root/arch/ia64/kernel/efi.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. STUB_GET_TIME
  2. is_memory_available
  3. kmd_end
  4. efi_md_end
  5. efi_wb
  6. efi_uc
  7. walk
  8. efi_memmap_walk
  9. efi_memmap_walk_uc
  10. efi_get_pal_addr
  11. palo_checksum
  12. handle_palo
  13. efi_map_pal_code
  14. efi_init
  15. efi_enter_virtual_mode
  16. efi_get_iobase
  17. kern_memory_descriptor
  18. efi_memory_descriptor
  19. efi_memmap_intersects
  20. efi_mem_type
  21. efi_mem_attributes
  22. efi_mem_attribute
  23. kern_mem_attribute
  24. valid_phys_addr_range
  25. valid_mmap_phys_addr_range
  26. phys_mem_access_prot
  27. efi_uart_console_only
  28. find_memmap_space
  29. efi_memmap_init
  30. efi_initialize_iomem_resources
  31. kdump_find_rsvd_region
  32. vmcore_find_descriptor_size

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * Extensible Firmware Interface
   4  *
   5  * Based on Extensible Firmware Interface Specification version 0.9
   6  * April 30, 1999
   7  *
   8  * Copyright (C) 1999 VA Linux Systems
   9  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  10  * Copyright (C) 1999-2003 Hewlett-Packard Co.
  11  *      David Mosberger-Tang <davidm@hpl.hp.com>
  12  *      Stephane Eranian <eranian@hpl.hp.com>
  13  * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
  14  *      Bjorn Helgaas <bjorn.helgaas@hp.com>
  15  *
  16  * All EFI Runtime Services are not implemented yet as EFI only
  17  * supports physical mode addressing on SoftSDV. This is to be fixed
  18  * in a future version.  --drummond 1999-07-20
  19  *
  20  * Implemented EFI runtime services and virtual mode calls.  --davidm
  21  *
  22  * Goutham Rao: <goutham.rao@intel.com>
  23  *      Skip non-WB memory and ignore empty memory ranges.
  24  */
  25 #include <linux/module.h>
  26 #include <linux/memblock.h>
  27 #include <linux/crash_dump.h>
  28 #include <linux/kernel.h>
  29 #include <linux/init.h>
  30 #include <linux/types.h>
  31 #include <linux/slab.h>
  32 #include <linux/time.h>
  33 #include <linux/efi.h>
  34 #include <linux/kexec.h>
  35 #include <linux/mm.h>
  36 
  37 #include <asm/io.h>
  38 #include <asm/kregs.h>
  39 #include <asm/meminit.h>
  40 #include <asm/pgtable.h>
  41 #include <asm/processor.h>
  42 #include <asm/mca.h>
  43 #include <asm/setup.h>
  44 #include <asm/tlbflush.h>
  45 
  46 #define EFI_DEBUG       0
  47 
  48 static __initdata unsigned long palo_phys;
  49 
  50 unsigned long sal_systab_phys = EFI_INVALID_TABLE_ADDR;
  51 
  52 static __initdata efi_config_table_type_t arch_tables[] = {
  53         {PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID, "PALO", &palo_phys},
  54         {SAL_SYSTEM_TABLE_GUID, "SALsystab", &sal_systab_phys},
  55         {NULL_GUID, NULL, 0},
  56 };
  57 
  58 extern efi_status_t efi_call_phys (void *, ...);
  59 
  60 static efi_runtime_services_t *runtime;
  61 static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
  62 
  63 #define efi_call_virt(f, args...)       (*(f))(args)
  64 
  65 #define STUB_GET_TIME(prefix, adjust_arg)                                      \
  66 static efi_status_t                                                            \
  67 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc)                         \
  68 {                                                                              \
  69         struct ia64_fpreg fr[6];                                               \
  70         efi_time_cap_t *atc = NULL;                                            \
  71         efi_status_t ret;                                                      \
  72                                                                                \
  73         if (tc)                                                                \
  74                 atc = adjust_arg(tc);                                          \
  75         ia64_save_scratch_fpregs(fr);                                          \
  76         ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time),    \
  77                                 adjust_arg(tm), atc);                          \
  78         ia64_load_scratch_fpregs(fr);                                          \
  79         return ret;                                                            \
  80 }
  81 
  82 #define STUB_SET_TIME(prefix, adjust_arg)                                      \
  83 static efi_status_t                                                            \
  84 prefix##_set_time (efi_time_t *tm)                                             \
  85 {                                                                              \
  86         struct ia64_fpreg fr[6];                                               \
  87         efi_status_t ret;                                                      \
  88                                                                                \
  89         ia64_save_scratch_fpregs(fr);                                          \
  90         ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time),    \
  91                                 adjust_arg(tm));                               \
  92         ia64_load_scratch_fpregs(fr);                                          \
  93         return ret;                                                            \
  94 }
  95 
  96 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg)                               \
  97 static efi_status_t                                                            \
  98 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending,            \
  99                           efi_time_t *tm)                                      \
 100 {                                                                              \
 101         struct ia64_fpreg fr[6];                                               \
 102         efi_status_t ret;                                                      \
 103                                                                                \
 104         ia64_save_scratch_fpregs(fr);                                          \
 105         ret = efi_call_##prefix(                                               \
 106                 (efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time),      \
 107                 adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm));     \
 108         ia64_load_scratch_fpregs(fr);                                          \
 109         return ret;                                                            \
 110 }
 111 
 112 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg)                               \
 113 static efi_status_t                                                            \
 114 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm)                  \
 115 {                                                                              \
 116         struct ia64_fpreg fr[6];                                               \
 117         efi_time_t *atm = NULL;                                                \
 118         efi_status_t ret;                                                      \
 119                                                                                \
 120         if (tm)                                                                \
 121                 atm = adjust_arg(tm);                                          \
 122         ia64_save_scratch_fpregs(fr);                                          \
 123         ret = efi_call_##prefix(                                               \
 124                 (efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time),      \
 125                 enabled, atm);                                                 \
 126         ia64_load_scratch_fpregs(fr);                                          \
 127         return ret;                                                            \
 128 }
 129 
 130 #define STUB_GET_VARIABLE(prefix, adjust_arg)                                  \
 131 static efi_status_t                                                            \
 132 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr,      \
 133                        unsigned long *data_size, void *data)                   \
 134 {                                                                              \
 135         struct ia64_fpreg fr[6];                                               \
 136         u32 *aattr = NULL;                                                     \
 137         efi_status_t ret;                                                      \
 138                                                                                \
 139         if (attr)                                                              \
 140                 aattr = adjust_arg(attr);                                      \
 141         ia64_save_scratch_fpregs(fr);                                          \
 142         ret = efi_call_##prefix(                                               \
