root/arch/ia64/lib/do_csum.S

/* [<][>][^][v][top][bottom][index][help] */
   1 /* SPDX-License-Identifier: GPL-2.0 */
   2 /*
   3  *
   4  * Optmized version of the standard do_csum() function
   5  *
   6  * Return: a 64bit quantity containing the 16bit Internet checksum
   7  *
   8  * Inputs:
   9  *      in0: address of buffer to checksum (char *)
  10  *      in1: length of the buffer (int)
  11  *
  12  * Copyright (C) 1999, 2001-2002 Hewlett-Packard Co
  13  *      Stephane Eranian <eranian@hpl.hp.com>
  14  *
  15  * 02/04/22     Ken Chen <kenneth.w.chen@intel.com>
  16  *              Data locality study on the checksum buffer.
  17  *              More optimization cleanup - remove excessive stop bits.
  18  * 02/04/08     David Mosberger <davidm@hpl.hp.com>
  19  *              More cleanup and tuning.
  20  * 01/04/18     Jun Nakajima <jun.nakajima@intel.com>
  21  *              Clean up and optimize and the software pipeline, loading two
  22  *              back-to-back 8-byte words per loop. Clean up the initialization
  23  *              for the loop. Support the cases where load latency = 1 or 2.
  24  *              Set CONFIG_IA64_LOAD_LATENCY to 1 or 2 (default).
  25  */
  26 
  27 #include <asm/asmmacro.h>
  28 
  29 //
  30 // Theory of operations:
  31 //      The goal is to go as quickly as possible to the point where
  32 //      we can checksum 16 bytes/loop. Before reaching that point we must
  33 //      take care of incorrect alignment of first byte.
  34 //
  35 //      The code hereafter also takes care of the "tail" part of the buffer
  36 //      before entering the core loop, if any. The checksum is a sum so it
  37 //      allows us to commute operations. So we do the "head" and "tail"
  38 //      first to finish at full speed in the body. Once we get the head and
  39 //      tail values, we feed them into the pipeline, very handy initialization.
  40 //
  41 //      Of course we deal with the special case where the whole buffer fits
  42 //      into one 8 byte word. In this case we have only one entry in the pipeline.
  43 //
  44 //      We use a (LOAD_LATENCY+2)-stage pipeline in the loop to account for
  45 //      possible load latency and also to accommodate for head and tail.
  46 //
  47 //      The end of the function deals with folding the checksum from 64bits
  48 //      down to 16bits taking care of the carry.
  49 //
  50 //      This version avoids synchronization in the core loop by also using a
  51 //      pipeline for the accumulation of the checksum in resultx[] (x=1,2).
  52 //
  53 //       wordx[] (x=1,2)
  54 //      |---|
  55 //      |   | 0                 : new value loaded in pipeline
  56 //      |---|
  57 //      |   | -                 : in transit data
  58 //      |---|
  59 //      |   | LOAD_LATENCY      : current value to add to checksum
  60 //      |---|
  61 //      |   | LOAD_LATENCY+1    : previous value added to checksum
  62 //      |---|                   (previous iteration)
  63 //
  64 //      resultx[] (x=1,2)
  65 //      |---|
  66 //      |   | 0                 : initial value
  67 //      |---|
  68 //      |   | LOAD_LATENCY-1    : new checksum
  69 //      |---|
  70 //      |   | LOAD_LATENCY      : previous value of checksum
  71 //      |---|
  72 //      |   | LOAD_LATENCY+1    : final checksum when out of the loop
  73 //      |---|
  74 //
  75 //
  76 //      See RFC1071 "Computing the Internet Checksum" for various techniques for
  77 //      calculating the Internet checksum.
  78 //
  79 // NOT YET DONE:
  80 //      - Maybe another algorithm which would take care of the folding at the
  81 //        end in a different manner
  82 //      - Work with people more knowledgeable than me on the network stack
  83 //        to figure out if we could not split the function depending on the
  84 //        type of packet or alignment we get. Like the ip_fast_csum() routine
  85 //        where we know we have at least 20bytes worth of data to checksum.
