root/drivers/regulator/core.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. rdev_get_name
  2. have_full_constraints
  3. regulator_ops_is_valid
  4. regulator_lock_nested
  5. regulator_lock
  6. regulator_unlock
  7. regulator_supply_is_couple
  8. regulator_unlock_recursive
  9. regulator_lock_recursive
  10. regulator_unlock_dependent
  11. regulator_lock_dependent
  12. of_get_child_regulator
  13. of_get_regulator
  14. regulator_check_voltage
  15. regulator_check_states
  16. regulator_check_consumers
  17. regulator_check_current_limit
  18. regulator_mode_constrain
  19. regulator_get_suspend_state
  20. regulator_uV_show
  21. regulator_uA_show
  22. name_show
  23. regulator_opmode_to_str
  24. regulator_print_opmode
  25. regulator_opmode_show
  26. regulator_print_state
  27. regulator_state_show
  28. regulator_status_show
  29. regulator_min_uA_show
  30. regulator_max_uA_show
  31. regulator_min_uV_show
  32. regulator_max_uV_show
  33. regulator_total_uA_show
  34. num_users_show
  35. type_show
  36. regulator_suspend_mem_uV_show
  37. regulator_suspend_disk_uV_show
  38. regulator_suspend_standby_uV_show
  39. regulator_suspend_mem_mode_show
  40. regulator_suspend_disk_mode_show
  41. regulator_suspend_standby_mode_show
  42. regulator_suspend_mem_state_show
  43. regulator_suspend_disk_state_show
  44. regulator_suspend_standby_state_show
  45. regulator_bypass_show
  46. drms_uA_update
  47. suspend_set_state
  48. print_constraints
  49. machine_constraints_voltage
  50. machine_constraints_current
  51. set_machine_constraints
  52. set_supply
  53. set_consumer_device_supply
  54. unset_regulator_supplies
  55. constraint_flags_read_file
  56. create_regulator
  57. _regulator_get_enable_time
  58. regulator_find_supply_alias
  59. regulator_supply_alias
  60. regulator_match
  61. regulator_lookup_by_name
  62. regulator_dev_lookup
  63. regulator_resolve_supply
  64. _regulator_get
  65. regulator_get
  66. regulator_get_exclusive
  67. regulator_get_optional
  68. _regulator_put
  69. regulator_put
  70. regulator_register_supply_alias
  71. regulator_unregister_supply_alias
  72. regulator_bulk_register_supply_alias
  73. regulator_bulk_unregister_supply_alias
  74. regulator_ena_gpio_request
  75. regulator_ena_gpio_free
  76. regulator_ena_gpio_ctrl
  77. _regulator_enable_delay
  78. _regulator_do_enable
  79. _regulator_handle_consumer_enable
  80. _regulator_handle_consumer_disable
  81. _regulator_enable
  82. regulator_enable
  83. _regulator_do_disable
  84. _regulator_disable
  85. regulator_disable
  86. _regulator_force_disable
  87. regulator_force_disable
  88. regulator_disable_work
  89. regulator_disable_deferred
  90. _regulator_is_enabled
  91. _regulator_list_voltage
  92. regulator_is_enabled
  93. regulator_count_voltages
  94. regulator_list_voltage
  95. regulator_get_regmap
  96. regulator_get_hardware_vsel_register
  97. regulator_list_hardware_vsel
  98. regulator_get_linear_step
  99. regulator_is_supported_voltage
  100. regulator_map_voltage
  101. _regulator_call_set_voltage
  102. _regulator_call_set_voltage_sel
  103. _regulator_set_voltage_sel_step
  104. _regulator_set_voltage_time
  105. _regulator_do_set_voltage
  106. _regulator_do_set_suspend_voltage
  107. regulator_set_voltage_unlocked
  108. regulator_set_voltage_rdev
  109. regulator_limit_voltage_step
  110. regulator_get_optimal_voltage
  111. regulator_balance_voltage
  112. regulator_set_voltage
  113. regulator_suspend_toggle
  114. regulator_suspend_enable
  115. regulator_suspend_disable
  116. _regulator_set_suspend_voltage
  117. regulator_set_suspend_voltage
  118. regulator_set_voltage_time
  119. regulator_set_voltage_time_sel
  120. regulator_sync_voltage
  121. regulator_get_voltage_rdev
  122. regulator_get_voltage
  123. regulator_set_current_limit
  124. _regulator_get_current_limit_unlocked
  125. _regulator_get_current_limit
  126. regulator_get_current_limit
  127. regulator_set_mode
  128. _regulator_get_mode_unlocked
  129. _regulator_get_mode
  130. regulator_get_mode
  131. _regulator_get_error_flags
  132. regulator_get_error_flags
  133. regulator_set_load
  134. regulator_allow_bypass
  135. regulator_register_notifier
  136. regulator_unregister_notifier
  137. _notifier_call_chain
  138. regulator_bulk_get
  139. regulator_bulk_enable_async
  140. regulator_bulk_enable
  141. regulator_bulk_disable
  142. regulator_bulk_force_disable
  143. regulator_bulk_free
  144. regulator_notifier_call_chain
  145. regulator_mode_to_status
  146. regulator_attr_is_visible
  147. regulator_dev_release
  148. rdev_init_debugfs
  149. regulator_register_resolve_supply
  150. regulator_coupler_register
  151. regulator_find_coupler
  152. regulator_resolve_coupling
  153. regulator_remove_coupling
  154. regulator_init_coupling
  155. generic_coupler_attach
  156. regulator_register
  157. regulator_unregister
  158. regulator_suspend
  159. regulator_resume
  160. regulator_has_full_constraints
  161. rdev_get_drvdata
  162. regulator_get_drvdata
  163. regulator_set_drvdata
  164. rdev_get_id
  165. rdev_get_dev
  166. rdev_get_regmap
  167. regulator_get_init_drvdata
  168. supply_map_show
  169. regulator_summary_show_children
  170. regulator_summary_show_subtree
  171. regulator_summary_lock_one
  172. regulator_summary_unlock_one
  173. regulator_summary_lock_all
  174. regulator_summary_lock
  175. regulator_summary_unlock
  176. regulator_summary_show_roots
  177. regulator_summary_show
  178. regulator_init
  179. regulator_late_cleanup
  180. regulator_init_complete_work_function
  181. regulator_init_complete

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 //
   3 // core.c  --  Voltage/Current Regulator framework.
   4 //
   5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
   6 // Copyright 2008 SlimLogic Ltd.
   7 //
   8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
   9 
  10 #include <linux/kernel.h>
  11 #include <linux/init.h>
  12 #include <linux/debugfs.h>
  13 #include <linux/device.h>
  14 #include <linux/slab.h>
  15 #include <linux/async.h>
  16 #include <linux/err.h>
  17 #include <linux/mutex.h>
  18 #include <linux/suspend.h>
  19 #include <linux/delay.h>
  20 #include <linux/gpio/consumer.h>
  21 #include <linux/of.h>
  22 #include <linux/regmap.h>
  23 #include <linux/regulator/of_regulator.h>
  24 #include <linux/regulator/consumer.h>
  25 #include <linux/regulator/coupler.h>
  26 #include <linux/regulator/driver.h>
  27 #include <linux/regulator/machine.h>
  28 #include <linux/module.h>
  29 
  30 #define CREATE_TRACE_POINTS
  31 #include <trace/events/regulator.h>
  32 
  33 #include "dummy.h"
  34 #include "internal.h"
  35 
  36 #define rdev_crit(rdev, fmt, ...)                                       \
  37         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  38 #define rdev_err(rdev, fmt, ...)                                        \
  39         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  40 #define rdev_warn(rdev, fmt, ...)                                       \
  41         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  42 #define rdev_info(rdev, fmt, ...)                                       \
  43         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  44 #define rdev_dbg(rdev, fmt, ...)                                        \
  45         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  46 
  47 static DEFINE_WW_CLASS(regulator_ww_class);
  48 static DEFINE_MUTEX(regulator_nesting_mutex);
  49 static DEFINE_MUTEX(regulator_list_mutex);
  50 static LIST_HEAD(regulator_map_list);
  51 static LIST_HEAD(regulator_ena_gpio_list);
  52 static LIST_HEAD(regulator_supply_alias_list);
  53 static LIST_HEAD(regulator_coupler_list);
  54 static bool has_full_constraints;
  55 
  56 static struct dentry *debugfs_root;
  57 
  58 /*
  59  * struct regulator_map
  60  *
  61  * Used to provide symbolic supply names to devices.
  62  */
  63 struct regulator_map {
  64         struct list_head list;
  65         const char *dev_name;   /* The dev_name() for the consumer */
  66         const char *supply;
  67         struct regulator_dev *regulator;
  68 };
  69 
  70 /*
  71  * struct regulator_enable_gpio
  72  *
  73  * Management for shared enable GPIO pin
  74  */
  75 struct regulator_enable_gpio {
  76         struct list_head list;
  77         struct gpio_desc *gpiod;
  78         u32 enable_count;       /* a number of enabled shared GPIO */
  79         u32 request_count;      /* a number of requested shared GPIO */
  80 };
  81 
  82 /*
  83  * struct regulator_supply_alias
  84  *
  85  * Used to map lookups for a supply onto an alternative device.
  86  */
  87 struct regulator_supply_alias {
  88         struct list_head list;
  89         struct device *src_dev;
  90         const char *src_supply;
  91         struct device *alias_dev;
  92         const char *alias_supply;
  93 };
  94 
  95 static int _regulator_is_enabled(struct regulator_dev *rdev);
  96 static int _regulator_disable(struct regulator *regulator);
  97 static int _regulator_get_current_limit(struct regulator_dev *rdev);
  98 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
  99 static int _notifier_call_chain(struct regulator_dev *rdev,
 100                                   unsigned long event, void *data);
 101 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
 102                                      int min_uV, int max_uV);
 103 static int regulator_balance_voltage(struct regulator_dev *rdev,
 104                                      suspend_state_t state);
 105 static struct regulator *create_regulator(struct regulator_dev *rdev,
 106                                           struct device *dev,
 107                                           const char *supply_name);
 108 static void _regulator_put(struct regulator *regulator);
 109 
 110 const char *rdev_get_name(struct regulator_dev *rdev)
 111 {
 112         if (rdev->constraints && rdev->constraints->name)
 113                 return rdev->constraints->name;
 114         else if (rdev->desc->name)
 115                 return rdev->desc->name;
 116         else
 117                 return "";
 118 }
 119 
 120 static bool have_full_constraints(void)
 121 {
 122         return has_full_constraints || of_have_populated_dt();
 123 }
 124 
 125 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
 126 {
 127         if (!rdev->constraints) {
 128                 rdev_err(rdev, "no constraints\n");
 129                 return false;
 130         }
 131 
 132         if (rdev->constraints->valid_ops_mask & ops)
 133                 return true;
 134 
 135         return false;
 136 }
 137 
 138 /**
 139  * regulator_lock_nested - lock a single regulator
 140  * @rdev:               regulator source
 141  * @ww_ctx:             w/w mutex acquire context
 142  *
 143  * This function can be called many times by one task on
 144  * a single regulator and its mutex will be locked only
 145  * once. If a task, which is calling this function is other
 146  * than the one, which initially locked the mutex, it will
 147  * wait on mutex.
 148  */
 149 static inline int regulator_lock_nested(struct regulator_dev *rdev,
 150                                         struct ww_acquire_ctx *ww_ctx)
 151 {
 152         bool lock = false;
 153         int ret = 0;
 154 
 155         mutex_lock(&regulator_nesting_mutex);
 156 
 157         if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
 158                 if (rdev->mutex_owner == current)
 159                         rdev->ref_cnt++;
 160                 else
 161                         lock = true;
 162 
 163                 if (lock) {
 164                         mutex_unlock(&regulator_nesting_mutex);
 165                         ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
 166                         mutex_lock(&regulator_nesting_mutex);
 167                 }
 168         } else {
 169                 lock = true;
 170         }
 171 
 172         if (lock && ret != -EDEADLK) {
 173                 rdev->ref_cnt++;
 174                 rdev->mutex_owner = current;
 175         }
 176 
 177         mutex_unlock(&regulator_nesting_mutex);
 178 
 179         return ret;
 180 }
 181 
 182 /**
 183  * regulator_lock - lock a single regulator
 184  * @rdev:               regulator source
 185  *
 186  * This function can be called many times by one task on
 187  * a single regulator and its mutex will be locked only
 188  * once. If a task, which is calling this function is other
 189  * than the one, which initially locked the mutex, it will
 190  * wait on mutex.
 191  */
 192 void regulator_lock(struct regulator_dev *rdev)
 193 {
 194         regulator_lock_nested(rdev, NULL);
 195 }
 196 EXPORT_SYMBOL_GPL(regulator_lock);
 197 
 198 /**
 199  * regulator_unlock - unlock a single regulator
 200  * @rdev:               regulator_source
 201  *
 202  * This function unlocks the mutex when the
 203  * reference counter reaches 0.
 204  */
 205 void regulator_unlock(struct regulator_dev *rdev)
 206 {
 207         mutex_lock(&regulator_nesting_mutex);
 208 
 209         if (--rdev->ref_cnt == 0) {
 210                 rdev->mutex_owner = NULL;
 211                 ww_mutex_unlock(&rdev->mutex);
 212         }
 213 
 214         WARN_ON_ONCE(rdev->ref_cnt < 0);
 215 
 216         mutex_unlock(&regulator_nesting_mutex);
 217 }
 218 EXPORT_SYMBOL_GPL(regulator_unlock);
 219 
 220 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
 221 {
 222         struct regulator_dev *c_rdev;
 223         int i;
 224 
 225         for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
 226                 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
 227 
 228                 if (rdev->supply->rdev == c_rdev)
 229                         return true;
 230         }
 231 
 232         return false;
 233 }
 234 
 235 static void regulator_unlock_recursive(struct regulator_dev *rdev,
 236                                        unsigned int n_coupled)
 237 {
 238         struct regulator_dev *c_rdev;
 239         int i;
 240 
 241         for (i = n_coupled; i > 0; i--) {
 242                 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
 243 
 244                 if (!c_rdev)
 245                         continue;
 246 
 247                 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev))
 248                         regulator_unlock_recursive(
 249                                         c_rdev->supply->rdev,
 250                                         c_rdev->coupling_desc.n_coupled);
 251 
 252                 regulator_unlock(c_rdev);
 253         }
 254 }
 255 
 256 static int regulator_lock_recursive(struct regulator_dev *rdev,
 257                                     struct regulator_dev **new_contended_rdev,
 258                                     struct regulator_dev **old_contended_rdev,
 259                                     struct ww_acquire_ctx *ww_ctx)
 260 {
 261         struct regulator_dev *c_rdev;
 262         int i, err;
 263 
 264         for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
 265                 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
 266 
 267                 if (!c_rdev)
 268                         continue;
 269 
 270                 if (c_rdev != *old_contended_rdev) {
 271                         err = regulator_lock_nested(c_rdev, ww_ctx);
 272                         if (err) {
 273                                 if (err == -EDEADLK) {
 274                                         *new_contended_rdev = c_rdev;
 275                                         goto err_unlock;
 276                                 }
 277 
 278                                 /* shouldn't happen */
 279                                 WARN_ON_ONCE(err != -EALREADY);
 280                         }
 281                 } else {
 282                         *old_contended_rdev = NULL;
 283                 }
 284 
 285                 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
 286                         err = regulator_lock_recursive(c_rdev->supply->rdev,
 287                                                        new_contended_rdev,
 288                                                        old_contended_rdev,
 289                                                        ww_ctx);
 290                         if (err) {
 291                                 regulator_unlock(c_rdev);
 292                                 goto err_unlock;
 293                         }
 294                 }
 295         }
 296 
 297         return 0;
 298 
 299 err_unlock:
 300         regulator_unlock_recursive(rdev, i);
 301 
 302         return err;
 303 }
 304 
 305 /**
 306  * regulator_unlock_dependent - unlock regulator's suppliers and coupled
 307  *                              regulators
 308  * @rdev:                       regulator source
 309  * @ww_ctx:                     w/w mutex acquire context
 310  *
 311  * Unlock all regulators related with rdev by coupling or supplying.
 312  */
 313 static void regulator_unlock_dependent(struct regulator_dev *rdev,
 314                                        struct ww_acquire_ctx *ww_ctx)
 315 {
 316         regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
 317         ww_acquire_fini(ww_ctx);
 318 }
 319 
 320 /**
 321  * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
 322  * @rdev:                       regulator source
 323  * @ww_ctx:                     w/w mutex acquire context
 324  *
 325  * This function as a wrapper on regulator_lock_recursive(), which locks
 326  * all regulators related with rdev by coupling or supplying.
 327  */
 328 static void regulator_lock_dependent(struct regulator_dev *rdev,
 329                                      struct ww_acquire_ctx *ww_ctx)
 330 {
 331         struct regulator_dev *new_contended_rdev = NULL;
 332         struct regulator_dev *old_contended_rdev = NULL;
 333         int err;
 334 
 335         mutex_lock(&regulator_list_mutex);
 336 
 337         ww_acquire_init(ww_ctx, &regulator_ww_class);
 338 
 339         do {
 340                 if (new_contended_rdev) {
 341                         ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
 342                         old_contended_rdev = new_contended_rdev;
 343                         old_contended_rdev->ref_cnt++;
 344                 }
 345 
 346                 err = regulator_lock_recursive(rdev,
 347                                                &new_contended_rdev,
 348                                                &old_contended_rdev,
 349                                                ww_ctx);
 350 
 351                 if (old_contended_rdev)
 352                         regulator_unlock(old_contended_rdev);
 353 
 354         } while (err == -EDEADLK);
 355 
 356         ww_acquire_done(ww_ctx);
 357 
 358         mutex_unlock(&regulator_list_mutex);
 359 }
 360 
 361 /**
 362  * of_get_child_regulator - get a child regulator device node
 363  * based on supply name
 364  * @parent: Parent device node
 365  * @prop_name: Combination regulator supply name and "-supply"
 366  *
 367  * Traverse all child nodes.
 368  * Extract the child regulator device node corresponding to the supply name.
 369  * returns the device node corresponding to the regulator if found, else
 370  * returns NULL.
 371  */
 372 static struct device_node *of_get_child_regulator(struct device_node *parent,
 373                                                   const char *prop_name)
 374 {
 375         struct device_node *regnode = NULL;
 376         struct device_node *child = NULL;
 377 
 378         for_each_child_of_node(parent, child) {
 379                 regnode = of_parse_phandle(child, prop_name, 0);
 380 
 381                 if (!regnode) {
 382                         regnode = of_get_child_regulator(child, prop_name);
 383                         if (regnode)
 384                                 goto err_node_put;
 385                 } else {
 386                         goto err_node_put;
 387                 }
 388         }
 389         return NULL;
 390 
 391 err_node_put:
 392         of_node_put(child);
 393         return regnode;
 394 }
 395 
 396 /**
 397  * of_get_regulator - get a regulator device node based on supply name
 398  * @dev: Device pointer for the consumer (of regulator) device
 399  * @supply: regulator supply name
 400  *
 401  * Extract the regulator device node corresponding to the supply name.
 402  * returns the device node corresponding to the regulator if found, else
 403  * returns NULL.
 404  */
 405 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
 406 {
 407         struct device_node *regnode = NULL;
 408         char prop_name[32]; /* 32 is max size of property name */
 409 
 410         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
 411 
 412         snprintf(prop_name, 32, "%s-supply", supply);
 413         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
 414 
 415         if (!regnode) {
 416                 regnode = of_get_child_regulator(dev->of_node, prop_name);
 417                 if (regnode)
 418                         return regnode;
 419 
 420                 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
 421                                 prop_name, dev->of_node);
 422                 return NULL;
 423         }
 424         return regnode;
 425 }
 426 
 427 /* Platform voltage constraint check */
 428 int regulator_check_voltage(struct regulator_dev *rdev,
 429                             int *min_uV, int *max_uV)
 430 {
 431         BUG_ON(*min_uV > *max_uV);
 432 
 433         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
 434                 rdev_err(rdev, "voltage operation not allowed\n");
 435                 return -EPERM;
 436         }
 437 
 438         if (*max_uV > rdev->constraints->max_uV)
 439                 *max_uV = rdev->constraints->max_uV;
 440         if (*min_uV < rdev->constraints->min_uV)
 441                 *min_uV = rdev->constraints->min_uV;
 442 
 443         if (*min_uV > *max_uV) {
 444                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
 445                          *min_uV, *max_uV);
 446                 return -EINVAL;
 447         }
 448 
 449         return 0;
 450 }
 451 
 452 /* return 0 if the state is valid */
 453 static int regulator_check_states(suspend_state_t state)
 454 {
 455         return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
 456 }
 457 
 458 /* Make sure we select a voltage that suits the needs of all
 459  * regulator consumers
 460  */
 461 int regulator_check_consumers(struct regulator_dev *rdev,
 462                               int *min_uV, int *max_uV,
 463                               suspend_state_t state)
 464 {
 465         struct regulator *regulator;
 466         struct regulator_voltage *voltage;
 467 
 468         list_for_each_entry(regulator, &rdev->consumer_list, list) {
 469                 voltage = &regulator->voltage[state];
 470                 /*
 471                  * Assume consumers that didn't say anything are OK
 472                  * with anything in the constraint range.
