root/drivers/pinctrl/core.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. pinctrl_provide_dummies
  2. pinctrl_dev_get_name
  3. pinctrl_dev_get_devname
  4. pinctrl_dev_get_drvdata
  5. get_pinctrl_dev_from_devname
  6. get_pinctrl_dev_from_of_node
  7. pin_get_from_name
  8. pin_get_name
  9. pinctrl_free_pindescs
  10. pinctrl_register_one_pin
  11. pinctrl_register_pins
  12. gpio_to_pin
  13. pinctrl_match_gpio_range
  14. pinctrl_ready_for_gpio_range
  15. pinctrl_ready_for_gpio_range
  16. pinctrl_get_device_gpio_range
  17. pinctrl_add_gpio_range
  18. pinctrl_add_gpio_ranges
  19. pinctrl_find_and_add_gpio_range
  20. pinctrl_get_group_pins
  21. pinctrl_find_gpio_range_from_pin_nolock
  22. pinctrl_find_gpio_range_from_pin
  23. pinctrl_remove_gpio_range
  24. pinctrl_generic_get_group_count
  25. pinctrl_generic_get_group_name
  26. pinctrl_generic_get_group_pins
  27. pinctrl_generic_get_group
  28. pinctrl_generic_group_name_to_selector
  29. pinctrl_generic_add_group
  30. pinctrl_generic_remove_group
  31. pinctrl_generic_free_groups
  32. pinctrl_generic_free_groups
  33. pinctrl_get_group_selector
  34. pinctrl_gpio_can_use_line
  35. pinctrl_gpio_request
  36. pinctrl_gpio_free
  37. pinctrl_gpio_direction
  38. pinctrl_gpio_direction_input
  39. pinctrl_gpio_direction_output
  40. pinctrl_gpio_set_config
  41. find_state
  42. create_state
  43. add_setting
  44. find_pinctrl
  45. create_pinctrl
  46. pinctrl_get
  47. pinctrl_free_setting
  48. pinctrl_free
  49. pinctrl_release
  50. pinctrl_put
  51. pinctrl_lookup_state
  52. pinctrl_link_add
  53. pinctrl_commit_state
  54. pinctrl_select_state
  55. devm_pinctrl_release
  56. devm_pinctrl_get
  57. devm_pinctrl_match
  58. devm_pinctrl_put
  59. pinctrl_register_map
  60. pinctrl_register_mappings
  61. pinctrl_unregister_map
  62. pinctrl_force_sleep
  63. pinctrl_force_default
  64. pinctrl_init_done
  65. pinctrl_pm_select_state
  66. pinctrl_pm_select_default_state
  67. pinctrl_pm_select_sleep_state
  68. pinctrl_pm_select_idle_state
  69. pinctrl_pins_show
  70. pinctrl_groups_show
  71. pinctrl_gpioranges_show
  72. pinctrl_devices_show
  73. map_type
  74. pinctrl_maps_show
  75. pinctrl_show
  76. pinctrl_init_device_debugfs
  77. pinctrl_remove_device_debugfs
  78. pinctrl_init_debugfs
  79. pinctrl_init_device_debugfs
  80. pinctrl_init_debugfs
  81. pinctrl_remove_device_debugfs
  82. pinctrl_check_ops
  83. pinctrl_init_controller
  84. pinctrl_claim_hogs
  85. pinctrl_enable
  86. pinctrl_register
  87. pinctrl_register_and_init
  88. pinctrl_unregister
  89. devm_pinctrl_dev_release
  90. devm_pinctrl_dev_match
  91. devm_pinctrl_register
  92. devm_pinctrl_register_and_init
  93. devm_pinctrl_unregister
  94. pinctrl_init

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * Core driver for the pin control subsystem
   4  *
   5  * Copyright (C) 2011-2012 ST-Ericsson SA
   6  * Written on behalf of Linaro for ST-Ericsson
   7  * Based on bits of regulator core, gpio core and clk core
   8  *
   9  * Author: Linus Walleij <linus.walleij@linaro.org>
  10  *
  11  * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
  12  */
  13 #define pr_fmt(fmt) "pinctrl core: " fmt
  14 
  15 #include <linux/kernel.h>
  16 #include <linux/kref.h>
  17 #include <linux/export.h>
  18 #include <linux/init.h>
  19 #include <linux/device.h>
  20 #include <linux/slab.h>
  21 #include <linux/err.h>
  22 #include <linux/list.h>
  23 #include <linux/debugfs.h>
  24 #include <linux/seq_file.h>
  25 #include <linux/pinctrl/consumer.h>
  26 #include <linux/pinctrl/pinctrl.h>
  27 #include <linux/pinctrl/machine.h>
  28 
  29 #ifdef CONFIG_GPIOLIB
  30 #include <asm-generic/gpio.h>
  31 #endif
  32 
  33 #include "core.h"
  34 #include "devicetree.h"
  35 #include "pinmux.h"
  36 #include "pinconf.h"
  37 
  38 
  39 static bool pinctrl_dummy_state;
  40 
  41 /* Mutex taken to protect pinctrl_list */
  42 static DEFINE_MUTEX(pinctrl_list_mutex);
  43 
  44 /* Mutex taken to protect pinctrl_maps */
  45 DEFINE_MUTEX(pinctrl_maps_mutex);
  46 
  47 /* Mutex taken to protect pinctrldev_list */
  48 static DEFINE_MUTEX(pinctrldev_list_mutex);
  49 
  50 /* Global list of pin control devices (struct pinctrl_dev) */
  51 static LIST_HEAD(pinctrldev_list);
  52 
  53 /* List of pin controller handles (struct pinctrl) */
  54 static LIST_HEAD(pinctrl_list);
  55 
  56 /* List of pinctrl maps (struct pinctrl_maps) */
  57 LIST_HEAD(pinctrl_maps);
  58 
  59 
  60 /**
  61  * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
  62  *
  63  * Usually this function is called by platforms without pinctrl driver support
  64  * but run with some shared drivers using pinctrl APIs.
  65  * After calling this function, the pinctrl core will return successfully
  66  * with creating a dummy state for the driver to keep going smoothly.
  67  */
  68 void pinctrl_provide_dummies(void)
  69 {
  70         pinctrl_dummy_state = true;
  71 }
  72 
  73 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
  74 {
  75         /* We're not allowed to register devices without name */
  76         return pctldev->desc->name;
  77 }
  78 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
  79 
  80 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
  81 {
  82         return dev_name(pctldev->dev);
  83 }
  84 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
  85 
  86 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
  87 {
  88         return pctldev->driver_data;
  89 }
  90 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
  91 
  92 /**
  93  * get_pinctrl_dev_from_devname() - look up pin controller device
  94  * @devname: the name of a device instance, as returned by dev_name()
  95  *
  96  * Looks up a pin control device matching a certain device name or pure device
  97  * pointer, the pure device pointer will take precedence.
  98  */
  99 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
 100 {
 101         struct pinctrl_dev *pctldev;
 102 
 103         if (!devname)
 104                 return NULL;
 105 
 106         mutex_lock(&pinctrldev_list_mutex);
 107 
 108         list_for_each_entry(pctldev, &pinctrldev_list, node) {
 109                 if (!strcmp(dev_name(pctldev->dev), devname)) {
 110                         /* Matched on device name */
 111                         mutex_unlock(&pinctrldev_list_mutex);
 112                         return pctldev;
 113                 }
 114         }
 115 
 116         mutex_unlock(&pinctrldev_list_mutex);
 117 
 118         return NULL;
 119 }
 120 
 121 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
 122 {
 123         struct pinctrl_dev *pctldev;
 124 
 125         mutex_lock(&pinctrldev_list_mutex);
 126 
 127         list_for_each_entry(pctldev, &pinctrldev_list, node)
 128                 if (pctldev->dev->of_node == np) {
 129                         mutex_unlock(&pinctrldev_list_mutex);
 130                         return pctldev;
 131                 }
 132 
 133         mutex_unlock(&pinctrldev_list_mutex);
 134 
 135         return NULL;
 136 }
 137 
 138 /**
 139  * pin_get_from_name() - look up a pin number from a name
 140  * @pctldev: the pin control device to lookup the pin on
 141  * @name: the name of the pin to look up
 142  */
 143 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
 144 {
 145         unsigned i, pin;
 146 
 147         /* The pin number can be retrived from the pin controller descriptor */
 148         for (i = 0; i < pctldev->desc->npins; i++) {
 149                 struct pin_desc *desc;
 150 
 151                 pin = pctldev->desc->pins[i].number;
 152                 desc = pin_desc_get(pctldev, pin);
 153                 /* Pin space may be sparse */
 154                 if (desc && !strcmp(name, desc->name))
 155                         return pin;
 156         }
 157 
 158         return -EINVAL;
 159 }
 160 
 161 /**
 162  * pin_get_name_from_id() - look up a pin name from a pin id
 163  * @pctldev: the pin control device to lookup the pin on
 164  * @name: the name of the pin to look up
 165  */
 166 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
 167 {
 168         const struct pin_desc *desc;
 169 
 170         desc = pin_desc_get(pctldev, pin);
 171         if (!desc) {
 172                 dev_err(pctldev->dev, "failed to get pin(%d) name\n",
 173                         pin);
 174                 return NULL;
 175         }
 176 
 177         return desc->name;
 178 }
 179 
 180 /* Deletes a range of pin descriptors */
 181 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
 182                                   const struct pinctrl_pin_desc *pins,
 183                                   unsigned num_pins)
 184 {
 185         int i;
 186 
 187         for (i = 0; i < num_pins; i++) {
 188                 struct pin_desc *pindesc;
 189 
 190                 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
 191                                             pins[i].number);
 192                 if (pindesc) {
 193                         radix_tree_delete(&pctldev->pin_desc_tree,
 194                                           pins[i].number);
 195                         if (pindesc->dynamic_name)
 196                                 kfree(pindesc->name);
 197                 }
 198                 kfree(pindesc);
 199         }
 200 }
 201 
 202 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
 203                                     const struct pinctrl_pin_desc *pin)
 204 {
 205         struct pin_desc *pindesc;
 206 
 207         pindesc = pin_desc_get(pctldev, pin->number);
 208         if (pindesc) {
 209                 dev_err(pctldev->dev, "pin %d already registered\n",
 210                         pin->number);
 211                 return -EINVAL;
 212         }
 213 
 214         pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
 215         if (!pindesc)
 216                 return -ENOMEM;
 217 
 218         /* Set owner */
 219         pindesc->pctldev = pctldev;
 220 
 221         /* Copy basic pin info */
 222         if (pin->name) {
 223                 pindesc->name = pin->name;
 224         } else {
 225                 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
 226                 if (!pindesc->name) {
 227                         kfree(pindesc);
 228                         return -ENOMEM;
 229                 }
 230                 pindesc->dynamic_name = true;
 231         }
 232 
 233         pindesc->drv_data = pin->drv_data;
 234 
 235         radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
 236         pr_debug("registered pin %d (%s) on %s\n",
 237                  pin->number, pindesc->name, pctldev->desc->name);
 238         return 0;
 239 }
 240 
 241 static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
 242                                  const struct pinctrl_pin_desc *pins,
 243                                  unsigned num_descs)
 244 {
 245         unsigned i;
 246         int ret = 0;
 247 
 248         for (i = 0; i < num_descs; i++) {
 249                 ret = pinctrl_register_one_pin(pctldev, &pins[i]);
 250                 if (ret)
 251                         return ret;
 252         }
 253 
 254         return 0;
 255 }
 256 
 257 /**
 258  * gpio_to_pin() - GPIO range GPIO number to pin number translation
 259  * @range: GPIO range used for the translation
 260  * @gpio: gpio pin to translate to a pin number
 261  *
 262  * Finds the pin number for a given GPIO using the specified GPIO range
 263  * as a base for translation. The distinction between linear GPIO ranges
 264  * and pin list based GPIO ranges is managed correctly by this function.