 143                 (efi_get_variable_t *) __va(runtime->get_variable),            \
 144                 adjust_arg(name), adjust_arg(vendor), aattr,                   \
 145                 adjust_arg(data_size), adjust_arg(data));                      \
 146         ia64_load_scratch_fpregs(fr);                                          \
 147         return ret;                                                            \
 148 }
 149 
 150 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg)                             \
 151 static efi_status_t                                                            \
 152 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name,      \
 153                             efi_guid_t *vendor)                                \
 154 {                                                                              \
 155         struct ia64_fpreg fr[6];                                               \
 156         efi_status_t ret;                                                      \
 157                                                                                \
 158         ia64_save_scratch_fpregs(fr);                                          \
 159         ret = efi_call_##prefix(                                               \
 160                 (efi_get_next_variable_t *) __va(runtime->get_next_variable),  \
 161                 adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor));  \
 162         ia64_load_scratch_fpregs(fr);                                          \
 163         return ret;                                                            \
 164 }
 165 
 166 #define STUB_SET_VARIABLE(prefix, adjust_arg)                                  \
 167 static efi_status_t                                                            \
 168 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor,                 \
 169                        u32 attr, unsigned long data_size,                      \
 170                        void *data)                                             \
 171 {                                                                              \
 172         struct ia64_fpreg fr[6];                                               \
 173         efi_status_t ret;                                                      \
 174                                                                                \
 175         ia64_save_scratch_fpregs(fr);                                          \
 176         ret = efi_call_##prefix(                                               \
 177                 (efi_set_variable_t *) __va(runtime->set_variable),            \
 178                 adjust_arg(name), adjust_arg(vendor), attr, data_size,         \
 179                 adjust_arg(data));                                             \
 180         ia64_load_scratch_fpregs(fr);                                          \
 181         return ret;                                                            \
 182 }
 183 
 184 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg)                      \
 185 static efi_status_t                                                            \
 186 prefix##_get_next_high_mono_count (u32 *count)                                 \
 187 {                                                                              \
 188         struct ia64_fpreg fr[6];                                               \
 189         efi_status_t ret;                                                      \
 190                                                                                \
 191         ia64_save_scratch_fpregs(fr);                                          \
 192         ret = efi_call_##prefix((efi_get_next_high_mono_count_t *)             \
 193                                 __va(runtime->get_next_high_mono_count),       \
 194                                 adjust_arg(count));                            \
 195         ia64_load_scratch_fpregs(fr);                                          \
 196         return ret;                                                            \
 197 }
 198 
 199 #define STUB_RESET_SYSTEM(prefix, adjust_arg)                                  \
 200 static void                                                                    \
 201 prefix##_reset_system (int reset_type, efi_status_t status,                    \
 202                        unsigned long data_size, efi_char16_t *data)            \
 203 {                                                                              \
 204         struct ia64_fpreg fr[6];                                               \
 205         efi_char16_t *adata = NULL;                                            \
 206                                                                                \
 207         if (data)                                                              \
 208                 adata = adjust_arg(data);                                      \
 209                                                                                \
 210         ia64_save_scratch_fpregs(fr);                                          \
 211         efi_call_##prefix(                                                     \
 212                 (efi_reset_system_t *) __va(runtime->reset_system),            \
 213                 reset_type, status, data_size, adata);                         \
 214         /* should not return, but just in case... */                           \
 215         ia64_load_scratch_fpregs(fr);                                          \
 216 }
 217 
 218 #define phys_ptr(arg)   ((__typeof__(arg)) ia64_tpa(arg))
 219 
 220 STUB_GET_TIME(phys, phys_ptr)
 221 STUB_SET_TIME(phys, phys_ptr)
 222 STUB_GET_WAKEUP_TIME(phys, phys_ptr)
 223 STUB_SET_WAKEUP_TIME(phys, phys_ptr)
 224 STUB_GET_VARIABLE(phys, phys_ptr)
 225 STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
 226 STUB_SET_VARIABLE(phys, phys_ptr)
 227 STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
 228 STUB_RESET_SYSTEM(phys, phys_ptr)
 229 
 230 #define id(arg) arg
 231 
 232 STUB_GET_TIME(virt, id)
 233 STUB_SET_TIME(virt, id)
 234 STUB_GET_WAKEUP_TIME(virt, id)
 235 STUB_SET_WAKEUP_TIME(virt, id)
 236 STUB_GET_VARIABLE(virt, id)
 237 STUB_GET_NEXT_VARIABLE(virt, id)
 238 STUB_SET_VARIABLE(virt, id)
 239 STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
 240 STUB_RESET_SYSTEM(virt, id)
 241 
 242 void
 243 efi_gettimeofday (struct timespec64 *ts)
 244 {
 245         efi_time_t tm;
 246 
 247         if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
 248                 memset(ts, 0, sizeof(*ts));
 249                 return;
 250         }
 251 
 252         ts->tv_sec = mktime64(tm.year, tm.month, tm.day,
 253                             tm.hour, tm.minute, tm.second);
 254         ts->tv_nsec = tm.nanosecond;
 255 }
 256 
 257 static int
 258 is_memory_available (efi_memory_desc_t *md)
 259 {
 260         if (!(md->attribute & EFI_MEMORY_WB))
 261                 return 0;
 262 
 263         switch (md->type) {
 264               case EFI_LOADER_CODE:
 265               case EFI_LOADER_DATA:
 266               case EFI_BOOT_SERVICES_CODE:
 267               case EFI_BOOT_SERVICES_DATA:
 268               case EFI_CONVENTIONAL_MEMORY:
 269                 return 1;
 270         }
 271         return 0;
 272 }
 273 
 274 typedef struct kern_memdesc {
 275         u64 attribute;
 276         u64 start;
 277         u64 num_pages;
 278 } kern_memdesc_t;
 279 
 280 static kern_memdesc_t *kern_memmap;
 281 
 282 #define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
 283 
 284 static inline u64
 285 kmd_end(kern_memdesc_t *kmd)
 286 {
 287         return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
 288 }
 289 
 290 static inline u64
 291 efi_md_end(efi_memory_desc_t *md)
 292 {
 293         return (md->phys_addr + efi_md_size(md));
 294 }
 295 
 296 static inline int
 297 efi_wb(efi_memory_desc_t *md)
 298 {
 299         return (md->attribute & EFI_MEMORY_WB);
 300 }
 301 
 302 static inline int
 303 efi_uc(efi_memory_desc_t *md)
 304 {
 305         return (md->attribute & EFI_MEMORY_UC);
 306 }
 307 
 308 static void
 309 walk (efi_freemem_callback_t callback, void *arg, u64 attr)
 310 {
 311         kern_memdesc_t *k;
 312         u64 start, end, voff;
 313 
 314         voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
 315         for (k = kern_memmap; k->start != ~0UL; k++) {
 316                 if (k->attribute != attr)
 317                         continue;
 318                 start = PAGE_ALIGN(k->start);
 319                 end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
 320                 if (start < end)
 321                         if ((*callback)(start + voff, end + voff, arg) < 0)
 322                                 return;
 323         }
 324 }
 325 
 326 /*
 327  * Walk the EFI memory map and call CALLBACK once for each EFI memory
 328  * descriptor that has memory that is available for OS use.
