {
 129         struct fw_transaction *t = from_timer(t, timer, split_timeout_timer);
 130         struct fw_card *card = t->card;
 131         unsigned long flags;
 132 
 133         spin_lock_irqsave(&card->lock, flags);
 134         if (list_empty(&t->link)) {
 135                 spin_unlock_irqrestore(&card->lock, flags);
 136                 return;
 137         }
 138         list_del(&t->link);
 139         card->tlabel_mask &= ~(1ULL << t->tlabel);
 140         spin_unlock_irqrestore(&card->lock, flags);
 141 
 142         t->callback(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
 143 }
 144 
 145 static void start_split_transaction_timeout(struct fw_transaction *t,
 146                                             struct fw_card *card)
 147 {
 148         unsigned long flags;
 149 
 150         spin_lock_irqsave(&card->lock, flags);
 151 
 152         if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) {
 153                 spin_unlock_irqrestore(&card->lock, flags);
 154                 return;
 155         }
 156 
 157         t->is_split_transaction = true;
 158         mod_timer(&t->split_timeout_timer,
 159                   jiffies + card->split_timeout_jiffies);
 160 
 161         spin_unlock_irqrestore(&card->lock, flags);
 162 }
 163 
 164 static void transmit_complete_callback(struct fw_packet *packet,
 165                                        struct fw_card *card, int status)
 166 {
 167         struct fw_transaction *t =
 168             container_of(packet, struct fw_transaction, packet);
 169 
 170         switch (status) {
 171         case ACK_COMPLETE:
 172                 close_transaction(t, card, RCODE_COMPLETE);
 173                 break;
 174         case ACK_PENDING:
 175                 start_split_transaction_timeout(t, card);
 176                 break;
 177         case ACK_BUSY_X:
 178         case ACK_BUSY_A:
 179         case ACK_BUSY_B:
 180                 close_transaction(t, card, RCODE_BUSY);
 181                 break;
 182         case ACK_DATA_ERROR:
 183                 close_transaction(t, card, RCODE_DATA_ERROR);
 184                 break;
 185         case ACK_TYPE_ERROR:
 186                 close_transaction(t, card, RCODE_TYPE_ERROR);
 187                 break;
 188         default:
 189                 /*
 190                  * In this case the ack is really a juju specific
 191                  * rcode, so just forward that to the callback.
 192                  */
 193                 close_transaction(t, card, status);
 194                 break;
 195         }
 196 }
 197 
 198 static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
 199                 int destination_id, int source_id, int generation, int speed,
 200                 unsigned long long offset, void *payload, size_t length)
 201 {
 202         int ext_tcode;
 203 
 204         if (tcode == TCODE_STREAM_DATA) {
 205                 packet->header[0] =
 206                         HEADER_DATA_LENGTH(length) |
 207                         destination_id |
 208                         HEADER_TCODE(TCODE_STREAM_DATA);
 209                 packet->header_length = 4;
 210                 packet->payload = payload;
 211                 packet->payload_length = length;
 212 
 213                 goto common;
 214         }
 215 
 216         if (tcode > 0x10) {
 217                 ext_tcode = tcode & ~0x10;
 218                 tcode = TCODE_LOCK_REQUEST;
 219         } else
 220                 ext_tcode = 0;
 221 
 222         packet->header[0] =
 223                 HEADER_RETRY(RETRY_X) |
 224                 HEADER_TLABEL(tlabel) |
 225                 HEADER_TCODE(tcode) |
 226                 HEADER_DESTINATION(destination_id);
 227         packet->header[1] =
 228                 HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id);
 229         packet->header[2] =
 230                 offset;
 231 
 232         switch (tcode) {
 233         case TCODE_WRITE_QUADLET_REQUEST:
 234                 packet->header[3] = *(u32 *)payload;
 235                 packet->header_length = 16;
 236                 packet->payload_length = 0;
 237                 break;
 238 
 239         case TCODE_LOCK_REQUEST:
 240         case TCODE_WRITE_BLOCK_REQUEST:
 241                 packet->header[3] =
 242                         HEADER_DATA_LENGTH(length) |
 243                         HEADER_EXTENDED_TCODE(ext_tcode);
 244                 packet->header_length = 16;
 245                 packet->payload = payload;
 246                 packet->payload_length = length;
 247                 break;
 248 
 249         case TCODE_READ_QUADLET_REQUEST:
 250                 packet->header_length = 12;
 251                 packet->payload_length = 0;
 252                 break;
 253 
 254         case TCODE_READ_BLOCK_REQUEST:
 255                 packet->header[3] =
 256                         HEADER_DATA_LENGTH(length) |
 257                         HEADER_EXTENDED_TCODE(ext_tcode);
 258                 packet->header_length = 16;
 259                 packet->payload_length = 0;
 260                 break;
 261 
 262         default:
 263                 WARN(1, "wrong tcode %d\n", tcode);
 264         }
 265  common:
 266         packet->speed = speed;
 267         packet->generation = generation;
 268         packet->ack = 0;
 269         packet->payload_mapped = false;
 270 }
 271 
 272 static int allocate_tlabel(struct fw_card *card)
 273 {
 274         int tlabel;
 275 
 276         tlabel = card->current_tlabel;
 277         while (card->tlabel_mask & (1ULL << tlabel)) {
 278                 tlabel = (tlabel + 1) & 0x3f;
 279                 if (tlabel == card->current_tlabel)
 280                         return -EBUSY;
 281         }
 282 
 283         card->current_tlabel = (tlabel + 1) & 0x3f;
 284         card->tlabel_mask |= 1ULL << tlabel;
 285 
 286         return tlabel;
 287 }
 288 
 289 /**
 290  * fw_send_request() - submit a request packet for transmission
 291  * @card:               interface to send the request at
 292  * @t:                  transaction instance to which the request belongs
 293  * @tcode:              transaction code
 294  * @destination_id:     destination node ID, consisting of bus_ID and phy_ID
 295  * @generation:         bus generation in which request and response are valid
 296  * @speed:              transmission speed
 297  * @offset:             48bit wide offset into destination's address space
 298  * @payload:            data payload for the request subaction
 299  * @length:             length of the payload, in bytes
 300  * @callback:           function to be called when the transaction is completed
 301  * @callback_data:      data to be passed to the transaction completion callback
 302  *
 303  * Submit a request packet into the asynchronous request transmission queue.
