root/drivers/misc/sgi-gru/grufault.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. is_gru_paddr
  2. gru_find_vma
  3. gru_find_lock_gts
  4. gru_alloc_locked_gts
  5. gru_unlock_gts
  6. gru_cb_set_istatus_active
  7. get_clear_fault_map
  8. non_atomic_pte_lookup
  9. atomic_pte_lookup
  10. gru_vtop
  11. gru_flush_cache_cbe
  12. gru_preload_tlb
  13. gru_try_dropin
  14. gru_intr
  15. gru0_intr
  16. gru1_intr
  17. gru_intr_mblade
  18. gru_user_dropin
  19. gru_handle_user_call_os
  20. gru_get_exception_detail
  21. gru_unload_all_contexts
  22. gru_user_unload_context
  23. gru_user_flush_tlb
  24. gru_get_gseg_statistics
  25. gru_set_context_option

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3  * SN Platform GRU Driver
   4  *
   5  *              FAULT HANDLER FOR GRU DETECTED TLB MISSES
   6  *
   7  * This file contains code that handles TLB misses within the GRU.
   8  * These misses are reported either via interrupts or user polling of
   9  * the user CB.
  10  *
  11  *  Copyright (c) 2008 Silicon Graphics, Inc.  All Rights Reserved.
  12  */
  13 
  14 #include <linux/kernel.h>
  15 #include <linux/errno.h>
  16 #include <linux/spinlock.h>
  17 #include <linux/mm.h>
  18 #include <linux/hugetlb.h>
  19 #include <linux/device.h>
  20 #include <linux/io.h>
  21 #include <linux/uaccess.h>
  22 #include <linux/security.h>
  23 #include <linux/prefetch.h>
  24 #include <asm/pgtable.h>
  25 #include "gru.h"
  26 #include "grutables.h"
  27 #include "grulib.h"
  28 #include "gru_instructions.h"
  29 #include <asm/uv/uv_hub.h>
  30 
  31 /* Return codes for vtop functions */
  32 #define VTOP_SUCCESS               0
  33 #define VTOP_INVALID               -1
  34 #define VTOP_RETRY                 -2
  35 
  36 
  37 /*
  38  * Test if a physical address is a valid GRU GSEG address
  39  */
  40 static inline int is_gru_paddr(unsigned long paddr)
  41 {
  42         return paddr >= gru_start_paddr && paddr < gru_end_paddr;
  43 }
  44 
  45 /*
  46  * Find the vma of a GRU segment. Caller must hold mmap_sem.
  47  */
  48 struct vm_area_struct *gru_find_vma(unsigned long vaddr)
  49 {
  50         struct vm_area_struct *vma;
  51 
  52         vma = find_vma(current->mm, vaddr);
  53         if (vma && vma->vm_start <= vaddr && vma->vm_ops == &gru_vm_ops)
  54                 return vma;
  55         return NULL;
  56 }
  57 
  58 /*
  59  * Find and lock the gts that contains the specified user vaddr.
  60  *
  61  * Returns:
  62  *      - *gts with the mmap_sem locked for read and the GTS locked.
  63  *      - NULL if vaddr invalid OR is not a valid GSEG vaddr.
  64  */
  65 
  66 static struct gru_thread_state *gru_find_lock_gts(unsigned long vaddr)
  67 {
  68         struct mm_struct *mm = current->mm;
  69         struct vm_area_struct *vma;
  70         struct gru_thread_state *gts = NULL;
  71 
  72         down_read(&mm->mmap_sem);
  73         vma = gru_find_vma(vaddr);
  74         if (vma)
  75                 gts = gru_find_thread_state(vma, TSID(vaddr, vma));
  76         if (gts)
  77                 mutex_lock(&gts->ts_ctxlock);
  78         else
  79                 up_read(&mm->mmap_sem);
  80         return gts;
  81 }
  82 
  83 static struct gru_thread_state *gru_alloc_locked_gts(unsigned long vaddr)
  84 {
  85         struct mm_struct *mm = current->mm;
  86         struct vm_area_struct *vma;
  87         struct gru_thread_state *gts = ERR_PTR(-EINVAL);
  88 
  89         down_write(&mm->mmap_sem);
  90         vma = gru_find_vma(vaddr);
  91         if (!vma)
  92                 goto err;
  93 
  94         gts = gru_alloc_thread_state(vma, TSID(vaddr, vma));
  95         if (IS_ERR(gts))
  96                 goto err;
  97         mutex_lock(&gts->ts_ctxlock);
  98         downgrade_write(&mm->mmap_sem);
  99         return gts;
 100 
 101 err:
 102         up_write(&mm->mmap_sem);
 103         return gts;
 104 }
 105 
 106 /*
 107  * Unlock a GTS that was previously locked with gru_find_lock_gts().
 108  */
 109 static void gru_unlock_gts(struct gru_thread_state *gts)
 110 {
 111         mutex_unlock(&gts->ts_ctxlock);
 112         up_read(&current->mm->mmap_sem);
 113 }
 114 
 115 /*
 116  * Set a CB.istatus to active using a user virtual address. This must be done
 117  * just prior to a TFH RESTART. The new cb.istatus is an in-cache status ONLY.
 118  * If the line is evicted, the status may be lost. The in-cache update
 119  * is necessary to prevent the user from seeing a stale cb.istatus that will
 120  * change as soon as the TFH restart is complete. Races may cause an
 121  * occasional failure to clear the cb.istatus, but that is ok.