 329  */
 330 void
 331 efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
 332 {
 333         walk(callback, arg, EFI_MEMORY_WB);
 334 }
 335 
 336 /*
 337  * Walk the EFI memory map and call CALLBACK once for each EFI memory
 338  * descriptor that has memory that is available for uncached allocator.
 339  */
 340 void
 341 efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
 342 {
 343         walk(callback, arg, EFI_MEMORY_UC);
 344 }
 345 
 346 /*
 347  * Look for the PAL_CODE region reported by EFI and map it using an
 348  * ITR to enable safe PAL calls in virtual mode.  See IA-64 Processor
 349  * Abstraction Layer chapter 11 in ADAG
 350  */
 351 void *
 352 efi_get_pal_addr (void)
 353 {
 354         void *efi_map_start, *efi_map_end, *p;
 355         efi_memory_desc_t *md;
 356         u64 efi_desc_size;
 357         int pal_code_count = 0;
 358         u64 vaddr, mask;
 359 
 360         efi_map_start = __va(ia64_boot_param->efi_memmap);
 361         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 362         efi_desc_size = ia64_boot_param->efi_memdesc_size;
 363 
 364         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 365                 md = p;
 366                 if (md->type != EFI_PAL_CODE)
 367                         continue;
 368 
 369                 if (++pal_code_count > 1) {
 370                         printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
 371                                "dropped @ %llx\n", md->phys_addr);
 372                         continue;
 373                 }
 374                 /*
 375                  * The only ITLB entry in region 7 that is used is the one
 376                  * installed by __start().  That entry covers a 64MB range.
 377                  */
 378                 mask  = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
 379                 vaddr = PAGE_OFFSET + md->phys_addr;
 380 
 381                 /*
 382                  * We must check that the PAL mapping won't overlap with the
 383                  * kernel mapping.
 384                  *
 385                  * PAL code is guaranteed to be aligned on a power of 2 between
 386                  * 4k and 256KB and that only one ITR is needed to map it. This
 387                  * implies that the PAL code is always aligned on its size,
 388                  * i.e., the closest matching page size supported by the TLB.
 389                  * Therefore PAL code is guaranteed never to cross a 64MB unless
 390                  * it is bigger than 64MB (very unlikely!).  So for now the
 391                  * following test is enough to determine whether or not we need
 392                  * a dedicated ITR for the PAL code.
 393                  */
 394                 if ((vaddr & mask) == (KERNEL_START & mask)) {
 395                         printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
 396                                __func__);
 397                         continue;
 398                 }
 399 
 400                 if (efi_md_size(md) > IA64_GRANULE_SIZE)
 401                         panic("Whoa!  PAL code size bigger than a granule!");
 402 
 403 #if EFI_DEBUG
 404                 mask  = ~((1 << IA64_GRANULE_SHIFT) - 1);
 405 
 406                 printk(KERN_INFO "CPU %d: mapping PAL code "
 407                        "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
 408                        smp_processor_id(), md->phys_addr,
 409                        md->phys_addr + efi_md_size(md),
 410                        vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
 411 #endif
 412                 return __va(md->phys_addr);
 413         }
 414         printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
 415                __func__);
 416         return NULL;
 417 }
 418 
 419 
 420 static u8 __init palo_checksum(u8 *buffer, u32 length)
 421 {
 422         u8 sum = 0;
 423         u8 *end = buffer + length;
 424 
 425         while (buffer < end)
 426                 sum = (u8) (sum + *(buffer++));
 427 
 428         return sum;
 429 }
 430 
 431 /*
 432  * Parse and handle PALO table which is published at:
 433  * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
 434  */
 435 static void __init handle_palo(unsigned long phys_addr)
 436 {
 437         struct palo_table *palo = __va(phys_addr);
 438         u8  checksum;
 439 
 440         if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) {
 441                 printk(KERN_INFO "PALO signature incorrect.\n");
 442                 return;
 443         }
 444 
 445         checksum = palo_checksum((u8 *)palo, palo->length);
 446         if (checksum) {
 447                 printk(KERN_INFO "PALO checksum incorrect.\n");
 448                 return;
 449         }
 450 
 451         setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO);
 452 }
 453 
 454 void
 455 efi_map_pal_code (void)
 456 {
 457         void *pal_vaddr = efi_get_pal_addr ();
 458         u64 psr;
 459 
 460         if (!pal_vaddr)
 461                 return;
 462 
 463         /*
 464          * Cannot write to CRx with PSR.ic=1
 465          */
 466         psr = ia64_clear_ic();
 467         ia64_itr(0x1, IA64_TR_PALCODE,
 468                  GRANULEROUNDDOWN((unsigned long) pal_vaddr),
 469                  pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
 470                  IA64_GRANULE_SHIFT);
 471         ia64_set_psr(psr);              /* restore psr */
 472 }
 473 
 474 void __init
 475 efi_init (void)
 476 {
 477         void *efi_map_start, *efi_map_end;
 478         efi_char16_t *c16;
 479         u64 efi_desc_size;
 480         char *cp, vendor[100] = "unknown";
 481         int i;
 482 
 483         set_bit(EFI_BOOT, &efi.flags);
 484         set_bit(EFI_64BIT, &efi.flags);
 485 
 486         /*
 487          * It's too early to be able to use the standard kernel command line
 488          * support...