 304  * Can be called from atomic context.  If you prefer a blocking API, use
 305  * fw_run_transaction() in a context that can sleep.
 306  *
 307  * In case of lock requests, specify one of the firewire-core specific %TCODE_
 308  * constants instead of %TCODE_LOCK_REQUEST in @tcode.
 309  *
 310  * Make sure that the value in @destination_id is not older than the one in
 311  * @generation.  Otherwise the request is in danger to be sent to a wrong node.
 312  *
 313  * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
 314  * needs to synthesize @destination_id with fw_stream_packet_destination_id().
 315  * It will contain tag, channel, and sy data instead of a node ID then.
 316  *
 317  * The payload buffer at @data is going to be DMA-mapped except in case of
 318  * @length <= 8 or of local (loopback) requests.  Hence make sure that the
 319  * buffer complies with the restrictions of the streaming DMA mapping API.
 320  * @payload must not be freed before the @callback is called.
 321  *
 322  * In case of request types without payload, @data is NULL and @length is 0.
 323  *
 324  * After the transaction is completed successfully or unsuccessfully, the
 325  * @callback will be called.  Among its parameters is the response code which
 326  * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
 327  * the firewire-core specific %RCODE_SEND_ERROR.  The other firewire-core
 328  * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
 329  * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
 330  * generation, or missing ACK respectively.
 331  *
 332  * Note some timing corner cases:  fw_send_request() may complete much earlier
 333  * than when the request packet actually hits the wire.  On the other hand,
 334  * transaction completion and hence execution of @callback may happen even
 335  * before fw_send_request() returns.
 336  */
 337 void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
 338                      int destination_id, int generation, int speed,
 339                      unsigned long long offset, void *payload, size_t length,
 340                      fw_transaction_callback_t callback, void *callback_data)
 341 {
 342         unsigned long flags;
 343         int tlabel;
 344 
 345         /*
 346          * Allocate tlabel from the bitmap and put the transaction on
 347          * the list while holding the card spinlock.
 348          */
 349 
 350         spin_lock_irqsave(&card->lock, flags);
 351 
 352         tlabel = allocate_tlabel(card);
 353         if (tlabel < 0) {
 354                 spin_unlock_irqrestore(&card->lock, flags);
 355                 callback(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
 356                 return;
 357         }
 358 
 359         t->node_id = destination_id;
 360         t->tlabel = tlabel;
 361         t->card = card;
 362         t->is_split_transaction = false;
 363         timer_setup(&t->split_timeout_timer,
 364                     split_transaction_timeout_callback, 0);
 365         t->callback = callback;
 366         t->callback_data = callback_data;
 367 
 368         fw_fill_request(&t->packet, tcode, t->tlabel,
 369                         destination_id, card->node_id, generation,
 370                         speed, offset, payload, length);
 371         t->packet.callback = transmit_complete_callback;
 372 
 373         list_add_tail(&t->link, &card->transaction_list);
 374 
 375         spin_unlock_irqrestore(&card->lock, flags);
 376 
 377         card->driver->send_request(card, &t->packet);
 378 }
 379 EXPORT_SYMBOL(fw_send_request);
 380 
 381 struct transaction_callback_data {
 382         struct completion done;
 383         void *payload;
 384         int rcode;
 385 };
 386 
 387 static void transaction_callback(struct fw_card *card, int rcode,
 388                                  void *payload, size_t length, void *data)
 389 {
 390         struct transaction_callback_data *d = data;
 391 
 392         if (rcode == RCODE_COMPLETE)
 393                 memcpy(d->payload, payload, length);
 394         d->rcode = rcode;
 395         complete(&d->done);
 396 }
 397 
 398 /**
 399  * fw_run_transaction() - send request and sleep until transaction is completed
 400  * @card:               card interface for this request
 401  * @tcode:              transaction code
 402  * @destination_id:     destination node ID, consisting of bus_ID and phy_ID
 403  * @generation:         bus generation in which request and response are valid
 404  * @speed:              transmission speed
 405  * @offset:             48bit wide offset into destination's address space
 406  * @payload:            data payload for the request subaction
 407  * @length:             length of the payload, in bytes
 408  *
 409  * Returns the RCODE.  See fw_send_request() for parameter documentation.