 265  *
 266  * This function assumes the gpio is part of the specified GPIO range, use
 267  * only after making sure this is the case (e.g. by calling it on the
 268  * result of successful pinctrl_get_device_gpio_range calls)!
 269  */
 270 static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
 271                                 unsigned int gpio)
 272 {
 273         unsigned int offset = gpio - range->base;
 274         if (range->pins)
 275                 return range->pins[offset];
 276         else
 277                 return range->pin_base + offset;
 278 }
 279 
 280 /**
 281  * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
 282  * @pctldev: pin controller device to check
 283  * @gpio: gpio pin to check taken from the global GPIO pin space
 284  *
 285  * Tries to match a GPIO pin number to the ranges handled by a certain pin
 286  * controller, return the range or NULL
 287  */
 288 static struct pinctrl_gpio_range *
 289 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
 290 {
 291         struct pinctrl_gpio_range *range;
 292 
 293         mutex_lock(&pctldev->mutex);
 294         /* Loop over the ranges */
 295         list_for_each_entry(range, &pctldev->gpio_ranges, node) {
 296                 /* Check if we're in the valid range */
 297                 if (gpio >= range->base &&
 298                     gpio < range->base + range->npins) {
 299                         mutex_unlock(&pctldev->mutex);
 300                         return range;
 301                 }
 302         }
 303         mutex_unlock(&pctldev->mutex);
 304         return NULL;
 305 }
 306 
 307 /**
 308  * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
 309  * the same GPIO chip are in range
 310  * @gpio: gpio pin to check taken from the global GPIO pin space
 311  *
 312  * This function is complement of pinctrl_match_gpio_range(). If the return
 313  * value of pinctrl_match_gpio_range() is NULL, this function could be used
 314  * to check whether pinctrl device is ready or not. Maybe some GPIO pins
 315  * of the same GPIO chip don't have back-end pinctrl interface.
 316  * If the return value is true, it means that pinctrl device is ready & the
 317  * certain GPIO pin doesn't have back-end pinctrl device. If the return value
 318  * is false, it means that pinctrl device may not be ready.
 319  */
 320 #ifdef CONFIG_GPIOLIB
 321 static bool pinctrl_ready_for_gpio_range(unsigned gpio)
 322 {
 323         struct pinctrl_dev *pctldev;
 324         struct pinctrl_gpio_range *range = NULL;
 325         struct gpio_chip *chip = gpio_to_chip(gpio);
 326 
 327         if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
 328                 return false;
 329 
 330         mutex_lock(&pinctrldev_list_mutex);
 331 
 332         /* Loop over the pin controllers */
 333         list_for_each_entry(pctldev, &pinctrldev_list, node) {
 334                 /* Loop over the ranges */
 335                 mutex_lock(&pctldev->mutex);
 336                 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
 337                         /* Check if any gpio range overlapped with gpio chip */
 338                         if (range->base + range->npins - 1 < chip->base ||
 339                             range->base > chip->base + chip->ngpio - 1)
 340                                 continue;
 341                         mutex_unlock(&pctldev->mutex);
 342                         mutex_unlock(&pinctrldev_list_mutex);
 343                         return true;
 344                 }
 345                 mutex_unlock(&pctldev->mutex);
 346         }
 347 
 348         mutex_unlock(&pinctrldev_list_mutex);
 349 
 350         return false;
 351 }
 352 #else
 353 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
 354 #endif
 355 
 356 /**
 357  * pinctrl_get_device_gpio_range() - find device for GPIO range
 358  * @gpio: the pin to locate the pin controller for
 359  * @outdev: the pin control device if found
 360  * @outrange: the GPIO range if found
 361  *
 362  * Find the pin controller handling a certain GPIO pin from the pinspace of
 363  * the GPIO subsystem, return the device and the matching GPIO range. Returns
 364  * -EPROBE_DEFER if the GPIO range could not be found in any device since it
 365  * may still have not been registered.
 366  */
 367 static int pinctrl_get_device_gpio_range(unsigned gpio,
 368                                          struct pinctrl_dev **outdev,
 369                                          struct pinctrl_gpio_range **outrange)
 370 {
 371         struct pinctrl_dev *pctldev;
 372 
 373         mutex_lock(&pinctrldev_list_mutex);
 374 
 375         /* Loop over the pin controllers */
 376         list_for_each_entry(pctldev, &pinctrldev_list, node) {
 377                 struct pinctrl_gpio_range *range;
 378 
 379                 range = pinctrl_match_gpio_range(pctldev, gpio);
 380                 if (range) {
 381                         *outdev = pctldev;
 382                         *outrange = range;
 383                         mutex_unlock(&pinctrldev_list_mutex);
 384                         return 0;
 385                 }
 386         }
 387 
 388         mutex_unlock(&pinctrldev_list_mutex);
 389 
 390         return -EPROBE_DEFER;
 391 }
 392 
 393 /**
 394  * pinctrl_add_gpio_range() - register a GPIO range for a controller
 395  * @pctldev: pin controller device to add the range to
 396  * @range: the GPIO range to add
 397  *
 398  * This adds a range of GPIOs to be handled by a certain pin controller. Call
 399  * this to register handled ranges after registering your pin controller.
 400  */
 401 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
 402                             struct pinctrl_gpio_range *range)
 403 {
 404         mutex_lock(&pctldev->mutex);
 405         list_add_tail(&range->node, &pctldev->gpio_ranges);
 406         mutex_unlock(&pctldev->mutex);
 407 }
 408 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
 409 
 410 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
 411                              struct pinctrl_gpio_range *ranges,
 412                              unsigned nranges)
 413 {
 414         int i;
 415 
 416         for (i = 0; i < nranges; i++)
 417                 pinctrl_add_gpio_range(pctldev, &ranges[i]);
 418 }
 419 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
 420 
 421 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
 422                 struct pinctrl_gpio_range *range)
 423 {
 424         struct pinctrl_dev *pctldev;
 425 
 426         pctldev = get_pinctrl_dev_from_devname(devname);
 427 
 428         /*
 429          * If we can't find this device, let's assume that is because
 430          * it has not probed yet, so the driver trying to register this
 431          * range need to defer probing.