 489          */
 490         for (cp = boot_command_line; *cp; ) {
 491                 if (memcmp(cp, "mem=", 4) == 0) {
 492                         mem_limit = memparse(cp + 4, &cp);
 493                 } else if (memcmp(cp, "max_addr=", 9) == 0) {
 494                         max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
 495                 } else if (memcmp(cp, "min_addr=", 9) == 0) {
 496                         min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
 497                 } else {
 498                         while (*cp != ' ' && *cp)
 499                                 ++cp;
 500                         while (*cp == ' ')
 501                                 ++cp;
 502                 }
 503         }
 504         if (min_addr != 0UL)
 505                 printk(KERN_INFO "Ignoring memory below %lluMB\n",
 506                        min_addr >> 20);
 507         if (max_addr != ~0UL)
 508                 printk(KERN_INFO "Ignoring memory above %lluMB\n",
 509                        max_addr >> 20);
 510 
 511         efi.systab = __va(ia64_boot_param->efi_systab);
 512 
 513         /*
 514          * Verify the EFI Table
 515          */
 516         if (efi.systab == NULL)
 517                 panic("Whoa! Can't find EFI system table.\n");
 518         if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
 519                 panic("Whoa! EFI system table signature incorrect\n");
 520         if ((efi.systab->hdr.revision >> 16) == 0)
 521                 printk(KERN_WARNING "Warning: EFI system table version "
 522                        "%d.%02d, expected 1.00 or greater\n",
 523                        efi.systab->hdr.revision >> 16,
 524                        efi.systab->hdr.revision & 0xffff);
 525 
 526         /* Show what we know for posterity */
 527         c16 = __va(efi.systab->fw_vendor);
 528         if (c16) {
 529                 for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
 530                         vendor[i] = *c16++;
 531                 vendor[i] = '\0';
 532         }
 533 
 534         printk(KERN_INFO "EFI v%u.%.02u by %s:",
 535                efi.systab->hdr.revision >> 16,
 536                efi.systab->hdr.revision & 0xffff, vendor);
 537 
 538         palo_phys      = EFI_INVALID_TABLE_ADDR;
 539 
 540         if (efi_config_init(arch_tables) != 0)
 541                 return;
 542 
 543         if (palo_phys != EFI_INVALID_TABLE_ADDR)
 544                 handle_palo(palo_phys);
 545 
 546         runtime = __va(efi.systab->runtime);
 547         efi.get_time = phys_get_time;
 548         efi.set_time = phys_set_time;
 549         efi.get_wakeup_time = phys_get_wakeup_time;
 550         efi.set_wakeup_time = phys_set_wakeup_time;
 551         efi.get_variable = phys_get_variable;
 552         efi.get_next_variable = phys_get_next_variable;
 553         efi.set_variable = phys_set_variable;
 554         efi.get_next_high_mono_count = phys_get_next_high_mono_count;
 555         efi.reset_system = phys_reset_system;
 556 
 557         efi_map_start = __va(ia64_boot_param->efi_memmap);
 558         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 559         efi_desc_size = ia64_boot_param->efi_memdesc_size;
 560 
 561 #if EFI_DEBUG
 562         /* print EFI memory map: */
 563         {
 564                 efi_memory_desc_t *md;
 565                 void *p;
 566 
 567                 for (i = 0, p = efi_map_start; p < efi_map_end;
 568                      ++i, p += efi_desc_size)
 569                 {
 570                         const char *unit;
 571                         unsigned long size;
 572                         char buf[64];
 573 
 574                         md = p;
 575                         size = md->num_pages << EFI_PAGE_SHIFT;
 576 
 577                         if ((size >> 40) > 0) {
 578                                 size >>= 40;
 579                                 unit = "TB";
 580                         } else if ((size >> 30) > 0) {
 581                                 size >>= 30;
 582                                 unit = "GB";
 583                         } else if ((size >> 20) > 0) {
 584                                 size >>= 20;
 585                                 unit = "MB";
 586                         } else {
 587                                 size >>= 10;
 588                                 unit = "KB";
 589                         }
 590 
 591                         printk("mem%02d: %s "
 592                                "range=[0x%016lx-0x%016lx) (%4lu%s)\n",
 593                                i, efi_md_typeattr_format(buf, sizeof(buf), md),
 594                                md->phys_addr,
 595                                md->phys_addr + efi_md_size(md), size, unit);
 596                 }
 597         }
 598 #endif
 599 
 600         efi_map_pal_code();
 601         efi_enter_virtual_mode();
 602 }
 603 
 604 void
 605 efi_enter_virtual_mode (void)
 606 {
 607         void *efi_map_start, *efi_map_end, *p;
 608         efi_memory_desc_t *md;
 609         efi_status_t status;
 610         u64 efi_desc_size;
 611 
 612         efi_map_start = __va(ia64_boot_param->efi_memmap);
 613         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 614         efi_desc_size = ia64_boot_param->efi_memdesc_size;
 615 
 616         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 617                 md = p;
 618                 if (md->attribute & EFI_MEMORY_RUNTIME) {
 619                         /*
 620                          * Some descriptors have multiple bits set, so the
 621                          * order of the tests is relevant.