 410  * Unlike fw_send_request(), @data points to the payload of the request or/and
 411  * to the payload of the response.  DMA mapping restrictions apply to outbound
 412  * request payloads of >= 8 bytes but not to inbound response payloads.
 413  */
 414 int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
 415                        int generation, int speed, unsigned long long offset,
 416                        void *payload, size_t length)
 417 {
 418         struct transaction_callback_data d;
 419         struct fw_transaction t;
 420 
 421         timer_setup_on_stack(&t.split_timeout_timer, NULL, 0);
 422         init_completion(&d.done);
 423         d.payload = payload;
 424         fw_send_request(card, &t, tcode, destination_id, generation, speed,
 425                         offset, payload, length, transaction_callback, &d);
 426         wait_for_completion(&d.done);
 427         destroy_timer_on_stack(&t.split_timeout_timer);
 428 
 429         return d.rcode;
 430 }
 431 EXPORT_SYMBOL(fw_run_transaction);
 432 
 433 static DEFINE_MUTEX(phy_config_mutex);
 434 static DECLARE_COMPLETION(phy_config_done);
 435 
 436 static void transmit_phy_packet_callback(struct fw_packet *packet,
 437                                          struct fw_card *card, int status)
 438 {
 439         complete(&phy_config_done);
 440 }
 441 
 442 static struct fw_packet phy_config_packet = {
 443         .header_length  = 12,
 444         .header[0]      = TCODE_LINK_INTERNAL << 4,
 445         .payload_length = 0,
 446         .speed          = SCODE_100,
 447         .callback       = transmit_phy_packet_callback,
 448 };
 449 
 450 void fw_send_phy_config(struct fw_card *card,
 451                         int node_id, int generation, int gap_count)
 452 {
 453         long timeout = DIV_ROUND_UP(HZ, 10);
 454         u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG);
 455 
 456         if (node_id != FW_PHY_CONFIG_NO_NODE_ID)
 457                 data |= PHY_CONFIG_ROOT_ID(node_id);
 458 
 459         if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
 460                 gap_count = card->driver->read_phy_reg(card, 1);
 461                 if (gap_count < 0)
 462                         return;
 463 
 464                 gap_count &= 63;
 465                 if (gap_count == 63)
 466                         return;
 467         }
 468         data |= PHY_CONFIG_GAP_COUNT(gap_count);
 469 
 470         mutex_lock(&phy_config_mutex);
 471 
 472         phy_config_packet.header[1] = data;
 473         phy_config_packet.header[2] = ~data;
 474         phy_config_packet.generation = generation;
 475         reinit_completion(&phy_config_done);
 476 
 477         card->driver->send_request(card, &phy_config_packet);
 478         wait_for_completion_timeout(&phy_config_done, timeout);
 479 
 480         mutex_unlock(&phy_config_mutex);
 481 }
 482 
 483 static struct fw_address_handler *lookup_overlapping_address_handler(
 484         struct list_head *list, unsigned long long offset, size_t length)
 485 {
 486         struct fw_address_handler *handler;
 487 
 488         list_for_each_entry_rcu(handler, list, link) {
 489                 if (handler->offset < offset + length &&
 490                     offset < handler->offset + handler->length)
 491                         return handler;
 492         }
 493 
 494         return NULL;
 495 }
 496 
 497 static bool is_enclosing_handler(struct fw_address_handler *handler,
 498                                  unsigned long long offset, size_t length)
 499 {
 500         return handler->offset <= offset &&
 501                 offset + length <= handler->offset + handler->length;
 502 }
 503 
 504 static struct fw_address_handler *lookup_enclosing_address_handler(
 505         struct list_head *list, unsigned long long offset, size_t length)
 506 {
 507         struct fw_address_handler *handler;
 508 
 509         list_for_each_entry_rcu(handler, list, link) {
 510                 if (is_enclosing_handler(handler, offset, length))
 511                         return handler;
 512         }
 513 
 514         return NULL;
 515 }
 516 
 517 static DEFINE_SPINLOCK(address_handler_list_lock);
 518 static LIST_HEAD(address_handler_list);
 519 
 520 const struct fw_address_region fw_high_memory_region =
 521         { .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, };
 522 EXPORT_SYMBOL(fw_high_memory_region);
 523 
 524 static const struct fw_address_region low_memory_region =
 525         { .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, };
 526 
 527 #if 0
 528 const struct fw_address_region fw_private_region =
 529         { .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL,  };
 530 const struct fw_address_region fw_csr_region =
 531         { .start = CSR_REGISTER_BASE,
 532           .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END,  };
 533 const struct fw_address_region fw_unit_space_region =
 534         { .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
 535 #endif  /*  0  */
 536 
 537 static bool is_in_fcp_region(u64 offset, size_t length)
 538 {
 539         return offset >= (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
 540                 offset + length <= (CSR_REGISTER_BASE | CSR_FCP_END);
 541 }
 542 
 543 /**
 544  * fw_core_add_address_handler() - register for incoming requests
 545  * @handler:    callback
 546  * @region:     region in the IEEE 1212 node space address range
 547  *
 548  * region->start, ->end, and handler->length have to be quadlet-aligned.