 432          */
 433         if (!pctldev) {
 434                 return ERR_PTR(-EPROBE_DEFER);
 435         }
 436         pinctrl_add_gpio_range(pctldev, range);
 437 
 438         return pctldev;
 439 }
 440 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
 441 
 442 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
 443                                 const unsigned **pins, unsigned *num_pins)
 444 {
 445         const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
 446         int gs;
 447 
 448         if (!pctlops->get_group_pins)
 449                 return -EINVAL;
 450 
 451         gs = pinctrl_get_group_selector(pctldev, pin_group);
 452         if (gs < 0)
 453                 return gs;
 454 
 455         return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
 456 }
 457 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
 458 
 459 struct pinctrl_gpio_range *
 460 pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
 461                                         unsigned int pin)
 462 {
 463         struct pinctrl_gpio_range *range;
 464 
 465         /* Loop over the ranges */
 466         list_for_each_entry(range, &pctldev->gpio_ranges, node) {
 467                 /* Check if we're in the valid range */
 468                 if (range->pins) {
 469                         int a;
 470                         for (a = 0; a < range->npins; a++) {
 471                                 if (range->pins[a] == pin)
 472                                         return range;
 473                         }
 474                 } else if (pin >= range->pin_base &&
 475                            pin < range->pin_base + range->npins)
 476                         return range;
 477         }
 478 
 479         return NULL;
 480 }
 481 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
 482 
 483 /**
 484  * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
 485  * @pctldev: the pin controller device to look in
 486  * @pin: a controller-local number to find the range for
 487  */
 488 struct pinctrl_gpio_range *
 489 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
 490                                  unsigned int pin)
 491 {
 492         struct pinctrl_gpio_range *range;
 493 
 494         mutex_lock(&pctldev->mutex);
 495         range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
 496         mutex_unlock(&pctldev->mutex);
 497 
 498         return range;
 499 }
 500 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
 501 
 502 /**
 503  * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller
 504  * @pctldev: pin controller device to remove the range from
 505  * @range: the GPIO range to remove
 506  */
 507 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
 508                                struct pinctrl_gpio_range *range)
 509 {
 510         mutex_lock(&pctldev->mutex);
 511         list_del(&range->node);
 512         mutex_unlock(&pctldev->mutex);
 513 }
 514 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
 515 
 516 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
 517 
 518 /**
 519  * pinctrl_generic_get_group_count() - returns the number of pin groups
 520  * @pctldev: pin controller device
 521  */
 522 int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev)
 523 {
 524         return pctldev->num_groups;
 525 }
 526 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count);
 527 
 528 /**
 529  * pinctrl_generic_get_group_name() - returns the name of a pin group
 530  * @pctldev: pin controller device
 531  * @selector: group number
 532  */
 533 const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev,
 534                                            unsigned int selector)
 535 {
 536         struct group_desc *group;
 537 
 538         group = radix_tree_lookup(&pctldev->pin_group_tree,
 539                                   selector);
 540         if (!group)
 541                 return NULL;
 542 
 543         return group->name;
 544 }
 545 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name);
 546 
 547 /**
 548  * pinctrl_generic_get_group_pins() - gets the pin group pins
 549  * @pctldev: pin controller device
 550  * @selector: group number
 551  * @pins: pins in the group
 552  * @num_pins: number of pins in the group
 553  */
 554 int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev,
 555                                    unsigned int selector,
 556                                    const unsigned int **pins,
 557                                    unsigned int *num_pins)
 558 {
 559         struct group_desc *group;
 560 
 561         group = radix_tree_lookup(&pctldev->pin_group_tree,
 562                                   selector);
 563         if (!group) {
 564                 dev_err(pctldev->dev, "%s could not find pingroup%i\n",
 565                         __func__, selector);
 566                 return -EINVAL;
 567         }
 568 
 569         *pins = group->pins;
 570         *num_pins = group->num_pins;
 571 
 572         return 0;
 573 }
 574 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins);
 575 
 576 /**
 577  * pinctrl_generic_get_group() - returns a pin group based on the number
 578  * @pctldev: pin controller device
 579  * @gselector: group number
 580  */
 581 struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev,
 582                                              unsigned int selector)
 583 {
 584         struct group_desc *group;
 585 
 586         group = radix_tree_lookup(&pctldev->pin_group_tree,
 587                                   selector);
 588         if (!group)
 589                 return NULL;
 590 
 591         return group;
 592 }
 593 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group);
 594 
 595 static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev,
 596                                                   const char *function)
 597 {
 598         const struct pinctrl_ops *ops = pctldev->desc->pctlops;
 599         int ngroups = ops->get_groups_count(pctldev);
 600         int selector = 0;
 601 
 602         /* See if this pctldev has this group */
 603         while (selector < ngroups) {
 604                 const char *gname = ops->get_group_name(pctldev, selector);
 605 
 606                 if (gname && !strcmp(function, gname))
 607                         return selector;
 608 
 609                 selector++;
 610         }
 611 
 612         return -EINVAL;
 613 }
 614 
 615 /**
 616  * pinctrl_generic_add_group() - adds a new pin group
 617  * @pctldev: pin controller device
 618  * @name: name of the pin group
 619  * @pins: pins in the pin group
 620  * @num_pins: number of pins in the pin group
 621  * @data: pin controller driver specific data
 622  *
 623  * Note that the caller must take care of locking.
 624  */
 625 int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name,
 626                               int *pins, int num_pins, void *data)
 627 {
 628         struct group_desc *group;
 629         int selector;
 630 
 631         if (!name)
 632                 return -EINVAL;
 633 
 634         selector = pinctrl_generic_group_name_to_selector(pctldev, name);
 635         if (selector >= 0)
 636                 return selector;
 637 
 638         selector = pctldev->num_groups;
 639 
 640         group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL);
 641         if (!group)
 642                 return -ENOMEM;
 643 
 644         group->name = name;
 645         group->pins = pins;
 646         group->num_pins = num_pins;
 647         group->data = data;
 648 
 649         radix_tree_insert(&pctldev->pin_group_tree, selector, group);
 650 
 651         pctldev->num_groups++;
 652 
 653         return selector;
 654 }
 655 EXPORT_SYMBOL_GPL(pinctrl_generic_add_group);
 656 
 657 /**
 658  * pinctrl_generic_remove_group() - removes a numbered pin group
 659  * @pctldev: pin controller device
 660  * @selector: group number
 661  *
 662  * Note that the caller must take care of locking.
 663  */
 664 int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev,
 665                                  unsigned int selector)
 666 {
 667         struct group_desc *group;
 668 
 669         group = radix_tree_lookup(&pctldev->pin_group_tree,
 670                                   selector);
 671         if (!group)
 672                 return -ENOENT;
 673 
 674         radix_tree_delete(&pctldev->pin_group_tree, selector);
 675         devm_kfree(pctldev->dev, group);
 676 
 677         pctldev->num_groups--;
 678 
 679         return 0;
 680 }
 681 EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group);
 682 
 683 /**
 684  * pinctrl_generic_free_groups() - removes all pin groups
 685  * @pctldev: pin controller device
 686  *
 687  * Note that the caller must take care of locking. The pinctrl groups
 688  * are allocated with devm_kzalloc() so no need to free them here.
 689  */
 690 static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
 691 {
 692         struct radix_tree_iter iter;
 693         void __rcu **slot;
 694 
 695         radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0)
 696                 radix_tree_delete(&pctldev->pin_group_tree, iter.index);
 697 
 698         pctldev->num_groups = 0;
 699 }
 700 
 701 #else
 702 static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
 703 {
 704 }
 705 #endif /* CONFIG_GENERIC_PINCTRL_GROUPS */
 706 
 707 /**
 708  * pinctrl_get_group_selector() - returns the group selector for a group
 709  * @pctldev: the pin controller handling the group
 710  * @pin_group: the pin group to look up
 711  */
 712 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
 713                                const char *pin_group)
 714 {
 715         const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
 716         unsigned ngroups = pctlops->get_groups_count(pctldev);
 717         unsigned group_selector = 0;
 718 
 719         while (group_selector < ngroups) {
 720                 const char *gname = pctlops->get_group_name(pctldev,
 721                                                             group_selector);
 722                 if (gname && !strcmp(gname, pin_group)) {
 723                         dev_dbg(pctldev->dev,
 724                                 "found group selector %u for %s\n",
 725                                 group_selector,
 726                                 pin_group);
 727                         return group_selector;
 728                 }
 729 
 730                 group_selector++;
 731         }
 732 
 733         dev_err(pctldev->dev, "does not have pin group %s\n",
 734                 pin_group);
 735 
 736         return -EINVAL;
 737 }
 738 
 739 bool pinctrl_gpio_can_use_line(unsigned gpio)
 740 {
 741         struct pinctrl_dev *pctldev;
 742         struct pinctrl_gpio_range *range;
 743         bool result;
 744         int pin;
 745 
 746         /*
 747          * Try to obtain GPIO range, if it fails
 748          * we're probably dealing with GPIO driver
 749          * without a backing pin controller - bail out.
 750          */
 751         if (pinctrl_get_device_gpio_range(gpio, &pctldev, &range))
 752                 return true;
 753 
 754         mutex_lock(&pctldev->mutex);
 755 
 756         /* Convert to the pin controllers number space */
 757         pin = gpio_to_pin(range, gpio);
 758 
 759         result = pinmux_can_be_used_for_gpio(pctldev, pin);
 760 
 761         mutex_unlock(&pctldev->mutex);
 762 
 763         return result;
 764 }
 765 EXPORT_SYMBOL_GPL(pinctrl_gpio_can_use_line);
 766 
 767 /**
 768  * pinctrl_gpio_request() - request a single pin to be used as GPIO
 769  * @gpio: the GPIO pin number from the GPIO subsystem number space
 770  *
 771  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 772  * as part of their gpio_request() semantics, platforms and individual drivers
 773  * shall *NOT* request GPIO pins to be muxed in.
 774  */
 775 int pinctrl_gpio_request(unsigned gpio)
 776 {
 777         struct pinctrl_dev *pctldev;
 778         struct pinctrl_gpio_range *range;
 779         int ret;
 780         int pin;
 781 
 782         ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
 783         if (ret) {
 784                 if (pinctrl_ready_for_gpio_range(gpio))
 785                         ret = 0;
 786                 return ret;
 787         }
 788 
 789         mutex_lock(&pctldev->mutex);
 790 
 791         /* Convert to the pin controllers number space */
 792         pin = gpio_to_pin(range, gpio);
 793 
 794         ret = pinmux_request_gpio(pctldev, range, pin, gpio);
 795 
 796         mutex_unlock(&pctldev->mutex);
 797 
 798         return ret;
 799 }
 800 EXPORT_SYMBOL_GPL(pinctrl_gpio_request);
 801 
 802 /**
 803  * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO
 804  * @gpio: the GPIO pin number from the GPIO subsystem number space
 805  *
 806  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 807  * as part of their gpio_free() semantics, platforms and individual drivers
 808  * shall *NOT* request GPIO pins to be muxed out.