 473                  */
 474                 if (!voltage->min_uV && !voltage->max_uV)
 475                         continue;
 476 
 477                 if (*max_uV > voltage->max_uV)
 478                         *max_uV = voltage->max_uV;
 479                 if (*min_uV < voltage->min_uV)
 480                         *min_uV = voltage->min_uV;
 481         }
 482 
 483         if (*min_uV > *max_uV) {
 484                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
 485                         *min_uV, *max_uV);
 486                 return -EINVAL;
 487         }
 488 
 489         return 0;
 490 }
 491 
 492 /* current constraint check */
 493 static int regulator_check_current_limit(struct regulator_dev *rdev,
 494                                         int *min_uA, int *max_uA)
 495 {
 496         BUG_ON(*min_uA > *max_uA);
 497 
 498         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
 499                 rdev_err(rdev, "current operation not allowed\n");
 500                 return -EPERM;
 501         }
 502 
 503         if (*max_uA > rdev->constraints->max_uA)
 504                 *max_uA = rdev->constraints->max_uA;
 505         if (*min_uA < rdev->constraints->min_uA)
 506                 *min_uA = rdev->constraints->min_uA;
 507 
 508         if (*min_uA > *max_uA) {
 509                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
 510                          *min_uA, *max_uA);
 511                 return -EINVAL;
 512         }
 513 
 514         return 0;
 515 }
 516 
 517 /* operating mode constraint check */
 518 static int regulator_mode_constrain(struct regulator_dev *rdev,
 519                                     unsigned int *mode)
 520 {
 521         switch (*mode) {
 522         case REGULATOR_MODE_FAST:
 523         case REGULATOR_MODE_NORMAL:
 524         case REGULATOR_MODE_IDLE:
 525         case REGULATOR_MODE_STANDBY:
 526                 break;
 527         default:
 528                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
 529                 return -EINVAL;
 530         }
 531 
 532         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
 533                 rdev_err(rdev, "mode operation not allowed\n");
 534                 return -EPERM;
 535         }
 536 
 537         /* The modes are bitmasks, the most power hungry modes having
 538          * the lowest values. If the requested mode isn't supported
 539          * try higher modes. */
 540         while (*mode) {
 541                 if (rdev->constraints->valid_modes_mask & *mode)
 542                         return 0;
 543                 *mode /= 2;
 544         }
 545 
 546         return -EINVAL;
 547 }
 548 
 549 static inline struct regulator_state *
 550 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
 551 {
 552         if (rdev->constraints == NULL)
 553                 return NULL;
 554 
 555         switch (state) {
 556         case PM_SUSPEND_STANDBY:
 557                 return &rdev->constraints->state_standby;
 558         case PM_SUSPEND_MEM:
 559                 return &rdev->constraints->state_mem;
 560         case PM_SUSPEND_MAX:
 561                 return &rdev->constraints->state_disk;
 562         default:
 563                 return NULL;
 564         }
 565 }
 566 
 567 static ssize_t regulator_uV_show(struct device *dev,
 568                                 struct device_attribute *attr, char *buf)
 569 {
 570         struct regulator_dev *rdev = dev_get_drvdata(dev);
 571         int uV;
 572 
 573         regulator_lock(rdev);
 574         uV = regulator_get_voltage_rdev(rdev);
 575         regulator_unlock(rdev);
 576 
 577         if (uV < 0)
 578                 return uV;
 579         return sprintf(buf, "%d\n", uV);
 580 }
 581 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
 582 
 583 static ssize_t regulator_uA_show(struct device *dev,
 584                                 struct device_attribute *attr, char *buf)
 585 {
 586         struct regulator_dev *rdev = dev_get_drvdata(dev);
 587 
 588         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 589 }
 590 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
 591 
 592 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 593                          char *buf)
 594 {
 595         struct regulator_dev *rdev = dev_get_drvdata(dev);
 596 
 597         return sprintf(buf, "%s\n", rdev_get_name(rdev));
 598 }
 599 static DEVICE_ATTR_RO(name);
 600 
 601 static const char *regulator_opmode_to_str(int mode)
 602 {
 603         switch (mode) {
 604         case REGULATOR_MODE_FAST:
 605                 return "fast";
 606         case REGULATOR_MODE_NORMAL:
 607                 return "normal";
 608         case REGULATOR_MODE_IDLE:
 609                 return "idle";
 610         case REGULATOR_MODE_STANDBY:
 611                 return "standby";
 612         }
 613         return "unknown";
 614 }
 615 
 616 static ssize_t regulator_print_opmode(char *buf, int mode)
 617 {
 618         return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
 619 }
 620 
 621 static ssize_t regulator_opmode_show(struct device *dev,
 622                                     struct device_attribute *attr, char *buf)
 623 {
 624         struct regulator_dev *rdev = dev_get_drvdata(dev);
 625 
 626         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 627 }
 628 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
 629 
 630 static ssize_t regulator_print_state(char *buf, int state)
 631 {
 632         if (state > 0)
 633                 return sprintf(buf, "enabled\n");
 634         else if (state == 0)
 635                 return sprintf(buf, "disabled\n");
 636         else
 637                 return sprintf(buf, "unknown\n");
 638 }
 639 
 640 static ssize_t regulator_state_show(struct device *dev,
 641                                    struct device_attribute *attr, char *buf)
 642 {
 643         struct regulator_dev *rdev = dev_get_drvdata(dev);
 644         ssize_t ret;
 645 
 646         regulator_lock(rdev);
 647         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 648         regulator_unlock(rdev);
 649 
 650         return ret;
 651 }
 652 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
 653 
 654 static ssize_t regulator_status_show(struct device *dev,
 655                                    struct device_attribute *attr, char *buf)
 656 {
 657         struct regulator_dev *rdev = dev_get_drvdata(dev);
 658         int status;
 659         char *label;
 660 
 661         status = rdev->desc->ops->get_status(rdev);
 662         if (status < 0)
 663                 return status;
 664 
 665         switch (status) {
 666         case REGULATOR_STATUS_OFF:
 667                 label = "off";
 668                 break;
 669         case REGULATOR_STATUS_ON:
 670                 label = "on";
 671                 break;
 672         case REGULATOR_STATUS_ERROR:
 673                 label = "error";
 674                 break;
 675         case REGULATOR_STATUS_FAST:
 676                 label = "fast";
 677                 break;
 678         case REGULATOR_STATUS_NORMAL:
 679                 label = "normal";
 680                 break;
 681         case REGULATOR_STATUS_IDLE:
 682                 label = "idle";
 683                 break;
 684         case REGULATOR_STATUS_STANDBY:
 685                 label = "standby";
 686                 break;
 687         case REGULATOR_STATUS_BYPASS:
 688                 label = "bypass";
 689                 break;
 690         case REGULATOR_STATUS_UNDEFINED:
 691                 label = "undefined";
 692                 break;
 693         default:
 694                 return -ERANGE;
 695         }
 696 
 697         return sprintf(buf, "%s\n", label);
 698 }
 699 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
 700 
 701 static ssize_t regulator_min_uA_show(struct device *dev,
 702                                     struct device_attribute *attr, char *buf)
 703 {
 704         struct regulator_dev *rdev = dev_get_drvdata(dev);
 705 
 706         if (!rdev->constraints)
 707                 return sprintf(buf, "constraint not defined\n");
 708 
 709         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 710 }
 711 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
 712 
 713 static ssize_t regulator_max_uA_show(struct device *dev,
 714                                     struct device_attribute *attr, char *buf)
 715 {
 716         struct regulator_dev *rdev = dev_get_drvdata(dev);
 717 
 718         if (!rdev->constraints)
 719                 return sprintf(buf, "constraint not defined\n");
 720 
 721         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 722 }
 723 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
 724 
 725 static ssize_t regulator_min_uV_show(struct device *dev,
 726                                     struct device_attribute *attr, char *buf)
 727 {
 728         struct regulator_dev *rdev = dev_get_drvdata(dev);
 729 
 730         if (!rdev->constraints)
 731                 return sprintf(buf, "constraint not defined\n");
 732 
 733         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 734 }
 735 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
 736 
 737 static ssize_t regulator_max_uV_show(struct device *dev,
 738                                     struct device_attribute *attr, char *buf)
 739 {
 740         struct regulator_dev *rdev = dev_get_drvdata(dev);
 741 
 742         if (!rdev->constraints)
 743                 return sprintf(buf, "constraint not defined\n");
 744 
 745         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 746 }
 747 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
 748 
 749 static ssize_t regulator_total_uA_show(struct device *dev,
 750                                       struct device_attribute *attr, char *buf)
 751 {
 752         struct regulator_dev *rdev = dev_get_drvdata(dev);
 753         struct regulator *regulator;
 754         int uA = 0;
 755 
 756         regulator_lock(rdev);
 757         list_for_each_entry(regulator, &rdev->consumer_list, list) {
 758                 if (regulator->enable_count)
 759                         uA += regulator->uA_load;
 760         }
 761         regulator_unlock(rdev);
 762         return sprintf(buf, "%d\n", uA);
 763 }
 764 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
 765 
 766 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
 767                               char *buf)
 768 {
 769         struct regulator_dev *rdev = dev_get_drvdata(dev);
 770         return sprintf(buf, "%d\n", rdev->use_count);
 771 }
 772 static DEVICE_ATTR_RO(num_users);
 773 
 774 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 775                          char *buf)
 776 {
 777         struct regulator_dev *rdev = dev_get_drvdata(dev);
 778 
 779         switch (rdev->desc->type) {
 780         case REGULATOR_VOLTAGE:
 781                 return sprintf(buf, "voltage\n");
 782         case REGULATOR_CURRENT:
 783                 return sprintf(buf, "current\n");
 784         }
 785         return sprintf(buf, "unknown\n");
 786 }
 787 static DEVICE_ATTR_RO(type);
 788 
 789 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
 790                                 struct device_attribute *attr, char *buf)
 791 {
 792         struct regulator_dev *rdev = dev_get_drvdata(dev);
 793 
 794         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 795 }
 796 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
 797                 regulator_suspend_mem_uV_show, NULL);
 798 
 799 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
 800                                 struct device_attribute *attr, char *buf)
 801 {
 802         struct regulator_dev *rdev = dev_get_drvdata(dev);
 803 
 804         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 805 }
 806 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
 807                 regulator_suspend_disk_uV_show, NULL);
 808 
 809 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
 810                                 struct device_attribute *attr, char *buf)
 811 {
 812         struct regulator_dev *rdev = dev_get_drvdata(dev);
 813 
 814         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 815 }
 816 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
 817                 regulator_suspend_standby_uV_show, NULL);
 818 
 819 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
 820                                 struct device_attribute *attr, char *buf)
 821 {
 822         struct regulator_dev *rdev = dev_get_drvdata(dev);
 823 
 824         return regulator_print_opmode(buf,
 825                 rdev->constraints->state_mem.mode);
 826 }
 827 static DEVICE_ATTR(suspend_mem_mode, 0444,
 828                 regulator_suspend_mem_mode_show, NULL);
 829 
 830 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
 831                                 struct device_attribute *attr, char *buf)
 832 {
 833         struct regulator_dev *rdev = dev_get_drvdata(dev);
 834 
 835         return regulator_print_opmode(buf,
 836                 rdev->constraints->state_disk.mode);
 837 }
 838 static DEVICE_ATTR(suspend_disk_mode, 0444,
 839                 regulator_suspend_disk_mode_show, NULL);
 840 
 841 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
 842                                 struct device_attribute *attr, char *buf)
 843 {
 844         struct regulator_dev *rdev = dev_get_drvdata(dev);
 845 
 846         return regulator_print_opmode(buf,
 847                 rdev->constraints->state_standby.mode);
 848 }
 849 static DEVICE_ATTR(suspend_standby_mode, 0444,
 850                 regulator_suspend_standby_mode_show, NULL);
 851 
 852 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
 853                                    struct device_attribute *attr, char *buf)
 854 {
 855         struct regulator_dev *rdev = dev_get_drvdata(dev);
 856 
 857         return regulator_print_state(buf,
 858                         rdev->constraints->state_mem.enabled);
 859 }
 860 static DEVICE_ATTR(suspend_mem_state, 0444,
 861                 regulator_suspend_mem_state_show, NULL);
 862 
 863 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
 864                                    struct device_attribute *attr, char *buf)
 865 {
 866         struct regulator_dev *rdev = dev_get_drvdata(dev);
 867 
 868         return regulator_print_state(buf,
 869                         rdev->constraints->state_disk.enabled);
 870 }
 871 static DEVICE_ATTR(suspend_disk_state, 0444,
 872                 regulator_suspend_disk_state_show, NULL);
 873 
 874 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
 875                                    struct device_attribute *attr, char *buf)
 876 {
 877         struct regulator_dev *rdev = dev_get_drvdata(dev);
 878 
 879         return regulator_print_state(buf,
 880                         rdev->constraints->state_standby.enabled);
 881 }
 882 static DEVICE_ATTR(suspend_standby_state, 0444,
 883                 regulator_suspend_standby_state_show, NULL);
 884 
 885 static ssize_t regulator_bypass_show(struct device *dev,
 886                                      struct device_attribute *attr, char *buf)
 887 {
 888         struct regulator_dev *rdev = dev_get_drvdata(dev);
 889         const char *report;
 890         bool bypass;
 891         int ret;
 892 
 893         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
 894 
 895         if (ret != 0)
 896                 report = "unknown";
 897         else if (bypass)
 898                 report = "enabled";
 899         else
 900                 report = "disabled";
 901 
 902         return sprintf(buf, "%s\n", report);
 903 }
 904 static DEVICE_ATTR(bypass, 0444,
 905                    regulator_bypass_show, NULL);
 906 
 907 /* Calculate the new optimum regulator operating mode based on the new total
 908  * consumer load. All locks held by caller */
 909 static int drms_uA_update(struct regulator_dev *rdev)
 910 {
 911         struct regulator *sibling;
 912         int current_uA = 0, output_uV, input_uV, err;
 913         unsigned int mode;
 914 
 915         /*
 916          * first check to see if we can set modes at all, otherwise just
 917          * tell the consumer everything is OK.
 918          */
 919         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
 920                 rdev_dbg(rdev, "DRMS operation not allowed\n");
 921                 return 0;
 922         }
 923 
 924         if (!rdev->desc->ops->get_optimum_mode &&
 925             !rdev->desc->ops->set_load)
 926                 return 0;
 927 
 928         if (!rdev->desc->ops->set_mode &&
 929             !rdev->desc->ops->set_load)
 930                 return -EINVAL;
 931 
 932         /* calc total requested load */
 933         list_for_each_entry(sibling, &rdev->consumer_list, list) {
 934                 if (sibling->enable_count)
 935                         current_uA += sibling->uA_load;
 936         }
 937 
 938         current_uA += rdev->constraints->system_load;
 939 
 940         if (rdev->desc->ops->set_load) {
 941                 /* set the optimum mode for our new total regulator load */
 942                 err = rdev->desc->ops->set_load(rdev, current_uA);
 943                 if (err < 0)
 944                         rdev_err(rdev, "failed to set load %d\n", current_uA);
 945         } else {
 946                 /* get output voltage */
 947                 output_uV = regulator_get_voltage_rdev(rdev);
 948                 if (output_uV <= 0) {
 949                         rdev_err(rdev, "invalid output voltage found\n");
 950                         return -EINVAL;
 951                 }
 952 
 953                 /* get input voltage */
 954                 input_uV = 0;
 955                 if (rdev->supply)
 956                         input_uV = regulator_get_voltage(rdev->supply);
 957                 if (input_uV <= 0)
 958                         input_uV = rdev->constraints->input_uV;
 959                 if (input_uV <= 0) {
 960                         rdev_err(rdev, "invalid input voltage found\n");
 961                         return -EINVAL;
 962                 }
 963 
 964                 /* now get the optimum mode for our new total regulator load */
 965                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
 966                                                          output_uV, current_uA);
 967 
 968                 /* check the new mode is allowed */
 969                 err = regulator_mode_constrain(rdev, &mode);
 970                 if (err < 0) {
 971                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
 972                                  current_uA, input_uV, output_uV);
 973                         return err;
 974                 }
 975 
 976                 err = rdev->desc->ops->set_mode(rdev, mode);
 977                 if (err < 0)
 978                         rdev_err(rdev, "failed to set optimum mode %x\n", mode);
 979         }
 980 
 981         return err;
 982 }
 983 
 984 static int suspend_set_state(struct regulator_dev *rdev,
 985                                     suspend_state_t state)
 986 {
 987         int ret = 0;
 988         struct regulator_state *rstate;
 989 
 990         rstate = regulator_get_suspend_state(rdev, state);
 991         if (rstate == NULL)
 992                 return 0;
 993 
 994         /* If we have no suspend mode configuration don't set anything;
 995          * only warn if the driver implements set_suspend_voltage or
 996          * set_suspend_mode callback.
 997          */
 998         if (rstate->enabled != ENABLE_IN_SUSPEND &&
 999             rstate->enabled != DISABLE_IN_SUSPEND) {
1000                 if (rdev->desc->ops->set_suspend_voltage ||
1001                     rdev->desc->ops->set_suspend_mode)
1002                         rdev_warn(rdev, "No configuration\n");
1003                 return 0;
1004         }
1005 
1006         if (rstate->enabled == ENABLE_IN_SUSPEND &&
1007                 rdev->desc->ops->set_suspend_enable)
1008                 ret = rdev->desc->ops->set_suspend_enable(rdev);
1009         else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1010                 rdev->desc->ops->set_suspend_disable)
1011                 ret = rdev->desc->ops->set_suspend_disable(rdev);
1012         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1013                 ret = 0;
1014 
1015         if (ret < 0) {
1016                 rdev_err(rdev, "failed to enabled/disable\n");
1017                 return ret;
1018         }
1019 
1020         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1021                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1022                 if (ret < 0) {
1023                         rdev_err(rdev, "failed to set voltage\n");
1024                         return ret;
1025                 }
1026         }
1027 
1028         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1029                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1030                 if (ret < 0) {
1031                         rdev_err(rdev, "failed to set mode\n");
1032                         return ret;
1033                 }
1034         }
1035 
1036         return ret;
1037 }
1038 
1039 static void print_constraints(struct regulator_dev *rdev)
1040 {
1041         struct regulation_constraints *constraints = rdev->constraints;
1042         char buf[160] = "";
1043         size_t len = sizeof(buf) - 1;
1044         int count = 0;
1045         int ret;
1046 
1047         if (constraints->min_uV && constraints->max_uV) {
1048                 if (constraints->min_uV == constraints->max_uV)
1049                         count += scnprintf(buf + count, len - count, "%d mV ",
1050                                            constraints->min_uV / 1000);
1051                 else
1052                         count += scnprintf(buf + count, len - count,
1053                                            "%d <--> %d mV ",
1054                                            constraints->min_uV / 1000,
1055                                            constraints->max_uV / 1000);
1056         }
1057 
1058         if (!constraints->min_uV ||
1059             constraints->min_uV != constraints->max_uV) {
1060                 ret = regulator_get_voltage_rdev(rdev);
1061                 if (ret > 0)
1062                         count += scnprintf(buf + count, len - count,
1063                                            "at %d mV ", ret / 1000);
1064         }
1065 
1066         if (constraints->uV_offset)
1067                 count += scnprintf(buf + count, len - count, "%dmV offset ",
1068                                    constraints->uV_offset / 1000);
1069 
1070         if (constraints->min_uA && constraints->max_uA) {
1071                 if (constraints->min_uA == constraints->max_uA)
1072                         count += scnprintf(buf + count, len - count, "%d mA ",
1073                                            constraints->min_uA / 1000);
1074                 else
1075                         count += scnprintf(buf + count, len - count,
1076                                            "%d <--> %d mA ",
1077                                            constraints->min_uA / 1000,
1078                                            constraints->max_uA / 1000);
1079         }
1080 
1081         if (!constraints->min_uA ||
1082             constraints->min_uA != constraints->max_uA) {
1083                 ret = _regulator_get_current_limit(rdev);
1084                 if (ret > 0)
1085                         count += scnprintf(buf + count, len - count,
1086                                            "at %d mA ", ret / 1000);
1087         }
1088 
1089         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1090                 count += scnprintf(buf + count, len - count, "fast ");
1091         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1092                 count += scnprintf(buf + count, len - count, "normal ");
1093         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1094                 count += scnprintf(buf + count, len - count, "idle ");
1095         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1096                 count += scnprintf(buf + count, len - count, "standby");
1097 
1098         if (!count)
1099                 scnprintf(buf, len, "no parameters");
1100 
1101         rdev_dbg(rdev, "%s\n", buf);
1102 
1103         if ((constraints->min_uV != constraints->max_uV) &&
1104             !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1105                 rdev_warn(rdev,
1106                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1107 }
1108 
1109 static int machine_constraints_voltage(struct regulator_dev *rdev,
1110         struct regulation_constraints *constraints)
1111 {
1112         const struct regulator_ops *ops = rdev->desc->ops;
1113         int ret;
1114 
1115         /* do we need to apply the constraint voltage */
1116         if (rdev->constraints->apply_uV &&
1117             rdev->constraints->min_uV && rdev->constraints->max_uV) {
1118                 int target_min, target_max;
1119                 int current_uV = regulator_get_voltage_rdev(rdev);
1120 
1121                 if (current_uV == -ENOTRECOVERABLE) {
1122                         /* This regulator can't be read and must be initialized */
1123                         rdev_info(rdev, "Setting %d-%duV\n",
1124                                   rdev->constraints->min_uV,
1125                                   rdev->constraints->max_uV);
1126                         _regulator_do_set_voltage(rdev,
1127                                                   rdev->constraints->min_uV,
1128                                                   rdev->constraints->max_uV);
1129                         current_uV = regulator_get_voltage_rdev(rdev);
1130                 }
1131 
1132                 if (current_uV < 0) {
1133                         rdev_err(rdev,
1134                                  "failed to get the current voltage(%d)\n",
1135                                  current_uV);
1136                         return current_uV;
1137                 }
1138 
1139                 /*
1140                  * If we're below the minimum voltage move up to the
1141                  * minimum voltage, if we're above the maximum voltage
1142                  * then move down to the maximum.
1143                  */
1144                 target_min = current_uV;
1145                 target_max = current_uV;
1146 
1147                 if (current_uV < rdev->constraints->min_uV) {
1148                         target_min = rdev->constraints->min_uV;
1149                         target_max = rdev->constraints->min_uV;
1150                 }
1151 
1152                 if (current_uV > rdev->constraints->max_uV) {
1153                         target_min = rdev->constraints->max_uV;
1154                         target_max = rdev->constraints->max_uV;
1155                 }
1156 
1157                 if (target_min != current_uV || target_max != current_uV) {
1158                         rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1159                                   current_uV, target_min, target_max);
1160                         ret = _regulator_do_set_voltage(
1161                                 rdev, target_min, target_max);
1162                         if (ret < 0) {
1163                                 rdev_err(rdev,
1164                                         "failed to apply %d-%duV constraint(%d)\n",
1165                                         target_min, target_max, ret);
1166                                 return ret;
1167                         }
1168                 }
1169         }
1170 
1171         /* constrain machine-level voltage specs to fit
1172          * the actual range supported by this regulator.
1173          */
1174         if (ops->list_voltage && rdev->desc->n_voltages) {
1175                 int     count = rdev->desc->n_voltages;
1176                 int     i;
1177                 int     min_uV = INT_MAX;
1178                 int     max_uV = INT_MIN;
1179                 int     cmin = constraints->min_uV;
1180                 int     cmax = constraints->max_uV;
1181 
1182                 /* it's safe to autoconfigure fixed-voltage supplies
1183                    and the constraints are used by list_voltage. */
1184                 if (count == 1 && !cmin) {
1185                         cmin = 1;
1186                         cmax = INT_MAX;
1187                         constraints->min_uV = cmin;
1188                         constraints->max_uV = cmax;
1189                 }
1190 
1191                 /* voltage constraints are optional */
1192                 if ((cmin == 0) && (cmax == 0))
1193                         return 0;
1194 
1195                 /* else require explicit machine-level constraints */
1196                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1197                         rdev_err(rdev, "invalid voltage constraints\n");
1198                         return -EINVAL;
1199                 }
1200 
1201                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1202                 for (i = 0; i < count; i++) {
1203                         int     value;
1204 
1205                         value = ops->list_voltage(rdev, i);
1206                         if (value <= 0)
1207                                 continue;
1208 
1209                         /* maybe adjust [min_uV..max_uV] */
1210                         if (value >= cmin && value < min_uV)
1211                                 min_uV = value;
1212                         if (value <= cmax && value > max_uV)
1213                                 max_uV = value;
1214                 }
1215 
1216                 /* final: [min_uV..max_uV] valid iff constraints valid */
1217                 if (max_uV < min_uV) {
1218                         rdev_err(rdev,
1219                                  "unsupportable voltage constraints %u-%uuV\n",
1220                                  min_uV, max_uV);
1221                         return -EINVAL;
1222                 }
1223 
1224                 /* use regulator's subset of machine constraints */
1225                 if (constraints->min_uV < min_uV) {
1226                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1227                                  constraints->min_uV, min_uV);
1228                         constraints->min_uV = min_uV;
1229                 }
1230                 if (constraints->max_uV > max_uV) {
1231                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1232                                  constraints->max_uV, max_uV);
1233                         constraints->max_uV = max_uV;
1234                 }
1235         }
1236 
1237         return 0;
1238 }
1239 
1240 static int machine_constraints_current(struct regulator_dev *rdev,
1241         struct regulation_constraints *constraints)
1242 {
1243         const struct regulator_ops *ops = rdev->desc->ops;
1244         int ret;
1245 
1246         if (!constraints->min_uA && !constraints->max_uA)
1247                 return 0;
1248 
1249         if (constraints->min_uA > constraints->max_uA) {
1250                 rdev_err(rdev, "Invalid current constraints\n");
1251                 return -EINVAL;
1252         }
1253 
1254         if (!ops->set_current_limit || !ops->get_current_limit) {
1255                 rdev_warn(rdev, "Operation of current configuration missing\n");
1256                 return 0;
1257         }
1258 
1259         /* Set regulator current in constraints range */
1260         ret = ops->set_current_limit(rdev, constraints->min_uA,
1261                         constraints->max_uA);
1262         if (ret < 0) {
1263                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1264                 return ret;
1265         }
1266 
1267         return 0;
1268 }
1269 
1270 static int _regulator_do_enable(struct regulator_dev *rdev);
1271 
1272 /**
1273  * set_machine_constraints - sets regulator constraints
1274  * @rdev: regulator source
1275  * @constraints: constraints to apply
1276  *
1277  * Allows platform initialisation code to define and constrain
1278  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1279  * Constraints *must* be set by platform code in order for some
1280  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1281  * set_mode.