 622                          */
 623                         if (md->attribute & EFI_MEMORY_WB) {
 624                                 md->virt_addr = (u64) __va(md->phys_addr);
 625                         } else if (md->attribute & EFI_MEMORY_UC) {
 626                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
 627                         } else if (md->attribute & EFI_MEMORY_WC) {
 628 #if 0
 629                                 md->virt_addr = ia64_remap(md->phys_addr,
 630                                                            (_PAGE_A |
 631                                                             _PAGE_P |
 632                                                             _PAGE_D |
 633                                                             _PAGE_MA_WC |
 634                                                             _PAGE_PL_0 |
 635                                                             _PAGE_AR_RW));
 636 #else
 637                                 printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
 638                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
 639 #endif
 640                         } else if (md->attribute & EFI_MEMORY_WT) {
 641 #if 0
 642                                 md->virt_addr = ia64_remap(md->phys_addr,
 643                                                            (_PAGE_A |
 644                                                             _PAGE_P |
 645                                                             _PAGE_D |
 646                                                             _PAGE_MA_WT |
 647                                                             _PAGE_PL_0 |
 648                                                             _PAGE_AR_RW));
 649 #else
 650                                 printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
 651                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
 652 #endif
 653                         }
 654                 }
 655         }
 656 
 657         status = efi_call_phys(__va(runtime->set_virtual_address_map),
 658                                ia64_boot_param->efi_memmap_size,
 659                                efi_desc_size,
 660                                ia64_boot_param->efi_memdesc_version,
 661                                ia64_boot_param->efi_memmap);
 662         if (status != EFI_SUCCESS) {
 663                 printk(KERN_WARNING "warning: unable to switch EFI into "
 664                        "virtual mode (status=%lu)\n", status);
 665                 return;
 666         }
 667 
 668         set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 669 
 670         /*
 671          * Now that EFI is in virtual mode, we call the EFI functions more
 672          * efficiently:
 673          */
 674         efi.get_time = virt_get_time;
 675         efi.set_time = virt_set_time;
 676         efi.get_wakeup_time = virt_get_wakeup_time;
 677         efi.set_wakeup_time = virt_set_wakeup_time;
 678         efi.get_variable = virt_get_variable;
 679         efi.get_next_variable = virt_get_next_variable;
 680         efi.set_variable = virt_set_variable;
 681         efi.get_next_high_mono_count = virt_get_next_high_mono_count;
 682         efi.reset_system = virt_reset_system;
 683 }
 684 
 685 /*
 686  * Walk the EFI memory map looking for the I/O port range.  There can only be
 687  * one entry of this type, other I/O port ranges should be described via ACPI.
 688  */
 689 u64
 690 efi_get_iobase (void)
 691 {
 692         void *efi_map_start, *efi_map_end, *p;
 693         efi_memory_desc_t *md;
 694         u64 efi_desc_size;
 695 
 696         efi_map_start = __va(ia64_boot_param->efi_memmap);
 697         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 698         efi_desc_size = ia64_boot_param->efi_memdesc_size;
 699 
 700         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 701                 md = p;
 702                 if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
 703                         if (md->attribute & EFI_MEMORY_UC)
 704                                 return md->phys_addr;
 705                 }
 706         }
 707         return 0;
 708 }
 709 
 710 static struct kern_memdesc *
 711 kern_memory_descriptor (unsigned long phys_addr)
 712 {
 713         struct kern_memdesc *md;
 714 
 715         for (md = kern_memmap; md->start != ~0UL; md++) {
 716                 if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
 717                          return md;
 718         }
 719         return NULL;
 720 }
 721 
 722 static efi_memory_desc_t *
 723 efi_memory_descriptor (unsigned long phys_addr)
 724 {
 725         void *efi_map_start, *efi_map_end, *p;
 726         efi_memory_desc_t *md;
 727         u64 efi_desc_size;
 728 
 729         efi_map_start = __va(ia64_boot_param->efi_memmap);
 730         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 731         efi_desc_size = ia64_boot_param->efi_memdesc_size;
 732 
 733         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 734                 md = p;
 735 
 736                 if (phys_addr - md->phys_addr < efi_md_size(md))
 737                          return md;
 738         }
 739         return NULL;
 740 }
 741 
 742 static int
 743 efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
 744 {
 745         void *efi_map_start, *efi_map_end, *p;
 746         efi_memory_desc_t *md;
 747         u64 efi_desc_size;
 748         unsigned long end;
 749 
 750         efi_map_start = __va(ia64_boot_param->efi_memmap);
 751         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 752         efi_desc_size = ia64_boot_param->efi_memdesc_size;
 753 
 754         end = phys_addr + size;
 755 
 756         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 757                 md = p;
 758                 if (md->phys_addr < end && efi_md_end(md) > phys_addr)
 759                         return 1;
 760         }
 761         return 0;
 762 }
 763 
 764 int
 765 efi_mem_type (unsigned long phys_addr)
 766 {
 767         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
 768 
 769         if (md)
 770                 return md->type;
 771         return -EINVAL;
 772 }
 773 
 774 u64
 775 efi_mem_attributes (unsigned long phys_addr)
 776 {
 777         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
 778 
 779         if (md)
 780                 return md->attribute;
 781         return 0;
 782 }
 783 EXPORT_SYMBOL(efi_mem_attributes);
 784 
 785 u64
 786 efi_mem_attribute (unsigned long phys_addr, unsigned long size)
 787 {
 788         unsigned long end = phys_addr + size;
 789         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
 790         u64 attr;
 791 
 792         if (!md)
 793                 return 0;
 794 
 795         /*
 796          * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
 797          * the kernel that firmware needs this region mapped.
 798          */
 799         attr = md->attribute & ~EFI_MEMORY_RUNTIME;
 800         do {
 801                 unsigned long md_end = efi_md_end(md);
 802 
 803                 if (end <= md_end)
 804                         return attr;
 805 
 806                 md = efi_memory_descriptor(md_end);
 807                 if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
 808                         return 0;
 809         } while (md);
 810         return 0;       /* never reached */
 811 }
 812 
 813 u64
 814 kern_mem_attribute (unsigned long phys_addr, unsigned long size)
 815 {
 816         unsigned long end = phys_addr + size;
 817         struct kern_memdesc *md;
 818         u64 attr;
 819 
 820         /*
 821          * This is a hack for ioremap calls before we set up kern_memmap.
 822          * Maybe we should do efi_memmap_init() earlier instead.