 809  */
 810 void pinctrl_gpio_free(unsigned gpio)
 811 {
 812         struct pinctrl_dev *pctldev;
 813         struct pinctrl_gpio_range *range;
 814         int ret;
 815         int pin;
 816 
 817         ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
 818         if (ret) {
 819                 return;
 820         }
 821         mutex_lock(&pctldev->mutex);
 822 
 823         /* Convert to the pin controllers number space */
 824         pin = gpio_to_pin(range, gpio);
 825 
 826         pinmux_free_gpio(pctldev, pin, range);
 827 
 828         mutex_unlock(&pctldev->mutex);
 829 }
 830 EXPORT_SYMBOL_GPL(pinctrl_gpio_free);
 831 
 832 static int pinctrl_gpio_direction(unsigned gpio, bool input)
 833 {
 834         struct pinctrl_dev *pctldev;
 835         struct pinctrl_gpio_range *range;
 836         int ret;
 837         int pin;
 838 
 839         ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
 840         if (ret) {
 841                 return ret;
 842         }
 843 
 844         mutex_lock(&pctldev->mutex);
 845 
 846         /* Convert to the pin controllers number space */
 847         pin = gpio_to_pin(range, gpio);
 848         ret = pinmux_gpio_direction(pctldev, range, pin, input);
 849 
 850         mutex_unlock(&pctldev->mutex);
 851 
 852         return ret;
 853 }
 854 
 855 /**
 856  * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
 857  * @gpio: the GPIO pin number from the GPIO subsystem number space
 858  *
 859  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 860  * as part of their gpio_direction_input() semantics, platforms and individual
 861  * drivers shall *NOT* touch pin control GPIO calls.
 862  */
 863 int pinctrl_gpio_direction_input(unsigned gpio)
 864 {
 865         return pinctrl_gpio_direction(gpio, true);
 866 }
 867 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
 868 
 869 /**
 870  * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
 871  * @gpio: the GPIO pin number from the GPIO subsystem number space
 872  *
 873  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 874  * as part of their gpio_direction_output() semantics, platforms and individual
 875  * drivers shall *NOT* touch pin control GPIO calls.
 876  */
 877 int pinctrl_gpio_direction_output(unsigned gpio)
 878 {
 879         return pinctrl_gpio_direction(gpio, false);
 880 }
 881 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
 882 
 883 /**
 884  * pinctrl_gpio_set_config() - Apply config to given GPIO pin
 885  * @gpio: the GPIO pin number from the GPIO subsystem number space
 886  * @config: the configuration to apply to the GPIO
 887  *
 888  * This function should *ONLY* be used from gpiolib-based GPIO drivers, if
 889  * they need to call the underlying pin controller to change GPIO config
 890  * (for example set debounce time).
 891  */
 892 int pinctrl_gpio_set_config(unsigned gpio, unsigned long config)
 893 {
 894         unsigned long configs[] = { config };
 895         struct pinctrl_gpio_range *range;
 896         struct pinctrl_dev *pctldev;
 897         int ret, pin;
 898 
 899         ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
 900         if (ret)
 901                 return ret;
 902 
 903         mutex_lock(&pctldev->mutex);
 904         pin = gpio_to_pin(range, gpio);
 905         ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs));
 906         mutex_unlock(&pctldev->mutex);
 907 
 908         return ret;
 909 }
 910 EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config);
 911 
 912 static struct pinctrl_state *find_state(struct pinctrl *p,
 913                                         const char *name)
 914 {
 915         struct pinctrl_state *state;
 916 
 917         list_for_each_entry(state, &p->states, node)
 918                 if (!strcmp(state->name, name))
 919                         return state;
 920 
 921         return NULL;
 922 }
 923 
 924 static struct pinctrl_state *create_state(struct pinctrl *p,
 925                                           const char *name)
 926 {
 927         struct pinctrl_state *state;
 928 
 929         state = kzalloc(sizeof(*state), GFP_KERNEL);
 930         if (!state)
 931                 return ERR_PTR(-ENOMEM);
 932 
 933         state->name = name;
 934         INIT_LIST_HEAD(&state->settings);
 935 
 936         list_add_tail(&state->node, &p->states);
 937 
 938         return state;
 939 }
 940 
 941 static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev,
 942                        const struct pinctrl_map *map)
 943 {
 944         struct pinctrl_state *state;
 945         struct pinctrl_setting *setting;
 946         int ret;
 947 
 948         state = find_state(p, map->name);
 949         if (!state)
 950                 state = create_state(p, map->name);
 951         if (IS_ERR(state))
 952                 return PTR_ERR(state);
 953 
 954         if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
 955                 return 0;
 956 
 957         setting = kzalloc(sizeof(*setting), GFP_KERNEL);
 958         if (!setting)
 959                 return -ENOMEM;
 960 
 961         setting->type = map->type;
 962 
 963         if (pctldev)
 964                 setting->pctldev = pctldev;
 965         else
 966                 setting->pctldev =
 967                         get_pinctrl_dev_from_devname(map->ctrl_dev_name);
 968         if (!setting->pctldev) {
 969                 kfree(setting);
 970                 /* Do not defer probing of hogs (circular loop) */
 971                 if (!strcmp(map->ctrl_dev_name, map->dev_name))
 972                         return -ENODEV;
 973                 /*
 974                  * OK let us guess that the driver is not there yet, and
 975                  * let's defer obtaining this pinctrl handle to later...
 976                  */
 977                 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
 978                         map->ctrl_dev_name);
 979                 return -EPROBE_DEFER;
 980         }
 981 
 982         setting->dev_name = map->dev_name;
 983 
 984         switch (map->type) {
 985         case PIN_MAP_TYPE_MUX_GROUP:
 986                 ret = pinmux_map_to_setting(map, setting);
 987                 break;
 988         case PIN_MAP_TYPE_CONFIGS_PIN:
 989         case PIN_MAP_TYPE_CONFIGS_GROUP:
 990                 ret = pinconf_map_to_setting(map, setting);
 991                 break;
 992         default:
 993                 ret = -EINVAL;
 994                 break;
 995         }
 996         if (ret < 0) {
 997                 kfree(setting);
 998                 return ret;
 999         }
1000 
1001         list_add_tail(&setting->node, &state->settings);
1002 
1003         return 0;
1004 }
1005 
1006 static struct pinctrl *find_pinctrl(struct device *dev)
1007 {
1008         struct pinctrl *p;
1009 
1010         mutex_lock(&pinctrl_list_mutex);
1011         list_for_each_entry(p, &pinctrl_list, node)
1012                 if (p->dev == dev) {
1013                         mutex_unlock(&pinctrl_list_mutex);
1014                         return p;
1015                 }
1016 
1017         mutex_unlock(&pinctrl_list_mutex);
1018         return NULL;
1019 }
1020 
1021 static void pinctrl_free(struct pinctrl *p, bool inlist);
1022 
1023 static struct pinctrl *create_pinctrl(struct device *dev,
1024                                       struct pinctrl_dev *pctldev)
1025 {
1026         struct pinctrl *p;
1027         const char *devname;
1028         struct pinctrl_maps *maps_node;
1029         int i;
1030         const struct pinctrl_map *map;
1031         int ret;
1032 
1033         /*
1034          * create the state cookie holder struct pinctrl for each
1035          * mapping, this is what consumers will get when requesting
1036          * a pin control handle with pinctrl_get()
1037          */
1038         p = kzalloc(sizeof(*p), GFP_KERNEL);
1039         if (!p)
1040                 return ERR_PTR(-ENOMEM);
1041         p->dev = dev;
1042         INIT_LIST_HEAD(&p->states);
1043         INIT_LIST_HEAD(&p->dt_maps);
1044 
1045         ret = pinctrl_dt_to_map(p, pctldev);
1046         if (ret < 0) {
1047                 kfree(p);
1048                 return ERR_PTR(ret);
1049         }
1050 
1051         devname = dev_name(dev);
1052 
1053         mutex_lock(&pinctrl_maps_mutex);
1054         /* Iterate over the pin control maps to locate the right ones */
1055         for_each_maps(maps_node, i, map) {
1056                 /* Map must be for this device */
1057                 if (strcmp(map->dev_name, devname))
1058                         continue;
1059                 /*
1060                  * If pctldev is not null, we are claiming hog for it,
1061                  * that means, setting that is served by pctldev by itself.
1062                  *
1063                  * Thus we must skip map that is for this device but is served
1064                  * by other device.
1065                  */
1066                 if (pctldev &&
1067                     strcmp(dev_name(pctldev->dev), map->ctrl_dev_name))
1068                         continue;
1069 
1070                 ret = add_setting(p, pctldev, map);
1071                 /*
1072                  * At this point the adding of a setting may:
1073                  *
1074                  * - Defer, if the pinctrl device is not yet available
1075                  * - Fail, if the pinctrl device is not yet available,
1076                  *   AND the setting is a hog. We cannot defer that, since
1077                  *   the hog will kick in immediately after the device
1078                  *   is registered.
1079                  *
1080                  * If the error returned was not -EPROBE_DEFER then we
1081                  * accumulate the errors to see if we end up with
1082                  * an -EPROBE_DEFER later, as that is the worst case.
1083                  */
1084                 if (ret == -EPROBE_DEFER) {
1085                         pinctrl_free(p, false);
1086                         mutex_unlock(&pinctrl_maps_mutex);
1087                         return ERR_PTR(ret);
1088                 }
1089         }
1090         mutex_unlock(&pinctrl_maps_mutex);
1091 
1092         if (ret < 0) {
1093                 /* If some other error than deferral occurred, return here */
1094                 pinctrl_free(p, false);
1095                 return ERR_PTR(ret);
1096         }
1097 
1098         kref_init(&p->users);
1099 
1100         /* Add the pinctrl handle to the global list */
1101         mutex_lock(&pinctrl_list_mutex);
1102         list_add_tail(&p->node, &pinctrl_list);
1103         mutex_unlock(&pinctrl_list_mutex);
1104 
1105         return p;
1106 }
1107 
1108 /**
1109  * pinctrl_get() - retrieves the pinctrl handle for a device
1110  * @dev: the device to obtain the handle for
1111  */
1112 struct pinctrl *pinctrl_get(struct device *dev)
1113 {
1114         struct pinctrl *p;
1115 
1116         if (WARN_ON(!dev))
1117                 return ERR_PTR(-EINVAL);
1118 
1119         /*
1120          * See if somebody else (such as the device core) has already
1121          * obtained a handle to the pinctrl for this device. In that case,
1122          * return another pointer to it.