1282  */
1283 static int set_machine_constraints(struct regulator_dev *rdev,
1284         const struct regulation_constraints *constraints)
1285 {
1286         int ret = 0;
1287         const struct regulator_ops *ops = rdev->desc->ops;
1288 
1289         if (constraints)
1290                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1291                                             GFP_KERNEL);
1292         else
1293                 rdev->constraints = kzalloc(sizeof(*constraints),
1294                                             GFP_KERNEL);
1295         if (!rdev->constraints)
1296                 return -ENOMEM;
1297 
1298         ret = machine_constraints_voltage(rdev, rdev->constraints);
1299         if (ret != 0)
1300                 return ret;
1301 
1302         ret = machine_constraints_current(rdev, rdev->constraints);
1303         if (ret != 0)
1304                 return ret;
1305 
1306         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1307                 ret = ops->set_input_current_limit(rdev,
1308                                                    rdev->constraints->ilim_uA);
1309                 if (ret < 0) {
1310                         rdev_err(rdev, "failed to set input limit\n");
1311                         return ret;
1312                 }
1313         }
1314 
1315         /* do we need to setup our suspend state */
1316         if (rdev->constraints->initial_state) {
1317                 ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1318                 if (ret < 0) {
1319                         rdev_err(rdev, "failed to set suspend state\n");
1320                         return ret;
1321                 }
1322         }
1323 
1324         if (rdev->constraints->initial_mode) {
1325                 if (!ops->set_mode) {
1326                         rdev_err(rdev, "no set_mode operation\n");
1327                         return -EINVAL;
1328                 }
1329 
1330                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1331                 if (ret < 0) {
1332                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1333                         return ret;
1334                 }
1335         } else if (rdev->constraints->system_load) {
1336                 /*
1337                  * We'll only apply the initial system load if an
1338                  * initial mode wasn't specified.
1339                  */
1340                 drms_uA_update(rdev);
1341         }
1342 
1343         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1344                 && ops->set_ramp_delay) {
1345                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1346                 if (ret < 0) {
1347                         rdev_err(rdev, "failed to set ramp_delay\n");
1348                         return ret;
1349                 }
1350         }
1351 
1352         if (rdev->constraints->pull_down && ops->set_pull_down) {
1353                 ret = ops->set_pull_down(rdev);
1354                 if (ret < 0) {
1355                         rdev_err(rdev, "failed to set pull down\n");
1356                         return ret;
1357                 }
1358         }
1359 
1360         if (rdev->constraints->soft_start && ops->set_soft_start) {
1361                 ret = ops->set_soft_start(rdev);
1362                 if (ret < 0) {
1363                         rdev_err(rdev, "failed to set soft start\n");
1364                         return ret;
1365                 }
1366         }
1367 
1368         if (rdev->constraints->over_current_protection
1369                 && ops->set_over_current_protection) {
1370                 ret = ops->set_over_current_protection(rdev);
1371                 if (ret < 0) {
1372                         rdev_err(rdev, "failed to set over current protection\n");
1373                         return ret;
1374                 }
1375         }
1376 
1377         if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1378                 bool ad_state = (rdev->constraints->active_discharge ==
1379                               REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1380 
1381                 ret = ops->set_active_discharge(rdev, ad_state);
1382                 if (ret < 0) {
1383                         rdev_err(rdev, "failed to set active discharge\n");
1384                         return ret;
1385                 }
1386         }
1387 
1388         /* If the constraints say the regulator should be on at this point
1389          * and we have control then make sure it is enabled.
1390          */
1391         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1392                 if (rdev->supply) {
1393                         ret = regulator_enable(rdev->supply);
1394                         if (ret < 0) {
1395                                 _regulator_put(rdev->supply);
1396                                 rdev->supply = NULL;
1397                                 return ret;
1398                         }
1399                 }
1400 
1401                 ret = _regulator_do_enable(rdev);
1402                 if (ret < 0 && ret != -EINVAL) {
1403                         rdev_err(rdev, "failed to enable\n");
1404                         return ret;
1405                 }
1406 
1407                 if (rdev->constraints->always_on)
1408                         rdev->use_count++;
1409         }
1410 
1411         print_constraints(rdev);
1412         return 0;
1413 }
1414 
1415 /**
1416  * set_supply - set regulator supply regulator
1417  * @rdev: regulator name
1418  * @supply_rdev: supply regulator name
1419  *
1420  * Called by platform initialisation code to set the supply regulator for this
1421  * regulator. This ensures that a regulators supply will also be enabled by the
1422  * core if it's child is enabled.
1423  */
1424 static int set_supply(struct regulator_dev *rdev,
1425                       struct regulator_dev *supply_rdev)
1426 {
1427         int err;
1428 
1429         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1430 
1431         if (!try_module_get(supply_rdev->owner))
1432                 return -ENODEV;
1433 
1434         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1435         if (rdev->supply == NULL) {
1436                 err = -ENOMEM;
1437                 return err;
1438         }
1439         supply_rdev->open_count++;
1440 
1441         return 0;
1442 }
1443 
1444 /**
1445  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1446  * @rdev:         regulator source
1447  * @consumer_dev_name: dev_name() string for device supply applies to
1448  * @supply:       symbolic name for supply
1449  *
1450  * Allows platform initialisation code to map physical regulator
1451  * sources to symbolic names for supplies for use by devices.  Devices
1452  * should use these symbolic names to request regulators, avoiding the
1453  * need to provide board-specific regulator names as platform data.
1454  */
1455 static int set_consumer_device_supply(struct regulator_dev *rdev,
1456                                       const char *consumer_dev_name,
1457                                       const char *supply)
1458 {
1459         struct regulator_map *node;
1460         int has_dev;
1461 
1462         if (supply == NULL)
1463                 return -EINVAL;
1464 
1465         if (consumer_dev_name != NULL)
1466                 has_dev = 1;
1467         else
1468                 has_dev = 0;
1469 
1470         list_for_each_entry(node, &regulator_map_list, list) {
1471                 if (node->dev_name && consumer_dev_name) {
1472                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1473                                 continue;
1474                 } else if (node->dev_name || consumer_dev_name) {
1475                         continue;
1476                 }
1477 
1478                 if (strcmp(node->supply, supply) != 0)
1479                         continue;
1480 
1481                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1482                          consumer_dev_name,
1483                          dev_name(&node->regulator->dev),
1484                          node->regulator->desc->name,
1485                          supply,
1486                          dev_name(&rdev->dev), rdev_get_name(rdev));
1487                 return -EBUSY;
1488         }
1489 
1490         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1491         if (node == NULL)
1492                 return -ENOMEM;
1493 
1494         node->regulator = rdev;
1495         node->supply = supply;
1496 
1497         if (has_dev) {
1498                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1499                 if (node->dev_name == NULL) {
1500                         kfree(node);
1501                         return -ENOMEM;
1502                 }
1503         }
1504 
1505         list_add(&node->list, &regulator_map_list);
1506         return 0;
1507 }
1508 
1509 static void unset_regulator_supplies(struct regulator_dev *rdev)
1510 {
1511         struct regulator_map *node, *n;
1512 
1513         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1514                 if (rdev == node->regulator) {
1515                         list_del(&node->list);
1516                         kfree(node->dev_name);
1517                         kfree(node);
1518                 }
1519         }
1520 }
1521 
1522 #ifdef CONFIG_DEBUG_FS
1523 static ssize_t constraint_flags_read_file(struct file *file,
1524                                           char __user *user_buf,
1525                                           size_t count, loff_t *ppos)
1526 {
1527         const struct regulator *regulator = file->private_data;
1528         const struct regulation_constraints *c = regulator->rdev->constraints;
1529         char *buf;
1530         ssize_t ret;
1531 
1532         if (!c)
1533                 return 0;
1534 
1535         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1536         if (!buf)
1537                 return -ENOMEM;
1538 
1539         ret = snprintf(buf, PAGE_SIZE,
1540                         "always_on: %u\n"
1541                         "boot_on: %u\n"
1542                         "apply_uV: %u\n"
1543                         "ramp_disable: %u\n"
1544                         "soft_start: %u\n"
1545                         "pull_down: %u\n"
1546                         "over_current_protection: %u\n",
1547                         c->always_on,
1548                         c->boot_on,
1549                         c->apply_uV,
1550                         c->ramp_disable,
1551                         c->soft_start,
1552                         c->pull_down,
1553                         c->over_current_protection);
1554 
1555         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1556         kfree(buf);
1557 
1558         return ret;
1559 }
1560 
1561 #endif
1562 
1563 static const struct file_operations constraint_flags_fops = {
1564 #ifdef CONFIG_DEBUG_FS
1565         .open = simple_open,
1566         .read = constraint_flags_read_file,
1567         .llseek = default_llseek,
1568 #endif
1569 };
1570 
1571 #define REG_STR_SIZE    64
1572 
1573 static struct regulator *create_regulator(struct regulator_dev *rdev,
1574                                           struct device *dev,
1575                                           const char *supply_name)
1576 {
1577         struct regulator *regulator;
1578         char buf[REG_STR_SIZE];
1579         int err, size;
1580 
1581         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1582         if (regulator == NULL)
1583                 return NULL;
1584 
1585         regulator_lock(rdev);
1586         regulator->rdev = rdev;
1587         list_add(&regulator->list, &rdev->consumer_list);
1588 
1589         if (dev) {
1590                 regulator->dev = dev;
1591 
1592                 /* Add a link to the device sysfs entry */
1593                 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1594                                 dev->kobj.name, supply_name);
1595                 if (size >= REG_STR_SIZE)
1596                         goto overflow_err;
1597 
1598                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1599                 if (regulator->supply_name == NULL)
1600                         goto overflow_err;
1601 
1602                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1603                                         buf);
1604                 if (err) {
1605                         rdev_dbg(rdev, "could not add device link %s err %d\n",
1606                                   dev->kobj.name, err);
1607                         /* non-fatal */
1608                 }
1609         } else {
1610                 regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1611                 if (regulator->supply_name == NULL)
1612                         goto overflow_err;
1613         }
1614 
1615         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1616                                                 rdev->debugfs);
1617         if (!regulator->debugfs) {
1618                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1619         } else {
1620                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1621                                    &regulator->uA_load);
1622                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1623                                    &regulator->voltage[PM_SUSPEND_ON].min_uV);
1624                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1625                                    &regulator->voltage[PM_SUSPEND_ON].max_uV);
1626                 debugfs_create_file("constraint_flags", 0444,
1627                                     regulator->debugfs, regulator,
1628                                     &constraint_flags_fops);
1629         }
1630 
1631         /*
1632          * Check now if the regulator is an always on regulator - if
1633          * it is then we don't need to do nearly so much work for
1634          * enable/disable calls.
1635          */
1636         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1637             _regulator_is_enabled(rdev))
1638                 regulator->always_on = true;
1639 
1640         regulator_unlock(rdev);
1641         return regulator;
1642 overflow_err:
1643         list_del(&regulator->list);
1644         kfree(regulator);
1645         regulator_unlock(rdev);
1646         return NULL;
1647 }
1648 
1649 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1650 {
1651         if (rdev->constraints && rdev->constraints->enable_time)
1652                 return rdev->constraints->enable_time;
1653         if (rdev->desc->ops->enable_time)
1654                 return rdev->desc->ops->enable_time(rdev);
1655         return rdev->desc->enable_time;
1656 }
1657 
1658 static struct regulator_supply_alias *regulator_find_supply_alias(
1659                 struct device *dev, const char *supply)
1660 {
1661         struct regulator_supply_alias *map;
1662 
1663         list_for_each_entry(map, &regulator_supply_alias_list, list)
1664                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1665                         return map;
1666 
1667         return NULL;
1668 }
1669 
1670 static void regulator_supply_alias(struct device **dev, const char **supply)
1671 {
1672         struct regulator_supply_alias *map;
1673 
1674         map = regulator_find_supply_alias(*dev, *supply);
1675         if (map) {
1676                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1677                                 *supply, map->alias_supply,
1678                                 dev_name(map->alias_dev));
1679                 *dev = map->alias_dev;
1680                 *supply = map->alias_supply;
1681         }
1682 }
1683 
1684 static int regulator_match(struct device *dev, const void *data)
1685 {
1686         struct regulator_dev *r = dev_to_rdev(dev);
1687 
1688         return strcmp(rdev_get_name(r), data) == 0;
1689 }
1690 
1691 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1692 {
1693         struct device *dev;
1694 
1695         dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1696 
1697         return dev ? dev_to_rdev(dev) : NULL;
1698 }
1699 
1700 /**
1701  * regulator_dev_lookup - lookup a regulator device.
1702  * @dev: device for regulator "consumer".
1703  * @supply: Supply name or regulator ID.
1704  *
1705  * If successful, returns a struct regulator_dev that corresponds to the name
1706  * @supply and with the embedded struct device refcount incremented by one.
1707  * The refcount must be dropped by calling put_device().
1708  * On failure one of the following ERR-PTR-encoded values is returned:
1709  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1710  * in the future.
1711  */
1712 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1713                                                   const char *supply)
1714 {
1715         struct regulator_dev *r = NULL;
1716         struct device_node *node;
1717         struct regulator_map *map;
1718         const char *devname = NULL;
1719 
1720         regulator_supply_alias(&dev, &supply);
1721 
1722         /* first do a dt based lookup */
1723         if (dev && dev->of_node) {
1724                 node = of_get_regulator(dev, supply);
1725                 if (node) {
1726                         r = of_find_regulator_by_node(node);
1727                         if (r)
1728                                 return r;
1729 
1730                         /*
1731                          * We have a node, but there is no device.
1732                          * assume it has not registered yet.
1733                          */
1734                         return ERR_PTR(-EPROBE_DEFER);
1735                 }
1736         }
1737 
1738         /* if not found, try doing it non-dt way */
1739         if (dev)
1740                 devname = dev_name(dev);
1741 
1742         mutex_lock(&regulator_list_mutex);
1743         list_for_each_entry(map, &regulator_map_list, list) {
1744                 /* If the mapping has a device set up it must match */
1745                 if (map->dev_name &&
1746                     (!devname || strcmp(map->dev_name, devname)))
1747                         continue;
1748 
1749                 if (strcmp(map->supply, supply) == 0 &&
1750                     get_device(&map->regulator->dev)) {
1751                         r = map->regulator;
1752                         break;
1753                 }
1754         }
1755         mutex_unlock(&regulator_list_mutex);
1756 
1757         if (r)
1758                 return r;
1759 
1760         r = regulator_lookup_by_name(supply);
1761         if (r)
1762                 return r;
1763 
1764         return ERR_PTR(-ENODEV);
1765 }
1766 
1767 static int regulator_resolve_supply(struct regulator_dev *rdev)
1768 {
1769         struct regulator_dev *r;
1770         struct device *dev = rdev->dev.parent;
1771         int ret;
1772 
1773         /* No supply to resolve? */
1774         if (!rdev->supply_name)
1775                 return 0;
1776 
1777         /* Supply already resolved? */
1778         if (rdev->supply)
1779                 return 0;
1780 
1781         r = regulator_dev_lookup(dev, rdev->supply_name);
1782         if (IS_ERR(r)) {
1783                 ret = PTR_ERR(r);
1784 
1785                 /* Did the lookup explicitly defer for us? */
1786                 if (ret == -EPROBE_DEFER)
1787                         return ret;
1788 
1789                 if (have_full_constraints()) {
1790                         r = dummy_regulator_rdev;
1791                         get_device(&r->dev);
1792                 } else {
1793                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
1794                                 rdev->supply_name, rdev->desc->name);
1795                         return -EPROBE_DEFER;
1796                 }
1797         }
1798 
1799         /*
1800          * If the supply's parent device is not the same as the
1801          * regulator's parent device, then ensure the parent device
1802          * is bound before we resolve the supply, in case the parent
1803          * device get probe deferred and unregisters the supply.
1804          */
1805         if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1806                 if (!device_is_bound(r->dev.parent)) {
1807                         put_device(&r->dev);
1808                         return -EPROBE_DEFER;
1809                 }
1810         }
1811 
1812         /* Recursively resolve the supply of the supply */
1813         ret = regulator_resolve_supply(r);
1814         if (ret < 0) {
1815                 put_device(&r->dev);
1816                 return ret;
1817         }
1818 
1819         ret = set_supply(rdev, r);
1820         if (ret < 0) {
1821                 put_device(&r->dev);
1822                 return ret;
1823         }
1824 
1825         /*
1826          * In set_machine_constraints() we may have turned this regulator on
1827          * but we couldn't propagate to the supply if it hadn't been resolved
1828          * yet.  Do it now.
1829          */
1830         if (rdev->use_count) {
1831                 ret = regulator_enable(rdev->supply);
1832                 if (ret < 0) {
1833                         _regulator_put(rdev->supply);
1834                         rdev->supply = NULL;
1835                         return ret;
1836                 }
1837         }
1838 
1839         return 0;
1840 }
1841 
1842 /* Internal regulator request function */
1843 struct regulator *_regulator_get(struct device *dev, const char *id,
1844                                  enum regulator_get_type get_type)
1845 {
1846         struct regulator_dev *rdev;
1847         struct regulator *regulator;
1848         const char *devname = dev ? dev_name(dev) : "deviceless";
1849         int ret;
1850 
1851         if (get_type >= MAX_GET_TYPE) {
1852                 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1853                 return ERR_PTR(-EINVAL);
1854         }
1855 
1856         if (id == NULL) {
1857                 pr_err("get() with no identifier\n");
1858                 return ERR_PTR(-EINVAL);
1859         }
1860 
1861         rdev = regulator_dev_lookup(dev, id);
1862         if (IS_ERR(rdev)) {
1863                 ret = PTR_ERR(rdev);
1864 
1865                 /*
1866                  * If regulator_dev_lookup() fails with error other
1867                  * than -ENODEV our job here is done, we simply return it.
1868                  */
1869                 if (ret != -ENODEV)
1870                         return ERR_PTR(ret);
1871 
1872                 if (!have_full_constraints()) {
1873                         dev_warn(dev,
1874                                  "incomplete constraints, dummy supplies not allowed\n");
1875                         return ERR_PTR(-ENODEV);
1876                 }
1877 
1878                 switch (get_type) {
1879                 case NORMAL_GET:
1880                         /*
1881                          * Assume that a regulator is physically present and
1882                          * enabled, even if it isn't hooked up, and just
1883                          * provide a dummy.
1884                          */
1885                         dev_warn(dev,
1886                                  "%s supply %s not found, using dummy regulator\n",
1887                                  devname, id);
1888                         rdev = dummy_regulator_rdev;
1889                         get_device(&rdev->dev);
1890                         break;
1891 
1892                 case EXCLUSIVE_GET:
1893                         dev_warn(dev,
1894                                  "dummy supplies not allowed for exclusive requests\n");
1895                         /* fall through */
1896 
1897                 default:
1898                         return ERR_PTR(-ENODEV);
1899                 }
1900         }
1901 
1902         if (rdev->exclusive) {
1903                 regulator = ERR_PTR(-EPERM);
1904                 put_device(&rdev->dev);
1905                 return regulator;
1906         }
1907 
1908         if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1909                 regulator = ERR_PTR(-EBUSY);
1910                 put_device(&rdev->dev);
1911                 return regulator;
1912         }
1913 
1914         mutex_lock(&regulator_list_mutex);
1915         ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
1916         mutex_unlock(&regulator_list_mutex);
1917 
1918         if (ret != 0) {
1919                 regulator = ERR_PTR(-EPROBE_DEFER);
1920                 put_device(&rdev->dev);
1921                 return regulator;
1922         }
1923 
1924         ret = regulator_resolve_supply(rdev);
1925         if (ret < 0) {
1926                 regulator = ERR_PTR(ret);
1927                 put_device(&rdev->dev);
1928                 return regulator;
1929         }
1930 
1931         if (!try_module_get(rdev->owner)) {
1932                 regulator = ERR_PTR(-EPROBE_DEFER);
1933                 put_device(&rdev->dev);
1934                 return regulator;
1935         }
1936 
1937         regulator = create_regulator(rdev, dev, id);
1938         if (regulator == NULL) {
1939                 regulator = ERR_PTR(-ENOMEM);
1940                 module_put(rdev->owner);
1941                 put_device(&rdev->dev);
1942                 return regulator;
1943         }
1944 
1945         rdev->open_count++;
1946         if (get_type == EXCLUSIVE_GET) {
1947                 rdev->exclusive = 1;
1948 
1949                 ret = _regulator_is_enabled(rdev);
1950                 if (ret > 0)
1951                         rdev->use_count = 1;
1952                 else
1953                         rdev->use_count = 0;
1954         }
1955 
1956         device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
1957 
1958         return regulator;
1959 }
1960 
1961 /**
1962  * regulator_get - lookup and obtain a reference to a regulator.
1963  * @dev: device for regulator "consumer"
1964  * @id: Supply name or regulator ID.
1965  *
1966  * Returns a struct regulator corresponding to the regulator producer,
1967  * or IS_ERR() condition containing errno.
1968  *
1969  * Use of supply names configured via regulator_set_device_supply() is
1970  * strongly encouraged.  It is recommended that the supply name used
1971  * should match the name used for the supply and/or the relevant
1972  * device pins in the datasheet.
1973  */
1974 struct regulator *regulator_get(struct device *dev, const char *id)
1975 {
1976         return _regulator_get(dev, id, NORMAL_GET);
1977 }
1978 EXPORT_SYMBOL_GPL(regulator_get);
1979 
1980 /**
1981  * regulator_get_exclusive - obtain exclusive access to a regulator.
1982  * @dev: device for regulator "consumer"
1983  * @id: Supply name or regulator ID.
1984  *
1985  * Returns a struct regulator corresponding to the regulator producer,
1986  * or IS_ERR() condition containing errno.  Other consumers will be
1987  * unable to obtain this regulator while this reference is held and the
1988  * use count for the regulator will be initialised to reflect the current
1989  * state of the regulator.
1990  *
1991  * This is intended for use by consumers which cannot tolerate shared
1992  * use of the regulator such as those which need to force the
1993  * regulator off for correct operation of the hardware they are
1994  * controlling.
1995  *
1996  * Use of supply names configured via regulator_set_device_supply() is
1997  * strongly encouraged.  It is recommended that the supply name used
1998  * should match the name used for the supply and/or the relevant
1999  * device pins in the datasheet.
2000  */
2001 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2002 {
2003         return _regulator_get(dev, id, EXCLUSIVE_GET);
2004 }
2005 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2006 
2007 /**
2008  * regulator_get_optional - obtain optional access to a regulator.
2009  * @dev: device for regulator "consumer"
2010  * @id: Supply name or regulator ID.
2011  *
2012  * Returns a struct regulator corresponding to the regulator producer,
2013  * or IS_ERR() condition containing errno.
2014  *
2015  * This is intended for use by consumers for devices which can have
2016  * some supplies unconnected in normal use, such as some MMC devices.
2017  * It can allow the regulator core to provide stub supplies for other
2018  * supplies requested using normal regulator_get() calls without
2019  * disrupting the operation of drivers that can handle absent
2020  * supplies.
2021  *
2022  * Use of supply names configured via regulator_set_device_supply() is
2023  * strongly encouraged.  It is recommended that the supply name used
2024  * should match the name used for the supply and/or the relevant
2025  * device pins in the datasheet.