 823          */
 824         if (!kern_memmap) {
 825                 attr = efi_mem_attribute(phys_addr, size);
 826                 if (attr & EFI_MEMORY_WB)
 827                         return EFI_MEMORY_WB;
 828                 return 0;
 829         }
 830 
 831         md = kern_memory_descriptor(phys_addr);
 832         if (!md)
 833                 return 0;
 834 
 835         attr = md->attribute;
 836         do {
 837                 unsigned long md_end = kmd_end(md);
 838 
 839                 if (end <= md_end)
 840                         return attr;
 841 
 842                 md = kern_memory_descriptor(md_end);
 843                 if (!md || md->attribute != attr)
 844                         return 0;
 845         } while (md);
 846         return 0;       /* never reached */
 847 }
 848 
 849 int
 850 valid_phys_addr_range (phys_addr_t phys_addr, unsigned long size)
 851 {
 852         u64 attr;
 853 
 854         /*
 855          * /dev/mem reads and writes use copy_to_user(), which implicitly
 856          * uses a granule-sized kernel identity mapping.  It's really
 857          * only safe to do this for regions in kern_memmap.  For more
 858          * details, see Documentation/ia64/aliasing.rst.
 859          */
 860         attr = kern_mem_attribute(phys_addr, size);
 861         if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
 862                 return 1;
 863         return 0;
 864 }
 865 
 866 int
 867 valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
 868 {
 869         unsigned long phys_addr = pfn << PAGE_SHIFT;
 870         u64 attr;
 871 
 872         attr = efi_mem_attribute(phys_addr, size);
 873 
 874         /*
 875          * /dev/mem mmap uses normal user pages, so we don't need the entire
 876          * granule, but the entire region we're mapping must support the same
 877          * attribute.
 878          */
 879         if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
 880                 return 1;
 881 
 882         /*
 883          * Intel firmware doesn't tell us about all the MMIO regions, so
 884          * in general we have to allow mmap requests.  But if EFI *does*
 885          * tell us about anything inside this region, we should deny it.
 886          * The user can always map a smaller region to avoid the overlap.
 887          */
 888         if (efi_memmap_intersects(phys_addr, size))
 889                 return 0;
 890 
 891         return 1;
 892 }
 893 
 894 pgprot_t
 895 phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
 896                      pgprot_t vma_prot)
 897 {
 898         unsigned long phys_addr = pfn << PAGE_SHIFT;
 899         u64 attr;
 900 
 901         /*
 902          * For /dev/mem mmap, we use user mappings, but if the region is
 903          * in kern_memmap (and hence may be covered by a kernel mapping),
 904          * we must use the same attribute as the kernel mapping.
 905          */
 906         attr = kern_mem_attribute(phys_addr, size);
 907         if (attr & EFI_MEMORY_WB)
 908                 return pgprot_cacheable(vma_prot);
 909         else if (attr & EFI_MEMORY_UC)
 910                 return pgprot_noncached(vma_prot);
 911 
 912         /*
 913          * Some chipsets don't support UC access to memory.  If
 914          * WB is supported, we prefer that.
 915          */
 916         if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
 917                 return pgprot_cacheable(vma_prot);
 918 
 919         return pgprot_noncached(vma_prot);
 920 }
 921 
 922 int __init
 923 efi_uart_console_only(void)
 924 {
 925         efi_status_t status;
 926         char *s, name[] = "ConOut";
 927         efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
 928         efi_char16_t *utf16, name_utf16[32];
 929         unsigned char data[1024];
 930         unsigned long size = sizeof(data);
 931         struct efi_generic_dev_path *hdr, *end_addr;
 932         int uart = 0;
 933 
 934         /* Convert to UTF-16 */
 935         utf16 = name_utf16;
 936         s = name;
 937         while (*s)
 938                 *utf16++ = *s++ & 0x7f;
 939         *utf16 = 0;
 940 
 941         status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
 942         if (status != EFI_SUCCESS) {
 943                 printk(KERN_ERR "No EFI %s variable?\n", name);
 944                 return 0;
 945         }
 946 
 947         hdr = (struct efi_generic_dev_path *) data;
 948         end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
 949         while (hdr < end_addr) {
 950                 if (hdr->type == EFI_DEV_MSG &&
 951                     hdr->sub_type == EFI_DEV_MSG_UART)
 952                         uart = 1;
 953                 else if (hdr->type == EFI_DEV_END_PATH ||
 954                           hdr->type == EFI_DEV_END_PATH2) {
 955                         if (!uart)
 956                                 return 0;
 957                         if (hdr->sub_type == EFI_DEV_END_ENTIRE)
 958                                 return 1;
 959                         uart = 0;
 960                 }
 961                 hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
 962         }
 963         printk(KERN_ERR "Malformed %s value\n", name);
 964         return 0;
 965 }
 966 
 967 /*
 968  * Look for the first granule aligned memory descriptor memory
 969  * that is big enough to hold EFI memory map. Make sure this
 970  * descriptor is at least granule sized so it does not get trimmed
 971  */
 972 struct kern_memdesc *
 973 find_memmap_space (void)
 974 {
 975         u64     contig_low=0, contig_high=0;
 976         u64     as = 0, ae;
 977         void *efi_map_start, *efi_map_end, *p, *q;
 978         efi_memory_desc_t *md, *pmd = NULL, *check_md;
 979         u64     space_needed, efi_desc_size;
 980         unsigned long total_mem = 0;
 981 
 982         efi_map_start = __va(ia64_boot_param->efi_memmap);
 983         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 984         efi_desc_size = ia64_boot_param->efi_memdesc_size;
 985 
 986         /*
 987          * Worst case: we need 3 kernel descriptors for each efi descriptor
 988          * (if every entry has a WB part in the middle, and UC head and tail),
 989          * plus one for the end marker.