1123          */
1124         p = find_pinctrl(dev);
1125         if (p) {
1126                 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
1127                 kref_get(&p->users);
1128                 return p;
1129         }
1130 
1131         return create_pinctrl(dev, NULL);
1132 }
1133 EXPORT_SYMBOL_GPL(pinctrl_get);
1134 
1135 static void pinctrl_free_setting(bool disable_setting,
1136                                  struct pinctrl_setting *setting)
1137 {
1138         switch (setting->type) {
1139         case PIN_MAP_TYPE_MUX_GROUP:
1140                 if (disable_setting)
1141                         pinmux_disable_setting(setting);
1142                 pinmux_free_setting(setting);
1143                 break;
1144         case PIN_MAP_TYPE_CONFIGS_PIN:
1145         case PIN_MAP_TYPE_CONFIGS_GROUP:
1146                 pinconf_free_setting(setting);
1147                 break;
1148         default:
1149                 break;
1150         }
1151 }
1152 
1153 static void pinctrl_free(struct pinctrl *p, bool inlist)
1154 {
1155         struct pinctrl_state *state, *n1;
1156         struct pinctrl_setting *setting, *n2;
1157 
1158         mutex_lock(&pinctrl_list_mutex);
1159         list_for_each_entry_safe(state, n1, &p->states, node) {
1160                 list_for_each_entry_safe(setting, n2, &state->settings, node) {
1161                         pinctrl_free_setting(state == p->state, setting);
1162                         list_del(&setting->node);
1163                         kfree(setting);
1164                 }
1165                 list_del(&state->node);
1166                 kfree(state);
1167         }
1168 
1169         pinctrl_dt_free_maps(p);
1170 
1171         if (inlist)
1172                 list_del(&p->node);
1173         kfree(p);
1174         mutex_unlock(&pinctrl_list_mutex);
1175 }
1176 
1177 /**
1178  * pinctrl_release() - release the pinctrl handle
1179  * @kref: the kref in the pinctrl being released
1180  */
1181 static void pinctrl_release(struct kref *kref)
1182 {
1183         struct pinctrl *p = container_of(kref, struct pinctrl, users);
1184 
1185         pinctrl_free(p, true);
1186 }
1187 
1188 /**
1189  * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
1190  * @p: the pinctrl handle to release
1191  */
1192 void pinctrl_put(struct pinctrl *p)
1193 {
1194         kref_put(&p->users, pinctrl_release);
1195 }
1196 EXPORT_SYMBOL_GPL(pinctrl_put);
1197 
1198 /**
1199  * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
1200  * @p: the pinctrl handle to retrieve the state from
1201  * @name: the state name to retrieve
1202  */
1203 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
1204                                                  const char *name)
1205 {
1206         struct pinctrl_state *state;
1207 
1208         state = find_state(p, name);
1209         if (!state) {
1210                 if (pinctrl_dummy_state) {
1211                         /* create dummy state */
1212                         dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
1213                                 name);
1214                         state = create_state(p, name);
1215                 } else
1216                         state = ERR_PTR(-ENODEV);
1217         }
1218 
1219         return state;
1220 }
1221 EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
1222 
1223 static void pinctrl_link_add(struct pinctrl_dev *pctldev,
1224                              struct device *consumer)
1225 {
1226         if (pctldev->desc->link_consumers)
1227                 device_link_add(consumer, pctldev->dev,
1228                                 DL_FLAG_PM_RUNTIME |
1229                                 DL_FLAG_AUTOREMOVE_CONSUMER);
1230 }
1231 
1232 /**
1233  * pinctrl_commit_state() - select/activate/program a pinctrl state to HW
1234  * @p: the pinctrl handle for the device that requests configuration
1235  * @state: the state handle to select/activate/program
1236  */
1237 static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state)
1238 {
1239         struct pinctrl_setting *setting, *setting2;
1240         struct pinctrl_state *old_state = p->state;
1241         int ret;
1242 
1243         if (p->state) {
1244                 /*
1245                  * For each pinmux setting in the old state, forget SW's record
1246                  * of mux owner for that pingroup. Any pingroups which are
1247                  * still owned by the new state will be re-acquired by the call
1248                  * to pinmux_enable_setting() in the loop below.
1249                  */
1250                 list_for_each_entry(setting, &p->state->settings, node) {
1251                         if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1252                                 continue;
1253                         pinmux_disable_setting(setting);
1254                 }
1255         }
1256 
1257         p->state = NULL;
1258 
1259         /* Apply all the settings for the new state */
1260         list_for_each_entry(setting, &state->settings, node) {
1261                 switch (setting->type) {
1262                 case PIN_MAP_TYPE_MUX_GROUP:
1263                         ret = pinmux_enable_setting(setting);
1264                         break;
1265                 case PIN_MAP_TYPE_CONFIGS_PIN:
1266                 case PIN_MAP_TYPE_CONFIGS_GROUP:
1267                         ret = pinconf_apply_setting(setting);
1268                         break;
1269                 default:
1270                         ret = -EINVAL;
1271                         break;
1272                 }
1273 
1274                 if (ret < 0) {
1275                         goto unapply_new_state;
1276                 }
1277 
1278                 /* Do not link hogs (circular dependency) */
1279                 if (p != setting->pctldev->p)
1280                         pinctrl_link_add(setting->pctldev, p->dev);
1281         }
1282 
1283         p->state = state;
1284 
1285         return 0;
1286 
1287 unapply_new_state:
1288         dev_err(p->dev, "Error applying setting, reverse things back\n");
1289 
1290         list_for_each_entry(setting2, &state->settings, node) {
1291                 if (&setting2->node == &setting->node)
1292                         break;
1293                 /*
1294                  * All we can do here is pinmux_disable_setting.
1295                  * That means that some pins are muxed differently now
1296                  * than they were before applying the setting (We can't
1297                  * "unmux a pin"!), but it's not a big deal since the pins
1298                  * are free to be muxed by another apply_setting.
1299                  */
1300                 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1301                         pinmux_disable_setting(setting2);
1302         }
1303 
1304         /* There's no infinite recursive loop here because p->state is NULL */
1305         if (old_state)
1306                 pinctrl_select_state(p, old_state);
1307 
1308         return ret;
1309 }
1310 
1311 /**
1312  * pinctrl_select_state() - select/activate/program a pinctrl state to HW
1313  * @p: the pinctrl handle for the device that requests configuration
1314  * @state: the state handle to select/activate/program
1315  */
1316 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
1317 {
1318         if (p->state == state)
1319                 return 0;
1320 
1321         return pinctrl_commit_state(p, state);
1322 }
1323 EXPORT_SYMBOL_GPL(pinctrl_select_state);
1324 
1325 static void devm_pinctrl_release(struct device *dev, void *res)
1326 {
1327         pinctrl_put(*(struct pinctrl **)res);
1328 }
1329 
1330 /**
1331  * struct devm_pinctrl_get() - Resource managed pinctrl_get()
1332  * @dev: the device to obtain the handle for
1333  *
1334  * If there is a need to explicitly destroy the returned struct pinctrl,
1335  * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1336  */
1337 struct pinctrl *devm_pinctrl_get(struct device *dev)
1338 {
1339         struct pinctrl **ptr, *p;
1340 
1341         ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1342         if (!ptr)
1343                 return ERR_PTR(-ENOMEM);
1344 
1345         p = pinctrl_get(dev);
1346         if (!IS_ERR(p)) {
1347                 *ptr = p;
1348                 devres_add(dev, ptr);
1349         } else {
1350                 devres_free(ptr);
1351         }
1352 
1353         return p;
1354 }
1355 EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1356 
1357 static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1358 {
1359         struct pinctrl **p = res;
1360 
1361         return *p == data;
1362 }
1363 
1364 /**
1365  * devm_pinctrl_put() - Resource managed pinctrl_put()
1366  * @p: the pinctrl handle to release
1367  *
1368  * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1369  * this function will not need to be called and the resource management
1370  * code will ensure that the resource is freed.