  86 //      - Do a better job of handling small packets.
  87 //      - Note on prefetching: it was found that under various load, i.e. ftp read/write,
  88 //        nfs read/write, the L1 cache hit rate is at 60% and L2 cache hit rate is at 99.8%
  89 //        on the data that buffer points to (partly because the checksum is often preceded by
  90 //        a copy_from_user()).  This finding indiate that lfetch will not be beneficial since
  91 //        the data is already in the cache.
  92 //
  93 
  94 #define saved_pfs       r11
  95 #define hmask           r16
  96 #define tmask           r17
  97 #define first1          r18
  98 #define firstval        r19
  99 #define firstoff        r20
 100 #define last            r21
 101 #define lastval         r22
 102 #define lastoff         r23
 103 #define saved_lc        r24
 104 #define saved_pr        r25
 105 #define tmp1            r26
 106 #define tmp2            r27
 107 #define tmp3            r28
 108 #define carry1          r29
 109 #define carry2          r30
 110 #define first2          r31
 111 
 112 #define buf             in0
 113 #define len             in1
 114 
 115 #define LOAD_LATENCY    2       // XXX fix me
 116 
 117 #if (LOAD_LATENCY != 1) && (LOAD_LATENCY != 2)
 118 # error "Only 1 or 2 is supported/tested for LOAD_LATENCY."
 119 #endif
 120 
 121 #define PIPE_DEPTH                      (LOAD_LATENCY+2)
 122 #define ELD     p[LOAD_LATENCY]         // end of load
 123 #define ELD_1   p[LOAD_LATENCY+1]       // and next stage
 124 
 125 // unsigned long do_csum(unsigned char *buf,long len)
 126 
 127 GLOBAL_ENTRY(do_csum)
 128         .prologue
 129         .save ar.pfs, saved_pfs
 130         alloc saved_pfs=ar.pfs,2,16,0,16
 131         .rotr word1[4], word2[4],result1[LOAD_LATENCY+2],result2[LOAD_LATENCY+2]
 132         .rotp p[PIPE_DEPTH], pC1[2], pC2[2]
 133         mov ret0=r0             // in case we have zero length
 134         cmp.lt p0,p6=r0,len     // check for zero length or negative (32bit len)
 135         ;;
 136         add tmp1=buf,len        // last byte's address
 137         .save pr, saved_pr
 138         mov saved_pr=pr         // preserve predicates (rotation)
 139 (p6)    br.ret.spnt.many rp     // return if zero or negative length
 140 
 141         mov hmask=-1            // initialize head mask
 142         tbit.nz p15,p0=buf,0    // is buf an odd address?
 143         and first1=-8,buf       // 8-byte align down address of first1 element
 144 
 145         and firstoff=7,buf      // how many bytes off for first1 element
 146         mov tmask=-1            // initialize tail mask
 147 
 148         ;;
 149         adds tmp2=-1,tmp1       // last-1
 150         and lastoff=7,tmp1      // how many bytes off for last element
 151         ;;
 152         sub tmp1=8,lastoff      // complement to lastoff
 153         and last=-8,tmp2        // address of word containing last byte
 154         ;;
 155         sub tmp3=last,first1    // tmp3=distance from first1 to last
 156         .save ar.lc, saved_lc
 157         mov saved_lc=ar.lc      // save lc
 158         cmp.eq p8,p9=last,first1        // everything fits in one word ?