 990          */
 991         space_needed = sizeof(kern_memdesc_t) *
 992                 (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
 993 
 994         for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
 995                 md = p;
 996                 if (!efi_wb(md)) {
 997                         continue;
 998                 }
 999                 if (pmd == NULL || !efi_wb(pmd) ||
1000                     efi_md_end(pmd) != md->phys_addr) {
1001                         contig_low = GRANULEROUNDUP(md->phys_addr);
1002                         contig_high = efi_md_end(md);
1003                         for (q = p + efi_desc_size; q < efi_map_end;
1004                              q += efi_desc_size) {
1005                                 check_md = q;
1006                                 if (!efi_wb(check_md))
1007                                         break;
1008                                 if (contig_high != check_md->phys_addr)
1009                                         break;
1010                                 contig_high = efi_md_end(check_md);
1011                         }
1012                         contig_high = GRANULEROUNDDOWN(contig_high);
1013                 }
1014                 if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
1015                         continue;
1016 
1017                 /* Round ends inward to granule boundaries */
1018                 as = max(contig_low, md->phys_addr);
1019                 ae = min(contig_high, efi_md_end(md));
1020 
1021                 /* keep within max_addr= and min_addr= command line arg */
1022                 as = max(as, min_addr);
1023                 ae = min(ae, max_addr);
1024                 if (ae <= as)
1025                         continue;
1026 
1027                 /* avoid going over mem= command line arg */
1028                 if (total_mem + (ae - as) > mem_limit)
1029                         ae -= total_mem + (ae - as) - mem_limit;
1030 
1031                 if (ae <= as)
1032                         continue;
1033 
1034                 if (ae - as > space_needed)
1035                         break;
1036         }
1037         if (p >= efi_map_end)
1038                 panic("Can't allocate space for kernel memory descriptors");
1039 
1040         return __va(as);
1041 }
1042 
1043 /*
1044  * Walk the EFI memory map and gather all memory available for kernel
1045  * to use.  We can allocate partial granules only if the unavailable
1046  * parts exist, and are WB.
1047  */
1048 unsigned long
1049 efi_memmap_init(u64 *s, u64 *e)
1050 {
1051         struct kern_memdesc *k, *prev = NULL;
1052         u64     contig_low=0, contig_high=0;
1053         u64     as, ae, lim;
1054         void *efi_map_start, *efi_map_end, *p, *q;
1055         efi_memory_desc_t *md, *pmd = NULL, *check_md;
1056         u64     efi_desc_size;
1057         unsigned long total_mem = 0;
1058 
1059         k = kern_memmap = find_memmap_space();
1060 
1061         efi_map_start = __va(ia64_boot_param->efi_memmap);
1062         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1063         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1064 
1065         for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1066                 md = p;
1067                 if (!efi_wb(md)) {
1068                         if (efi_uc(md) &&
1069                             (md->type == EFI_CONVENTIONAL_MEMORY ||
1070                              md->type == EFI_BOOT_SERVICES_DATA)) {
1071                                 k->attribute = EFI_MEMORY_UC;
1072                                 k->start = md->phys_addr;
1073                                 k->num_pages = md->num_pages;
1074                                 k++;
1075                         }
1076                         continue;
1077                 }
1078                 if (pmd == NULL || !efi_wb(pmd) ||
1079                     efi_md_end(pmd) != md->phys_addr) {
1080                         contig_low = GRANULEROUNDUP(md->phys_addr);
1081                         contig_high = efi_md_end(md);
1082                         for (q = p + efi_desc_size; q < efi_map_end;
1083                              q += efi_desc_size) {
1084                                 check_md = q;
1085                                 if (!efi_wb(check_md))
1086                                         break;
1087                                 if (contig_high != check_md->phys_addr)
1088                                         break;
1089                                 contig_high = efi_md_end(check_md);
1090                         }
1091                         contig_high = GRANULEROUNDDOWN(contig_high);
1092                 }
1093                 if (!is_memory_available(md))
1094                         continue;
1095 
1096                 /*
1097                  * Round ends inward to granule boundaries
1098                  * Give trimmings to uncached allocator
1099                  */
1100                 if (md->phys_addr < contig_low) {
1101                         lim = min(efi_md_end(md), contig_low);
1102                         if (efi_uc(md)) {
1103                                 if (k > kern_memmap &&
1104                                     (k-1)->attribute == EFI_MEMORY_UC &&
1105                                     kmd_end(k-1) == md->phys_addr) {
1106                                         (k-1)->num_pages +=
1107                                                 (lim - md->phys_addr)
1108                                                 >> EFI_PAGE_SHIFT;
1109                                 } else {
1110                                         k->attribute = EFI_MEMORY_UC;
1111                                         k->start = md->phys_addr;
1112                                         k->num_pages = (lim - md->phys_addr)
1113                                                 >> EFI_PAGE_SHIFT;
1114                                         k++;
1115                                 }
1116                         }
1117                         as = contig_low;
1118                 } else
1119                         as = md->phys_addr;
1120 
1121                 if (efi_md_end(md) > contig_high) {
1122                         lim = max(md->phys_addr, contig_high);
1123                         if (efi_uc(md)) {
1124                                 if (lim == md->phys_addr && k > kern_memmap &&
1125                                     (k-1)->attribute == EFI_MEMORY_UC &&
1126                                     kmd_end(k-1) == md->phys_addr) {
1127                                         (k-1)->num_pages += md->num_pages;
1128                                 } else {
1129                                         k->attribute = EFI_MEMORY_UC;
1130                                         k->start = lim;
1131                                         k->num_pages = (efi_md_end(md) - lim)
1132                                                 >> EFI_PAGE_SHIFT;
1133                                         k++;
1134                                 }
1135                         }
1136                         ae = contig_high;
1137                 } else
1138                         ae = efi_md_end(md);
1139 
1140                 /* keep within max_addr= and min_addr= command line arg */
1141                 as = max(as, min_addr);
1142                 ae = min(ae, max_addr);
1143                 if (ae <= as)
1144                         continue;
1145 
1146                 /* avoid going over mem= command line arg */
1147                 if (total_mem + (ae - as) > mem_limit)
1148                         ae -= total_mem + (ae - as) - mem_limit;
1149 
1150                 if (ae <= as)
1151                         continue;
1152                 if (prev && kmd_end(prev) == md->phys_addr) {
1153                         prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1154                         total_mem += ae - as;
1155                         continue;
1156                 }
1157                 k->attribute = EFI_MEMORY_WB;
1158                 k->start = as;