1371  */
1372 void devm_pinctrl_put(struct pinctrl *p)
1373 {
1374         WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1375                                devm_pinctrl_match, p));
1376 }
1377 EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1378 
1379 int pinctrl_register_map(const struct pinctrl_map *maps, unsigned num_maps,
1380                          bool dup)
1381 {
1382         int i, ret;
1383         struct pinctrl_maps *maps_node;
1384 
1385         pr_debug("add %u pinctrl maps\n", num_maps);
1386 
1387         /* First sanity check the new mapping */
1388         for (i = 0; i < num_maps; i++) {
1389                 if (!maps[i].dev_name) {
1390                         pr_err("failed to register map %s (%d): no device given\n",
1391                                maps[i].name, i);
1392                         return -EINVAL;
1393                 }
1394 
1395                 if (!maps[i].name) {
1396                         pr_err("failed to register map %d: no map name given\n",
1397                                i);
1398                         return -EINVAL;
1399                 }
1400 
1401                 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1402                                 !maps[i].ctrl_dev_name) {
1403                         pr_err("failed to register map %s (%d): no pin control device given\n",
1404                                maps[i].name, i);
1405                         return -EINVAL;
1406                 }
1407 
1408                 switch (maps[i].type) {
1409                 case PIN_MAP_TYPE_DUMMY_STATE:
1410                         break;
1411                 case PIN_MAP_TYPE_MUX_GROUP:
1412                         ret = pinmux_validate_map(&maps[i], i);
1413                         if (ret < 0)
1414                                 return ret;
1415                         break;
1416                 case PIN_MAP_TYPE_CONFIGS_PIN:
1417                 case PIN_MAP_TYPE_CONFIGS_GROUP:
1418                         ret = pinconf_validate_map(&maps[i], i);
1419                         if (ret < 0)
1420                                 return ret;
1421                         break;
1422                 default:
1423                         pr_err("failed to register map %s (%d): invalid type given\n",
1424                                maps[i].name, i);
1425                         return -EINVAL;
1426                 }
1427         }
1428 
1429         maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1430         if (!maps_node)
1431                 return -ENOMEM;
1432 
1433         maps_node->num_maps = num_maps;
1434         if (dup) {
1435                 maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
1436                                           GFP_KERNEL);
1437                 if (!maps_node->maps) {
1438                         kfree(maps_node);
1439                         return -ENOMEM;
1440                 }
1441         } else {
1442                 maps_node->maps = maps;
1443         }
1444 
1445         mutex_lock(&pinctrl_maps_mutex);
1446         list_add_tail(&maps_node->node, &pinctrl_maps);
1447         mutex_unlock(&pinctrl_maps_mutex);
1448 
1449         return 0;
1450 }
1451 
1452 /**
1453  * pinctrl_register_mappings() - register a set of pin controller mappings
1454  * @maps: the pincontrol mappings table to register. This should probably be
1455  *      marked with __initdata so it can be discarded after boot. This
1456  *      function will perform a shallow copy for the mapping entries.
1457  * @num_maps: the number of maps in the mapping table
1458  */
1459 int pinctrl_register_mappings(const struct pinctrl_map *maps,
1460                               unsigned num_maps)
1461 {
1462         return pinctrl_register_map(maps, num_maps, true);
1463 }
1464 EXPORT_SYMBOL_GPL(pinctrl_register_mappings);
1465 
1466 void pinctrl_unregister_map(const struct pinctrl_map *map)
1467 {
1468         struct pinctrl_maps *maps_node;
1469 
1470         mutex_lock(&pinctrl_maps_mutex);
1471         list_for_each_entry(maps_node, &pinctrl_maps, node) {
1472                 if (maps_node->maps == map) {
1473                         list_del(&maps_node->node);
1474                         kfree(maps_node);
1475                         mutex_unlock(&pinctrl_maps_mutex);
1476                         return;
1477                 }
1478         }
1479         mutex_unlock(&pinctrl_maps_mutex);
1480 }
1481 
1482 /**
1483  * pinctrl_force_sleep() - turn a given controller device into sleep state
1484  * @pctldev: pin controller device
1485  */
1486 int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1487 {
1488         if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1489                 return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep);
1490         return 0;
1491 }
1492 EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1493 
1494 /**
1495  * pinctrl_force_default() - turn a given controller device into default state
1496  * @pctldev: pin controller device
1497  */
1498 int pinctrl_force_default(struct pinctrl_dev *pctldev)
1499 {
1500         if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1501                 return pinctrl_commit_state(pctldev->p, pctldev->hog_default);
1502         return 0;
1503 }
1504 EXPORT_SYMBOL_GPL(pinctrl_force_default);
1505 
1506 /**
1507  * pinctrl_init_done() - tell pinctrl probe is done
1508  *
1509  * We'll use this time to switch the pins from "init" to "default" unless the
1510  * driver selected some other state.
1511  *
1512  * @dev: device to that's done probing
1513  */
1514 int pinctrl_init_done(struct device *dev)
1515 {
1516         struct dev_pin_info *pins = dev->pins;
1517         int ret;
1518 
1519         if (!pins)
1520                 return 0;
1521 
1522         if (IS_ERR(pins->init_state))
1523                 return 0; /* No such state */
1524 
1525         if (pins->p->state != pins->init_state)
1526                 return 0; /* Not at init anyway */
1527 
1528         if (IS_ERR(pins->default_state))
1529                 return 0; /* No default state */
1530 
1531         ret = pinctrl_select_state(pins->p, pins->default_state);
1532         if (ret)
1533                 dev_err(dev, "failed to activate default pinctrl state\n");
1534 
1535         return ret;
1536 }
1537 
1538 #ifdef CONFIG_PM
1539 
1540 /**
1541  * pinctrl_pm_select_state() - select pinctrl state for PM
1542  * @dev: device to select default state for
1543  * @state: state to set
1544  */
1545 static int pinctrl_pm_select_state(struct device *dev,
1546                                    struct pinctrl_state *state)
1547 {
1548         struct dev_pin_info *pins = dev->pins;
1549         int ret;
1550 
1551         if (IS_ERR(state))
1552                 return 0; /* No such state */
1553         ret = pinctrl_select_state(pins->p, state);
1554         if (ret)
1555                 dev_err(dev, "failed to activate pinctrl state %s\n",
1556                         state->name);
1557         return ret;
1558 }
1559 
1560 /**
1561  * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1562  * @dev: device to select default state for
1563  */
1564 int pinctrl_pm_select_default_state(struct device *dev)
1565 {
1566         if (!dev->pins)
1567                 return 0;
1568 
1569         return pinctrl_pm_select_state(dev, dev->pins->default_state);
1570 }
1571 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1572 
1573 /**
1574  * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1575  * @dev: device to select sleep state for
1576  */
1577 int pinctrl_pm_select_sleep_state(struct device *dev)
1578 {
1579         if (!dev->pins)
1580                 return 0;
1581 
1582         return pinctrl_pm_select_state(dev, dev->pins->sleep_state);
1583 }
1584 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1585 
1586 /**
1587  * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1588  * @dev: device to select idle state for
1589  */
1590 int pinctrl_pm_select_idle_state(struct device *dev)
1591 {
1592         if (!dev->pins)
1593                 return 0;
1594 
1595         return pinctrl_pm_select_state(dev, dev->pins->idle_state);
1596 }
1597 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1598 #endif
1599 
1600 #ifdef CONFIG_DEBUG_FS
1601 
1602 static int pinctrl_pins_show(struct seq_file *s, void *what)
1603 {
1604         struct pinctrl_dev *pctldev = s->private;
1605         const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1606         unsigned i, pin;
1607 
1608         seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1609 
1610         mutex_lock(&pctldev->mutex);
1611 
1612         /* The pin number can be retrived from the pin controller descriptor */
1613         for (i = 0; i < pctldev->desc->npins; i++) {
1614                 struct pin_desc *desc;
1615 
1616                 pin = pctldev->desc->pins[i].number;
1617                 desc = pin_desc_get(pctldev, pin);
1618                 /* Pin space may be sparse */
1619                 if (!desc)
1620                         continue;
1621 
1622                 seq_printf(s, "pin %d (%s) ", pin, desc->name);
1623 
1624                 /* Driver-specific info per pin */
1625                 if (ops->pin_dbg_show)
1626                         ops->pin_dbg_show(pctldev, s, pin);
1627 
1628                 seq_puts(s, "\n");
1629         }
1630 
1631         mutex_unlock(&pctldev->mutex);
1632 
1633         return 0;
1634 }
1635 DEFINE_SHOW_ATTRIBUTE(pinctrl_pins);
1636 
1637 static int pinctrl_groups_show(struct seq_file *s, void *what)
1638 {
1639         struct pinctrl_dev *pctldev = s->private;
1640         const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1641         unsigned ngroups, selector = 0;
1642 
1643         mutex_lock(&pctldev->mutex);
1644 
1645         ngroups = ops->get_groups_count(pctldev);
1646 
1647         seq_puts(s, "registered pin groups:\n");
1648         while (selector < ngroups) {
1649                 const unsigned *pins = NULL;
1650                 unsigned num_pins = 0;
1651                 const char *gname = ops->get_group_name(pctldev, selector);
1652                 const char *pname;
1653                 int ret = 0;
1654                 int i;
1655 
1656                 if (ops->get_group_pins)
1657                         ret = ops->get_group_pins(pctldev, selector,
1658                                                   &pins, &num_pins);
1659                 if (ret)
1660                         seq_printf(s, "%s [ERROR GETTING PINS]\n",
1661                                    gname);
1662                 else {
1663                         seq_printf(s, "group: %s\n", gname);
1664                         for (i = 0; i < num_pins; i++) {
1665                                 pname = pin_get_name(pctldev, pins[i]);
1666                                 if (WARN_ON(!pname)) {
1667                                         mutex_unlock(&pctldev->mutex);
1668                                         return -EINVAL;
1669                                 }
1670                                 seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1671                         }
1672                         seq_puts(s, "\n");
1673                 }
1674                 selector++;