 159 
 160         ld8 firstval=[first1],8 // load, ahead of time, "first1" word
 161         and tmp1=7, tmp1        // make sure that if tmp1==8 -> tmp1=0
 162         shl tmp2=firstoff,3     // number of bits
 163         ;;
 164 (p9)    ld8 lastval=[last]      // load, ahead of time, "last" word, if needed
 165         shl tmp1=tmp1,3         // number of bits
 166 (p9)    adds tmp3=-8,tmp3       // effectively loaded
 167         ;;
 168 (p8)    mov lastval=r0          // we don't need lastval if first1==last
 169         shl hmask=hmask,tmp2    // build head mask, mask off [0,first1off[
 170         shr.u tmask=tmask,tmp1  // build tail mask, mask off ]8,lastoff]
 171         ;;
 172         .body
 173 #define count tmp3
 174 
 175 (p8)    and hmask=hmask,tmask   // apply tail mask to head mask if 1 word only
 176 (p9)    and word2[0]=lastval,tmask      // mask last it as appropriate
 177         shr.u count=count,3     // how many 8-byte?
 178         ;;
 179         // If count is odd, finish this 8-byte word so that we can
 180         // load two back-to-back 8-byte words per loop thereafter.
 181         and word1[0]=firstval,hmask     // and mask it as appropriate
 182         tbit.nz p10,p11=count,0         // if (count is odd)
 183         ;;
 184 (p8)    mov result1[0]=word1[0]
 185 (p9)    add result1[0]=word1[0],word2[0]
 186         ;;
 187         cmp.ltu p6,p0=result1[0],word1[0]       // check the carry
 188         cmp.eq.or.andcm p8,p0=0,count           // exit if zero 8-byte
 189         ;;
 190 (p6)    adds result1[0]=1,result1[0]
 191 (p8)    br.cond.dptk .do_csum_exit      // if (within an 8-byte word)
 192 (p11)   br.cond.dptk .do_csum16         // if (count is even)
 193 
 194         // Here count is odd.
 195         ld8 word1[1]=[first1],8         // load an 8-byte word
 196         cmp.eq p9,p10=1,count           // if (count == 1)
 197         adds count=-1,count             // loaded an 8-byte word
 198         ;;
 199         add result1[0]=result1[0],word1[1]
 200         ;;
 201         cmp.ltu p6,p0=result1[0],word1[1]
 202         ;;
 203 (p6)    adds result1[0]=1,result1[0]
 204 (p9)    br.cond.sptk .do_csum_exit      // if (count == 1) exit
 205         // Fall through to calculate the checksum, feeding result1[0] as
 206         // the initial value in result1[0].
 207         //
 208         // Calculate the checksum loading two 8-byte words per loop.
 209         //
 210 .do_csum16:
 211         add first2=8,first1
 212         shr.u count=count,1     // we do 16 bytes per loop
 213         ;;
 214         adds count=-1,count
 215         mov carry1=r0
 216         mov carry2=r0
 217         brp.loop.imp 1f,2f
 218         ;;
 219         mov ar.ec=PIPE_DEPTH
 220         mov ar.lc=count // set lc
 221         mov pr.rot=1<<16
 222         // result1[0] must be initialized in advance.
 223         mov result2[0]=r0
 224         ;;
 225         .align 32
 226 1:
 227 (ELD_1) cmp.ltu pC1[0],p0=result1[LOAD_LATENCY],word1[LOAD_LATENCY+1]
 228 (pC1[1])adds carry1=1,carry1
 229 (ELD_1) cmp.ltu pC2[0],p0=result2[LOAD_LATENCY],word2[LOAD_LATENCY+1]
 230 (pC2[1])adds carry2=1,carry2
 231 (ELD)   add result1[LOAD_LATENCY-1]=result1[LOAD_LATENCY],word1[LOAD_LATENCY]
 232 (ELD)   add result2[LOAD_LATENCY-1]=result2[LOAD_LATENCY],word2[LOAD_LATENCY]
 233 2:
 234 (p[0])  ld8 word1[0]=[first1],16
 235 (p[0])  ld8 word2[0]=[first2],16
 236         br.ctop.sptk 1b
 237         ;;
 238         // Since len is a 32-bit value, carry cannot be larger than a 64-bit value.