 549  *
 550  * When a request is received that falls within the specified address range,
 551  * the specified callback is invoked.  The parameters passed to the callback
 552  * give the details of the particular request.
 553  *
 554  * To be called in process context.
 555  * Return value:  0 on success, non-zero otherwise.
 556  *
 557  * The start offset of the handler's address region is determined by
 558  * fw_core_add_address_handler() and is returned in handler->offset.
 559  *
 560  * Address allocations are exclusive, except for the FCP registers.
 561  */
 562 int fw_core_add_address_handler(struct fw_address_handler *handler,
 563                                 const struct fw_address_region *region)
 564 {
 565         struct fw_address_handler *other;
 566         int ret = -EBUSY;
 567 
 568         if (region->start & 0xffff000000000003ULL ||
 569             region->start >= region->end ||
 570             region->end   > 0x0001000000000000ULL ||
 571             handler->length & 3 ||
 572             handler->length == 0)
 573                 return -EINVAL;
 574 
 575         spin_lock(&address_handler_list_lock);
 576 
 577         handler->offset = region->start;
 578         while (handler->offset + handler->length <= region->end) {
 579                 if (is_in_fcp_region(handler->offset, handler->length))
 580                         other = NULL;
 581                 else
 582                         other = lookup_overlapping_address_handler
 583                                         (&address_handler_list,
 584                                          handler->offset, handler->length);
 585                 if (other != NULL) {
 586                         handler->offset += other->length;
 587                 } else {
 588                         list_add_tail_rcu(&handler->link, &address_handler_list);
 589                         ret = 0;
 590                         break;
 591                 }
 592         }
 593 
 594         spin_unlock(&address_handler_list_lock);
 595 
 596         return ret;
 597 }
 598 EXPORT_SYMBOL(fw_core_add_address_handler);
 599 
 600 /**
 601  * fw_core_remove_address_handler() - unregister an address handler
 602  * @handler: callback
 603  *
 604  * To be called in process context.
 605  *
 606  * When fw_core_remove_address_handler() returns, @handler->callback() is
 607  * guaranteed to not run on any CPU anymore.
 608  */
 609 void fw_core_remove_address_handler(struct fw_address_handler *handler)
 610 {
 611         spin_lock(&address_handler_list_lock);
 612         list_del_rcu(&handler->link);
 613         spin_unlock(&address_handler_list_lock);
 614         synchronize_rcu();
 615 }
 616 EXPORT_SYMBOL(fw_core_remove_address_handler);
 617 
 618 struct fw_request {
 619         struct fw_packet response;
 620         u32 request_header[4];
 621         int ack;
 622         u32 length;
 623         u32 data[0];
 624 };
 625 
 626 static void free_response_callback(struct fw_packet *packet,
 627                                    struct fw_card *card, int status)
 628 {
 629         struct fw_request *request;
 630 
 631         request = container_of(packet, struct fw_request, response);
 632         kfree(request);
 633 }
 634 
 635 int fw_get_response_length(struct fw_request *r)
 636 {
 637         int tcode, ext_tcode, data_length;
 638 
 639         tcode = HEADER_GET_TCODE(r->request_header[0]);
 640 
 641         switch (tcode) {
 642         case TCODE_WRITE_QUADLET_REQUEST:
 643         case TCODE_WRITE_BLOCK_REQUEST:
 644                 return 0;
 645 
 646         case TCODE_READ_QUADLET_REQUEST:
 647                 return 4;
 648 
 649         case TCODE_READ_BLOCK_REQUEST:
 650                 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
 651                 return data_length;
 652 
 653         case TCODE_LOCK_REQUEST:
 654                 ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]);
 655                 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
 656                 switch (ext_tcode) {
 657                 case EXTCODE_FETCH_ADD:
 658                 case EXTCODE_LITTLE_ADD:
 659                         return data_length;
 660                 default:
 661                         return data_length / 2;
 662                 }
 663 
 664         default:
 665                 WARN(1, "wrong tcode %d\n", tcode);
 666                 return 0;
 667         }
 668 }
 669 
 670 void fw_fill_response(struct fw_packet *response, u32 *request_header,
 671                       int rcode, void *payload, size_t length)
 672 {
 673         int tcode, tlabel, extended_tcode, source, destination;
 674 
 675         tcode          = HEADER_GET_TCODE(request_header[0]);
 676         tlabel         = HEADER_GET_TLABEL(request_header[0]);
 677         source         = HEADER_GET_DESTINATION(request_header[0]);
 678         destination    = HEADER_GET_SOURCE(request_header[1]);
 679         extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]);
 680 
 681         response->header[0] =
 682                 HEADER_RETRY(RETRY_1) |
 683                 HEADER_TLABEL(tlabel) |
 684                 HEADER_DESTINATION(destination);
 685         response->header[1] =
 686                 HEADER_SOURCE(source) |
 687                 HEADER_RCODE(rcode);
 688         response->header[2] = 0;
 689 
 690         switch (tcode) {
 691         case TCODE_WRITE_QUADLET_REQUEST:
 692         case TCODE_WRITE_BLOCK_REQUEST:
 693                 response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE);
 694                 response->header_length = 12;
 695                 response->payload_length = 0;
 696                 break;
 697 
 698         case TCODE_READ_QUADLET_REQUEST:
 699                 response->header[0] |=
 700                         HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE);
 701                 if (payload != NULL)