1675         }
1676 
1677         mutex_unlock(&pctldev->mutex);
1678 
1679         return 0;
1680 }
1681 DEFINE_SHOW_ATTRIBUTE(pinctrl_groups);
1682 
1683 static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1684 {
1685         struct pinctrl_dev *pctldev = s->private;
1686         struct pinctrl_gpio_range *range;
1687 
1688         seq_puts(s, "GPIO ranges handled:\n");
1689 
1690         mutex_lock(&pctldev->mutex);
1691 
1692         /* Loop over the ranges */
1693         list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1694                 if (range->pins) {
1695                         int a;
1696                         seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1697                                 range->id, range->name,
1698                                 range->base, (range->base + range->npins - 1));
1699                         for (a = 0; a < range->npins - 1; a++)
1700                                 seq_printf(s, "%u, ", range->pins[a]);
1701                         seq_printf(s, "%u}\n", range->pins[a]);
1702                 }
1703                 else
1704                         seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1705                                 range->id, range->name,
1706                                 range->base, (range->base + range->npins - 1),
1707                                 range->pin_base,
1708                                 (range->pin_base + range->npins - 1));
1709         }
1710 
1711         mutex_unlock(&pctldev->mutex);
1712 
1713         return 0;
1714 }
1715 DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges);
1716 
1717 static int pinctrl_devices_show(struct seq_file *s, void *what)
1718 {
1719         struct pinctrl_dev *pctldev;
1720 
1721         seq_puts(s, "name [pinmux] [pinconf]\n");
1722 
1723         mutex_lock(&pinctrldev_list_mutex);
1724 
1725         list_for_each_entry(pctldev, &pinctrldev_list, node) {
1726                 seq_printf(s, "%s ", pctldev->desc->name);
1727                 if (pctldev->desc->pmxops)
1728                         seq_puts(s, "yes ");
1729                 else
1730                         seq_puts(s, "no ");
1731                 if (pctldev->desc->confops)
1732                         seq_puts(s, "yes");
1733                 else
1734                         seq_puts(s, "no");
1735                 seq_puts(s, "\n");
1736         }
1737 
1738         mutex_unlock(&pinctrldev_list_mutex);
1739 
1740         return 0;
1741 }
1742 DEFINE_SHOW_ATTRIBUTE(pinctrl_devices);
1743 
1744 static inline const char *map_type(enum pinctrl_map_type type)
1745 {
1746         static const char * const names[] = {
1747                 "INVALID",
1748                 "DUMMY_STATE",
1749                 "MUX_GROUP",
1750                 "CONFIGS_PIN",
1751                 "CONFIGS_GROUP",
1752         };
1753 
1754         if (type >= ARRAY_SIZE(names))
1755                 return "UNKNOWN";
1756 
1757         return names[type];
1758 }
1759 
1760 static int pinctrl_maps_show(struct seq_file *s, void *what)
1761 {
1762         struct pinctrl_maps *maps_node;
1763         int i;
1764         const struct pinctrl_map *map;
1765 
1766         seq_puts(s, "Pinctrl maps:\n");
1767 
1768         mutex_lock(&pinctrl_maps_mutex);
1769         for_each_maps(maps_node, i, map) {
1770                 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1771                            map->dev_name, map->name, map_type(map->type),
1772                            map->type);
1773 
1774                 if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1775                         seq_printf(s, "controlling device %s\n",
1776                                    map->ctrl_dev_name);
1777 
1778                 switch (map->type) {
1779                 case PIN_MAP_TYPE_MUX_GROUP:
1780                         pinmux_show_map(s, map);
1781                         break;
1782                 case PIN_MAP_TYPE_CONFIGS_PIN:
1783                 case PIN_MAP_TYPE_CONFIGS_GROUP:
1784                         pinconf_show_map(s, map);
1785                         break;
1786                 default:
1787                         break;
1788                 }
1789 
1790                 seq_putc(s, '\n');
1791         }
1792         mutex_unlock(&pinctrl_maps_mutex);
1793 
1794         return 0;
1795 }
1796 DEFINE_SHOW_ATTRIBUTE(pinctrl_maps);
1797 
1798 static int pinctrl_show(struct seq_file *s, void *what)
1799 {
1800         struct pinctrl *p;
1801         struct pinctrl_state *state;
1802         struct pinctrl_setting *setting;
1803 
1804         seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1805 
1806         mutex_lock(&pinctrl_list_mutex);
1807 
1808         list_for_each_entry(p, &pinctrl_list, node) {
1809                 seq_printf(s, "device: %s current state: %s\n",
1810                            dev_name(p->dev),
1811                            p->state ? p->state->name : "none");
1812 
1813                 list_for_each_entry(state, &p->states, node) {
1814                         seq_printf(s, "  state: %s\n", state->name);
1815 
1816                         list_for_each_entry(setting, &state->settings, node) {
1817                                 struct pinctrl_dev *pctldev = setting->pctldev;
1818 
1819                                 seq_printf(s, "    type: %s controller %s ",
1820                                            map_type(setting->type),
1821                                            pinctrl_dev_get_name(pctldev));
1822 
1823                                 switch (setting->type) {
1824                                 case PIN_MAP_TYPE_MUX_GROUP:
1825                                         pinmux_show_setting(s, setting);
1826                                         break;
1827                                 case PIN_MAP_TYPE_CONFIGS_PIN:
1828                                 case PIN_MAP_TYPE_CONFIGS_GROUP:
1829                                         pinconf_show_setting(s, setting);
1830                                         break;
1831                                 default:
1832                                         break;
1833                                 }
1834                         }
1835                 }
1836         }
1837 
1838         mutex_unlock(&pinctrl_list_mutex);
1839 
1840         return 0;
1841 }
1842 DEFINE_SHOW_ATTRIBUTE(pinctrl);
1843 
1844 static struct dentry *debugfs_root;
1845 
1846 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1847 {
1848         struct dentry *device_root;
1849         const char *debugfs_name;
1850 
1851         if (pctldev->desc->name &&
1852                         strcmp(dev_name(pctldev->dev), pctldev->desc->name)) {
1853                 debugfs_name = devm_kasprintf(pctldev->dev, GFP_KERNEL,
1854                                 "%s-%s", dev_name(pctldev->dev),
1855                                 pctldev->desc->name);
1856                 if (!debugfs_name) {
1857                         pr_warn("failed to determine debugfs dir name for %s\n",
1858                                 dev_name(pctldev->dev));
1859                         return;
1860                 }
1861         } else {
1862                 debugfs_name = dev_name(pctldev->dev);
1863         }
1864 
1865         device_root = debugfs_create_dir(debugfs_name, debugfs_root);
1866         pctldev->device_root = device_root;
1867 
1868         if (IS_ERR(device_root) || !device_root) {
1869                 pr_warn("failed to create debugfs directory for %s\n",
1870                         dev_name(pctldev->dev));
1871                 return;
1872         }
1873         debugfs_create_file("pins", S_IFREG | S_IRUGO,
1874                             device_root, pctldev, &pinctrl_pins_fops);
1875         debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1876                             device_root, pctldev, &pinctrl_groups_fops);
1877         debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1878                             device_root, pctldev, &pinctrl_gpioranges_fops);
1879         if (pctldev->desc->pmxops)
1880                 pinmux_init_device_debugfs(device_root, pctldev);
1881         if (pctldev->desc->confops)
1882                 pinconf_init_device_debugfs(device_root, pctldev);
1883 }
1884 
1885 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1886 {
1887         debugfs_remove_recursive(pctldev->device_root);
1888 }
1889 
1890 static void pinctrl_init_debugfs(void)
1891 {
1892         debugfs_root = debugfs_create_dir("pinctrl", NULL);
1893         if (IS_ERR(debugfs_root) || !debugfs_root) {
1894                 pr_warn("failed to create debugfs directory\n");
1895                 debugfs_root = NULL;
1896                 return;
1897         }
1898 
1899         debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1900                             debugfs_root, NULL, &pinctrl_devices_fops);
1901         debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1902                             debugfs_root, NULL, &pinctrl_maps_fops);
1903         debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1904                             debugfs_root, NULL, &pinctrl_fops);
1905 }
1906 
1907 #else /* CONFIG_DEBUG_FS */
1908 
1909 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1910 {
1911 }
1912 
1913 static void pinctrl_init_debugfs(void)
1914 {
1915 }
1916 
1917 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1918 {
1919 }
1920 
1921 #endif
1922 
1923 static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1924 {
1925         const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1926 
1927         if (!ops ||
1928             !ops->get_groups_count ||
1929             !ops->get_group_name)
1930                 return -EINVAL;
1931 
1932         return 0;
1933 }
1934 
1935 /**
1936  * pinctrl_init_controller() - init a pin controller device
1937  * @pctldesc: descriptor for this pin controller
1938  * @dev: parent device for this pin controller
1939  * @driver_data: private pin controller data for this pin controller
1940  */
1941 static struct pinctrl_dev *
1942 pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev,
1943                         void *driver_data)
1944 {
1945         struct pinctrl_dev *pctldev;
1946         int ret;
1947 
1948         if (!pctldesc)
1949                 return ERR_PTR(-EINVAL);
1950         if (!pctldesc->name)
1951                 return ERR_PTR(-EINVAL);
1952 
1953         pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1954         if (!pctldev)
1955                 return ERR_PTR(-ENOMEM);
1956 
1957         /* Initialize pin control device struct */
1958         pctldev->owner = pctldesc->owner;
1959         pctldev->desc = pctldesc;
1960         pctldev->driver_data = driver_data;
1961         INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1962 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
1963         INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL);
1964 #endif
1965 #ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS
1966         INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL);
1967 #endif
1968         INIT_LIST_HEAD(&pctldev->gpio_ranges);
1969         INIT_LIST_HEAD(&pctldev->node);
1970         pctldev->dev = dev;