2026  */
2027 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2028 {
2029         return _regulator_get(dev, id, OPTIONAL_GET);
2030 }
2031 EXPORT_SYMBOL_GPL(regulator_get_optional);
2032 
2033 /* regulator_list_mutex lock held by regulator_put() */
2034 static void _regulator_put(struct regulator *regulator)
2035 {
2036         struct regulator_dev *rdev;
2037 
2038         if (IS_ERR_OR_NULL(regulator))
2039                 return;
2040 
2041         lockdep_assert_held_once(&regulator_list_mutex);
2042 
2043         /* Docs say you must disable before calling regulator_put() */
2044         WARN_ON(regulator->enable_count);
2045 
2046         rdev = regulator->rdev;
2047 
2048         debugfs_remove_recursive(regulator->debugfs);
2049 
2050         if (regulator->dev) {
2051                 device_link_remove(regulator->dev, &rdev->dev);
2052 
2053                 /* remove any sysfs entries */
2054                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2055         }
2056 
2057         regulator_lock(rdev);
2058         list_del(&regulator->list);
2059 
2060         rdev->open_count--;
2061         rdev->exclusive = 0;
2062         regulator_unlock(rdev);
2063 
2064         kfree_const(regulator->supply_name);
2065         kfree(regulator);
2066 
2067         module_put(rdev->owner);
2068         put_device(&rdev->dev);
2069 }
2070 
2071 /**
2072  * regulator_put - "free" the regulator source
2073  * @regulator: regulator source
2074  *
2075  * Note: drivers must ensure that all regulator_enable calls made on this
2076  * regulator source are balanced by regulator_disable calls prior to calling
2077  * this function.
2078  */
2079 void regulator_put(struct regulator *regulator)
2080 {
2081         mutex_lock(&regulator_list_mutex);
2082         _regulator_put(regulator);
2083         mutex_unlock(&regulator_list_mutex);
2084 }
2085 EXPORT_SYMBOL_GPL(regulator_put);
2086 
2087 /**
2088  * regulator_register_supply_alias - Provide device alias for supply lookup
2089  *
2090  * @dev: device that will be given as the regulator "consumer"
2091  * @id: Supply name or regulator ID
2092  * @alias_dev: device that should be used to lookup the supply
2093  * @alias_id: Supply name or regulator ID that should be used to lookup the
2094  * supply
2095  *
2096  * All lookups for id on dev will instead be conducted for alias_id on
2097  * alias_dev.
2098  */
2099 int regulator_register_supply_alias(struct device *dev, const char *id,
2100                                     struct device *alias_dev,
2101                                     const char *alias_id)
2102 {
2103         struct regulator_supply_alias *map;
2104 
2105         map = regulator_find_supply_alias(dev, id);
2106         if (map)
2107                 return -EEXIST;
2108 
2109         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2110         if (!map)
2111                 return -ENOMEM;
2112 
2113         map->src_dev = dev;
2114         map->src_supply = id;
2115         map->alias_dev = alias_dev;
2116         map->alias_supply = alias_id;
2117 
2118         list_add(&map->list, &regulator_supply_alias_list);
2119 
2120         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2121                 id, dev_name(dev), alias_id, dev_name(alias_dev));
2122 
2123         return 0;
2124 }
2125 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2126 
2127 /**
2128  * regulator_unregister_supply_alias - Remove device alias
2129  *
2130  * @dev: device that will be given as the regulator "consumer"
2131  * @id: Supply name or regulator ID
2132  *
2133  * Remove a lookup alias if one exists for id on dev.
2134  */
2135 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2136 {
2137         struct regulator_supply_alias *map;
2138 
2139         map = regulator_find_supply_alias(dev, id);
2140         if (map) {
2141                 list_del(&map->list);
2142                 kfree(map);
2143         }
2144 }
2145 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2146 
2147 /**
2148  * regulator_bulk_register_supply_alias - register multiple aliases
2149  *
2150  * @dev: device that will be given as the regulator "consumer"
2151  * @id: List of supply names or regulator IDs
2152  * @alias_dev: device that should be used to lookup the supply
2153  * @alias_id: List of supply names or regulator IDs that should be used to
2154  * lookup the supply
2155  * @num_id: Number of aliases to register
2156  *
2157  * @return 0 on success, an errno on failure.
2158  *
2159  * This helper function allows drivers to register several supply
2160  * aliases in one operation.  If any of the aliases cannot be
2161  * registered any aliases that were registered will be removed
2162  * before returning to the caller.
2163  */
2164 int regulator_bulk_register_supply_alias(struct device *dev,
2165                                          const char *const *id,
2166                                          struct device *alias_dev,
2167                                          const char *const *alias_id,
2168                                          int num_id)
2169 {
2170         int i;
2171         int ret;
2172 
2173         for (i = 0; i < num_id; ++i) {
2174                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2175                                                       alias_id[i]);
2176                 if (ret < 0)
2177                         goto err;
2178         }
2179 
2180         return 0;
2181 
2182 err:
2183         dev_err(dev,
2184                 "Failed to create supply alias %s,%s -> %s,%s\n",
2185                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2186 
2187         while (--i >= 0)
2188                 regulator_unregister_supply_alias(dev, id[i]);
2189 
2190         return ret;
2191 }
2192 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2193 
2194 /**
2195  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2196  *
2197  * @dev: device that will be given as the regulator "consumer"
2198  * @id: List of supply names or regulator IDs
2199  * @num_id: Number of aliases to unregister
2200  *
2201  * This helper function allows drivers to unregister several supply
2202  * aliases in one operation.
2203  */
2204 void regulator_bulk_unregister_supply_alias(struct device *dev,
2205                                             const char *const *id,
2206                                             int num_id)
2207 {
2208         int i;
2209 
2210         for (i = 0; i < num_id; ++i)
2211                 regulator_unregister_supply_alias(dev, id[i]);
2212 }
2213 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2214 
2215 
2216 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2217 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2218                                 const struct regulator_config *config)
2219 {
2220         struct regulator_enable_gpio *pin;
2221         struct gpio_desc *gpiod;
2222 
2223         gpiod = config->ena_gpiod;
2224 
2225         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2226                 if (pin->gpiod == gpiod) {
2227                         rdev_dbg(rdev, "GPIO is already used\n");
2228                         goto update_ena_gpio_to_rdev;
2229                 }
2230         }
2231 
2232         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
2233         if (pin == NULL)
2234                 return -ENOMEM;
2235 
2236         pin->gpiod = gpiod;
2237         list_add(&pin->list, &regulator_ena_gpio_list);
2238 
2239 update_ena_gpio_to_rdev:
2240         pin->request_count++;
2241         rdev->ena_pin = pin;
2242         return 0;
2243 }
2244 
2245 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2246 {
2247         struct regulator_enable_gpio *pin, *n;
2248 
2249         if (!rdev->ena_pin)
2250                 return;
2251 
2252         /* Free the GPIO only in case of no use */
2253         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2254                 if (pin->gpiod == rdev->ena_pin->gpiod) {
2255                         if (pin->request_count <= 1) {
2256                                 pin->request_count = 0;
2257                                 gpiod_put(pin->gpiod);
2258                                 list_del(&pin->list);
2259                                 kfree(pin);
2260                                 rdev->ena_pin = NULL;
2261                                 return;
2262                         } else {
2263                                 pin->request_count--;
2264                         }
2265                 }
2266         }
2267 }
2268 
2269 /**
2270  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2271  * @rdev: regulator_dev structure
2272  * @enable: enable GPIO at initial use?
2273  *
2274  * GPIO is enabled in case of initial use. (enable_count is 0)
2275  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2276  */
2277 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2278 {
2279         struct regulator_enable_gpio *pin = rdev->ena_pin;
2280 
2281         if (!pin)
2282                 return -EINVAL;
2283 
2284         if (enable) {
2285                 /* Enable GPIO at initial use */
2286                 if (pin->enable_count == 0)
2287                         gpiod_set_value_cansleep(pin->gpiod, 1);
2288 
2289                 pin->enable_count++;
2290         } else {
2291                 if (pin->enable_count > 1) {
2292                         pin->enable_count--;
2293                         return 0;
2294                 }
2295 
2296                 /* Disable GPIO if not used */
2297                 if (pin->enable_count <= 1) {
2298                         gpiod_set_value_cansleep(pin->gpiod, 0);
2299                         pin->enable_count = 0;
2300                 }
2301         }
2302 
2303         return 0;
2304 }
2305 
2306 /**
2307  * _regulator_enable_delay - a delay helper function
2308  * @delay: time to delay in microseconds
2309  *
2310  * Delay for the requested amount of time as per the guidelines in:
2311  *
2312  *     Documentation/timers/timers-howto.rst
2313  *
2314  * The assumption here is that regulators will never be enabled in
2315  * atomic context and therefore sleeping functions can be used.
2316  */
2317 static void _regulator_enable_delay(unsigned int delay)
2318 {
2319         unsigned int ms = delay / 1000;
2320         unsigned int us = delay % 1000;
2321 
2322         if (ms > 0) {
2323                 /*
2324                  * For small enough values, handle super-millisecond
2325                  * delays in the usleep_range() call below.
2326                  */
2327                 if (ms < 20)
2328                         us += ms * 1000;
2329                 else
2330                         msleep(ms);
2331         }
2332 
2333         /*
2334          * Give the scheduler some room to coalesce with any other
2335          * wakeup sources. For delays shorter than 10 us, don't even
2336          * bother setting up high-resolution timers and just busy-
2337          * loop.
2338          */
2339         if (us >= 10)
2340                 usleep_range(us, us + 100);
2341         else
2342                 udelay(us);
2343 }
2344 
2345 static int _regulator_do_enable(struct regulator_dev *rdev)
2346 {
2347         int ret, delay;
2348 
2349         /* Query before enabling in case configuration dependent.  */
2350         ret = _regulator_get_enable_time(rdev);
2351         if (ret >= 0) {
2352                 delay = ret;
2353         } else {
2354                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2355                 delay = 0;
2356         }
2357 
2358         trace_regulator_enable(rdev_get_name(rdev));
2359 
2360         if (rdev->desc->off_on_delay) {
2361                 /* if needed, keep a distance of off_on_delay from last time
2362                  * this regulator was disabled.
2363                  */
2364                 unsigned long start_jiffy = jiffies;
2365                 unsigned long intended, max_delay, remaining;
2366 
2367                 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2368                 intended = rdev->last_off_jiffy + max_delay;
2369 
2370                 if (time_before(start_jiffy, intended)) {
2371                         /* calc remaining jiffies to deal with one-time
2372                          * timer wrapping.
2373                          * in case of multiple timer wrapping, either it can be
2374                          * detected by out-of-range remaining, or it cannot be
2375                          * detected and we get a penalty of
2376                          * _regulator_enable_delay().
2377                          */
2378                         remaining = intended - start_jiffy;
2379                         if (remaining <= max_delay)
2380                                 _regulator_enable_delay(
2381                                                 jiffies_to_usecs(remaining));
2382                 }
2383         }
2384 
2385         if (rdev->ena_pin) {
2386                 if (!rdev->ena_gpio_state) {
2387                         ret = regulator_ena_gpio_ctrl(rdev, true);
2388                         if (ret < 0)
2389                                 return ret;
2390                         rdev->ena_gpio_state = 1;
2391                 }
2392         } else if (rdev->desc->ops->enable) {
2393                 ret = rdev->desc->ops->enable(rdev);
2394                 if (ret < 0)
2395                         return ret;
2396         } else {
2397                 return -EINVAL;
2398         }
2399 
2400         /* Allow the regulator to ramp; it would be useful to extend
2401          * this for bulk operations so that the regulators can ramp
2402          * together.  */
2403         trace_regulator_enable_delay(rdev_get_name(rdev));
2404 
2405         _regulator_enable_delay(delay);
2406 
2407         trace_regulator_enable_complete(rdev_get_name(rdev));
2408 
2409         return 0;
2410 }
2411 
2412 /**
2413  * _regulator_handle_consumer_enable - handle that a consumer enabled
2414  * @regulator: regulator source
2415  *
2416  * Some things on a regulator consumer (like the contribution towards total
2417  * load on the regulator) only have an effect when the consumer wants the
2418  * regulator enabled.  Explained in example with two consumers of the same
2419  * regulator:
2420  *   consumer A: set_load(100);       => total load = 0
2421  *   consumer A: regulator_enable();  => total load = 100
2422  *   consumer B: set_load(1000);      => total load = 100
2423  *   consumer B: regulator_enable();  => total load = 1100
2424  *   consumer A: regulator_disable(); => total_load = 1000
2425  *
2426  * This function (together with _regulator_handle_consumer_disable) is
2427  * responsible for keeping track of the refcount for a given regulator consumer
2428  * and applying / unapplying these things.
2429  *
2430  * Returns 0 upon no error; -error upon error.
2431  */
2432 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2433 {
2434         struct regulator_dev *rdev = regulator->rdev;
2435 
2436         lockdep_assert_held_once(&rdev->mutex.base);
2437 
2438         regulator->enable_count++;
2439         if (regulator->uA_load && regulator->enable_count == 1)
2440                 return drms_uA_update(rdev);
2441 
2442         return 0;
2443 }
2444 
2445 /**
2446  * _regulator_handle_consumer_disable - handle that a consumer disabled
2447  * @regulator: regulator source
2448  *
2449  * The opposite of _regulator_handle_consumer_enable().
2450  *
2451  * Returns 0 upon no error; -error upon error.
2452  */
2453 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2454 {
2455         struct regulator_dev *rdev = regulator->rdev;
2456 
2457         lockdep_assert_held_once(&rdev->mutex.base);
2458 
2459         if (!regulator->enable_count) {
2460                 rdev_err(rdev, "Underflow of regulator enable count\n");
2461                 return -EINVAL;
2462         }
2463 
2464         regulator->enable_count--;
2465         if (regulator->uA_load && regulator->enable_count == 0)
2466                 return drms_uA_update(rdev);
2467 
2468         return 0;
2469 }
2470 
2471 /* locks held by regulator_enable() */
2472 static int _regulator_enable(struct regulator *regulator)
2473 {
2474         struct regulator_dev *rdev = regulator->rdev;
2475         int ret;
2476 
2477         lockdep_assert_held_once(&rdev->mutex.base);
2478 
2479         if (rdev->use_count == 0 && rdev->supply) {
2480                 ret = _regulator_enable(rdev->supply);
2481                 if (ret < 0)
2482                         return ret;
2483         }
2484 
2485         /* balance only if there are regulators coupled */
2486         if (rdev->coupling_desc.n_coupled > 1) {
2487                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2488                 if (ret < 0)
2489                         goto err_disable_supply;
2490         }
2491 
2492         ret = _regulator_handle_consumer_enable(regulator);
2493         if (ret < 0)
2494                 goto err_disable_supply;
2495 
2496         if (rdev->use_count == 0) {
2497                 /* The regulator may on if it's not switchable or left on */
2498                 ret = _regulator_is_enabled(rdev);
2499                 if (ret == -EINVAL || ret == 0) {
2500                         if (!regulator_ops_is_valid(rdev,
2501                                         REGULATOR_CHANGE_STATUS)) {
2502                                 ret = -EPERM;
2503                                 goto err_consumer_disable;
2504                         }
2505 
2506                         ret = _regulator_do_enable(rdev);
2507                         if (ret < 0)
2508                                 goto err_consumer_disable;
2509 
2510                         _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2511                                              NULL);
2512                 } else if (ret < 0) {
2513                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2514                         goto err_consumer_disable;
2515                 }
2516                 /* Fallthrough on positive return values - already enabled */
2517         }
2518 
2519         rdev->use_count++;
2520 
2521         return 0;
2522 
2523 err_consumer_disable:
2524         _regulator_handle_consumer_disable(regulator);
2525 
2526 err_disable_supply:
2527         if (rdev->use_count == 0 && rdev->supply)
2528                 _regulator_disable(rdev->supply);
2529 
2530         return ret;
2531 }
2532 
2533 /**
2534  * regulator_enable - enable regulator output
2535  * @regulator: regulator source
2536  *
2537  * Request that the regulator be enabled with the regulator output at
2538  * the predefined voltage or current value.  Calls to regulator_enable()
2539  * must be balanced with calls to regulator_disable().
2540  *
2541  * NOTE: the output value can be set by other drivers, boot loader or may be
2542  * hardwired in the regulator.
2543  */
2544 int regulator_enable(struct regulator *regulator)
2545 {
2546         struct regulator_dev *rdev = regulator->rdev;
2547         struct ww_acquire_ctx ww_ctx;
2548         int ret;
2549 
2550         regulator_lock_dependent(rdev, &ww_ctx);
2551         ret = _regulator_enable(regulator);
2552         regulator_unlock_dependent(rdev, &ww_ctx);
2553 
2554         return ret;
2555 }
2556 EXPORT_SYMBOL_GPL(regulator_enable);
2557 
2558 static int _regulator_do_disable(struct regulator_dev *rdev)
2559 {
2560         int ret;
2561 
2562         trace_regulator_disable(rdev_get_name(rdev));
2563 
2564         if (rdev->ena_pin) {
2565                 if (rdev->ena_gpio_state) {
2566                         ret = regulator_ena_gpio_ctrl(rdev, false);
2567                         if (ret < 0)
2568                                 return ret;
2569                         rdev->ena_gpio_state = 0;
2570                 }
2571 
2572         } else if (rdev->desc->ops->disable) {
2573                 ret = rdev->desc->ops->disable(rdev);
2574                 if (ret != 0)
2575                         return ret;
2576         }
2577 
2578         /* cares about last_off_jiffy only if off_on_delay is required by
2579          * device.
2580          */
2581         if (rdev->desc->off_on_delay)
2582                 rdev->last_off_jiffy = jiffies;
2583 
2584         trace_regulator_disable_complete(rdev_get_name(rdev));
2585 
2586         return 0;
2587 }
2588 
2589 /* locks held by regulator_disable() */
2590 static int _regulator_disable(struct regulator *regulator)
2591 {
2592         struct regulator_dev *rdev = regulator->rdev;
2593         int ret = 0;
2594 
2595         lockdep_assert_held_once(&rdev->mutex.base);
2596 
2597         if (WARN(rdev->use_count <= 0,
2598                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2599                 return -EIO;
2600 
2601         /* are we the last user and permitted to disable ? */
2602         if (rdev->use_count == 1 &&
2603             (rdev->constraints && !rdev->constraints->always_on)) {
2604 
2605                 /* we are last user */
2606                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2607                         ret = _notifier_call_chain(rdev,
2608                                                    REGULATOR_EVENT_PRE_DISABLE,
2609                                                    NULL);
2610                         if (ret & NOTIFY_STOP_MASK)
2611                                 return -EINVAL;
2612 
2613                         ret = _regulator_do_disable(rdev);
2614                         if (ret < 0) {
2615                                 rdev_err(rdev, "failed to disable\n");
2616                                 _notifier_call_chain(rdev,
2617                                                 REGULATOR_EVENT_ABORT_DISABLE,
2618                                                 NULL);
2619                                 return ret;
2620                         }
2621                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2622                                         NULL);
2623                 }
2624 
2625                 rdev->use_count = 0;
2626         } else if (rdev->use_count > 1) {
2627                 rdev->use_count--;
2628         }
2629 
2630         if (ret == 0)
2631                 ret = _regulator_handle_consumer_disable(regulator);
2632 
2633         if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2634                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2635 
2636         if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2637                 ret = _regulator_disable(rdev->supply);
2638 
2639         return ret;
2640 }
2641 
2642 /**
2643  * regulator_disable - disable regulator output
2644  * @regulator: regulator source
2645  *
2646  * Disable the regulator output voltage or current.  Calls to
2647  * regulator_enable() must be balanced with calls to
2648  * regulator_disable().
2649  *
2650  * NOTE: this will only disable the regulator output if no other consumer
2651  * devices have it enabled, the regulator device supports disabling and
2652  * machine constraints permit this operation.
2653  */
2654 int regulator_disable(struct regulator *regulator)
2655 {
2656         struct regulator_dev *rdev = regulator->rdev;
2657         struct ww_acquire_ctx ww_ctx;
2658         int ret;
2659 
2660         regulator_lock_dependent(rdev, &ww_ctx);
2661         ret = _regulator_disable(regulator);
2662         regulator_unlock_dependent(rdev, &ww_ctx);
2663 
2664         return ret;
2665 }
2666 EXPORT_SYMBOL_GPL(regulator_disable);
2667 
2668 /* locks held by regulator_force_disable() */
2669 static int _regulator_force_disable(struct regulator_dev *rdev)
2670 {
2671         int ret = 0;
2672 
2673         lockdep_assert_held_once(&rdev->mutex.base);
2674 
2675         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2676                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2677         if (ret & NOTIFY_STOP_MASK)
2678                 return -EINVAL;
2679 
2680         ret = _regulator_do_disable(rdev);
2681         if (ret < 0) {
2682                 rdev_err(rdev, "failed to force disable\n");
2683                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2684                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2685                 return ret;
2686         }
2687 
2688         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2689                         REGULATOR_EVENT_DISABLE, NULL);
2690 
2691         return 0;
2692 }
2693 
2694 /**
2695  * regulator_force_disable - force disable regulator output
2696  * @regulator: regulator source
2697  *
2698  * Forcibly disable the regulator output voltage or current.
2699  * NOTE: this *will* disable the regulator output even if other consumer
2700  * devices have it enabled. This should be used for situations when device
2701  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2702  */
2703 int regulator_force_disable(struct regulator *regulator)
2704 {
2705         struct regulator_dev *rdev = regulator->rdev;
2706         struct ww_acquire_ctx ww_ctx;
2707         int ret;
2708 
2709         regulator_lock_dependent(rdev, &ww_ctx);
2710 
2711         ret = _regulator_force_disable(regulator->rdev);
2712 
2713         if (rdev->coupling_desc.n_coupled > 1)
2714                 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2715 
2716         if (regulator->uA_load) {
2717                 regulator->uA_load = 0;
2718                 ret = drms_uA_update(rdev);
2719         }
2720 
2721         if (rdev->use_count != 0 && rdev->supply)
2722                 _regulator_disable(rdev->supply);
2723 
2724         regulator_unlock_dependent(rdev, &ww_ctx);
2725 
2726         return ret;
2727 }
2728 EXPORT_SYMBOL_GPL(regulator_force_disable);
2729 
2730 static void regulator_disable_work(struct work_struct *work)
2731 {
2732         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2733                                                   disable_work.work);
2734         struct ww_acquire_ctx ww_ctx;
2735         int count, i, ret;
2736         struct regulator *regulator;
2737         int total_count = 0;
2738 
2739         regulator_lock_dependent(rdev, &ww_ctx);
2740 
2741         /*
2742          * Workqueue functions queue the new work instance while the previous
2743          * work instance is being processed. Cancel the queued work instance
2744          * as the work instance under processing does the job of the queued
2745          * work instance.
2746          */
2747         cancel_delayed_work(&rdev->disable_work);
2748 
2749         list_for_each_entry(regulator, &rdev->consumer_list, list) {
2750                 count = regulator->deferred_disables;
2751 
2752                 if (!count)
2753                         continue;
2754 
2755                 total_count += count;
2756                 regulator->deferred_disables = 0;
2757 
2758                 for (i = 0; i < count; i++) {
2759                         ret = _regulator_disable(regulator);
2760                         if (ret != 0)
2761                                 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2762                 }
2763         }
2764         WARN_ON(!total_count);
2765 
2766         if (rdev->coupling_desc.n_coupled > 1)
2767                 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2768 
2769         regulator_unlock_dependent(rdev, &ww_ctx);
2770 }
2771 
2772 /**
2773  * regulator_disable_deferred - disable regulator output with delay
2774  * @regulator: regulator source
2775  * @ms: milliseconds until the regulator is disabled
2776  *
2777  * Execute regulator_disable() on the regulator after a delay.  This
2778  * is intended for use with devices that require some time to quiesce.
2779  *
2780  * NOTE: this will only disable the regulator output if no other consumer
2781  * devices have it enabled, the regulator device supports disabling and
2782  * machine constraints permit this operation.
