1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * 4 * Optmized version of the standard do_csum() function 5 * 6 * Return: a 64bit quantity containing the 16bit Internet checksum 7 * 8 * Inputs: 9 * in0: address of buffer to checksum (char *) 10 * in1: length of the buffer (int) 11 * 12 * Copyright (C) 1999, 2001-2002 Hewlett-Packard Co 13 * Stephane Eranian <eranian@hpl.hp.com> 14 * 15 * 02/04/22 Ken Chen <kenneth.w.chen@intel.com> 16 * Data locality study on the checksum buffer. 17 * More optimization cleanup - remove excessive stop bits. 18 * 02/04/08 David Mosberger <davidm@hpl.hp.com> 19 * More cleanup and tuning. 20 * 01/04/18 Jun Nakajima <jun.nakajima@intel.com> 21 * Clean up and optimize and the software pipeline, loading two 22 * back-to-back 8-byte words per loop. Clean up the initialization 23 * for the loop. Support the cases where load latency = 1 or 2. 24 * Set CONFIG_IA64_LOAD_LATENCY to 1 or 2 (default). 25 */ 26 27 #include <asm/asmmacro.h> 28 29 // 30 // Theory of operations: 31 // The goal is to go as quickly as possible to the point where 32 // we can checksum 16 bytes/loop. Before reaching that point we must 33 // take care of incorrect alignment of first byte. 34 // 35 // The code hereafter also takes care of the "tail" part of the buffer 36 // before entering the core loop, if any. The checksum is a sum so it 37 // allows us to commute operations. So we do the "head" and "tail" 38 // first to finish at full speed in the body. Once we get the head and 39 // tail values, we feed them into the pipeline, very handy initialization. 40 // 41 // Of course we deal with the special case where the whole buffer fits 42 // into one 8 byte word. In this case we have only one entry in the pipeline. 43 // 44 // We use a (LOAD_LATENCY+2)-stage pipeline in the loop to account for 45 // possible load latency and also to accommodate for head and tail. 46 // 47 // The end of the function deals with folding the checksum from 64bits 48 // down to 16bits taking care of the carry. 49 // 50 // This version avoids synchronization in the core loop by also using a 51 // pipeline for the accumulation of the checksum in resultx[] (x=1,2). 52 // 53 // wordx[] (x=1,2) 54 // |---| 55 // | | 0 : new value loaded in pipeline 56 // |---| 57 // | | - : in transit data 58 // |---| 59 // | | LOAD_LATENCY : current value to add to checksum 60 // |---| 61 // | | LOAD_LATENCY+1 : previous value added to checksum 62 // |---| (previous iteration) 63 // 64 // resultx[] (x=1,2) 65 // |---| 66 // | | 0 : initial value 67 // |---| 68 // | | LOAD_LATENCY-1 : new checksum 69 // |---| 70 // | | LOAD_LATENCY : previous value of checksum 71 // |---| 72 // | | LOAD_LATENCY+1 : final checksum when out of the loop 73 // |---| 74 // 75 // 76 // See RFC1071 "Computing the Internet Checksum" for various techniques for 77 // calculating the Internet checksum. 78 // 79 // NOT YET DONE: 80 // - Maybe another algorithm which would take care of the folding at the 81 // end in a different manner 82 // - Work with people more knowledgeable than me on the network stack 83 // to figure out if we could not split the function depending on the 84 // type of packet or alignment we get. Like the ip_fast_csum() routine 85 // where we know we have at least 20bytes worth of data to checksum. 86 // - Do a better job of handling small packets. 87 // - Note on prefetching: it was found that under various load, i.e. ftp read/write, 88 // nfs read/write, the L1 cache hit rate is at 60% and L2 cache hit rate is at 99.8% 89 // on the data that buffer points to (partly because the checksum is often preceded by 90 // a copy_from_user()). This finding indiate that lfetch will not be beneficial since 91 // the data is already in the cache. 