 702                         response->header[3] = *(u32 *)payload;
 703                 else
 704                         response->header[3] = 0;
 705                 response->header_length = 16;
 706                 response->payload_length = 0;
 707                 break;
 708 
 709         case TCODE_READ_BLOCK_REQUEST:
 710         case TCODE_LOCK_REQUEST:
 711                 response->header[0] |= HEADER_TCODE(tcode + 2);
 712                 response->header[3] =
 713                         HEADER_DATA_LENGTH(length) |
 714                         HEADER_EXTENDED_TCODE(extended_tcode);
 715                 response->header_length = 16;
 716                 response->payload = payload;
 717                 response->payload_length = length;
 718                 break;
 719 
 720         default:
 721                 WARN(1, "wrong tcode %d\n", tcode);
 722         }
 723 
 724         response->payload_mapped = false;
 725 }
 726 EXPORT_SYMBOL(fw_fill_response);
 727 
 728 static u32 compute_split_timeout_timestamp(struct fw_card *card,
 729                                            u32 request_timestamp)
 730 {
 731         unsigned int cycles;
 732         u32 timestamp;
 733 
 734         cycles = card->split_timeout_cycles;
 735         cycles += request_timestamp & 0x1fff;
 736 
 737         timestamp = request_timestamp & ~0x1fff;
 738         timestamp += (cycles / 8000) << 13;
 739         timestamp |= cycles % 8000;
 740 
 741         return timestamp;
 742 }
 743 
 744 static struct fw_request *allocate_request(struct fw_card *card,
 745                                            struct fw_packet *p)
 746 {
 747         struct fw_request *request;
 748         u32 *data, length;
 749         int request_tcode;
 750 
 751         request_tcode = HEADER_GET_TCODE(p->header[0]);
 752         switch (request_tcode) {
 753         case TCODE_WRITE_QUADLET_REQUEST:
 754                 data = &p->header[3];
 755                 length = 4;
 756                 break;
 757 
 758         case TCODE_WRITE_BLOCK_REQUEST:
 759         case TCODE_LOCK_REQUEST:
 760                 data = p->payload;
 761                 length = HEADER_GET_DATA_LENGTH(p->header[3]);
 762                 break;
 763 
 764         case TCODE_READ_QUADLET_REQUEST:
 765                 data = NULL;
 766                 length = 4;
 767                 break;
 768 
 769         case TCODE_READ_BLOCK_REQUEST:
 770                 data = NULL;
 771                 length = HEADER_GET_DATA_LENGTH(p->header[3]);
 772                 break;
 773 
 774         default:
 775                 fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n",
 776                          p->header[0], p->header[1], p->header[2]);
 777                 return NULL;
 778         }
 779 
 780         request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
 781         if (request == NULL)
 782                 return NULL;
 783 
 784         request->response.speed = p->speed;
 785         request->response.timestamp =
 786                         compute_split_timeout_timestamp(card, p->timestamp);
 787         request->response.generation = p->generation;
 788         request->response.ack = 0;
 789         request->response.callback = free_response_callback;
 790         request->ack = p->ack;
 791         request->length = length;
 792         if (data)
 793                 memcpy(request->data, data, length);
 794 
 795         memcpy(request->request_header, p->header, sizeof(p->header));
 796 
 797         return request;
 798 }
 799 
 800 void fw_send_response(struct fw_card *card,
 801                       struct fw_request *request, int rcode)
 802 {
 803         if (WARN_ONCE(!request, "invalid for FCP address handlers"))
 804                 return;
 805 
 806         /* unified transaction or broadcast transaction: don't respond */
 807         if (request->ack != ACK_PENDING ||
 808             HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) {
 809                 kfree(request);
 810                 return;
 811         }
 812 
 813         if (rcode == RCODE_COMPLETE)
 814                 fw_fill_response(&request->response, request->request_header,
 815                                  rcode, request->data,
 816                                  fw_get_response_length(request));
 817         else
 818                 fw_fill_response(&request->response, request->request_header,
 819                                  rcode, NULL, 0);
 820 
 821         card->driver->send_response(card, &request->response);
 822 }
 823 EXPORT_SYMBOL(fw_send_response);
 824 
 825 /**
 826  * fw_get_request_speed() - returns speed at which the @request was received
 827  * @request: firewire request data
 828  */
 829 int fw_get_request_speed(struct fw_request *request)
 830 {
 831         return request->response.speed;
 832 }
 833 EXPORT_SYMBOL(fw_get_request_speed);
 834 
 835 static void handle_exclusive_region_request(struct fw_card *card,
 836                                             struct fw_packet *p,
 837                                             struct fw_request *request,
 838                                             unsigned long long offset)
 839 {
 840         struct fw_address_handler *handler;
 841         int tcode, destination, source;
 842 
 843         destination = HEADER_GET_DESTINATION(p->header[0]);
 844         source      = HEADER_GET_SOURCE(p->header[1]);
 845         tcode       = HEADER_GET_TCODE(p->header[0]);
 846         if (tcode == TCODE_LOCK_REQUEST)
 847                 tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]);
 848 
 849         rcu_read_lock();
 850         handler = lookup_enclosing_address_handler(&address_handler_list,
 851                                                    offset, request->length);
 852         if (handler)
 853                 handler->address_callback(card, request,