2783  */
2784 int regulator_disable_deferred(struct regulator *regulator, int ms)
2785 {
2786         struct regulator_dev *rdev = regulator->rdev;
2787 
2788         if (!ms)
2789                 return regulator_disable(regulator);
2790 
2791         regulator_lock(rdev);
2792         regulator->deferred_disables++;
2793         mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2794                          msecs_to_jiffies(ms));
2795         regulator_unlock(rdev);
2796 
2797         return 0;
2798 }
2799 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2800 
2801 static int _regulator_is_enabled(struct regulator_dev *rdev)
2802 {
2803         /* A GPIO control always takes precedence */
2804         if (rdev->ena_pin)
2805                 return rdev->ena_gpio_state;
2806 
2807         /* If we don't know then assume that the regulator is always on */
2808         if (!rdev->desc->ops->is_enabled)
2809                 return 1;
2810 
2811         return rdev->desc->ops->is_enabled(rdev);
2812 }
2813 
2814 static int _regulator_list_voltage(struct regulator_dev *rdev,
2815                                    unsigned selector, int lock)
2816 {
2817         const struct regulator_ops *ops = rdev->desc->ops;
2818         int ret;
2819 
2820         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2821                 return rdev->desc->fixed_uV;
2822 
2823         if (ops->list_voltage) {
2824                 if (selector >= rdev->desc->n_voltages)
2825                         return -EINVAL;
2826                 if (lock)
2827                         regulator_lock(rdev);
2828                 ret = ops->list_voltage(rdev, selector);
2829                 if (lock)
2830                         regulator_unlock(rdev);
2831         } else if (rdev->is_switch && rdev->supply) {
2832                 ret = _regulator_list_voltage(rdev->supply->rdev,
2833                                               selector, lock);
2834         } else {
2835                 return -EINVAL;
2836         }
2837 
2838         if (ret > 0) {
2839                 if (ret < rdev->constraints->min_uV)
2840                         ret = 0;
2841                 else if (ret > rdev->constraints->max_uV)
2842                         ret = 0;
2843         }
2844 
2845         return ret;
2846 }
2847 
2848 /**
2849  * regulator_is_enabled - is the regulator output enabled
2850  * @regulator: regulator source
2851  *
2852  * Returns positive if the regulator driver backing the source/client
2853  * has requested that the device be enabled, zero if it hasn't, else a
2854  * negative errno code.
2855  *
2856  * Note that the device backing this regulator handle can have multiple
2857  * users, so it might be enabled even if regulator_enable() was never
2858  * called for this particular source.
2859  */
2860 int regulator_is_enabled(struct regulator *regulator)
2861 {
2862         int ret;
2863 
2864         if (regulator->always_on)
2865                 return 1;
2866 
2867         regulator_lock(regulator->rdev);
2868         ret = _regulator_is_enabled(regulator->rdev);
2869         regulator_unlock(regulator->rdev);
2870 
2871         return ret;
2872 }
2873 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2874 
2875 /**
2876  * regulator_count_voltages - count regulator_list_voltage() selectors
2877  * @regulator: regulator source
2878  *
2879  * Returns number of selectors, or negative errno.  Selectors are
2880  * numbered starting at zero, and typically correspond to bitfields
2881  * in hardware registers.
2882  */
2883 int regulator_count_voltages(struct regulator *regulator)
2884 {
2885         struct regulator_dev    *rdev = regulator->rdev;
2886 
2887         if (rdev->desc->n_voltages)
2888                 return rdev->desc->n_voltages;
2889 
2890         if (!rdev->is_switch || !rdev->supply)
2891                 return -EINVAL;
2892 
2893         return regulator_count_voltages(rdev->supply);
2894 }
2895 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2896 
2897 /**
2898  * regulator_list_voltage - enumerate supported voltages
2899  * @regulator: regulator source
2900  * @selector: identify voltage to list
2901  * Context: can sleep
2902  *
2903  * Returns a voltage that can be passed to @regulator_set_voltage(),
2904  * zero if this selector code can't be used on this system, or a
2905  * negative errno.
2906  */
2907 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2908 {
2909         return _regulator_list_voltage(regulator->rdev, selector, 1);
2910 }
2911 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2912 
2913 /**
2914  * regulator_get_regmap - get the regulator's register map
2915  * @regulator: regulator source
2916  *
2917  * Returns the register map for the given regulator, or an ERR_PTR value
2918  * if the regulator doesn't use regmap.
2919  */
2920 struct regmap *regulator_get_regmap(struct regulator *regulator)
2921 {
2922         struct regmap *map = regulator->rdev->regmap;
2923 
2924         return map ? map : ERR_PTR(-EOPNOTSUPP);
2925 }
2926 
2927 /**
2928  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2929  * @regulator: regulator source
2930  * @vsel_reg: voltage selector register, output parameter
2931  * @vsel_mask: mask for voltage selector bitfield, output parameter
2932  *
2933  * Returns the hardware register offset and bitmask used for setting the
2934  * regulator voltage. This might be useful when configuring voltage-scaling
2935  * hardware or firmware that can make I2C requests behind the kernel's back,
2936  * for example.
2937  *
2938  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2939  * and 0 is returned, otherwise a negative errno is returned.
2940  */
2941 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2942                                          unsigned *vsel_reg,
2943                                          unsigned *vsel_mask)
2944 {
2945         struct regulator_dev *rdev = regulator->rdev;
2946         const struct regulator_ops *ops = rdev->desc->ops;
2947 
2948         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2949                 return -EOPNOTSUPP;
2950 
2951         *vsel_reg = rdev->desc->vsel_reg;
2952         *vsel_mask = rdev->desc->vsel_mask;
2953 
2954          return 0;
2955 }
2956 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2957 
2958 /**
2959  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2960  * @regulator: regulator source
2961  * @selector: identify voltage to list
2962  *
2963  * Converts the selector to a hardware-specific voltage selector that can be
2964  * directly written to the regulator registers. The address of the voltage
2965  * register can be determined by calling @regulator_get_hardware_vsel_register.
2966  *
2967  * On error a negative errno is returned.
2968  */
2969 int regulator_list_hardware_vsel(struct regulator *regulator,
2970                                  unsigned selector)
2971 {
2972         struct regulator_dev *rdev = regulator->rdev;
2973         const struct regulator_ops *ops = rdev->desc->ops;
2974 
2975         if (selector >= rdev->desc->n_voltages)
2976                 return -EINVAL;
2977         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2978                 return -EOPNOTSUPP;
2979 
2980         return selector;
2981 }
2982 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2983 
2984 /**
2985  * regulator_get_linear_step - return the voltage step size between VSEL values
2986  * @regulator: regulator source
2987  *
2988  * Returns the voltage step size between VSEL values for linear
2989  * regulators, or return 0 if the regulator isn't a linear regulator.
2990  */
2991 unsigned int regulator_get_linear_step(struct regulator *regulator)
2992 {
2993         struct regulator_dev *rdev = regulator->rdev;
2994 
2995         return rdev->desc->uV_step;
2996 }
2997 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2998 
2999 /**
3000  * regulator_is_supported_voltage - check if a voltage range can be supported
3001  *
3002  * @regulator: Regulator to check.
3003  * @min_uV: Minimum required voltage in uV.
3004  * @max_uV: Maximum required voltage in uV.
3005  *
3006  * Returns a boolean.
3007  */
3008 int regulator_is_supported_voltage(struct regulator *regulator,
3009                                    int min_uV, int max_uV)
3010 {
3011         struct regulator_dev *rdev = regulator->rdev;
3012         int i, voltages, ret;
3013 
3014         /* If we can't change voltage check the current voltage */
3015         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3016                 ret = regulator_get_voltage(regulator);
3017                 if (ret >= 0)
3018                         return min_uV <= ret && ret <= max_uV;
3019                 else
3020                         return ret;
3021         }
3022 
3023         /* Any voltage within constrains range is fine? */
3024         if (rdev->desc->continuous_voltage_range)
3025                 return min_uV >= rdev->constraints->min_uV &&
3026                                 max_uV <= rdev->constraints->max_uV;
3027 
3028         ret = regulator_count_voltages(regulator);
3029         if (ret < 0)
3030                 return 0;
3031         voltages = ret;
3032 
3033         for (i = 0; i < voltages; i++) {
3034                 ret = regulator_list_voltage(regulator, i);
3035 
3036                 if (ret >= min_uV && ret <= max_uV)
3037                         return 1;
3038         }
3039 
3040         return 0;
3041 }
3042 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3043 
3044 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3045                                  int max_uV)
3046 {
3047         const struct regulator_desc *desc = rdev->desc;
3048 
3049         if (desc->ops->map_voltage)
3050                 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3051 
3052         if (desc->ops->list_voltage == regulator_list_voltage_linear)
3053                 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3054 
3055         if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3056                 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3057 
3058         if (desc->ops->list_voltage ==
3059                 regulator_list_voltage_pickable_linear_range)
3060                 return regulator_map_voltage_pickable_linear_range(rdev,
3061                                                         min_uV, max_uV);
3062 
3063         return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3064 }
3065 
3066 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3067                                        int min_uV, int max_uV,
3068                                        unsigned *selector)
3069 {
3070         struct pre_voltage_change_data data;
3071         int ret;
3072 
3073         data.old_uV = regulator_get_voltage_rdev(rdev);
3074         data.min_uV = min_uV;
3075         data.max_uV = max_uV;
3076         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3077                                    &data);
3078         if (ret & NOTIFY_STOP_MASK)
3079                 return -EINVAL;
3080 
3081         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3082         if (ret >= 0)
3083                 return ret;
3084 
3085         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3086                              (void *)data.old_uV);
3087 
3088         return ret;
3089 }
3090 
3091 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3092                                            int uV, unsigned selector)
3093 {
3094         struct pre_voltage_change_data data;
3095         int ret;
3096 
3097         data.old_uV = regulator_get_voltage_rdev(rdev);
3098         data.min_uV = uV;
3099         data.max_uV = uV;
3100         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3101                                    &data);
3102         if (ret & NOTIFY_STOP_MASK)
3103                 return -EINVAL;
3104 
3105         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3106         if (ret >= 0)
3107                 return ret;
3108 
3109         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3110                              (void *)data.old_uV);
3111 
3112         return ret;
3113 }
3114 
3115 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3116                                            int uV, int new_selector)
3117 {
3118         const struct regulator_ops *ops = rdev->desc->ops;
3119         int diff, old_sel, curr_sel, ret;
3120 
3121         /* Stepping is only needed if the regulator is enabled. */
3122         if (!_regulator_is_enabled(rdev))
3123                 goto final_set;
3124 
3125         if (!ops->get_voltage_sel)
3126                 return -EINVAL;
3127 
3128         old_sel = ops->get_voltage_sel(rdev);
3129         if (old_sel < 0)
3130                 return old_sel;
3131 
3132         diff = new_selector - old_sel;
3133         if (diff == 0)
3134                 return 0; /* No change needed. */
3135 
3136         if (diff > 0) {
3137                 /* Stepping up. */
3138                 for (curr_sel = old_sel + rdev->desc->vsel_step;
3139                      curr_sel < new_selector;
3140                      curr_sel += rdev->desc->vsel_step) {
3141                         /*
3142                          * Call the callback directly instead of using
3143                          * _regulator_call_set_voltage_sel() as we don't
3144                          * want to notify anyone yet. Same in the branch
3145                          * below.
3146                          */
3147                         ret = ops->set_voltage_sel(rdev, curr_sel);
3148                         if (ret)
3149                                 goto try_revert;
3150                 }
3151         } else {
3152                 /* Stepping down. */
3153                 for (curr_sel = old_sel - rdev->desc->vsel_step;
3154                      curr_sel > new_selector;
3155                      curr_sel -= rdev->desc->vsel_step) {
3156                         ret = ops->set_voltage_sel(rdev, curr_sel);
3157                         if (ret)
3158                                 goto try_revert;
3159                 }
3160         }
3161 
3162 final_set:
3163         /* The final selector will trigger the notifiers. */
3164         return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3165 
3166 try_revert:
3167         /*
3168          * At least try to return to the previous voltage if setting a new
3169          * one failed.
3170          */
3171         (void)ops->set_voltage_sel(rdev, old_sel);
3172         return ret;
3173 }
3174 
3175 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3176                                        int old_uV, int new_uV)
3177 {
3178         unsigned int ramp_delay = 0;
3179 
3180         if (rdev->constraints->ramp_delay)
3181                 ramp_delay = rdev->constraints->ramp_delay;
3182         else if (rdev->desc->ramp_delay)
3183                 ramp_delay = rdev->desc->ramp_delay;
3184         else if (rdev->constraints->settling_time)
3185                 return rdev->constraints->settling_time;
3186         else if (rdev->constraints->settling_time_up &&
3187                  (new_uV > old_uV))
3188                 return rdev->constraints->settling_time_up;
3189         else if (rdev->constraints->settling_time_down &&
3190                  (new_uV < old_uV))
3191                 return rdev->constraints->settling_time_down;
3192 
3193         if (ramp_delay == 0) {
3194                 rdev_dbg(rdev, "ramp_delay not set\n");
3195                 return 0;
3196         }
3197 
3198         return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3199 }
3200 
3201 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3202                                      int min_uV, int max_uV)
3203 {
3204         int ret;
3205         int delay = 0;
3206         int best_val = 0;
3207         unsigned int selector;
3208         int old_selector = -1;
3209         const struct regulator_ops *ops = rdev->desc->ops;
3210         int old_uV = regulator_get_voltage_rdev(rdev);
3211 
3212         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3213 
3214         min_uV += rdev->constraints->uV_offset;
3215         max_uV += rdev->constraints->uV_offset;
3216 
3217         /*
3218          * If we can't obtain the old selector there is not enough
3219          * info to call set_voltage_time_sel().
3220          */
3221         if (_regulator_is_enabled(rdev) &&
3222             ops->set_voltage_time_sel && ops->get_voltage_sel) {
3223                 old_selector = ops->get_voltage_sel(rdev);
3224                 if (old_selector < 0)
3225                         return old_selector;
3226         }
3227 
3228         if (ops->set_voltage) {
3229                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3230                                                   &selector);
3231 
3232                 if (ret >= 0) {
3233                         if (ops->list_voltage)
3234                                 best_val = ops->list_voltage(rdev,
3235                                                              selector);
3236                         else
3237                                 best_val = regulator_get_voltage_rdev(rdev);
3238                 }
3239 
3240         } else if (ops->set_voltage_sel) {
3241                 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3242                 if (ret >= 0) {
3243                         best_val = ops->list_voltage(rdev, ret);
3244                         if (min_uV <= best_val && max_uV >= best_val) {
3245                                 selector = ret;
3246                                 if (old_selector == selector)
3247                                         ret = 0;
3248                                 else if (rdev->desc->vsel_step)
3249                                         ret = _regulator_set_voltage_sel_step(
3250                                                 rdev, best_val, selector);
3251                                 else
3252                                         ret = _regulator_call_set_voltage_sel(
3253                                                 rdev, best_val, selector);
3254                         } else {
3255                                 ret = -EINVAL;
3256                         }
3257                 }
3258         } else {
3259                 ret = -EINVAL;
3260         }
3261 
3262         if (ret)
3263                 goto out;
3264 
3265         if (ops->set_voltage_time_sel) {
3266                 /*
3267                  * Call set_voltage_time_sel if successfully obtained
3268                  * old_selector
3269                  */
3270                 if (old_selector >= 0 && old_selector != selector)
3271                         delay = ops->set_voltage_time_sel(rdev, old_selector,
3272                                                           selector);
3273         } else {
3274                 if (old_uV != best_val) {
3275                         if (ops->set_voltage_time)
3276                                 delay = ops->set_voltage_time(rdev, old_uV,
3277                                                               best_val);
3278                         else
3279                                 delay = _regulator_set_voltage_time(rdev,
3280                                                                     old_uV,
3281                                                                     best_val);
3282                 }
3283         }
3284 
3285         if (delay < 0) {
3286                 rdev_warn(rdev, "failed to get delay: %d\n", delay);
3287                 delay = 0;
3288         }
3289 
3290         /* Insert any necessary delays */
3291         if (delay >= 1000) {
3292                 mdelay(delay / 1000);
3293                 udelay(delay % 1000);
3294         } else if (delay) {
3295                 udelay(delay);
3296         }
3297 
3298         if (best_val >= 0) {
3299                 unsigned long data = best_val;
3300 
3301                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3302                                      (void *)data);
3303         }
3304 
3305 out:
3306         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3307 
3308         return ret;
3309 }
3310 
3311 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3312                                   int min_uV, int max_uV, suspend_state_t state)
3313 {
3314         struct regulator_state *rstate;
3315         int uV, sel;
3316 
3317         rstate = regulator_get_suspend_state(rdev, state);
3318         if (rstate == NULL)
3319                 return -EINVAL;
3320 
3321         if (min_uV < rstate->min_uV)
3322                 min_uV = rstate->min_uV;
3323         if (max_uV > rstate->max_uV)
3324                 max_uV = rstate->max_uV;
3325 
3326         sel = regulator_map_voltage(rdev, min_uV, max_uV);
3327         if (sel < 0)
3328                 return sel;
3329 
3330         uV = rdev->desc->ops->list_voltage(rdev, sel);
3331         if (uV >= min_uV && uV <= max_uV)
3332                 rstate->uV = uV;
3333 
3334         return 0;
3335 }
3336 
3337 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3338                                           int min_uV, int max_uV,
3339                                           suspend_state_t state)
3340 {
3341         struct regulator_dev *rdev = regulator->rdev;
3342         struct regulator_voltage *voltage = &regulator->voltage[state];
3343         int ret = 0;
3344         int old_min_uV, old_max_uV;
3345         int current_uV;
3346 
3347         /* If we're setting the same range as last time the change
3348          * should be a noop (some cpufreq implementations use the same
3349          * voltage for multiple frequencies, for example).
3350          */
3351         if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3352                 goto out;
3353 
3354         /* If we're trying to set a range that overlaps the current voltage,
3355          * return successfully even though the regulator does not support
3356          * changing the voltage.
3357          */
3358         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3359                 current_uV = regulator_get_voltage_rdev(rdev);
3360                 if (min_uV <= current_uV && current_uV <= max_uV) {
3361                         voltage->min_uV = min_uV;
3362                         voltage->max_uV = max_uV;
3363                         goto out;
3364                 }
3365         }
3366 
3367         /* sanity check */
3368         if (!rdev->desc->ops->set_voltage &&
3369             !rdev->desc->ops->set_voltage_sel) {
3370                 ret = -EINVAL;
3371                 goto out;
3372         }
3373 
3374         /* constraints check */
3375         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3376         if (ret < 0)
3377                 goto out;
3378 
3379         /* restore original values in case of error */
3380         old_min_uV = voltage->min_uV;
3381         old_max_uV = voltage->max_uV;
3382         voltage->min_uV = min_uV;
3383         voltage->max_uV = max_uV;
3384 
3385         /* for not coupled regulators this will just set the voltage */
3386         ret = regulator_balance_voltage(rdev, state);
3387         if (ret < 0) {
3388                 voltage->min_uV = old_min_uV;
3389                 voltage->max_uV = old_max_uV;
3390         }
3391 
3392 out:
3393         return ret;
3394 }
3395 
3396 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3397                                int max_uV, suspend_state_t state)
3398 {
3399         int best_supply_uV = 0;
3400         int supply_change_uV = 0;
3401         int ret;
3402 
3403         if (rdev->supply &&
3404             regulator_ops_is_valid(rdev->supply->rdev,
3405                                    REGULATOR_CHANGE_VOLTAGE) &&
3406             (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3407                                            rdev->desc->ops->get_voltage_sel))) {
3408                 int current_supply_uV;
3409                 int selector;
3410 
3411                 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3412                 if (selector < 0) {
3413                         ret = selector;
3414                         goto out;
3415                 }
3416 
3417                 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3418                 if (best_supply_uV < 0) {
3419                         ret = best_supply_uV;
3420                         goto out;
3421                 }
3422 
3423                 best_supply_uV += rdev->desc->min_dropout_uV;
3424 
3425                 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3426                 if (current_supply_uV < 0) {
3427                         ret = current_supply_uV;
3428                         goto out;
3429                 }
3430 
3431                 supply_change_uV = best_supply_uV - current_supply_uV;
3432         }
3433 
3434         if (supply_change_uV > 0) {
3435                 ret = regulator_set_voltage_unlocked(rdev->supply,
3436                                 best_supply_uV, INT_MAX, state);
3437                 if (ret) {
3438                         dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3439                                         ret);
3440                         goto out;
3441                 }
3442         }
3443 
3444         if (state == PM_SUSPEND_ON)
3445                 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3446         else
3447                 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3448                                                         max_uV, state);
3449         if (ret < 0)
3450                 goto out;
3451 
3452         if (supply_change_uV < 0) {
3453                 ret = regulator_set_voltage_unlocked(rdev->supply,
3454                                 best_supply_uV, INT_MAX, state);
3455                 if (ret)
3456                         dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3457                                         ret);
3458                 /* No need to fail here */
3459                 ret = 0;
3460         }
3461 
3462 out:
3463         return ret;
3464 }
3465 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3466 
3467 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3468                                         int *current_uV, int *min_uV)
3469 {
3470         struct regulation_constraints *constraints = rdev->constraints;
3471 
3472         /* Limit voltage change only if necessary */
3473         if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3474                 return 1;
3475 
3476         if (*current_uV < 0) {
3477                 *current_uV = regulator_get_voltage_rdev(rdev);
3478 
3479                 if (*current_uV < 0)
3480                         return *current_uV;
3481         }
3482 
3483         if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3484                 return 1;
3485 
3486         /* Clamp target voltage within the given step */
3487         if (*current_uV < *min_uV)
3488                 *min_uV = min(*current_uV + constraints->max_uV_step,
3489                               *min_uV);
3490         else
3491                 *min_uV = max(*current_uV - constraints->max_uV_step,
3492                               *min_uV);
3493 
3494         return 0;
3495 }
3496 
3497 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3498                                          int *current_uV,
3499                                          int *min_uV, int *max_uV,
3500                                          suspend_state_t state,
3501                                          int n_coupled)
3502 {
3503         struct coupling_desc *c_desc = &rdev->coupling_desc;
3504         struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3505         struct regulation_constraints *constraints = rdev->constraints;
3506         int desired_min_uV = 0, desired_max_uV = INT_MAX;
3507         int max_current_uV = 0, min_current_uV = INT_MAX;
3508         int highest_min_uV = 0, target_uV, possible_uV;
3509         int i, ret, max_spread;
3510         bool done;
3511 
3512         *current_uV = -1;
3513 
3514         /*
3515          * If there are no coupled regulators, simply set the voltage
3516          * demanded by consumers.
3517          */
3518         if (n_coupled == 1) {
3519                 /*
3520                  * If consumers don't provide any demands, set voltage
3521                  * to min_uV
3522                  */
3523                 desired_min_uV = constraints->min_uV;
3524                 desired_max_uV = constraints->max_uV;
3525 
3526                 ret = regulator_check_consumers(rdev,
3527                                                 &desired_min_uV,
3528                                                 &desired_max_uV, state);
3529                 if (ret < 0)
3530                         return ret;
3531 
3532                 possible_uV = desired_min_uV;
3533                 done = true;
3534 
3535                 goto finish;
3536         }
3537 
3538         /* Find highest min desired voltage */
3539         for (i = 0; i < n_coupled; i++) {
3540                 int tmp_min = 0;
3541                 int tmp_max = INT_MAX;
3542 
3543                 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3544 
3545                 ret = regulator_check_consumers(c_rdevs[i],
3546                                                 &tmp_min,
3547                                                 &tmp_max, state);
3548                 if (ret < 0)
3549                         return ret;
3550 
3551                 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3552                 if (ret < 0)
3553                         return ret;
3554 
3555                 highest_min_uV = max(highest_min_uV, tmp_min);
3556 
3557                 if (i == 0) {
3558                         desired_min_uV = tmp_min;
3559                         desired_max_uV = tmp_max;
3560                 }
3561         }
3562 
3563         max_spread = constraints->max_spread[0];
3564 
3565         /*
3566          * Let target_uV be equal to the desired one if possible.
3567          * If not, set it to minimum voltage, allowed by other coupled
3568          * regulators.
