This source file includes following definitions.
- cb_fini
- cb_do_release
- cb_release
- hl_cb_alloc
- hl_cb_create
- hl_cb_destroy
- hl_cb_ioctl
- cb_vm_close
- hl_cb_mmap
- hl_cb_get
- hl_cb_put
- hl_cb_mgr_init
- hl_cb_mgr_fini
- hl_cb_kernel_create
- hl_cb_pool_init
- hl_cb_pool_fini
1
2
3
4
5
6
7
8 #include <uapi/misc/habanalabs.h>
9 #include "habanalabs.h"
10
11 #include <linux/mm.h>
12 #include <linux/slab.h>
13
14 static void cb_fini(struct hl_device *hdev, struct hl_cb *cb)
15 {
16 hdev->asic_funcs->asic_dma_free_coherent(hdev, cb->size,
17 (void *) (uintptr_t) cb->kernel_address,
18 cb->bus_address);
19 kfree(cb);
20 }
21
22 static void cb_do_release(struct hl_device *hdev, struct hl_cb *cb)
23 {
24 if (cb->is_pool) {
25 spin_lock(&hdev->cb_pool_lock);
26 list_add(&cb->pool_list, &hdev->cb_pool);
27 spin_unlock(&hdev->cb_pool_lock);
28 } else {
29 cb_fini(hdev, cb);
30 }
31 }
32
33 static void cb_release(struct kref *ref)
34 {
35 struct hl_device *hdev;
36 struct hl_cb *cb;
37
38 cb = container_of(ref, struct hl_cb, refcount);
39 hdev = cb->hdev;
40
41 hl_debugfs_remove_cb(cb);
42
43 cb_do_release(hdev, cb);
44 }
45
46 static struct hl_cb *hl_cb_alloc(struct hl_device *hdev, u32 cb_size,
47 int ctx_id)
48 {
49 struct hl_cb *cb;
50 void *p;
51
52
53
54
55
56
57
58
59
60 if (ctx_id == HL_KERNEL_ASID_ID)
61 cb = kzalloc(sizeof(*cb), GFP_ATOMIC);
62 else
63 cb = kzalloc(sizeof(*cb), GFP_KERNEL);
64
65 if (!cb)
66 return NULL;
67
68 if (ctx_id == HL_KERNEL_ASID_ID)
69 p = hdev->asic_funcs->asic_dma_alloc_coherent(hdev, cb_size,
70 &cb->bus_address, GFP_ATOMIC);
71 else
72 p = hdev->asic_funcs->asic_dma_alloc_coherent(hdev, cb_size,
73 &cb->bus_address,
74 GFP_USER | __GFP_ZERO);
75 if (!p) {
76 dev_err(hdev->dev,
77 "failed to allocate %d of dma memory for CB\n",
78 cb_size);
79 kfree(cb);
80 return NULL;
81 }
82
83 cb->kernel_address = (u64) (uintptr_t) p;
84 cb->size = cb_size;
85
86 return cb;
87 }
88
89 int hl_cb_create(struct hl_device *hdev, struct hl_cb_mgr *mgr,
90 u32 cb_size, u64 *handle, int ctx_id)
91 {
92 struct hl_cb *cb;
93 bool alloc_new_cb = true;
94 int rc;
95
96
97
98
99
100 if ((hdev->disabled) || ((atomic_read(&hdev->in_reset)) &&
101 (ctx_id != HL_KERNEL_ASID_ID))) {
102 dev_warn_ratelimited(hdev->dev,
103 "Device is disabled or in reset. Can't create new CBs\n");
104 rc = -EBUSY;
105 goto out_err;
106 }
107
108 if (cb_size > HL_MAX_CB_SIZE) {
109 dev_err(hdev->dev,
110 "CB size %d must be less then %d\n",
111 cb_size, HL_MAX_CB_SIZE);
112 rc = -EINVAL;
113 goto out_err;
114 }
115
116
117 if (cb_size < PAGE_SIZE)
118 cb_size = PAGE_SIZE;
119
120 if (ctx_id == HL_KERNEL_ASID_ID &&
121 cb_size <= hdev->asic_prop.cb_pool_cb_size) {
122
123 spin_lock(&hdev->cb_pool_lock);
124 if (!list_empty(&hdev->cb_pool)) {
125 cb = list_first_entry(&hdev->cb_pool, typeof(*cb),
126 pool_list);
127 list_del(&cb->pool_list);
128 spin_unlock(&hdev->cb_pool_lock);
129 alloc_new_cb = false;
130 } else {
131 spin_unlock(&hdev->cb_pool_lock);
132 dev_dbg(hdev->dev, "CB pool is empty\n");
133 }
134 }
135
136 if (alloc_new_cb) {
137 cb = hl_cb_alloc(hdev, cb_size, ctx_id);
138 if (!cb) {
139 rc = -ENOMEM;
140 goto out_err;
141 }
142 }
143
144 cb->hdev = hdev;