 854                                           tcode, destination, source,
 855                                           p->generation, offset,
 856                                           request->data, request->length,
 857                                           handler->callback_data);
 858         rcu_read_unlock();
 859 
 860         if (!handler)
 861                 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
 862 }
 863 
 864 static void handle_fcp_region_request(struct fw_card *card,
 865                                       struct fw_packet *p,
 866                                       struct fw_request *request,
 867                                       unsigned long long offset)
 868 {
 869         struct fw_address_handler *handler;
 870         int tcode, destination, source;
 871 
 872         if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
 873              offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
 874             request->length > 0x200) {
 875                 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
 876 
 877                 return;
 878         }
 879 
 880         tcode       = HEADER_GET_TCODE(p->header[0]);
 881         destination = HEADER_GET_DESTINATION(p->header[0]);
 882         source      = HEADER_GET_SOURCE(p->header[1]);
 883 
 884         if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
 885             tcode != TCODE_WRITE_BLOCK_REQUEST) {
 886                 fw_send_response(card, request, RCODE_TYPE_ERROR);
 887 
 888                 return;
 889         }
 890 
 891         rcu_read_lock();
 892         list_for_each_entry_rcu(handler, &address_handler_list, link) {
 893                 if (is_enclosing_handler(handler, offset, request->length))
 894                         handler->address_callback(card, NULL, tcode,
 895                                                   destination, source,
 896                                                   p->generation, offset,
 897                                                   request->data,
 898                                                   request->length,
 899                                                   handler->callback_data);
 900         }
 901         rcu_read_unlock();
 902 
 903         fw_send_response(card, request, RCODE_COMPLETE);
 904 }
 905 
 906 void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
 907 {
 908         struct fw_request *request;
 909         unsigned long long offset;
 910 
 911         if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
 912                 return;
 913 
 914         if (TCODE_IS_LINK_INTERNAL(HEADER_GET_TCODE(p->header[0]))) {
 915                 fw_cdev_handle_phy_packet(card, p);
 916                 return;
 917         }
 918 
 919         request = allocate_request(card, p);
 920         if (request == NULL) {
 921                 /* FIXME: send statically allocated busy packet. */
 922                 return;
 923         }
 924 
 925         offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) |
 926                 p->header[2];
 927 
 928         if (!is_in_fcp_region(offset, request->length))
 929                 handle_exclusive_region_request(card, p, request, offset);
 930         else
 931                 handle_fcp_region_request(card, p, request, offset);
 932 
 933 }
 934 EXPORT_SYMBOL(fw_core_handle_request);
 935 
 936 void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
 937 {
 938         struct fw_transaction *t;
 939         unsigned long flags;
 940         u32 *data;
 941         size_t data_length;
 942         int tcode, tlabel, source, rcode;
 943 
 944         tcode   = HEADER_GET_TCODE(p->header[0]);
 945         tlabel  = HEADER_GET_TLABEL(p->header[0]);
 946         source  = HEADER_GET_SOURCE(p->header[1]);
 947         rcode   = HEADER_GET_RCODE(p->header[1]);
 948 
 949         spin_lock_irqsave(&card->lock, flags);
 950         list_for_each_entry(t, &card->transaction_list, link) {
 951                 if (t->node_id == source && t->tlabel == tlabel) {
 952                         if (!try_cancel_split_timeout(t)) {
 953                                 spin_unlock_irqrestore(&card->lock, flags);
 954                                 goto timed_out;
 955                         }
 956                         list_del_init(&t->link);
 957                         card->tlabel_mask &= ~(1ULL << t->tlabel);
 958                         break;
 959                 }
 960         }
 961         spin_unlock_irqrestore(&card->lock, flags);
 962 
 963         if (&t->link == &card->transaction_list) {
 964  timed_out:
 965                 fw_notice(card, "unsolicited response (source %x, tlabel %x)\n",
 966                           source, tlabel);
 967                 return;
 968         }
 969 
 970         /*
 971          * FIXME: sanity check packet, is length correct, does tcodes
 972          * and addresses match.
 973          */
 974 
 975         switch (tcode) {
 976         case TCODE_READ_QUADLET_RESPONSE:
 977                 data = (u32 *) &p->header[3];
 978                 data_length = 4;
 979                 break;
 980 
 981         case TCODE_WRITE_RESPONSE:
 982                 data = NULL;
 983                 data_length = 0;
 984                 break;
 985 
 986         case TCODE_READ_BLOCK_RESPONSE:
 987         case TCODE_LOCK_RESPONSE:
 988                 data = p->payload;
 989                 data_length = HEADER_GET_DATA_LENGTH(p->header[3]);
 990                 break;
 991 
 992         default:
 993                 /* Should never happen, this is just to shut up gcc. */
 994                 data = NULL;
 995                 data_length = 0;
 996                 break;
 997         }
 998 
 999         /*
1000          * The response handler may be executed while the request handler
1001          * is still pending.  Cancel the request handler.