3569          */
3570         target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3571 
3572         /*
3573          * Find min and max voltages, which currently aren't violating
3574          * max_spread.
3575          */
3576         for (i = 1; i < n_coupled; i++) {
3577                 int tmp_act;
3578 
3579                 if (!_regulator_is_enabled(c_rdevs[i]))
3580                         continue;
3581 
3582                 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3583                 if (tmp_act < 0)
3584                         return tmp_act;
3585 
3586                 min_current_uV = min(tmp_act, min_current_uV);
3587                 max_current_uV = max(tmp_act, max_current_uV);
3588         }
3589 
3590         /* There aren't any other regulators enabled */
3591         if (max_current_uV == 0) {
3592                 possible_uV = target_uV;
3593         } else {
3594                 /*
3595                  * Correct target voltage, so as it currently isn't
3596                  * violating max_spread
3597                  */
3598                 possible_uV = max(target_uV, max_current_uV - max_spread);
3599                 possible_uV = min(possible_uV, min_current_uV + max_spread);
3600         }
3601 
3602         if (possible_uV > desired_max_uV)
3603                 return -EINVAL;
3604 
3605         done = (possible_uV == target_uV);
3606         desired_min_uV = possible_uV;
3607 
3608 finish:
3609         /* Apply max_uV_step constraint if necessary */
3610         if (state == PM_SUSPEND_ON) {
3611                 ret = regulator_limit_voltage_step(rdev, current_uV,
3612                                                    &desired_min_uV);
3613                 if (ret < 0)
3614                         return ret;
3615 
3616                 if (ret == 0)
3617                         done = false;
3618         }
3619 
3620         /* Set current_uV if wasn't done earlier in the code and if necessary */
3621         if (n_coupled > 1 && *current_uV == -1) {
3622 
3623                 if (_regulator_is_enabled(rdev)) {
3624                         ret = regulator_get_voltage_rdev(rdev);
3625                         if (ret < 0)
3626                                 return ret;
3627 
3628                         *current_uV = ret;
3629                 } else {
3630                         *current_uV = desired_min_uV;
3631                 }
3632         }
3633 
3634         *min_uV = desired_min_uV;
3635         *max_uV = desired_max_uV;
3636 
3637         return done;
3638 }
3639 
3640 static int regulator_balance_voltage(struct regulator_dev *rdev,
3641                                      suspend_state_t state)
3642 {
3643         struct regulator_dev **c_rdevs;
3644         struct regulator_dev *best_rdev;
3645         struct coupling_desc *c_desc = &rdev->coupling_desc;
3646         struct regulator_coupler *coupler = c_desc->coupler;
3647         int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3648         unsigned int delta, best_delta;
3649         unsigned long c_rdev_done = 0;
3650         bool best_c_rdev_done;
3651 
3652         c_rdevs = c_desc->coupled_rdevs;
3653         n_coupled = c_desc->n_coupled;
3654 
3655         /*
3656          * If system is in a state other than PM_SUSPEND_ON, don't check
3657          * other coupled regulators.
3658          */
3659         if (state != PM_SUSPEND_ON)
3660                 n_coupled = 1;
3661 
3662         if (c_desc->n_resolved < n_coupled) {
3663                 rdev_err(rdev, "Not all coupled regulators registered\n");
3664                 return -EPERM;
3665         }
3666 
3667         /* Invoke custom balancer for customized couplers */
3668         if (coupler && coupler->balance_voltage)
3669                 return coupler->balance_voltage(coupler, rdev, state);
3670 
3671         /*
3672          * Find the best possible voltage change on each loop. Leave the loop
3673          * if there isn't any possible change.
3674          */
3675         do {
3676                 best_c_rdev_done = false;
3677                 best_delta = 0;
3678                 best_min_uV = 0;
3679                 best_max_uV = 0;
3680                 best_c_rdev = 0;
3681                 best_rdev = NULL;
3682 
3683                 /*
3684                  * Find highest difference between optimal voltage
3685                  * and current voltage.
3686                  */
3687                 for (i = 0; i < n_coupled; i++) {
3688                         /*
3689                          * optimal_uV is the best voltage that can be set for
3690                          * i-th regulator at the moment without violating
3691                          * max_spread constraint in order to balance
3692                          * the coupled voltages.
3693                          */
3694                         int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3695 
3696                         if (test_bit(i, &c_rdev_done))
3697                                 continue;
3698 
3699                         ret = regulator_get_optimal_voltage(c_rdevs[i],
3700                                                             &current_uV,
3701                                                             &optimal_uV,
3702                                                             &optimal_max_uV,
3703                                                             state, n_coupled);
3704                         if (ret < 0)
3705                                 goto out;
3706 
3707                         delta = abs(optimal_uV - current_uV);
3708 
3709                         if (delta && best_delta <= delta) {
3710                                 best_c_rdev_done = ret;
3711                                 best_delta = delta;
3712                                 best_rdev = c_rdevs[i];
3713                                 best_min_uV = optimal_uV;
3714                                 best_max_uV = optimal_max_uV;
3715                                 best_c_rdev = i;
3716                         }
3717                 }
3718 
3719                 /* Nothing to change, return successfully */
3720                 if (!best_rdev) {
3721                         ret = 0;
3722                         goto out;
3723                 }
3724 
3725                 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3726                                                  best_max_uV, state);
3727 
3728                 if (ret < 0)
3729                         goto out;
3730 
3731                 if (best_c_rdev_done)
3732                         set_bit(best_c_rdev, &c_rdev_done);
3733 
3734         } while (n_coupled > 1);
3735 
3736 out:
3737         return ret;
3738 }
3739 
3740 /**
3741  * regulator_set_voltage - set regulator output voltage
3742  * @regulator: regulator source
3743  * @min_uV: Minimum required voltage in uV
3744  * @max_uV: Maximum acceptable voltage in uV
3745  *
3746  * Sets a voltage regulator to the desired output voltage. This can be set
3747  * during any regulator state. IOW, regulator can be disabled or enabled.
3748  *
3749  * If the regulator is enabled then the voltage will change to the new value
3750  * immediately otherwise if the regulator is disabled the regulator will
3751  * output at the new voltage when enabled.
3752  *
3753  * NOTE: If the regulator is shared between several devices then the lowest
3754  * request voltage that meets the system constraints will be used.
3755  * Regulator system constraints must be set for this regulator before
3756  * calling this function otherwise this call will fail.
3757  */
3758 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3759 {
3760         struct ww_acquire_ctx ww_ctx;
3761         int ret;
3762 
3763         regulator_lock_dependent(regulator->rdev, &ww_ctx);
3764 
3765         ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3766                                              PM_SUSPEND_ON);
3767 
3768         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3769 
3770         return ret;
3771 }
3772 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3773 
3774 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3775                                            suspend_state_t state, bool en)
3776 {
3777         struct regulator_state *rstate;
3778 
3779         rstate = regulator_get_suspend_state(rdev, state);
3780         if (rstate == NULL)
3781                 return -EINVAL;
3782 
3783         if (!rstate->changeable)
3784                 return -EPERM;
3785 
3786         rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3787 
3788         return 0;
3789 }
3790 
3791 int regulator_suspend_enable(struct regulator_dev *rdev,
3792                                     suspend_state_t state)
3793 {
3794         return regulator_suspend_toggle(rdev, state, true);
3795 }
3796 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3797 
3798 int regulator_suspend_disable(struct regulator_dev *rdev,
3799                                      suspend_state_t state)
3800 {
3801         struct regulator *regulator;
3802         struct regulator_voltage *voltage;
3803 
3804         /*
3805          * if any consumer wants this regulator device keeping on in
3806          * suspend states, don't set it as disabled.
3807          */
3808         list_for_each_entry(regulator, &rdev->consumer_list, list) {
3809                 voltage = &regulator->voltage[state];
3810                 if (voltage->min_uV || voltage->max_uV)
3811                         return 0;
3812         }
3813 
3814         return regulator_suspend_toggle(rdev, state, false);
3815 }
3816 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3817 
3818 static int _regulator_set_suspend_voltage(struct regulator *regulator,
3819                                           int min_uV, int max_uV,
3820                                           suspend_state_t state)
3821 {
3822         struct regulator_dev *rdev = regulator->rdev;
3823         struct regulator_state *rstate;
3824 
3825         rstate = regulator_get_suspend_state(rdev, state);
3826         if (rstate == NULL)
3827                 return -EINVAL;
3828 
3829         if (rstate->min_uV == rstate->max_uV) {
3830                 rdev_err(rdev, "The suspend voltage can't be changed!\n");
3831                 return -EPERM;
3832         }
3833 
3834         return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3835 }
3836 
3837 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3838                                   int max_uV, suspend_state_t state)
3839 {
3840         struct ww_acquire_ctx ww_ctx;
3841         int ret;
3842 
3843         /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3844         if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3845                 return -EINVAL;
3846 
3847         regulator_lock_dependent(regulator->rdev, &ww_ctx);
3848 
3849         ret = _regulator_set_suspend_voltage(regulator, min_uV,
3850                                              max_uV, state);
3851 
3852         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3853 
3854         return ret;
3855 }
3856 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
3857 
3858 /**
3859  * regulator_set_voltage_time - get raise/fall time
3860  * @regulator: regulator source
3861  * @old_uV: starting voltage in microvolts
3862  * @new_uV: target voltage in microvolts
3863  *
3864  * Provided with the starting and ending voltage, this function attempts to
3865  * calculate the time in microseconds required to rise or fall to this new
3866  * voltage.
3867  */
3868 int regulator_set_voltage_time(struct regulator *regulator,
3869                                int old_uV, int new_uV)
3870 {
3871         struct regulator_dev *rdev = regulator->rdev;
3872         const struct regulator_ops *ops = rdev->desc->ops;
3873         int old_sel = -1;
3874         int new_sel = -1;
3875         int voltage;
3876         int i;
3877 
3878         if (ops->set_voltage_time)
3879                 return ops->set_voltage_time(rdev, old_uV, new_uV);
3880         else if (!ops->set_voltage_time_sel)
3881                 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3882 
3883         /* Currently requires operations to do this */
3884         if (!ops->list_voltage || !rdev->desc->n_voltages)
3885                 return -EINVAL;
3886 
3887         for (i = 0; i < rdev->desc->n_voltages; i++) {
3888                 /* We only look for exact voltage matches here */
3889                 voltage = regulator_list_voltage(regulator, i);
3890                 if (voltage < 0)
3891                         return -EINVAL;
3892                 if (voltage == 0)
3893                         continue;
3894                 if (voltage == old_uV)
3895                         old_sel = i;
3896                 if (voltage == new_uV)
3897                         new_sel = i;
3898         }
3899 
3900         if (old_sel < 0 || new_sel < 0)
3901                 return -EINVAL;
3902 
3903         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3904 }
3905 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3906 
3907 /**
3908  * regulator_set_voltage_time_sel - get raise/fall time
3909  * @rdev: regulator source device
3910  * @old_selector: selector for starting voltage
3911  * @new_selector: selector for target voltage
3912  *
3913  * Provided with the starting and target voltage selectors, this function
3914  * returns time in microseconds required to rise or fall to this new voltage
3915  *
3916  * Drivers providing ramp_delay in regulation_constraints can use this as their
3917  * set_voltage_time_sel() operation.
3918  */
3919 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3920                                    unsigned int old_selector,
3921                                    unsigned int new_selector)
3922 {
3923         int old_volt, new_volt;
3924 
3925         /* sanity check */
3926         if (!rdev->desc->ops->list_voltage)
3927                 return -EINVAL;
3928 
3929         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3930         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3931 
3932         if (rdev->desc->ops->set_voltage_time)
3933                 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3934                                                          new_volt);
3935         else
3936                 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3937 }
3938 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3939 
3940 /**
3941  * regulator_sync_voltage - re-apply last regulator output voltage
3942  * @regulator: regulator source
3943  *
3944  * Re-apply the last configured voltage.  This is intended to be used
3945  * where some external control source the consumer is cooperating with
3946  * has caused the configured voltage to change.
3947  */
3948 int regulator_sync_voltage(struct regulator *regulator)
3949 {
3950         struct regulator_dev *rdev = regulator->rdev;
3951         struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
3952         int ret, min_uV, max_uV;
3953 
3954         regulator_lock(rdev);
3955 
3956         if (!rdev->desc->ops->set_voltage &&
3957             !rdev->desc->ops->set_voltage_sel) {
3958                 ret = -EINVAL;
3959                 goto out;
3960         }
3961 
3962         /* This is only going to work if we've had a voltage configured. */
3963         if (!voltage->min_uV && !voltage->max_uV) {
3964                 ret = -EINVAL;
3965                 goto out;
3966         }
3967 
3968         min_uV = voltage->min_uV;
3969         max_uV = voltage->max_uV;
3970 
3971         /* This should be a paranoia check... */
3972         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3973         if (ret < 0)
3974                 goto out;
3975 
3976         ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3977         if (ret < 0)
3978                 goto out;
3979 
3980         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3981 
3982 out:
3983         regulator_unlock(rdev);
3984         return ret;
3985 }
3986 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3987 
3988 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
3989 {
3990         int sel, ret;
3991         bool bypassed;
3992 
3993         if (rdev->desc->ops->get_bypass) {
3994                 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3995                 if (ret < 0)
3996                         return ret;
3997                 if (bypassed) {
3998                         /* if bypassed the regulator must have a supply */
3999                         if (!rdev->supply) {
4000                                 rdev_err(rdev,
4001                                          "bypassed regulator has no supply!\n");
4002                                 return -EPROBE_DEFER;
4003                         }
4004 
4005                         return regulator_get_voltage_rdev(rdev->supply->rdev);
4006                 }
4007         }
4008 
4009         if (rdev->desc->ops->get_voltage_sel) {
4010                 sel = rdev->desc->ops->get_voltage_sel(rdev);
4011                 if (sel < 0)
4012                         return sel;
4013                 ret = rdev->desc->ops->list_voltage(rdev, sel);
4014         } else if (rdev->desc->ops->get_voltage) {
4015                 ret = rdev->desc->ops->get_voltage(rdev);
4016         } else if (rdev->desc->ops->list_voltage) {
4017                 ret = rdev->desc->ops->list_voltage(rdev, 0);
4018         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4019                 ret = rdev->desc->fixed_uV;
4020         } else if (rdev->supply) {
4021                 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4022         } else {
4023                 return -EINVAL;
4024         }
4025 
4026         if (ret < 0)
4027                 return ret;
4028         return ret - rdev->constraints->uV_offset;
4029 }
4030 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4031 
4032 /**
4033  * regulator_get_voltage - get regulator output voltage
4034  * @regulator: regulator source
4035  *
4036  * This returns the current regulator voltage in uV.
4037  *
4038  * NOTE: If the regulator is disabled it will return the voltage value. This
4039  * function should not be used to determine regulator state.
4040  */
4041 int regulator_get_voltage(struct regulator *regulator)
4042 {
4043         struct ww_acquire_ctx ww_ctx;
4044         int ret;
4045 
4046         regulator_lock_dependent(regulator->rdev, &ww_ctx);
4047         ret = regulator_get_voltage_rdev(regulator->rdev);
4048         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4049 
4050         return ret;
4051 }
4052 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4053 
4054 /**
4055  * regulator_set_current_limit - set regulator output current limit
4056  * @regulator: regulator source
4057  * @min_uA: Minimum supported current in uA
4058  * @max_uA: Maximum supported current in uA
4059  *
4060  * Sets current sink to the desired output current. This can be set during
4061  * any regulator state. IOW, regulator can be disabled or enabled.
4062  *
4063  * If the regulator is enabled then the current will change to the new value
4064  * immediately otherwise if the regulator is disabled the regulator will
4065  * output at the new current when enabled.
4066  *
4067  * NOTE: Regulator system constraints must be set for this regulator before
4068  * calling this function otherwise this call will fail.
4069  */
4070 int regulator_set_current_limit(struct regulator *regulator,
4071                                int min_uA, int max_uA)
4072 {
4073         struct regulator_dev *rdev = regulator->rdev;
4074         int ret;
4075 
4076         regulator_lock(rdev);
4077 
4078         /* sanity check */
4079         if (!rdev->desc->ops->set_current_limit) {
4080                 ret = -EINVAL;
4081                 goto out;
4082         }
4083 
4084         /* constraints check */
4085         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4086         if (ret < 0)
4087                 goto out;
4088 
4089         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4090 out:
4091         regulator_unlock(rdev);
4092         return ret;
4093 }
4094 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4095 
4096 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4097 {
4098         /* sanity check */
4099         if (!rdev->desc->ops->get_current_limit)
4100                 return -EINVAL;
4101 
4102         return rdev->desc->ops->get_current_limit(rdev);
4103 }
4104 
4105 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4106 {
4107         int ret;
4108 
4109         regulator_lock(rdev);
4110         ret = _regulator_get_current_limit_unlocked(rdev);
4111         regulator_unlock(rdev);
4112 
4113         return ret;
4114 }
4115 
4116 /**
4117  * regulator_get_current_limit - get regulator output current
4118  * @regulator: regulator source
4119  *
4120  * This returns the current supplied by the specified current sink in uA.
4121  *
4122  * NOTE: If the regulator is disabled it will return the current value. This
4123  * function should not be used to determine regulator state.
4124  */
4125 int regulator_get_current_limit(struct regulator *regulator)
4126 {
4127         return _regulator_get_current_limit(regulator->rdev);
4128 }
4129 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4130 
4131 /**
4132  * regulator_set_mode - set regulator operating mode
4133  * @regulator: regulator source
4134  * @mode: operating mode - one of the REGULATOR_MODE constants
4135  *
4136  * Set regulator operating mode to increase regulator efficiency or improve
4137  * regulation performance.
4138  *
4139  * NOTE: Regulator system constraints must be set for this regulator before
4140  * calling this function otherwise this call will fail.
4141  */
4142 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4143 {
4144         struct regulator_dev *rdev = regulator->rdev;
4145         int ret;
4146         int regulator_curr_mode;
4147 
4148         regulator_lock(rdev);
4149 
4150         /* sanity check */
4151         if (!rdev->desc->ops->set_mode) {
4152                 ret = -EINVAL;
4153                 goto out;
4154         }
4155 
4156         /* return if the same mode is requested */
4157         if (rdev->desc->ops->get_mode) {
4158                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4159                 if (regulator_curr_mode == mode) {
4160                         ret = 0;
4161                         goto out;
4162                 }
4163         }
4164 
4165         /* constraints check */
4166         ret = regulator_mode_constrain(rdev, &mode);
4167         if (ret < 0)
4168                 goto out;
4169 
4170         ret = rdev->desc->ops->set_mode(rdev, mode);
4171 out:
4172         regulator_unlock(rdev);
4173         return ret;
4174 }
4175 EXPORT_SYMBOL_GPL(regulator_set_mode);
4176 
4177 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4178 {
4179         /* sanity check */
4180         if (!rdev->desc->ops->get_mode)
4181                 return -EINVAL;
4182 
4183         return rdev->desc->ops->get_mode(rdev);
4184 }
4185 
4186 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4187 {
4188         int ret;
4189 
4190         regulator_lock(rdev);
4191         ret = _regulator_get_mode_unlocked(rdev);
4192         regulator_unlock(rdev);
4193 
4194         return ret;
4195 }
4196 
4197 /**
4198  * regulator_get_mode - get regulator operating mode
4199  * @regulator: regulator source
4200  *
4201  * Get the current regulator operating mode.
4202  */
4203 unsigned int regulator_get_mode(struct regulator *regulator)
4204 {
4205         return _regulator_get_mode(regulator->rdev);
4206 }
4207 EXPORT_SYMBOL_GPL(regulator_get_mode);
4208 
4209 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4210                                         unsigned int *flags)
4211 {
4212         int ret;
4213 
4214         regulator_lock(rdev);
4215 
4216         /* sanity check */
4217         if (!rdev->desc->ops->get_error_flags) {
4218                 ret = -EINVAL;
4219                 goto out;
4220         }
4221 
4222         ret = rdev->desc->ops->get_error_flags(rdev, flags);
4223 out:
4224         regulator_unlock(rdev);
4225         return ret;
4226 }
4227 
4228 /**
4229  * regulator_get_error_flags - get regulator error information
4230  * @regulator: regulator source
4231  * @flags: pointer to store error flags
4232  *
4233  * Get the current regulator error information.
4234  */
4235 int regulator_get_error_flags(struct regulator *regulator,
4236                                 unsigned int *flags)
4237 {
4238         return _regulator_get_error_flags(regulator->rdev, flags);
4239 }
4240 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4241 
4242 /**
4243  * regulator_set_load - set regulator load
4244  * @regulator: regulator source
4245  * @uA_load: load current
4246  *
4247  * Notifies the regulator core of a new device load. This is then used by
4248  * DRMS (if enabled by constraints) to set the most efficient regulator
4249  * operating mode for the new regulator loading.
4250  *
4251  * Consumer devices notify their supply regulator of the maximum power
4252  * they will require (can be taken from device datasheet in the power
4253  * consumption tables) when they change operational status and hence power
4254  * state. Examples of operational state changes that can affect power
4255  * consumption are :-
4256  *
4257  *    o Device is opened / closed.
4258  *    o Device I/O is about to begin or has just finished.
4259  *    o Device is idling in between work.
4260  *
4261  * This information is also exported via sysfs to userspace.
4262  *
4263  * DRMS will sum the total requested load on the regulator and change
4264  * to the most efficient operating mode if platform constraints allow.
4265  *
4266  * NOTE: when a regulator consumer requests to have a regulator
4267  * disabled then any load that consumer requested no longer counts
4268  * toward the total requested load.  If the regulator is re-enabled
4269  * then the previously requested load will start counting again.
4270  *
4271  * If a regulator is an always-on regulator then an individual consumer's
4272  * load will still be removed if that consumer is fully disabled.
4273  *
4274  * On error a negative errno is returned.
4275  */
4276 int regulator_set_load(struct regulator *regulator, int uA_load)
4277 {
4278         struct regulator_dev *rdev = regulator->rdev;
4279         int old_uA_load;
4280         int ret = 0;
4281 
4282         regulator_lock(rdev);
4283         old_uA_load = regulator->uA_load;
4284         regulator->uA_load = uA_load;
4285         if (regulator->enable_count && old_uA_load != uA_load) {
4286                 ret = drms_uA_update(rdev);
4287                 if (ret < 0)
4288                         regulator->uA_load = old_uA_load;
4289         }
4290         regulator_unlock(rdev);
4291 
4292         return ret;
4293 }
4294 EXPORT_SYMBOL_GPL(regulator_set_load);
4295 
4296 /**
4297  * regulator_allow_bypass - allow the regulator to go into bypass mode
4298  *
4299  * @regulator: Regulator to configure
4300  * @enable: enable or disable bypass mode
4301  *
4302  * Allow the regulator to go into bypass mode if all other consumers
4303  * for the regulator also enable bypass mode and the machine
4304  * constraints allow this.  Bypass mode means that the regulator is
4305  * simply passing the input directly to the output with no regulation.
4306  */
4307 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4308 {
4309         struct regulator_dev *rdev = regulator->rdev;
4310         int ret = 0;
4311 
4312         if (!rdev->desc->ops->set_bypass)
4313                 return 0;
4314 
4315         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4316                 return 0;
4317 
4318         regulator_lock(rdev);
4319 
4320         if (enable && !regulator->bypass) {
4321                 rdev->bypass_count++;
4322 
4323                 if (rdev->bypass_count == rdev->open_count) {
4324                         ret = rdev->desc->ops->set_bypass(rdev, enable);
4325                         if (ret != 0)
4326                                 rdev->bypass_count--;
4327                 }
4328 
4329         } else if (!enable && regulator->bypass) {
4330                 rdev->bypass_count--;
4331 
4332                 if (rdev->bypass_count != rdev->open_count) {
4333                         ret = rdev->desc->ops->set_bypass(rdev, enable);
4334                         if (ret != 0)
4335                                 rdev->bypass_count++;
4336                 }
4337         }
4338 
4339         if (ret == 0)
4340                 regulator->bypass = enable;
4341 
4342         regulator_unlock(rdev);
4343 
4344         return ret;
4345 }
4346 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4347 
4348 /**
4349  * regulator_register_notifier - register regulator event notifier
4350  * @regulator: regulator source
4351  * @nb: notifier block
4352  *
4353  * Register notifier block to receive regulator events.