1971         mutex_init(&pctldev->mutex);
1972 
1973         /* check core ops for sanity */
1974         ret = pinctrl_check_ops(pctldev);
1975         if (ret) {
1976                 dev_err(dev, "pinctrl ops lacks necessary functions\n");
1977                 goto out_err;
1978         }
1979 
1980         /* If we're implementing pinmuxing, check the ops for sanity */
1981         if (pctldesc->pmxops) {
1982                 ret = pinmux_check_ops(pctldev);
1983                 if (ret)
1984                         goto out_err;
1985         }
1986 
1987         /* If we're implementing pinconfig, check the ops for sanity */
1988         if (pctldesc->confops) {
1989                 ret = pinconf_check_ops(pctldev);
1990                 if (ret)
1991                         goto out_err;
1992         }
1993 
1994         /* Register all the pins */
1995         dev_dbg(dev, "try to register %d pins ...\n",  pctldesc->npins);
1996         ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
1997         if (ret) {
1998                 dev_err(dev, "error during pin registration\n");
1999                 pinctrl_free_pindescs(pctldev, pctldesc->pins,
2000                                       pctldesc->npins);
2001                 goto out_err;
2002         }
2003 
2004         return pctldev;
2005 
2006 out_err:
2007         mutex_destroy(&pctldev->mutex);
2008         kfree(pctldev);
2009         return ERR_PTR(ret);
2010 }
2011 
2012 static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev)
2013 {
2014         pctldev->p = create_pinctrl(pctldev->dev, pctldev);
2015         if (PTR_ERR(pctldev->p) == -ENODEV) {
2016                 dev_dbg(pctldev->dev, "no hogs found\n");
2017 
2018                 return 0;
2019         }
2020 
2021         if (IS_ERR(pctldev->p)) {
2022                 dev_err(pctldev->dev, "error claiming hogs: %li\n",
2023                         PTR_ERR(pctldev->p));
2024 
2025                 return PTR_ERR(pctldev->p);
2026         }
2027 
2028         pctldev->hog_default =
2029                 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
2030         if (IS_ERR(pctldev->hog_default)) {
2031                 dev_dbg(pctldev->dev,
2032                         "failed to lookup the default state\n");
2033         } else {
2034                 if (pinctrl_select_state(pctldev->p,
2035                                          pctldev->hog_default))
2036                         dev_err(pctldev->dev,
2037                                 "failed to select default state\n");
2038         }
2039 
2040         pctldev->hog_sleep =
2041                 pinctrl_lookup_state(pctldev->p,
2042                                      PINCTRL_STATE_SLEEP);
2043         if (IS_ERR(pctldev->hog_sleep))
2044                 dev_dbg(pctldev->dev,
2045                         "failed to lookup the sleep state\n");
2046 
2047         return 0;
2048 }
2049 
2050 int pinctrl_enable(struct pinctrl_dev *pctldev)
2051 {
2052         int error;
2053 
2054         error = pinctrl_claim_hogs(pctldev);
2055         if (error) {
2056                 dev_err(pctldev->dev, "could not claim hogs: %i\n",
2057                         error);
2058                 mutex_destroy(&pctldev->mutex);
2059                 kfree(pctldev);
2060 
2061                 return error;
2062         }
2063 
2064         mutex_lock(&pinctrldev_list_mutex);
2065         list_add_tail(&pctldev->node, &pinctrldev_list);
2066         mutex_unlock(&pinctrldev_list_mutex);
2067 
2068         pinctrl_init_device_debugfs(pctldev);
2069 
2070         return 0;
2071 }
2072 EXPORT_SYMBOL_GPL(pinctrl_enable);
2073 
2074 /**
2075  * pinctrl_register() - register a pin controller device
2076  * @pctldesc: descriptor for this pin controller
2077  * @dev: parent device for this pin controller
2078  * @driver_data: private pin controller data for this pin controller
2079  *
2080  * Note that pinctrl_register() is known to have problems as the pin
2081  * controller driver functions are called before the driver has a
2082  * struct pinctrl_dev handle. To avoid issues later on, please use the
2083  * new pinctrl_register_and_init() below instead.
2084  */
2085 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
2086                                     struct device *dev, void *driver_data)
2087 {
2088         struct pinctrl_dev *pctldev;
2089         int error;
2090 
2091         pctldev = pinctrl_init_controller(pctldesc, dev, driver_data);
2092         if (IS_ERR(pctldev))
2093                 return pctldev;
2094 
2095         error = pinctrl_enable(pctldev);
2096         if (error)
2097                 return ERR_PTR(error);
2098 
2099         return pctldev;
2100 
2101 }
2102 EXPORT_SYMBOL_GPL(pinctrl_register);
2103 
2104 /**
2105  * pinctrl_register_and_init() - register and init pin controller device
2106  * @pctldesc: descriptor for this pin controller
2107  * @dev: parent device for this pin controller
2108  * @driver_data: private pin controller data for this pin controller
2109  * @pctldev: pin controller device
2110  *
2111  * Note that pinctrl_enable() still needs to be manually called after
2112  * this once the driver is ready.
2113  */
2114 int pinctrl_register_and_init(struct pinctrl_desc *pctldesc,
2115                               struct device *dev, void *driver_data,
2116                               struct pinctrl_dev **pctldev)
2117 {
2118         struct pinctrl_dev *p;
2119 
2120         p = pinctrl_init_controller(pctldesc, dev, driver_data);
2121         if (IS_ERR(p))
2122                 return PTR_ERR(p);
2123 
2124         /*
2125          * We have pinctrl_start() call functions in the pin controller
2126          * driver with create_pinctrl() for at least dt_node_to_map(). So
2127          * let's make sure pctldev is properly initialized for the
2128          * pin controller driver before we do anything.
2129          */
2130         *pctldev = p;
2131 
2132         return 0;
2133 }
2134 EXPORT_SYMBOL_GPL(pinctrl_register_and_init);
2135 
2136 /**
2137  * pinctrl_unregister() - unregister pinmux
2138  * @pctldev: pin controller to unregister
2139  *
2140  * Called by pinmux drivers to unregister a pinmux.
2141  */
2142 void pinctrl_unregister(struct pinctrl_dev *pctldev)
2143 {
2144         struct pinctrl_gpio_range *range, *n;
2145 
2146         if (!pctldev)
2147                 return;
2148 
2149         mutex_lock(&pctldev->mutex);
2150         pinctrl_remove_device_debugfs(pctldev);
2151         mutex_unlock(&pctldev->mutex);
2152 
2153         if (!IS_ERR_OR_NULL(pctldev->p))
2154                 pinctrl_put(pctldev->p);
2155 
2156         mutex_lock(&pinctrldev_list_mutex);
2157         mutex_lock(&pctldev->mutex);
2158         /* TODO: check that no pinmuxes are still active? */
2159         list_del(&pctldev->node);
2160         pinmux_generic_free_functions(pctldev);
2161         pinctrl_generic_free_groups(pctldev);
2162         /* Destroy descriptor tree */
2163         pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2164                               pctldev->desc->npins);
2165         /* remove gpio ranges map */
2166         list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
2167                 list_del(&range->node);
2168 
2169         mutex_unlock(&pctldev->mutex);
2170         mutex_destroy(&pctldev->mutex);
2171         kfree(pctldev);
2172         mutex_unlock(&pinctrldev_list_mutex);
2173 }
2174 EXPORT_SYMBOL_GPL(pinctrl_unregister);
2175 
2176 static void devm_pinctrl_dev_release(struct device *dev, void *res)
2177 {
2178         struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
2179 
2180         pinctrl_unregister(pctldev);
2181 }
2182 
2183 static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
2184 {
2185         struct pctldev **r = res;
2186 
2187         if (WARN_ON(!r || !*r))
2188                 return 0;
2189 
2190         return *r == data;
2191 }
2192 
2193 /**
2194  * devm_pinctrl_register() - Resource managed version of pinctrl_register().
2195  * @dev: parent device for this pin controller
2196  * @pctldesc: descriptor for this pin controller
2197  * @driver_data: private pin controller data for this pin controller
2198  *
2199  * Returns an error pointer if pincontrol register failed. Otherwise
2200  * it returns valid pinctrl handle.
2201  *
2202  * The pinctrl device will be automatically released when the device is unbound.
2203  */
2204 struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
2205                                           struct pinctrl_desc *pctldesc,
2206                                           void *driver_data)
2207 {
2208         struct pinctrl_dev **ptr, *pctldev;
2209 
2210         ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2211         if (!ptr)
2212                 return ERR_PTR(-ENOMEM);
2213 
2214         pctldev = pinctrl_register(pctldesc, dev, driver_data);
2215         if (IS_ERR(pctldev)) {
2216                 devres_free(ptr);
2217                 return pctldev;
2218         }
2219 
2220         *ptr = pctldev;
2221         devres_add(dev, ptr);
2222 
2223         return pctldev;
2224 }
2225 EXPORT_SYMBOL_GPL(devm_pinctrl_register);
2226 
2227 /**
2228  * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init
2229  * @dev: parent device for this pin controller
2230  * @pctldesc: descriptor for this pin controller
2231  * @driver_data: private pin controller data for this pin controller
2232  *
2233  * Returns an error pointer if pincontrol register failed. Otherwise
2234  * it returns valid pinctrl handle.
2235  *
2236  * The pinctrl device will be automatically released when the device is unbound.
2237  */
2238 int devm_pinctrl_register_and_init(struct device *dev,
2239                                    struct pinctrl_desc *pctldesc,
2240                                    void *driver_data,
2241                                    struct pinctrl_dev **pctldev)
2242 {
2243         struct pinctrl_dev **ptr;
2244         int error;
2245 
2246         ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2247         if (!ptr)
2248                 return -ENOMEM;
2249 
2250         error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev);
2251         if (error) {
2252                 devres_free(ptr);
2253                 return error;
2254         }
2255 
2256         *ptr = *pctldev;
2257         devres_add(dev, ptr);
2258 
2259         return 0;
2260 }
2261 EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init);
2262 
2263 /**
2264  * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
2265  * @dev: device for which which resource was allocated
2266  * @pctldev: the pinctrl device to unregister.
2267  */
2268 void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
2269 {
2270         WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
2271                                devm_pinctrl_dev_match, pctldev));
2272 }
2273 EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
2274 
2275 static int __init pinctrl_init(void)
2276 {
2277         pr_info("initialized pinctrl subsystem\n");
2278         pinctrl_init_debugfs();
2279         return 0;
2280 }
2281 
2282 /* init early since many drivers really need to initialized pinmux early */
2283 core_initcall(pinctrl_init);

/* [<][>][^][v][top][bottom][index][help] */