1002          */
1003         card->driver->cancel_packet(card, &t->packet);
1004 
1005         t->callback(card, rcode, data, data_length, t->callback_data);
1006 }
1007 EXPORT_SYMBOL(fw_core_handle_response);
1008 
1009 /**
1010  * fw_rcode_string - convert a firewire result code to an error description
1011  * @rcode: the result code
1012  */
1013 const char *fw_rcode_string(int rcode)
1014 {
1015         static const char *const names[] = {
1016                 [RCODE_COMPLETE]       = "no error",
1017                 [RCODE_CONFLICT_ERROR] = "conflict error",
1018                 [RCODE_DATA_ERROR]     = "data error",
1019                 [RCODE_TYPE_ERROR]     = "type error",
1020                 [RCODE_ADDRESS_ERROR]  = "address error",
1021                 [RCODE_SEND_ERROR]     = "send error",
1022                 [RCODE_CANCELLED]      = "timeout",
1023                 [RCODE_BUSY]           = "busy",
1024                 [RCODE_GENERATION]     = "bus reset",
1025                 [RCODE_NO_ACK]         = "no ack",
1026         };
1027 
1028         if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode])
1029                 return names[rcode];
1030         else
1031                 return "unknown";
1032 }
1033 EXPORT_SYMBOL(fw_rcode_string);
1034 
1035 static const struct fw_address_region topology_map_region =
1036         { .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1037           .end   = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1038 
1039 static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1040                 int tcode, int destination, int source, int generation,
1041                 unsigned long long offset, void *payload, size_t length,
1042                 void *callback_data)
1043 {
1044         int start;
1045 
1046         if (!TCODE_IS_READ_REQUEST(tcode)) {
1047                 fw_send_response(card, request, RCODE_TYPE_ERROR);
1048                 return;
1049         }
1050 
1051         if ((offset & 3) > 0 || (length & 3) > 0) {
1052                 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1053                 return;
1054         }
1055 
1056         start = (offset - topology_map_region.start) / 4;
1057         memcpy(payload, &card->topology_map[start], length);
1058 
1059         fw_send_response(card, request, RCODE_COMPLETE);
1060 }
1061 
1062 static struct fw_address_handler topology_map = {
1063         .length                 = 0x400,
1064         .address_callback       = handle_topology_map,
1065 };
1066 
1067 static const struct fw_address_region registers_region =
1068         { .start = CSR_REGISTER_BASE,
1069           .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1070 
1071 static void update_split_timeout(struct fw_card *card)
1072 {
1073         unsigned int cycles;
1074 
1075         cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
1076 
1077         /* minimum per IEEE 1394, maximum which doesn't overflow OHCI */
1078         cycles = clamp(cycles, 800u, 3u * 8000u);
1079 
1080         card->split_timeout_cycles = cycles;
1081         card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
1082 }
1083 
1084 static void handle_registers(struct fw_card *card, struct fw_request *request,
1085                 int tcode, int destination, int source, int generation,
1086                 unsigned long long offset, void *payload, size_t length,
1087                 void *callback_data)
1088 {
1089         int reg = offset & ~CSR_REGISTER_BASE;
1090         __be32 *data = payload;
1091         int rcode = RCODE_COMPLETE;
1092         unsigned long flags;
1093 
1094         switch (reg) {
1095         case CSR_PRIORITY_BUDGET:
1096                 if (!card->priority_budget_implemented) {
1097                         rcode = RCODE_ADDRESS_ERROR;
1098                         break;
1099                 }
1100                 /* else fall through */
1101 
1102         case CSR_NODE_IDS:
1103                 /*
1104                  * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1105                  * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1106                  */
1107                 /* fall through */
1108 
1109         case CSR_STATE_CLEAR:
1110         case CSR_STATE_SET:
1111         case CSR_CYCLE_TIME:
1112         case CSR_BUS_TIME:
1113         case CSR_BUSY_TIMEOUT:
1114                 if (tcode == TCODE_READ_QUADLET_REQUEST)
1115                         *data = cpu_to_be32(card->driver->read_csr(card, reg));
1116                 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1117                         card->driver->write_csr(card, reg, be32_to_cpu(*data));
1118                 else
1119                         rcode = RCODE_TYPE_ERROR;
1120                 break;
1121 
1122         case CSR_RESET_START:
1123                 if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1124                         card->driver->write_csr(card, CSR_STATE_CLEAR,
1125                                                 CSR_STATE_BIT_ABDICATE);
1126                 else
1127                         rcode = RCODE_TYPE_ERROR;
1128                 break;
1129 
1130         case CSR_SPLIT_TIMEOUT_HI:
1131                 if (tcode == TCODE_READ_QUADLET_REQUEST) {
1132                         *data = cpu_to_be32(card->split_timeout_hi);
1133                 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1134                         spin_lock_irqsave(&card->lock, flags);
1135                         card->split_timeout_hi = be32_to_cpu(*data) & 7;
1136                         update_split_timeout(card);
1137                         spin_unlock_irqrestore(&card->lock, flags);
1138                 } else {
1139                         rcode = RCODE_TYPE_ERROR;
1140                 }
1141                 break;
1142 
1143         case CSR_SPLIT_TIMEOUT_LO:
1144                 if (tcode == TCODE_READ_QUADLET_REQUEST) {
1145                         *data = cpu_to_be32(card->split_timeout_lo);
1146                 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1147                         spin_lock_irqsave(&card->lock, flags);
1148                         card->split_timeout_lo =
1149                                         be32_to_cpu(*data) & 0xfff80000;
1150                         update_split_timeout(card);
1151                         spin_unlock_irqrestore(&card->lock, flags);
1152                 } else {
1153                         rcode = RCODE_TYPE_ERROR;
1154                 }
1155                 break;
1156 
1157         case CSR_MAINT_UTILITY:
1158                 if (tcode == TCODE_READ_QUADLET_REQUEST)
1159                         *data = card->maint_utility_register;
1160                 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1161                         card->maint_utility_register = *data;
1162                 else
1163                         rcode = RCODE_TYPE_ERROR;
1164                 break;
1165 
1166         case CSR_BROADCAST_CHANNEL:
1167                 if (tcode == TCODE_READ_QUADLET_REQUEST)
1168                         *data = cpu_to_be32(card->broadcast_channel);
1169                 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1170                         card->broadcast_channel =
1171                             (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1172                             BROADCAST_CHANNEL_INITIAL;
1173                 else
1174                         rcode = RCODE_TYPE_ERROR;
1175                 break;
1176 
1177         case CSR_BUS_MANAGER_ID:
1178         case CSR_BANDWIDTH_AVAILABLE:
1179         case CSR_CHANNELS_AVAILABLE_HI:
1180         case CSR_CHANNELS_AVAILABLE_LO:
1181                 /*
1182                  * FIXME: these are handled by the OHCI hardware and
1183                  * the stack never sees these request. If we add
1184                  * support for a new type of controller that doesn't
1185                  * handle this in hardware we need to deal with these
1186                  * transactions.