4354  */
4355 int regulator_register_notifier(struct regulator *regulator,
4356                               struct notifier_block *nb)
4357 {
4358         return blocking_notifier_chain_register(&regulator->rdev->notifier,
4359                                                 nb);
4360 }
4361 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4362 
4363 /**
4364  * regulator_unregister_notifier - unregister regulator event notifier
4365  * @regulator: regulator source
4366  * @nb: notifier block
4367  *
4368  * Unregister regulator event notifier block.
4369  */
4370 int regulator_unregister_notifier(struct regulator *regulator,
4371                                 struct notifier_block *nb)
4372 {
4373         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4374                                                   nb);
4375 }
4376 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4377 
4378 /* notify regulator consumers and downstream regulator consumers.
4379  * Note mutex must be held by caller.
4380  */
4381 static int _notifier_call_chain(struct regulator_dev *rdev,
4382                                   unsigned long event, void *data)
4383 {
4384         /* call rdev chain first */
4385         return blocking_notifier_call_chain(&rdev->notifier, event, data);
4386 }
4387 
4388 /**
4389  * regulator_bulk_get - get multiple regulator consumers
4390  *
4391  * @dev:           Device to supply
4392  * @num_consumers: Number of consumers to register
4393  * @consumers:     Configuration of consumers; clients are stored here.
4394  *
4395  * @return 0 on success, an errno on failure.
4396  *
4397  * This helper function allows drivers to get several regulator
4398  * consumers in one operation.  If any of the regulators cannot be
4399  * acquired then any regulators that were allocated will be freed
4400  * before returning to the caller.
4401  */
4402 int regulator_bulk_get(struct device *dev, int num_consumers,
4403                        struct regulator_bulk_data *consumers)
4404 {
4405         int i;
4406         int ret;
4407 
4408         for (i = 0; i < num_consumers; i++)
4409                 consumers[i].consumer = NULL;
4410 
4411         for (i = 0; i < num_consumers; i++) {
4412                 consumers[i].consumer = regulator_get(dev,
4413                                                       consumers[i].supply);
4414                 if (IS_ERR(consumers[i].consumer)) {
4415                         ret = PTR_ERR(consumers[i].consumer);
4416                         consumers[i].consumer = NULL;
4417                         goto err;
4418                 }
4419         }
4420 
4421         return 0;
4422 
4423 err:
4424         if (ret != -EPROBE_DEFER)
4425                 dev_err(dev, "Failed to get supply '%s': %d\n",
4426                         consumers[i].supply, ret);
4427         else
4428                 dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4429                         consumers[i].supply);
4430 
4431         while (--i >= 0)
4432                 regulator_put(consumers[i].consumer);
4433 
4434         return ret;
4435 }
4436 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4437 
4438 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4439 {
4440         struct regulator_bulk_data *bulk = data;
4441 
4442         bulk->ret = regulator_enable(bulk->consumer);
4443 }
4444 
4445 /**
4446  * regulator_bulk_enable - enable multiple regulator consumers
4447  *
4448  * @num_consumers: Number of consumers
4449  * @consumers:     Consumer data; clients are stored here.
4450  * @return         0 on success, an errno on failure
4451  *
4452  * This convenience API allows consumers to enable multiple regulator
4453  * clients in a single API call.  If any consumers cannot be enabled
4454  * then any others that were enabled will be disabled again prior to
4455  * return.
4456  */
4457 int regulator_bulk_enable(int num_consumers,
4458                           struct regulator_bulk_data *consumers)
4459 {
4460         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4461         int i;
4462         int ret = 0;
4463 
4464         for (i = 0; i < num_consumers; i++) {
4465                 async_schedule_domain(regulator_bulk_enable_async,
4466                                       &consumers[i], &async_domain);
4467         }
4468 
4469         async_synchronize_full_domain(&async_domain);
4470 
4471         /* If any consumer failed we need to unwind any that succeeded */
4472         for (i = 0; i < num_consumers; i++) {
4473                 if (consumers[i].ret != 0) {
4474                         ret = consumers[i].ret;
4475                         goto err;
4476                 }
4477         }
4478 
4479         return 0;
4480 
4481 err:
4482         for (i = 0; i < num_consumers; i++) {
4483                 if (consumers[i].ret < 0)
4484                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
4485                                consumers[i].ret);
4486                 else
4487                         regulator_disable(consumers[i].consumer);
4488         }
4489 
4490         return ret;
4491 }
4492 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4493 
4494 /**
4495  * regulator_bulk_disable - disable multiple regulator consumers
4496  *
4497  * @num_consumers: Number of consumers
4498  * @consumers:     Consumer data; clients are stored here.
4499  * @return         0 on success, an errno on failure
4500  *
4501  * This convenience API allows consumers to disable multiple regulator
4502  * clients in a single API call.  If any consumers cannot be disabled
4503  * then any others that were disabled will be enabled again prior to
4504  * return.
4505  */
4506 int regulator_bulk_disable(int num_consumers,
4507                            struct regulator_bulk_data *consumers)
4508 {
4509         int i;
4510         int ret, r;
4511 
4512         for (i = num_consumers - 1; i >= 0; --i) {
4513                 ret = regulator_disable(consumers[i].consumer);
4514                 if (ret != 0)
4515                         goto err;
4516         }
4517 
4518         return 0;
4519 
4520 err:
4521         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4522         for (++i; i < num_consumers; ++i) {
4523                 r = regulator_enable(consumers[i].consumer);
4524                 if (r != 0)
4525                         pr_err("Failed to re-enable %s: %d\n",
4526                                consumers[i].supply, r);
4527         }
4528 
4529         return ret;
4530 }
4531 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4532 
4533 /**
4534  * regulator_bulk_force_disable - force disable multiple regulator consumers
4535  *
4536  * @num_consumers: Number of consumers
4537  * @consumers:     Consumer data; clients are stored here.
4538  * @return         0 on success, an errno on failure
4539  *
4540  * This convenience API allows consumers to forcibly disable multiple regulator
4541  * clients in a single API call.
4542  * NOTE: This should be used for situations when device damage will
4543  * likely occur if the regulators are not disabled (e.g. over temp).
4544  * Although regulator_force_disable function call for some consumers can
4545  * return error numbers, the function is called for all consumers.
4546  */
4547 int regulator_bulk_force_disable(int num_consumers,
4548                            struct regulator_bulk_data *consumers)
4549 {
4550         int i;
4551         int ret = 0;
4552 
4553         for (i = 0; i < num_consumers; i++) {
4554                 consumers[i].ret =
4555                             regulator_force_disable(consumers[i].consumer);
4556 
4557                 /* Store first error for reporting */
4558                 if (consumers[i].ret && !ret)
4559                         ret = consumers[i].ret;
4560         }
4561 
4562         return ret;
4563 }
4564 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4565 
4566 /**
4567  * regulator_bulk_free - free multiple regulator consumers
4568  *
4569  * @num_consumers: Number of consumers
4570  * @consumers:     Consumer data; clients are stored here.
4571  *
4572  * This convenience API allows consumers to free multiple regulator
4573  * clients in a single API call.
4574  */
4575 void regulator_bulk_free(int num_consumers,
4576                          struct regulator_bulk_data *consumers)
4577 {
4578         int i;
4579 
4580         for (i = 0; i < num_consumers; i++) {
4581                 regulator_put(consumers[i].consumer);
4582                 consumers[i].consumer = NULL;
4583         }
4584 }
4585 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4586 
4587 /**
4588  * regulator_notifier_call_chain - call regulator event notifier
4589  * @rdev: regulator source
4590  * @event: notifier block
4591  * @data: callback-specific data.
4592  *
4593  * Called by regulator drivers to notify clients a regulator event has
4594  * occurred. We also notify regulator clients downstream.
4595  * Note lock must be held by caller.
4596  */
4597 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4598                                   unsigned long event, void *data)
4599 {
4600         lockdep_assert_held_once(&rdev->mutex.base);
4601 
4602         _notifier_call_chain(rdev, event, data);
4603         return NOTIFY_DONE;
4604 
4605 }
4606 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4607 
4608 /**
4609  * regulator_mode_to_status - convert a regulator mode into a status
4610  *
4611  * @mode: Mode to convert
4612  *
4613  * Convert a regulator mode into a status.
4614  */
4615 int regulator_mode_to_status(unsigned int mode)
4616 {
4617         switch (mode) {
4618         case REGULATOR_MODE_FAST:
4619                 return REGULATOR_STATUS_FAST;
4620         case REGULATOR_MODE_NORMAL:
4621                 return REGULATOR_STATUS_NORMAL;
4622         case REGULATOR_MODE_IDLE:
4623                 return REGULATOR_STATUS_IDLE;
4624         case REGULATOR_MODE_STANDBY:
4625                 return REGULATOR_STATUS_STANDBY;
4626         default:
4627                 return REGULATOR_STATUS_UNDEFINED;
4628         }
4629 }
4630 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4631 
4632 static struct attribute *regulator_dev_attrs[] = {
4633         &dev_attr_name.attr,
4634         &dev_attr_num_users.attr,
4635         &dev_attr_type.attr,
4636         &dev_attr_microvolts.attr,
4637         &dev_attr_microamps.attr,
4638         &dev_attr_opmode.attr,
4639         &dev_attr_state.attr,
4640         &dev_attr_status.attr,
4641         &dev_attr_bypass.attr,
4642         &dev_attr_requested_microamps.attr,
4643         &dev_attr_min_microvolts.attr,
4644         &dev_attr_max_microvolts.attr,
4645         &dev_attr_min_microamps.attr,
4646         &dev_attr_max_microamps.attr,
4647         &dev_attr_suspend_standby_state.attr,
4648         &dev_attr_suspend_mem_state.attr,
4649         &dev_attr_suspend_disk_state.attr,
4650         &dev_attr_suspend_standby_microvolts.attr,
4651         &dev_attr_suspend_mem_microvolts.attr,
4652         &dev_attr_suspend_disk_microvolts.attr,
4653         &dev_attr_suspend_standby_mode.attr,
4654         &dev_attr_suspend_mem_mode.attr,
4655         &dev_attr_suspend_disk_mode.attr,
4656         NULL
4657 };
4658 
4659 /*
4660  * To avoid cluttering sysfs (and memory) with useless state, only
4661  * create attributes that can be meaningfully displayed.
4662  */
4663 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4664                                          struct attribute *attr, int idx)
4665 {
4666         struct device *dev = kobj_to_dev(kobj);
4667         struct regulator_dev *rdev = dev_to_rdev(dev);
4668         const struct regulator_ops *ops = rdev->desc->ops;
4669         umode_t mode = attr->mode;
4670 
4671         /* these three are always present */
4672         if (attr == &dev_attr_name.attr ||
4673             attr == &dev_attr_num_users.attr ||
4674             attr == &dev_attr_type.attr)
4675                 return mode;
4676 
4677         /* some attributes need specific methods to be displayed */
4678         if (attr == &dev_attr_microvolts.attr) {
4679                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4680                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4681                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4682                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4683                         return mode;
4684                 return 0;
4685         }
4686 
4687         if (attr == &dev_attr_microamps.attr)
4688                 return ops->get_current_limit ? mode : 0;
4689 
4690         if (attr == &dev_attr_opmode.attr)
4691                 return ops->get_mode ? mode : 0;
4692 
4693         if (attr == &dev_attr_state.attr)
4694                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4695 
4696         if (attr == &dev_attr_status.attr)
4697                 return ops->get_status ? mode : 0;
4698 
4699         if (attr == &dev_attr_bypass.attr)
4700                 return ops->get_bypass ? mode : 0;
4701 
4702         /* constraints need specific supporting methods */
4703         if (attr == &dev_attr_min_microvolts.attr ||
4704             attr == &dev_attr_max_microvolts.attr)
4705                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4706 
4707         if (attr == &dev_attr_min_microamps.attr ||
4708             attr == &dev_attr_max_microamps.attr)
4709                 return ops->set_current_limit ? mode : 0;
4710 
4711         if (attr == &dev_attr_suspend_standby_state.attr ||
4712             attr == &dev_attr_suspend_mem_state.attr ||
4713             attr == &dev_attr_suspend_disk_state.attr)
4714                 return mode;
4715 
4716         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4717             attr == &dev_attr_suspend_mem_microvolts.attr ||
4718             attr == &dev_attr_suspend_disk_microvolts.attr)
4719                 return ops->set_suspend_voltage ? mode : 0;
4720 
4721         if (attr == &dev_attr_suspend_standby_mode.attr ||
4722             attr == &dev_attr_suspend_mem_mode.attr ||
4723             attr == &dev_attr_suspend_disk_mode.attr)
4724                 return ops->set_suspend_mode ? mode : 0;
4725 
4726         return mode;
4727 }
4728 
4729 static const struct attribute_group regulator_dev_group = {
4730         .attrs = regulator_dev_attrs,
4731         .is_visible = regulator_attr_is_visible,
4732 };
4733 
4734 static const struct attribute_group *regulator_dev_groups[] = {
4735         &regulator_dev_group,
4736         NULL
4737 };
4738 
4739 static void regulator_dev_release(struct device *dev)
4740 {
4741         struct regulator_dev *rdev = dev_get_drvdata(dev);
4742 
4743         kfree(rdev->constraints);
4744         of_node_put(rdev->dev.of_node);
4745         kfree(rdev);
4746 }
4747 
4748 static void rdev_init_debugfs(struct regulator_dev *rdev)
4749 {
4750         struct device *parent = rdev->dev.parent;
4751         const char *rname = rdev_get_name(rdev);
4752         char name[NAME_MAX];
4753 
4754         /* Avoid duplicate debugfs directory names */
4755         if (parent && rname == rdev->desc->name) {
4756                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4757                          rname);
4758                 rname = name;
4759         }
4760 
4761         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4762         if (!rdev->debugfs) {
4763                 rdev_warn(rdev, "Failed to create debugfs directory\n");
4764                 return;
4765         }
4766 
4767         debugfs_create_u32("use_count", 0444, rdev->debugfs,
4768                            &rdev->use_count);
4769         debugfs_create_u32("open_count", 0444, rdev->debugfs,
4770                            &rdev->open_count);
4771         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4772                            &rdev->bypass_count);
4773 }
4774 
4775 static int regulator_register_resolve_supply(struct device *dev, void *data)
4776 {
4777         struct regulator_dev *rdev = dev_to_rdev(dev);
4778 
4779         if (regulator_resolve_supply(rdev))
4780                 rdev_dbg(rdev, "unable to resolve supply\n");
4781 
4782         return 0;
4783 }
4784 
4785 int regulator_coupler_register(struct regulator_coupler *coupler)
4786 {
4787         mutex_lock(&regulator_list_mutex);
4788         list_add_tail(&coupler->list, &regulator_coupler_list);
4789         mutex_unlock(&regulator_list_mutex);
4790 
4791         return 0;
4792 }
4793 
4794 static struct regulator_coupler *
4795 regulator_find_coupler(struct regulator_dev *rdev)
4796 {
4797         struct regulator_coupler *coupler;
4798         int err;
4799 
4800         /*
4801          * Note that regulators are appended to the list and the generic
4802          * coupler is registered first, hence it will be attached at last
4803          * if nobody cared.
4804          */
4805         list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
4806                 err = coupler->attach_regulator(coupler, rdev);
4807                 if (!err) {
4808                         if (!coupler->balance_voltage &&
4809                             rdev->coupling_desc.n_coupled > 2)
4810                                 goto err_unsupported;
4811 
4812                         return coupler;
4813                 }
4814 
4815                 if (err < 0)
4816                         return ERR_PTR(err);
4817 
4818                 if (err == 1)
4819                         continue;
4820 
4821                 break;
4822         }
4823 
4824         return ERR_PTR(-EINVAL);
4825 
4826 err_unsupported:
4827         if (coupler->detach_regulator)
4828                 coupler->detach_regulator(coupler, rdev);
4829 
4830         rdev_err(rdev,
4831                 "Voltage balancing for multiple regulator couples is unimplemented\n");
4832 
4833         return ERR_PTR(-EPERM);
4834 }
4835 
4836 static void regulator_resolve_coupling(struct regulator_dev *rdev)
4837 {
4838         struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4839         struct coupling_desc *c_desc = &rdev->coupling_desc;
4840         int n_coupled = c_desc->n_coupled;
4841         struct regulator_dev *c_rdev;
4842         int i;
4843 
4844         for (i = 1; i < n_coupled; i++) {
4845                 /* already resolved */
4846                 if (c_desc->coupled_rdevs[i])
4847                         continue;
4848 
4849                 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
4850 
4851                 if (!c_rdev)
4852                         continue;
4853 
4854                 if (c_rdev->coupling_desc.coupler != coupler) {
4855                         rdev_err(rdev, "coupler mismatch with %s\n",
4856                                  rdev_get_name(c_rdev));
4857                         return;
4858                 }
4859 
4860                 regulator_lock(c_rdev);
4861 
4862                 c_desc->coupled_rdevs[i] = c_rdev;
4863                 c_desc->n_resolved++;
4864 
4865                 regulator_unlock(c_rdev);
4866 
4867                 regulator_resolve_coupling(c_rdev);
4868         }
4869 }
4870 
4871 static void regulator_remove_coupling(struct regulator_dev *rdev)
4872 {
4873         struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4874         struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
4875         struct regulator_dev *__c_rdev, *c_rdev;
4876         unsigned int __n_coupled, n_coupled;
4877         int i, k;
4878         int err;
4879 
4880         n_coupled = c_desc->n_coupled;
4881 
4882         for (i = 1; i < n_coupled; i++) {
4883                 c_rdev = c_desc->coupled_rdevs[i];
4884 
4885                 if (!c_rdev)
4886                         continue;
4887 
4888                 regulator_lock(c_rdev);
4889 
4890                 __c_desc = &c_rdev->coupling_desc;
4891                 __n_coupled = __c_desc->n_coupled;
4892 
4893                 for (k = 1; k < __n_coupled; k++) {
4894                         __c_rdev = __c_desc->coupled_rdevs[k];
4895 
4896                         if (__c_rdev == rdev) {
4897                                 __c_desc->coupled_rdevs[k] = NULL;
4898                                 __c_desc->n_resolved--;
4899                                 break;
4900                         }
4901                 }
4902 
4903                 regulator_unlock(c_rdev);
4904 
4905                 c_desc->coupled_rdevs[i] = NULL;
4906                 c_desc->n_resolved--;
4907         }
4908 
4909         if (coupler && coupler->detach_regulator) {
4910                 err = coupler->detach_regulator(coupler, rdev);
4911                 if (err)
4912                         rdev_err(rdev, "failed to detach from coupler: %d\n",
4913                                  err);
4914         }
4915 
4916         kfree(rdev->coupling_desc.coupled_rdevs);
4917         rdev->coupling_desc.coupled_rdevs = NULL;
4918 }
4919 
4920 static int regulator_init_coupling(struct regulator_dev *rdev)
4921 {
4922         int err, n_phandles;
4923         size_t alloc_size;
4924 
4925         if (!IS_ENABLED(CONFIG_OF))
4926                 n_phandles = 0;
4927         else
4928                 n_phandles = of_get_n_coupled(rdev);
4929 
4930         alloc_size = sizeof(*rdev) * (n_phandles + 1);
4931 
4932         rdev->coupling_desc.coupled_rdevs = kzalloc(alloc_size, GFP_KERNEL);
4933         if (!rdev->coupling_desc.coupled_rdevs)
4934                 return -ENOMEM;
4935 
4936         /*
4937          * Every regulator should always have coupling descriptor filled with
4938          * at least pointer to itself.
4939          */
4940         rdev->coupling_desc.coupled_rdevs[0] = rdev;
4941         rdev->coupling_desc.n_coupled = n_phandles + 1;
4942         rdev->coupling_desc.n_resolved++;
4943 
4944         /* regulator isn't coupled */
4945         if (n_phandles == 0)
4946                 return 0;
4947 
4948         if (!of_check_coupling_data(rdev))
4949                 return -EPERM;
4950 
4951         rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
4952         if (IS_ERR(rdev->coupling_desc.coupler)) {
4953                 err = PTR_ERR(rdev->coupling_desc.coupler);
4954                 rdev_err(rdev, "failed to get coupler: %d\n", err);
4955                 return err;
4956         }
4957 
4958         return 0;
4959 }
4960 
4961 static int generic_coupler_attach(struct regulator_coupler *coupler,
4962                                   struct regulator_dev *rdev)
4963 {
4964         if (rdev->coupling_desc.n_coupled > 2) {
4965                 rdev_err(rdev,
4966                          "Voltage balancing for multiple regulator couples is unimplemented\n");
4967                 return -EPERM;
4968         }
4969 
4970         return 0;
4971 }
4972 
4973 static struct regulator_coupler generic_regulator_coupler = {
4974         .attach_regulator = generic_coupler_attach,
4975 };
4976 
4977 /**
4978  * regulator_register - register regulator
4979  * @regulator_desc: regulator to register
4980  * @cfg: runtime configuration for regulator
4981  *
4982  * Called by regulator drivers to register a regulator.
4983  * Returns a valid pointer to struct regulator_dev on success
4984  * or an ERR_PTR() on error.
4985  */
4986 struct regulator_dev *
4987 regulator_register(const struct regulator_desc *regulator_desc,
4988                    const struct regulator_config *cfg)
4989 {
4990         const struct regulation_constraints *constraints = NULL;
4991         const struct regulator_init_data *init_data;
4992         struct regulator_config *config = NULL;
4993         static atomic_t regulator_no = ATOMIC_INIT(-1);
4994         struct regulator_dev *rdev;
4995         bool dangling_cfg_gpiod = false;
4996         bool dangling_of_gpiod = false;
4997         bool reg_device_fail = false;
4998         struct device *dev;
4999         int ret, i;
5000 
5001         if (cfg == NULL)
5002                 return ERR_PTR(-EINVAL);
5003         if (cfg->ena_gpiod)
5004                 dangling_cfg_gpiod = true;
5005         if (regulator_desc == NULL) {
5006                 ret = -EINVAL;
5007                 goto rinse;
5008         }
5009 
5010         dev = cfg->dev;
5011         WARN_ON(!dev);
5012 
5013         if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5014                 ret = -EINVAL;
5015                 goto rinse;
5016         }
5017 
5018         if (regulator_desc->type != REGULATOR_VOLTAGE &&
5019             regulator_desc->type != REGULATOR_CURRENT) {
5020                 ret = -EINVAL;
5021                 goto rinse;
5022         }
5023 
5024         /* Only one of each should be implemented */
5025         WARN_ON(regulator_desc->ops->get_voltage &&
5026                 regulator_desc->ops->get_voltage_sel);
5027         WARN_ON(regulator_desc->ops->set_voltage &&
5028                 regulator_desc->ops->set_voltage_sel);
5029 
5030         /* If we're using selectors we must implement list_voltage. */
5031         if (regulator_desc->ops->get_voltage_sel &&
5032             !regulator_desc->ops->list_voltage) {
5033                 ret = -EINVAL;
5034                 goto rinse;
5035         }
5036         if (regulator_desc->ops->set_voltage_sel &&
5037             !regulator_desc->ops->list_voltage) {
5038                 ret = -EINVAL;
5039                 goto rinse;
5040         }
5041 
5042         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5043         if (rdev == NULL) {
5044                 ret = -ENOMEM;
5045                 goto rinse;
5046         }
5047 
5048         /*
5049          * Duplicate the config so the driver could override it after
5050          * parsing init data.