145 cb->ctx_id = ctx_id;
146
147 spin_lock(&mgr->cb_lock);
148 rc = idr_alloc(&mgr->cb_handles, cb, 1, 0, GFP_ATOMIC);
149 spin_unlock(&mgr->cb_lock);
150
151 if (rc < 0) {
152 dev_err(hdev->dev, "Failed to allocate IDR for a new CB\n");
153 goto release_cb;
154 }
155
156 cb->id = rc;
157
158 kref_init(&cb->refcount);
159 spin_lock_init(&cb->lock);
160
161
162
163
164
165 *handle = cb->id | HL_MMAP_CB_MASK;
166 *handle <<= PAGE_SHIFT;
167
168 hl_debugfs_add_cb(cb);
169
170 return 0;
171
172 release_cb:
173 cb_do_release(hdev, cb);
174 out_err:
175 *handle = 0;
176
177 return rc;
178 }
179
180 int hl_cb_destroy(struct hl_device *hdev, struct hl_cb_mgr *mgr, u64 cb_handle)
181 {
182 struct hl_cb *cb;
183 u32 handle;
184 int rc = 0;
185
186
187
188
189
190 cb_handle >>= PAGE_SHIFT;
191 handle = (u32) cb_handle;
192
193 spin_lock(&mgr->cb_lock);
194
195 cb = idr_find(&mgr->cb_handles, handle);
196 if (cb) {
197 idr_remove(&mgr->cb_handles, handle);
198 spin_unlock(&mgr->cb_lock);
199 kref_put(&cb->refcount, cb_release);
200 } else {
201 spin_unlock(&mgr->cb_lock);
202 dev_err(hdev->dev,
203 "CB destroy failed, no match to handle 0x%x\n", handle);
204 rc = -EINVAL;
205 }
206
207 return rc;
208 }
209
210 int hl_cb_ioctl(struct hl_fpriv *hpriv, void *data)
211 {
212 union hl_cb_args *args = data;
213 struct hl_device *hdev = hpriv->hdev;
214 u64 handle;
215 int rc;
216
217 if (hl_device_disabled_or_in_reset(hdev)) {
218 dev_warn_ratelimited(hdev->dev,
219 "Device is %s. Can't execute CB IOCTL\n",
220 atomic_read(&hdev->in_reset) ? "in_reset" : "disabled");
221 return -EBUSY;
222 }
223
224 switch (args->in.op) {
225 case HL_CB_OP_CREATE:
226 rc = hl_cb_create(hdev, &hpriv->cb_mgr, args->in.cb_size,
227 &handle, hpriv->ctx->asid);
228 memset(args, 0, sizeof(*args));
229 args->out.cb_handle = handle;
230 break;
231 case HL_CB_OP_DESTROY:
232 rc = hl_cb_destroy(hdev, &hpriv->cb_mgr,
233 args->in.cb_handle);
234 break;
235 default:
236 rc = -ENOTTY;
237 break;
238 }
239
240 return rc;
241 }
242
243 static void cb_vm_close(struct vm_area_struct *vma)
244 {
245 struct hl_cb *cb = (struct hl_cb *) vma->vm_private_data;
246 long new_mmap_size;
247
248 new_mmap_size = cb->mmap_size - (vma->vm_end - vma->vm_start);
249
250 if (new_mmap_size > 0) {
251 cb->mmap_size = new_mmap_size;
252 return;
253 }
254
255 spin_lock(&cb->lock);
256 cb->mmap = false;
257 spin_unlock(&cb->lock);
258
259 hl_cb_put(cb);
260 vma->vm_private_data = NULL;
261 }
262
263 static const struct vm_operations_struct cb_vm_ops = {
264 .close = cb_vm_close
265 };
266
267 int hl_cb_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma)
268 {
269 struct hl_device *hdev = hpriv->hdev;
270 struct hl_cb *cb;
271 phys_addr_t address;
272 u32 handle;
273 int rc;
274
275 handle = vma->vm_pgoff;
276
277
278 cb = hl_cb_get(hdev, &hpriv->cb_mgr, handle);
279 if (!cb) {
280 dev_err(hdev->dev,
281 "CB mmap failed, no match to handle %d\n", handle);
282 return -EINVAL;
283 }
284
285
286 if ((vma->vm_end - vma->vm_start) != ALIGN(cb->size, PAGE_SIZE)) {
287 dev_err(hdev->dev,
288 "CB mmap failed, mmap size 0x%lx != 0x%x cb size\n",
289 vma->vm_end - vma->vm_start, cb->size);
290 rc = -EINVAL;
291 goto put_cb;
292 }
293
294 spin_lock(&cb->lock);