92 // 93 94 #define saved_pfs r11 95 #define hmask r16 96 #define tmask r17 97 #define first1 r18 98 #define firstval r19 99 #define firstoff r20 100 #define last r21 101 #define lastval r22 102 #define lastoff r23 103 #define saved_lc r24 104 #define saved_pr r25 105 #define tmp1 r26 106 #define tmp2 r27 107 #define tmp3 r28 108 #define carry1 r29 109 #define carry2 r30 110 #define first2 r31 111 112 #define buf in0 113 #define len in1 114 115 #define LOAD_LATENCY 2 // XXX fix me 116 117 #if (LOAD_LATENCY != 1) && (LOAD_LATENCY != 2) 118 # error "Only 1 or 2 is supported/tested for LOAD_LATENCY." 119 #endif 120 121 #define PIPE_DEPTH (LOAD_LATENCY+2) 122 #define ELD p[LOAD_LATENCY] // end of load 123 #define ELD_1 p[LOAD_LATENCY+1] // and next stage 124 125 // unsigned long do_csum(unsigned char *buf,long len) 126 127 GLOBAL_ENTRY(do_csum) 128 .prologue 129 .save ar.pfs, saved_pfs 130 alloc saved_pfs=ar.pfs,2,16,0,16 131 .rotr word1[4], word2[4],result1[LOAD_LATENCY+2],result2[LOAD_LATENCY+2] 132 .rotp p[PIPE_DEPTH], pC1[2], pC2[2] 133 mov ret0=r0 // in case we have zero length 134 cmp.lt p0,p6=r0,len // check for zero length or negative (32bit len) 135 ;; 136 add tmp1=buf,len // last byte's address 137 .save pr, saved_pr 138 mov saved_pr=pr // preserve predicates (rotation) 139 (p6) br.ret.spnt.many rp // return if zero or negative length 140 141 mov hmask=-1 // initialize head mask 142 tbit.nz p15,p0=buf,0 // is buf an odd address? 143 and first1=-8,buf // 8-byte align down address of first1 element 144 145 and firstoff=7,buf // how many bytes off for first1 element 146 mov tmask=-1 // initialize tail mask 147 148 ;; 149 adds tmp2=-1,tmp1 // last-1 150 and lastoff=7,tmp1 // how many bytes off for last element 151 ;; 152 sub tmp1=8,lastoff // complement to lastoff 153 and last=-8,tmp2 // address of word containing last byte 154 ;; 155 sub tmp3=last,first1 // tmp3=distance from first1 to last 156 .save ar.lc, saved_lc 157 mov saved_lc=ar.lc // save lc 158 cmp.eq p8,p9=last,first1 // everything fits in one word ? 159 160 ld8 firstval=[first1],8 // load, ahead of time, "first1" word 161 and tmp1=7, tmp1 // make sure that if tmp1==8 -> tmp1=0 162 shl tmp2=firstoff,3 // number of bits 163 ;; 164 (p9) ld8 lastval=[last] // load, ahead of time, "last" word, if needed 165 shl tmp1=tmp1,3 // number of bits 166 (p9) adds tmp3=-8,tmp3 // effectively loaded 167 ;; 168 (p8) mov lastval=r0 // we don't need lastval if first1==last 169 shl hmask=hmask,tmp2 // build head mask, mask off [0,first1off[ 170 shr.u tmask=tmask,tmp1 // build tail mask, mask off ]8,lastoff] 171 ;; 172 .body 173 #define count tmp3 174 175 (p8) and hmask=hmask,tmask // apply tail mask to head mask if 1 word only 176 (p9) and word2[0]=lastval,tmask // mask last it as appropriate 177 shr.u count=count,3 // how many 8-byte? 178 ;; 179 // If count is odd, finish this 8-byte word so that we can 180 // load two back-to-back 8-byte words per loop thereafter. 181 and word1[0]=firstval,hmask // and mask it as appropriate 182 tbit.nz p10,p11=count,0 // if (count is odd) 183 ;; 184 (p8) mov result1[0]=word1[0] 185 (p9) add result1[0]=word1[0],word2[0] 186 ;; 187 cmp.ltu p6,p0=result1[0],word1[0] // check the carry 188 cmp.eq.or.andcm p8,p0=0,count // exit if zero 8-byte 189 ;; 190 (p6) adds result1[0]=1,result1[0] 191 (p8) br.cond.dptk .do_csum_exit // if (within an 8-byte word) 192 (p11) br.cond.dptk .do_csum16 // if (count is even) 193 194 // Here count is odd. 195 ld8 word1[1]=[first1],8 // load an 8-byte word 196 cmp.eq p9,p10=1,count // if (count == 1) 197 adds count=-1,count // loaded an 8-byte word 198 ;; 199 add result1[0]=result1[0],word1[1] 200 ;; 201 cmp.ltu p6,p0=result1[0],word1[1] 202 ;; 203 (p6) adds result1[0]=1,result1[0] 204 (p9) br.cond.sptk .do_csum_exit // if (count == 1) exit 205 // Fall through to calculate the checksum, feeding result1[0] as 206 // the initial value in result1[0]. 