5051          */
5052         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5053         if (config == NULL) {
5054                 kfree(rdev);
5055                 ret = -ENOMEM;
5056                 goto rinse;
5057         }
5058 
5059         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5060                                                &rdev->dev.of_node);
5061 
5062         /*
5063          * Sometimes not all resources are probed already so we need to take
5064          * that into account. This happens most the time if the ena_gpiod comes
5065          * from a gpio extender or something else.
5066          */
5067         if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5068                 kfree(config);
5069                 kfree(rdev);
5070                 ret = -EPROBE_DEFER;
5071                 goto rinse;
5072         }
5073 
5074         /*
5075          * We need to keep track of any GPIO descriptor coming from the
5076          * device tree until we have handled it over to the core. If the
5077          * config that was passed in to this function DOES NOT contain
5078          * a descriptor, and the config after this call DOES contain
5079          * a descriptor, we definitely got one from parsing the device
5080          * tree.
5081          */
5082         if (!cfg->ena_gpiod && config->ena_gpiod)
5083                 dangling_of_gpiod = true;
5084         if (!init_data) {
5085                 init_data = config->init_data;
5086                 rdev->dev.of_node = of_node_get(config->of_node);
5087         }
5088 
5089         ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5090         rdev->reg_data = config->driver_data;
5091         rdev->owner = regulator_desc->owner;
5092         rdev->desc = regulator_desc;
5093         if (config->regmap)
5094                 rdev->regmap = config->regmap;
5095         else if (dev_get_regmap(dev, NULL))
5096                 rdev->regmap = dev_get_regmap(dev, NULL);
5097         else if (dev->parent)
5098                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5099         INIT_LIST_HEAD(&rdev->consumer_list);
5100         INIT_LIST_HEAD(&rdev->list);
5101         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5102         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5103 
5104         /* preform any regulator specific init */
5105         if (init_data && init_data->regulator_init) {
5106                 ret = init_data->regulator_init(rdev->reg_data);
5107                 if (ret < 0)
5108                         goto clean;
5109         }
5110 
5111         if (config->ena_gpiod) {
5112                 mutex_lock(&regulator_list_mutex);
5113                 ret = regulator_ena_gpio_request(rdev, config);
5114                 mutex_unlock(&regulator_list_mutex);
5115                 if (ret != 0) {
5116                         rdev_err(rdev, "Failed to request enable GPIO: %d\n",
5117                                  ret);
5118                         goto clean;
5119                 }
5120                 /* The regulator core took over the GPIO descriptor */
5121                 dangling_cfg_gpiod = false;
5122                 dangling_of_gpiod = false;
5123         }
5124 
5125         /* register with sysfs */
5126         rdev->dev.class = &regulator_class;
5127         rdev->dev.parent = dev;
5128         dev_set_name(&rdev->dev, "regulator.%lu",
5129                     (unsigned long) atomic_inc_return(&regulator_no));
5130 
5131         /* set regulator constraints */
5132         if (init_data)
5133                 constraints = &init_data->constraints;
5134 
5135         if (init_data && init_data->supply_regulator)
5136                 rdev->supply_name = init_data->supply_regulator;
5137         else if (regulator_desc->supply_name)
5138                 rdev->supply_name = regulator_desc->supply_name;
5139 
5140         /*
5141          * Attempt to resolve the regulator supply, if specified,
5142          * but don't return an error if we fail because we will try
5143          * to resolve it again later as more regulators are added.
5144          */
5145         if (regulator_resolve_supply(rdev))
5146                 rdev_dbg(rdev, "unable to resolve supply\n");
5147 
5148         ret = set_machine_constraints(rdev, constraints);
5149         if (ret < 0)
5150                 goto wash;
5151 
5152         mutex_lock(&regulator_list_mutex);
5153         ret = regulator_init_coupling(rdev);
5154         mutex_unlock(&regulator_list_mutex);
5155         if (ret < 0)
5156                 goto wash;
5157 
5158         /* add consumers devices */
5159         if (init_data) {
5160                 mutex_lock(&regulator_list_mutex);
5161                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5162                         ret = set_consumer_device_supply(rdev,
5163                                 init_data->consumer_supplies[i].dev_name,
5164                                 init_data->consumer_supplies[i].supply);
5165                         if (ret < 0) {
5166                                 mutex_unlock(&regulator_list_mutex);
5167                                 dev_err(dev, "Failed to set supply %s\n",
5168                                         init_data->consumer_supplies[i].supply);
5169                                 goto unset_supplies;
5170                         }
5171                 }
5172                 mutex_unlock(&regulator_list_mutex);
5173         }
5174 
5175         if (!rdev->desc->ops->get_voltage &&
5176             !rdev->desc->ops->list_voltage &&
5177             !rdev->desc->fixed_uV)
5178                 rdev->is_switch = true;
5179 
5180         dev_set_drvdata(&rdev->dev, rdev);
5181         ret = device_register(&rdev->dev);
5182         if (ret != 0) {
5183                 reg_device_fail = true;
5184                 goto unset_supplies;
5185         }
5186 
5187         rdev_init_debugfs(rdev);
5188 
5189         /* try to resolve regulators coupling since a new one was registered */
5190         mutex_lock(&regulator_list_mutex);
5191         regulator_resolve_coupling(rdev);
5192         mutex_unlock(&regulator_list_mutex);
5193 
5194         /* try to resolve regulators supply since a new one was registered */
5195         class_for_each_device(&regulator_class, NULL, NULL,
5196                               regulator_register_resolve_supply);
5197         kfree(config);
5198         return rdev;
5199 
5200 unset_supplies:
5201         mutex_lock(&regulator_list_mutex);
5202         unset_regulator_supplies(rdev);
5203         regulator_remove_coupling(rdev);
5204         mutex_unlock(&regulator_list_mutex);
5205 wash:
5206         kfree(rdev->coupling_desc.coupled_rdevs);
5207         kfree(rdev->constraints);
5208         mutex_lock(&regulator_list_mutex);
5209         regulator_ena_gpio_free(rdev);
5210         mutex_unlock(&regulator_list_mutex);
5211 clean:
5212         if (dangling_of_gpiod)
5213                 gpiod_put(config->ena_gpiod);
5214         if (reg_device_fail)
5215                 put_device(&rdev->dev);
5216         else
5217                 kfree(rdev);
5218         kfree(config);
5219 rinse:
5220         if (dangling_cfg_gpiod)
5221                 gpiod_put(cfg->ena_gpiod);
5222         return ERR_PTR(ret);
5223 }
5224 EXPORT_SYMBOL_GPL(regulator_register);
5225 
5226 /**
5227  * regulator_unregister - unregister regulator
5228  * @rdev: regulator to unregister
5229  *
5230  * Called by regulator drivers to unregister a regulator.
5231  */
5232 void regulator_unregister(struct regulator_dev *rdev)
5233 {
5234         if (rdev == NULL)
5235                 return;
5236 
5237         if (rdev->supply) {
5238                 while (rdev->use_count--)
5239                         regulator_disable(rdev->supply);
5240                 regulator_put(rdev->supply);
5241         }
5242 
5243         flush_work(&rdev->disable_work.work);
5244 
5245         mutex_lock(&regulator_list_mutex);
5246 
5247         debugfs_remove_recursive(rdev->debugfs);
5248         WARN_ON(rdev->open_count);
5249         regulator_remove_coupling(rdev);
5250         unset_regulator_supplies(rdev);
5251         list_del(&rdev->list);
5252         regulator_ena_gpio_free(rdev);
5253         device_unregister(&rdev->dev);
5254 
5255         mutex_unlock(&regulator_list_mutex);
5256 }
5257 EXPORT_SYMBOL_GPL(regulator_unregister);
5258 
5259 #ifdef CONFIG_SUSPEND
5260 /**
5261  * regulator_suspend - prepare regulators for system wide suspend
5262  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5263  *
5264  * Configure each regulator with it's suspend operating parameters for state.
5265  */
5266 static int regulator_suspend(struct device *dev)
5267 {
5268         struct regulator_dev *rdev = dev_to_rdev(dev);
5269         suspend_state_t state = pm_suspend_target_state;
5270         int ret;
5271 
5272         regulator_lock(rdev);
5273         ret = suspend_set_state(rdev, state);
5274         regulator_unlock(rdev);
5275 
5276         return ret;
5277 }
5278 
5279 static int regulator_resume(struct device *dev)
5280 {
5281         suspend_state_t state = pm_suspend_target_state;
5282         struct regulator_dev *rdev = dev_to_rdev(dev);
5283         struct regulator_state *rstate;
5284         int ret = 0;
5285 
5286         rstate = regulator_get_suspend_state(rdev, state);
5287         if (rstate == NULL)
5288                 return 0;
5289 
5290         regulator_lock(rdev);
5291 
5292         if (rdev->desc->ops->resume &&
5293             (rstate->enabled == ENABLE_IN_SUSPEND ||
5294              rstate->enabled == DISABLE_IN_SUSPEND))
5295                 ret = rdev->desc->ops->resume(rdev);
5296 
5297         regulator_unlock(rdev);
5298 
5299         return ret;
5300 }
5301 #else /* !CONFIG_SUSPEND */
5302 
5303 #define regulator_suspend       NULL
5304 #define regulator_resume        NULL
5305 
5306 #endif /* !CONFIG_SUSPEND */
5307 
5308 #ifdef CONFIG_PM
5309 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5310         .suspend        = regulator_suspend,
5311         .resume         = regulator_resume,
5312 };
5313 #endif
5314 
5315 struct class regulator_class = {
5316         .name = "regulator",
5317         .dev_release = regulator_dev_release,
5318         .dev_groups = regulator_dev_groups,
5319 #ifdef CONFIG_PM
5320         .pm = &regulator_pm_ops,
5321 #endif
5322 };
5323 /**
5324  * regulator_has_full_constraints - the system has fully specified constraints
5325  *
5326  * Calling this function will cause the regulator API to disable all
5327  * regulators which have a zero use count and don't have an always_on
5328  * constraint in a late_initcall.
5329  *
5330  * The intention is that this will become the default behaviour in a
5331  * future kernel release so users are encouraged to use this facility
5332  * now.
5333  */
5334 void regulator_has_full_constraints(void)
5335 {
5336         has_full_constraints = 1;
5337 }
5338 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5339 
5340 /**
5341  * rdev_get_drvdata - get rdev regulator driver data
5342  * @rdev: regulator
5343  *
5344  * Get rdev regulator driver private data. This call can be used in the
5345  * regulator driver context.
5346  */
5347 void *rdev_get_drvdata(struct regulator_dev *rdev)
5348 {
5349         return rdev->reg_data;
5350 }
5351 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5352 
5353 /**
5354  * regulator_get_drvdata - get regulator driver data
5355  * @regulator: regulator
5356  *
5357  * Get regulator driver private data. This call can be used in the consumer
5358  * driver context when non API regulator specific functions need to be called.
5359  */
5360 void *regulator_get_drvdata(struct regulator *regulator)
5361 {
5362         return regulator->rdev->reg_data;
5363 }
5364 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5365 
5366 /**
5367  * regulator_set_drvdata - set regulator driver data
5368  * @regulator: regulator
5369  * @data: data
5370  */
5371 void regulator_set_drvdata(struct regulator *regulator, void *data)
5372 {
5373         regulator->rdev->reg_data = data;
5374 }
5375 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5376 
5377 /**
5378  * regulator_get_id - get regulator ID
5379  * @rdev: regulator
5380  */
5381 int rdev_get_id(struct regulator_dev *rdev)
5382 {
5383         return rdev->desc->id;
5384 }
5385 EXPORT_SYMBOL_GPL(rdev_get_id);
5386 
5387 struct device *rdev_get_dev(struct regulator_dev *rdev)
5388 {
5389         return &rdev->dev;
5390 }
5391 EXPORT_SYMBOL_GPL(rdev_get_dev);
5392 
5393 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5394 {
5395         return rdev->regmap;
5396 }
5397 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5398 
5399 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5400 {
5401         return reg_init_data->driver_data;
5402 }
5403 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5404 
5405 #ifdef CONFIG_DEBUG_FS
5406 static int supply_map_show(struct seq_file *sf, void *data)
5407 {
5408         struct regulator_map *map;
5409 
5410         list_for_each_entry(map, &regulator_map_list, list) {
5411                 seq_printf(sf, "%s -> %s.%s\n",
5412                                 rdev_get_name(map->regulator), map->dev_name,
5413                                 map->supply);
5414         }
5415 
5416         return 0;
5417 }
5418 DEFINE_SHOW_ATTRIBUTE(supply_map);
5419 
5420 struct summary_data {
5421         struct seq_file *s;
5422         struct regulator_dev *parent;
5423         int level;
5424 };
5425 
5426 static void regulator_summary_show_subtree(struct seq_file *s,
5427                                            struct regulator_dev *rdev,
5428                                            int level);
5429 
5430 static int regulator_summary_show_children(struct device *dev, void *data)
5431 {
5432         struct regulator_dev *rdev = dev_to_rdev(dev);
5433         struct summary_data *summary_data = data;
5434 
5435         if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5436                 regulator_summary_show_subtree(summary_data->s, rdev,
5437                                                summary_data->level + 1);
5438 
5439         return 0;
5440 }
5441 
5442 static void regulator_summary_show_subtree(struct seq_file *s,
5443                                            struct regulator_dev *rdev,
5444                                            int level)
5445 {
5446         struct regulation_constraints *c;
5447         struct regulator *consumer;
5448         struct summary_data summary_data;
5449         unsigned int opmode;
5450 
5451         if (!rdev)
5452                 return;
5453 
5454         opmode = _regulator_get_mode_unlocked(rdev);
5455         seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5456                    level * 3 + 1, "",
5457                    30 - level * 3, rdev_get_name(rdev),
5458                    rdev->use_count, rdev->open_count, rdev->bypass_count,
5459                    regulator_opmode_to_str(opmode));
5460 
5461         seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5462         seq_printf(s, "%5dmA ",
5463                    _regulator_get_current_limit_unlocked(rdev) / 1000);
5464 
5465         c = rdev->constraints;
5466         if (c) {
5467                 switch (rdev->desc->type) {
5468                 case REGULATOR_VOLTAGE:
5469                         seq_printf(s, "%5dmV %5dmV ",
5470                                    c->min_uV / 1000, c->max_uV / 1000);
5471                         break;
5472                 case REGULATOR_CURRENT:
5473                         seq_printf(s, "%5dmA %5dmA ",
5474                                    c->min_uA / 1000, c->max_uA / 1000);
5475                         break;
5476                 }
5477         }
5478 
5479         seq_puts(s, "\n");
5480 
5481         list_for_each_entry(consumer, &rdev->consumer_list, list) {
5482                 if (consumer->dev && consumer->dev->class == &regulator_class)
5483                         continue;
5484 
5485                 seq_printf(s, "%*s%-*s ",
5486                            (level + 1) * 3 + 1, "",
5487                            30 - (level + 1) * 3,
5488                            consumer->dev ? dev_name(consumer->dev) : "deviceless");
5489 
5490                 switch (rdev->desc->type) {
5491                 case REGULATOR_VOLTAGE:
5492                         seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5493                                    consumer->enable_count,
5494                                    consumer->uA_load / 1000,
5495                                    consumer->uA_load && !consumer->enable_count ?
5496                                    '*' : ' ',
5497                                    consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5498                                    consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5499                         break;
5500                 case REGULATOR_CURRENT:
5501                         break;
5502                 }
5503 
5504                 seq_puts(s, "\n");
5505         }
5506 
5507         summary_data.s = s;
5508         summary_data.level = level;
5509         summary_data.parent = rdev;
5510 
5511         class_for_each_device(&regulator_class, NULL, &summary_data,
5512                               regulator_summary_show_children);
5513 }
5514 
5515 struct summary_lock_data {
5516         struct ww_acquire_ctx *ww_ctx;
5517         struct regulator_dev **new_contended_rdev;
5518         struct regulator_dev **old_contended_rdev;
5519 };
5520 
5521 static int regulator_summary_lock_one(struct device *dev, void *data)
5522 {
5523         struct regulator_dev *rdev = dev_to_rdev(dev);
5524         struct summary_lock_data *lock_data = data;
5525         int ret = 0;
5526 
5527         if (rdev != *lock_data->old_contended_rdev) {
5528                 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5529 
5530                 if (ret == -EDEADLK)
5531                         *lock_data->new_contended_rdev = rdev;
5532                 else
5533                         WARN_ON_ONCE(ret);
5534         } else {
5535                 *lock_data->old_contended_rdev = NULL;
5536         }
5537 
5538         return ret;
5539 }
5540 
5541 static int regulator_summary_unlock_one(struct device *dev, void *data)
5542 {
5543         struct regulator_dev *rdev = dev_to_rdev(dev);
5544         struct summary_lock_data *lock_data = data;
5545 
5546         if (lock_data) {
5547                 if (rdev == *lock_data->new_contended_rdev)
5548                         return -EDEADLK;
5549         }
5550 
5551         regulator_unlock(rdev);
5552 
5553         return 0;
5554 }
5555 
5556 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5557                                       struct regulator_dev **new_contended_rdev,
5558                                       struct regulator_dev **old_contended_rdev)
5559 {
5560         struct summary_lock_data lock_data;
5561         int ret;
5562 
5563         lock_data.ww_ctx = ww_ctx;
5564         lock_data.new_contended_rdev = new_contended_rdev;
5565         lock_data.old_contended_rdev = old_contended_rdev;
5566 
5567         ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5568                                     regulator_summary_lock_one);
5569         if (ret)
5570                 class_for_each_device(&regulator_class, NULL, &lock_data,
5571                                       regulator_summary_unlock_one);
5572 
5573         return ret;
5574 }
5575 
5576 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5577 {
5578         struct regulator_dev *new_contended_rdev = NULL;
5579         struct regulator_dev *old_contended_rdev = NULL;
5580         int err;
5581 
5582         mutex_lock(&regulator_list_mutex);
5583 
5584         ww_acquire_init(ww_ctx, &regulator_ww_class);
5585 
5586         do {
5587                 if (new_contended_rdev) {
5588                         ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5589                         old_contended_rdev = new_contended_rdev;
5590                         old_contended_rdev->ref_cnt++;
5591                 }
5592 
5593                 err = regulator_summary_lock_all(ww_ctx,
5594                                                  &new_contended_rdev,
5595                                                  &old_contended_rdev);
5596 
5597                 if (old_contended_rdev)
5598                         regulator_unlock(old_contended_rdev);
5599 
5600         } while (err == -EDEADLK);
5601 
5602         ww_acquire_done(ww_ctx);
5603 }
5604 
5605 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5606 {
5607         class_for_each_device(&regulator_class, NULL, NULL,
5608                               regulator_summary_unlock_one);
5609         ww_acquire_fini(ww_ctx);
5610 
5611         mutex_unlock(&regulator_list_mutex);
5612 }
5613 
5614 static int regulator_summary_show_roots(struct device *dev, void *data)
5615 {
5616         struct regulator_dev *rdev = dev_to_rdev(dev);
5617         struct seq_file *s = data;
5618 
5619         if (!rdev->supply)
5620                 regulator_summary_show_subtree(s, rdev, 0);
5621 
5622         return 0;
5623 }
5624 
5625 static int regulator_summary_show(struct seq_file *s, void *data)
5626 {
5627         struct ww_acquire_ctx ww_ctx;
5628 
5629         seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
5630         seq_puts(s, "---------------------------------------------------------------------------------------\n");
5631 
5632         regulator_summary_lock(&ww_ctx);
5633 
5634         class_for_each_device(&regulator_class, NULL, s,
5635                               regulator_summary_show_roots);
5636 
5637         regulator_summary_unlock(&ww_ctx);
5638 
5639         return 0;
5640 }
5641 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5642 #endif /* CONFIG_DEBUG_FS */
5643 
5644 static int __init regulator_init(void)
5645 {
5646         int ret;
5647 
5648         ret = class_register(&regulator_class);
5649 
5650         debugfs_root = debugfs_create_dir("regulator", NULL);
5651         if (!debugfs_root)
5652                 pr_warn("regulator: Failed to create debugfs directory\n");
5653 
5654 #ifdef CONFIG_DEBUG_FS
5655         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5656                             &supply_map_fops);
5657 
5658         debugfs_create_file("regulator_summary", 0444, debugfs_root,
5659                             NULL, &regulator_summary_fops);
5660 #endif
5661         regulator_dummy_init();
5662 
5663         regulator_coupler_register(&generic_regulator_coupler);
5664 
5665         return ret;
5666 }
5667 
5668 /* init early to allow our consumers to complete system booting */
5669 core_initcall(regulator_init);
5670 
5671 static int regulator_late_cleanup(struct device *dev, void *data)
5672 {
5673         struct regulator_dev *rdev = dev_to_rdev(dev);
5674         const struct regulator_ops *ops = rdev->desc->ops;
5675         struct regulation_constraints *c = rdev->constraints;
5676         int enabled, ret;
5677 
5678         if (c && c->always_on)
5679                 return 0;
5680 
5681         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5682                 return 0;
5683 
5684         regulator_lock(rdev);
5685 
5686         if (rdev->use_count)
5687                 goto unlock;
5688 
5689         /* If we can't read the status assume it's on. */
5690         if (ops->is_enabled)
5691                 enabled = ops->is_enabled(rdev);
5692         else
5693                 enabled = 1;
5694 
5695         if (!enabled)
5696                 goto unlock;
5697 
5698         if (have_full_constraints()) {
5699                 /* We log since this may kill the system if it goes
5700                  * wrong. */
5701                 rdev_info(rdev, "disabling\n");
5702                 ret = _regulator_do_disable(rdev);
5703                 if (ret != 0)
5704                         rdev_err(rdev, "couldn't disable: %d\n", ret);
5705         } else {
5706                 /* The intention is that in future we will
5707                  * assume that full constraints are provided
5708                  * so warn even if we aren't going to do
5709                  * anything here.
5710                  */
5711                 rdev_warn(rdev, "incomplete constraints, leaving on\n");
5712         }
5713 
5714 unlock:
5715         regulator_unlock(rdev);
5716 
5717         return 0;
5718 }
5719 
5720 static void regulator_init_complete_work_function(struct work_struct *work)
5721 {
5722         /*
5723          * Regulators may had failed to resolve their input supplies
5724          * when were registered, either because the input supply was
5725          * not registered yet or because its parent device was not
5726          * bound yet. So attempt to resolve the input supplies for
5727          * pending regulators before trying to disable unused ones.
5728          */
5729         class_for_each_device(&regulator_class, NULL, NULL,
5730                               regulator_register_resolve_supply);
5731 
5732         /* If we have a full configuration then disable any regulators
5733          * we have permission to change the status for and which are
5734          * not in use or always_on.  This is effectively the default
5735          * for DT and ACPI as they have full constraints.
5736          */
5737         class_for_each_device(&regulator_class, NULL, NULL,
5738                               regulator_late_cleanup);
5739 }
5740 
5741 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
5742                             regulator_init_complete_work_function);
5743 
5744 static int __init regulator_init_complete(void)
5745 {
5746         /*
5747          * Since DT doesn't provide an idiomatic mechanism for
5748          * enabling full constraints and since it's much more natural
5749          * with DT to provide them just assume that a DT enabled
5750          * system has full constraints.
5751          */
5752         if (of_have_populated_dt())
5753                 has_full_constraints = true;
5754 
5755         /*
5756          * We punt completion for an arbitrary amount of time since
5757          * systems like distros will load many drivers from userspace
5758          * so consumers might not always be ready yet, this is
5759          * particularly an issue with laptops where this might bounce
5760          * the display off then on.  Ideally we'd get a notification
5761          * from userspace when this happens but we don't so just wait
5762          * a bit and hope we waited long enough.  It'd be better if
5763          * we'd only do this on systems that need it, and a kernel
5764          * command line option might be useful.
5765          */
5766         schedule_delayed_work(&regulator_init_complete_work,
5767                               msecs_to_jiffies(30000));
5768 
5769         return 0;
5770 }
5771 late_initcall_sync(regulator_init_complete);

/* [<][>][^][v][top][bottom][index][help] */