295
296 if (cb->mmap) {
297 dev_err(hdev->dev,
298 "CB mmap failed, CB already mmaped to user\n");
299 rc = -EINVAL;
300 goto release_lock;
301 }
302
303 cb->mmap = true;
304
305 spin_unlock(&cb->lock);
306
307 vma->vm_ops = &cb_vm_ops;
308
309
310
311
312
313
314 vma->vm_private_data = cb;
315
316
317 address = virt_to_phys((void *) (uintptr_t) cb->kernel_address);
318
319 rc = hdev->asic_funcs->cb_mmap(hdev, vma, cb->kernel_address,
320 address, cb->size);
321
322 if (rc) {
323 spin_lock(&cb->lock);
324 cb->mmap = false;
325 goto release_lock;
326 }
327
328 cb->mmap_size = cb->size;
329
330 return 0;
331
332 release_lock:
333 spin_unlock(&cb->lock);
334 put_cb:
335 hl_cb_put(cb);
336 return rc;
337 }
338
339 struct hl_cb *hl_cb_get(struct hl_device *hdev, struct hl_cb_mgr *mgr,
340 u32 handle)
341 {
342 struct hl_cb *cb;
343
344 spin_lock(&mgr->cb_lock);
345 cb = idr_find(&mgr->cb_handles, handle);
346
347 if (!cb) {
348 spin_unlock(&mgr->cb_lock);
349 dev_warn(hdev->dev,
350 "CB get failed, no match to handle %d\n", handle);
351 return NULL;
352 }
353
354 kref_get(&cb->refcount);
355
356 spin_unlock(&mgr->cb_lock);
357
358 return cb;
359
360 }
361
362 void hl_cb_put(struct hl_cb *cb)
363 {
364 kref_put(&cb->refcount, cb_release);
365 }
366
367 void hl_cb_mgr_init(struct hl_cb_mgr *mgr)
368 {
369 spin_lock_init(&mgr->cb_lock);
370 idr_init(&mgr->cb_handles);
371 }
372
373 void hl_cb_mgr_fini(struct hl_device *hdev, struct hl_cb_mgr *mgr)
374 {
375 struct hl_cb *cb;
376 struct idr *idp;
377 u32 id;
378
379 idp = &mgr->cb_handles;
380
381 idr_for_each_entry(idp, cb, id) {
382 if (kref_put(&cb->refcount, cb_release) != 1)
383 dev_err(hdev->dev,
384 "CB %d for CTX ID %d is still alive\n",
385 id, cb->ctx_id);
386 }
387
388 idr_destroy(&mgr->cb_handles);
389 }
390
391 struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size)
392 {
393 u64 cb_handle;
394 struct hl_cb *cb;
395 int rc;
396
397 rc = hl_cb_create(hdev, &hdev->kernel_cb_mgr, cb_size, &cb_handle,
398 HL_KERNEL_ASID_ID);
399 if (rc) {
400 dev_err(hdev->dev,
401 "Failed to allocate CB for the kernel driver %d\n", rc);
402 return NULL;
403 }
404
405 cb_handle >>= PAGE_SHIFT;
406 cb = hl_cb_get(hdev, &hdev->kernel_cb_mgr, (u32) cb_handle);
407
408 WARN(!cb, "Kernel CB handle invalid 0x%x\n", (u32) cb_handle);
409 if (!cb)
410 goto destroy_cb;
411
412 return cb;
413
414 destroy_cb:
415 hl_cb_destroy(hdev, &hdev->kernel_cb_mgr, cb_handle << PAGE_SHIFT);
416
417 return NULL;
418 }
419
420 int hl_cb_pool_init(struct hl_device *hdev)
421 {
422 struct hl_cb *cb;
423 int i;
424
425 INIT_LIST_HEAD(&hdev->cb_pool);
426 spin_lock_init(&hdev->cb_pool_lock);
427
428 for (i = 0 ; i < hdev->asic_prop.cb_pool_cb_cnt ; i++) {
429 cb = hl_cb_alloc(hdev, hdev->asic_prop.cb_pool_cb_size,
430 HL_KERNEL_ASID_ID);
431 if (cb) {
432 cb->is_pool = true;
433 list_add(&cb->pool_list, &hdev->cb_pool);
434 } else {
435 hl_cb_pool_fini(hdev);
436 return -ENOMEM;
437 }
438 }
439
440 return 0;
441 }
442
443 int hl_cb_pool_fini(struct hl_device *hdev)
444 {
445 struct hl_cb *cb, *tmp;
446
447 list_for_each_entry_safe(cb, tmp, &hdev->cb_pool, pool_list) {
448 list_del(&cb->pool_list);
449 cb_fini(hdev, cb);
450 }
451
452 return 0;
453 }