207 // 208 // Calculate the checksum loading two 8-byte words per loop. 209 // 210 .do_csum16: 211 add first2=8,first1 212 shr.u count=count,1 // we do 16 bytes per loop 213 ;; 214 adds count=-1,count 215 mov carry1=r0 216 mov carry2=r0 217 brp.loop.imp 1f,2f 218 ;; 219 mov ar.ec=PIPE_DEPTH 220 mov ar.lc=count // set lc 221 mov pr.rot=1<<16 222 // result1[0] must be initialized in advance. 223 mov result2[0]=r0 224 ;; 225 .align 32 226 1: 227 (ELD_1) cmp.ltu pC1[0],p0=result1[LOAD_LATENCY],word1[LOAD_LATENCY+1] 228 (pC1[1])adds carry1=1,carry1 229 (ELD_1) cmp.ltu pC2[0],p0=result2[LOAD_LATENCY],word2[LOAD_LATENCY+1] 230 (pC2[1])adds carry2=1,carry2 231 (ELD) add result1[LOAD_LATENCY-1]=result1[LOAD_LATENCY],word1[LOAD_LATENCY] 232 (ELD) add result2[LOAD_LATENCY-1]=result2[LOAD_LATENCY],word2[LOAD_LATENCY] 233 2: 234 (p[0]) ld8 word1[0]=[first1],16 235 (p[0]) ld8 word2[0]=[first2],16 236 br.ctop.sptk 1b 237 ;; 238 // Since len is a 32-bit value, carry cannot be larger than a 64-bit value. 239 (pC1[1])adds carry1=1,carry1 // since we miss the last one 240 (pC2[1])adds carry2=1,carry2 241 ;; 242 add result1[LOAD_LATENCY+1]=result1[LOAD_LATENCY+1],carry1 243 add result2[LOAD_LATENCY+1]=result2[LOAD_LATENCY+1],carry2 244 ;; 245 cmp.ltu p6,p0=result1[LOAD_LATENCY+1],carry1 246 cmp.ltu p7,p0=result2[LOAD_LATENCY+1],carry2 247 ;; 248 (p6) adds result1[LOAD_LATENCY+1]=1,result1[LOAD_LATENCY+1] 249 (p7) adds result2[LOAD_LATENCY+1]=1,result2[LOAD_LATENCY+1] 250 ;; 251 add result1[0]=result1[LOAD_LATENCY+1],result2[LOAD_LATENCY+1] 252 ;; 253 cmp.ltu p6,p0=result1[0],result2[LOAD_LATENCY+1] 254 ;; 255 (p6) adds result1[0]=1,result1[0] 256 ;; 257 .do_csum_exit: 258 // 259 // now fold 64 into 16 bits taking care of carry 260 // that's not very good because it has lots of sequentiality 261 // 262 mov tmp3=0xffff 263 zxt4 tmp1=result1[0] 264 shr.u tmp2=result1[0],32 265 ;; 266 add result1[0]=tmp1,tmp2 267 ;; 268 and tmp1=result1[0],tmp3 269 shr.u tmp2=result1[0],16 270 ;; 271 add result1[0]=tmp1,tmp2 272 ;; 273 and tmp1=result1[0],tmp3 274 shr.u tmp2=result1[0],16 275 ;; 276 add result1[0]=tmp1,tmp2 277 ;; 278 and tmp1=result1[0],tmp3 279 shr.u tmp2=result1[0],16 280 ;; 281 add ret0=tmp1,tmp2 282 mov pr=saved_pr,0xffffffffffff0000 283 ;; 284 // if buf was odd then swap bytes 285 mov ar.pfs=saved_pfs // restore ar.ec 286 (p15) mux1 ret0=ret0,@rev // reverse word 287 ;; 288 mov ar.lc=saved_lc 289 (p15) shr.u ret0=ret0,64-16 // + shift back to position = swap bytes 290 br.ret.sptk.many rp 291 292 // I (Jun Nakajima) wrote an equivalent code (see below), but it was 293 // not much better than the original. So keep the original there so that 294 // someone else can challenge. 295 // 296 // shr.u word1[0]=result1[0],32 297 // zxt4 result1[0]=result1[0] 298 // ;; 299 // add result1[0]=result1[0],word1[0] 300 // ;; 301 // zxt2 result2[0]=result1[0] 302 // extr.u word1[0]=result1[0],16,16 303 // shr.u carry1=result1[0],32 304 // ;; 305 // add result2[0]=result2[0],word1[0] 306 // ;; 307 // add result2[0]=result2[0],carry1 308 // ;; 309 // extr.u ret0=result2[0],16,16 310 // ;; 311 // add ret0=ret0,result2[0] 312 // ;; 313 // zxt2 ret0=ret0 314 // mov ar.pfs=saved_pfs // restore ar.ec 315 // mov pr=saved_pr,0xffffffffffff0000 316 // ;; 317 // // if buf was odd then swap bytes 318 // mov ar.lc=saved_lc 319 //(p15) mux1 ret0=ret0,@rev // reverse word 320 // ;; 321 //(p15) shr.u ret0=ret0,64-16 // + shift back to position = swap bytes 322 // br.ret.sptk.many rp 323 324 END(do_csum)