1187                  */
1188                 BUG();
1189                 break;
1190 
1191         default:
1192                 rcode = RCODE_ADDRESS_ERROR;
1193                 break;
1194         }
1195 
1196         fw_send_response(card, request, rcode);
1197 }
1198 
1199 static struct fw_address_handler registers = {
1200         .length                 = 0x400,
1201         .address_callback       = handle_registers,
1202 };
1203 
1204 static void handle_low_memory(struct fw_card *card, struct fw_request *request,
1205                 int tcode, int destination, int source, int generation,
1206                 unsigned long long offset, void *payload, size_t length,
1207                 void *callback_data)
1208 {
1209         /*
1210          * This catches requests not handled by the physical DMA unit,
1211          * i.e., wrong transaction types or unauthorized source nodes.
1212          */
1213         fw_send_response(card, request, RCODE_TYPE_ERROR);
1214 }
1215 
1216 static struct fw_address_handler low_memory = {
1217         .length                 = FW_MAX_PHYSICAL_RANGE,
1218         .address_callback       = handle_low_memory,
1219 };
1220 
1221 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1222 MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1223 MODULE_LICENSE("GPL");
1224 
1225 static const u32 vendor_textual_descriptor[] = {
1226         /* textual descriptor leaf () */
1227         0x00060000,
1228         0x00000000,
1229         0x00000000,
1230         0x4c696e75,             /* L i n u */
1231         0x78204669,             /* x   F i */
1232         0x72657769,             /* r e w i */
1233         0x72650000,             /* r e     */
1234 };
1235 
1236 static const u32 model_textual_descriptor[] = {
1237         /* model descriptor leaf () */
1238         0x00030000,
1239         0x00000000,
1240         0x00000000,
1241         0x4a756a75,             /* J u j u */
1242 };
1243 
1244 static struct fw_descriptor vendor_id_descriptor = {
1245         .length = ARRAY_SIZE(vendor_textual_descriptor),
1246         .immediate = 0x03001f11,
1247         .key = 0x81000000,
1248         .data = vendor_textual_descriptor,
1249 };
1250 
1251 static struct fw_descriptor model_id_descriptor = {
1252         .length = ARRAY_SIZE(model_textual_descriptor),
1253         .immediate = 0x17023901,
1254         .key = 0x81000000,
1255         .data = model_textual_descriptor,
1256 };
1257 
1258 static int __init fw_core_init(void)
1259 {
1260         int ret;
1261 
1262         fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM, 0);
1263         if (!fw_workqueue)
1264                 return -ENOMEM;
1265 
1266         ret = bus_register(&fw_bus_type);
1267         if (ret < 0) {
1268                 destroy_workqueue(fw_workqueue);
1269                 return ret;
1270         }
1271 
1272         fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1273         if (fw_cdev_major < 0) {
1274                 bus_unregister(&fw_bus_type);
1275                 destroy_workqueue(fw_workqueue);
1276                 return fw_cdev_major;
1277         }
1278 
1279         fw_core_add_address_handler(&topology_map, &topology_map_region);
1280         fw_core_add_address_handler(&registers, &registers_region);
1281         fw_core_add_address_handler(&low_memory, &low_memory_region);
1282         fw_core_add_descriptor(&vendor_id_descriptor);
1283         fw_core_add_descriptor(&model_id_descriptor);
1284 
1285         return 0;
1286 }
1287 
1288 static void __exit fw_core_cleanup(void)
1289 {
1290         unregister_chrdev(fw_cdev_major, "firewire");
1291         bus_unregister(&fw_bus_type);
1292         destroy_workqueue(fw_workqueue);
1293         idr_destroy(&fw_device_idr);
1294 }
1295 
1296 module_init(fw_core_init);
1297 module_exit(fw_core_cleanup);

/* [<][>][^][v][top][bottom][index][help] */