 239 (pC1[1])adds carry1=1,carry1    // since we miss the last one
 240 (pC2[1])adds carry2=1,carry2
 241         ;;
 242         add result1[LOAD_LATENCY+1]=result1[LOAD_LATENCY+1],carry1
 243         add result2[LOAD_LATENCY+1]=result2[LOAD_LATENCY+1],carry2
 244         ;;
 245         cmp.ltu p6,p0=result1[LOAD_LATENCY+1],carry1
 246         cmp.ltu p7,p0=result2[LOAD_LATENCY+1],carry2
 247         ;;
 248 (p6)    adds result1[LOAD_LATENCY+1]=1,result1[LOAD_LATENCY+1]
 249 (p7)    adds result2[LOAD_LATENCY+1]=1,result2[LOAD_LATENCY+1]
 250         ;;
 251         add result1[0]=result1[LOAD_LATENCY+1],result2[LOAD_LATENCY+1]
 252         ;;
 253         cmp.ltu p6,p0=result1[0],result2[LOAD_LATENCY+1]
 254         ;;
 255 (p6)    adds result1[0]=1,result1[0]
 256         ;;
 257 .do_csum_exit:
 258         //
 259         // now fold 64 into 16 bits taking care of carry
 260         // that's not very good because it has lots of sequentiality
 261         //
 262         mov tmp3=0xffff
 263         zxt4 tmp1=result1[0]
 264         shr.u tmp2=result1[0],32
 265         ;;
 266         add result1[0]=tmp1,tmp2
 267         ;;
 268         and tmp1=result1[0],tmp3
 269         shr.u tmp2=result1[0],16
 270         ;;
 271         add result1[0]=tmp1,tmp2
 272         ;;
 273         and tmp1=result1[0],tmp3
 274         shr.u tmp2=result1[0],16
 275         ;;
 276         add result1[0]=tmp1,tmp2
 277         ;;
 278         and tmp1=result1[0],tmp3
 279         shr.u tmp2=result1[0],16
 280         ;;
 281         add ret0=tmp1,tmp2
 282         mov pr=saved_pr,0xffffffffffff0000
 283         ;;
 284         // if buf was odd then swap bytes
 285         mov ar.pfs=saved_pfs            // restore ar.ec
 286 (p15)   mux1 ret0=ret0,@rev             // reverse word
 287         ;;
 288         mov ar.lc=saved_lc
 289 (p15)   shr.u ret0=ret0,64-16   // + shift back to position = swap bytes
 290         br.ret.sptk.many rp
 291 
 292 //      I (Jun Nakajima) wrote an equivalent code (see below), but it was
 293 //      not much better than the original. So keep the original there so that
 294 //      someone else can challenge.
 295 //
 296 //      shr.u word1[0]=result1[0],32
 297 //      zxt4 result1[0]=result1[0]
 298 //      ;;
 299 //      add result1[0]=result1[0],word1[0]
 300 //      ;;
 301 //      zxt2 result2[0]=result1[0]
 302 //      extr.u word1[0]=result1[0],16,16
 303 //      shr.u carry1=result1[0],32
 304 //      ;;
 305 //      add result2[0]=result2[0],word1[0]
 306 //      ;;
 307 //      add result2[0]=result2[0],carry1
 308 //      ;;
 309 //      extr.u ret0=result2[0],16,16
 310 //      ;;
 311 //      add ret0=ret0,result2[0]
 312 //      ;;
 313 //      zxt2 ret0=ret0
 314 //      mov ar.pfs=saved_pfs             // restore ar.ec
 315 //      mov pr=saved_pr,0xffffffffffff0000
 316 //      ;;
 317 //      // if buf was odd then swap bytes
 318 //      mov ar.lc=saved_lc
 319 //(p15) mux1 ret0=ret0,@rev             // reverse word
 320 //      ;;
 321 //(p15) shr.u ret0=ret0,64-16   // + shift back to position = swap bytes
 322 //      br.ret.sptk.many rp
 323 
 324 END(do_csum)

/* [<][>][^][v][top][bottom][index][help] */