1159                 k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1160                 total_mem += ae - as;
1161                 prev = k++;
1162         }
1163         k->start = ~0L; /* end-marker */
1164 
1165         /* reserve the memory we are using for kern_memmap */
1166         *s = (u64)kern_memmap;
1167         *e = (u64)++k;
1168 
1169         return total_mem;
1170 }
1171 
1172 void
1173 efi_initialize_iomem_resources(struct resource *code_resource,
1174                                struct resource *data_resource,
1175                                struct resource *bss_resource)
1176 {
1177         struct resource *res;
1178         void *efi_map_start, *efi_map_end, *p;
1179         efi_memory_desc_t *md;
1180         u64 efi_desc_size;
1181         char *name;
1182         unsigned long flags, desc;
1183 
1184         efi_map_start = __va(ia64_boot_param->efi_memmap);
1185         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1186         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1187 
1188         res = NULL;
1189 
1190         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1191                 md = p;
1192 
1193                 if (md->num_pages == 0) /* should not happen */
1194                         continue;
1195 
1196                 flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1197                 desc = IORES_DESC_NONE;
1198 
1199                 switch (md->type) {
1200 
1201                         case EFI_MEMORY_MAPPED_IO:
1202                         case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1203                                 continue;
1204 
1205                         case EFI_LOADER_CODE:
1206                         case EFI_LOADER_DATA:
1207                         case EFI_BOOT_SERVICES_DATA:
1208                         case EFI_BOOT_SERVICES_CODE:
1209                         case EFI_CONVENTIONAL_MEMORY:
1210                                 if (md->attribute & EFI_MEMORY_WP) {
1211                                         name = "System ROM";
1212                                         flags |= IORESOURCE_READONLY;
1213                                 } else if (md->attribute == EFI_MEMORY_UC) {
1214                                         name = "Uncached RAM";
1215                                 } else {
1216                                         name = "System RAM";
1217                                         flags |= IORESOURCE_SYSRAM;
1218                                 }
1219                                 break;
1220 
1221                         case EFI_ACPI_MEMORY_NVS:
1222                                 name = "ACPI Non-volatile Storage";
1223                                 desc = IORES_DESC_ACPI_NV_STORAGE;
1224                                 break;
1225 
1226                         case EFI_UNUSABLE_MEMORY:
1227                                 name = "reserved";
1228                                 flags |= IORESOURCE_DISABLED;
1229                                 break;
1230 
1231                         case EFI_PERSISTENT_MEMORY:
1232                                 name = "Persistent Memory";
1233                                 desc = IORES_DESC_PERSISTENT_MEMORY;
1234                                 break;
1235 
1236                         case EFI_RESERVED_TYPE:
1237                         case EFI_RUNTIME_SERVICES_CODE:
1238                         case EFI_RUNTIME_SERVICES_DATA:
1239                         case EFI_ACPI_RECLAIM_MEMORY:
1240                         default:
1241                                 name = "reserved";
1242                                 break;
1243                 }
1244 
1245                 if ((res = kzalloc(sizeof(struct resource),
1246                                    GFP_KERNEL)) == NULL) {
1247                         printk(KERN_ERR
1248                                "failed to allocate resource for iomem\n");
1249                         return;
1250                 }
1251 
1252                 res->name = name;
1253                 res->start = md->phys_addr;
1254                 res->end = md->phys_addr + efi_md_size(md) - 1;
1255                 res->flags = flags;
1256                 res->desc = desc;
1257 
1258                 if (insert_resource(&iomem_resource, res) < 0)
1259                         kfree(res);
1260                 else {
1261                         /*
1262                          * We don't know which region contains
1263                          * kernel data so we try it repeatedly and
1264                          * let the resource manager test it.
1265                          */
1266                         insert_resource(res, code_resource);
1267                         insert_resource(res, data_resource);
1268                         insert_resource(res, bss_resource);
1269 #ifdef CONFIG_KEXEC
1270                         insert_resource(res, &efi_memmap_res);
1271                         insert_resource(res, &boot_param_res);
1272                         if (crashk_res.end > crashk_res.start)
1273                                 insert_resource(res, &crashk_res);
1274 #endif
1275                 }
1276         }
1277 }
1278 
1279 #ifdef CONFIG_KEXEC
1280 /* find a block of memory aligned to 64M exclude reserved regions
1281    rsvd_regions are sorted
1282  */
1283 unsigned long __init
1284 kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
1285 {
1286         int i;
1287         u64 start, end;
1288         u64 alignment = 1UL << _PAGE_SIZE_64M;
1289         void *efi_map_start, *efi_map_end, *p;
1290         efi_memory_desc_t *md;
1291         u64 efi_desc_size;
1292 
1293         efi_map_start = __va(ia64_boot_param->efi_memmap);
1294         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1295         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1296 
1297         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1298                 md = p;
1299                 if (!efi_wb(md))
1300                         continue;
1301                 start = ALIGN(md->phys_addr, alignment);
1302                 end = efi_md_end(md);
1303                 for (i = 0; i < n; i++) {
1304                         if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
1305                                 if (__pa(r[i].start) > start + size)
1306                                         return start;
1307                                 start = ALIGN(__pa(r[i].end), alignment);
1308                                 if (i < n-1 &&
1309                                     __pa(r[i+1].start) < start + size)
1310                                         continue;
1311                                 else
1312                                         break;
1313                         }
1314                 }
1315                 if (end > start + size)
1316                         return start;
1317         }
1318 
1319         printk(KERN_WARNING
1320                "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
1321         return ~0UL;
1322 }
1323 #endif
1324 
1325 #ifdef CONFIG_CRASH_DUMP
1326 /* locate the size find a the descriptor at a certain address */
1327 unsigned long __init
1328 vmcore_find_descriptor_size (unsigned long address)
1329 {
1330         void *efi_map_start, *efi_map_end, *p;
1331         efi_memory_desc_t *md;
1332         u64 efi_desc_size;
1333         unsigned long ret = 0;
1334 
1335         efi_map_start = __va(ia64_boot_param->efi_memmap);
1336         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1337         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1338 
1339         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1340                 md = p;
1341                 if (efi_wb(md) && md->type == EFI_LOADER_DATA
1342                     && md->phys_addr == address) {
1343                         ret = efi_md_size(md);
1344                         break;
1345                 }
1346         }
1347 
1348         if (ret == 0)
1349                 printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
1350 
1351         return ret;
1352 }
1353 #endif

/* [<][>][^][v][top][bottom][index][help] */