 122  */
 123 static void gru_cb_set_istatus_active(struct gru_instruction_bits *cbk)
 124 {
 125         if (cbk) {
 126                 cbk->istatus = CBS_ACTIVE;
 127         }
 128 }
 129 
 130 /*
 131  * Read & clear a TFM
 132  *
 133  * The GRU has an array of fault maps. A map is private to a cpu
 134  * Only one cpu will be accessing a cpu's fault map.
 135  *
 136  * This function scans the cpu-private fault map & clears all bits that
 137  * are set. The function returns a bitmap that indicates the bits that
 138  * were cleared. Note that sense the maps may be updated asynchronously by
 139  * the GRU, atomic operations must be used to clear bits.
 140  */
 141 static void get_clear_fault_map(struct gru_state *gru,
 142                                 struct gru_tlb_fault_map *imap,
 143                                 struct gru_tlb_fault_map *dmap)
 144 {
 145         unsigned long i, k;
 146         struct gru_tlb_fault_map *tfm;
 147 
 148         tfm = get_tfm_for_cpu(gru, gru_cpu_fault_map_id());
 149         prefetchw(tfm);         /* Helps on hardware, required for emulator */
 150         for (i = 0; i < BITS_TO_LONGS(GRU_NUM_CBE); i++) {
 151                 k = tfm->fault_bits[i];
 152                 if (k)
 153                         k = xchg(&tfm->fault_bits[i], 0UL);
 154                 imap->fault_bits[i] = k;
 155                 k = tfm->done_bits[i];
 156                 if (k)
 157                         k = xchg(&tfm->done_bits[i], 0UL);
 158                 dmap->fault_bits[i] = k;
 159         }
 160 
 161         /*
 162          * Not functionally required but helps performance. (Required
 163          * on emulator)
 164          */
 165         gru_flush_cache(tfm);
 166 }
 167 
 168 /*
 169  * Atomic (interrupt context) & non-atomic (user context) functions to
 170  * convert a vaddr into a physical address. The size of the page
 171  * is returned in pageshift.
 172  *      returns:
 173  *                0 - successful
 174  *              < 0 - error code
 175  *                1 - (atomic only) try again in non-atomic context
 176  */
 177 static int non_atomic_pte_lookup(struct vm_area_struct *vma,
 178                                  unsigned long vaddr, int write,
 179                                  unsigned long *paddr, int *pageshift)
 180 {
 181         struct page *page;
 182 
 183 #ifdef CONFIG_HUGETLB_PAGE
 184         *pageshift = is_vm_hugetlb_page(vma) ? HPAGE_SHIFT : PAGE_SHIFT;
 185 #else
 186         *pageshift = PAGE_SHIFT;
 187 #endif
 188         if (get_user_pages(vaddr, 1, write ? FOLL_WRITE : 0, &page, NULL) <= 0)
 189                 return -EFAULT;
 190         *paddr = page_to_phys(page);
 191         put_page(page);
 192         return 0;
 193 }
 194 
 195 /*
 196  * atomic_pte_lookup
 197  *
 198  * Convert a user virtual address to a physical address
 199  * Only supports Intel large pages (2MB only) on x86_64.
 200  *      ZZZ - hugepage support is incomplete
 201  *
 202  * NOTE: mmap_sem is already held on entry to this function. This
 203  * guarantees existence of the page tables.
 204  */
 205 static int atomic_pte_lookup(struct vm_area_struct *vma, unsigned long vaddr,
 206         int write, unsigned long *paddr, int *pageshift)
 207 {
 208         pgd_t *pgdp;
 209         p4d_t *p4dp;
 210         pud_t *pudp;
 211         pmd_t *pmdp;
 212         pte_t pte;
 213 
 214         pgdp = pgd_offset(vma->vm_mm, vaddr);
 215         if (unlikely(pgd_none(*pgdp)))
 216                 goto err;
 217 
 218         p4dp = p4d_offset(pgdp, vaddr);
 219         if (unlikely(p4d_none(*p4dp)))
 220                 goto err;
 221 
 222         pudp = pud_offset(p4dp, vaddr);
 223         if (unlikely(pud_none(*pudp)))
 224                 goto err;
 225 
 226         pmdp = pmd_offset(pudp, vaddr);
 227         if (unlikely(pmd_none(*pmdp)))
 228                 goto err;
 229 #ifdef CONFIG_X86_64
 230         if (unlikely(pmd_large(*pmdp)))
 231                 pte = *(pte_t *) pmdp;
 232         else
 233 #endif
 234                 pte = *pte_offset_kernel(pmdp, vaddr);
 235 
 236         if (unlikely(!pte_present(pte) ||
 237                      (write && (!pte_write(pte) || !pte_dirty(pte)))))
 238                 return 1;
 239 
 240         *paddr = pte_pfn(pte) << PAGE_SHIFT;
 241 #ifdef CONFIG_HUGETLB_PAGE
 242         *pageshift = is_vm_hugetlb_page(vma) ? HPAGE_SHIFT : PAGE_SHIFT;
 243 #else
 244         *pageshift = PAGE_SHIFT;
 245 #endif
 246         return 0;
 247 
 248 err:
 249         return 1;
 250 }
 251 
 252 static int gru_vtop(struct gru_thread_state *gts, unsigned long vaddr,
 253                     int write, int atomic, unsigned long *gpa, int *pageshift)
 254 {
 255         struct mm_struct *mm = gts->ts_mm;
 256         struct vm_area_struct *vma;
 257         unsigned long paddr;
 258         int ret, ps;
 259 
 260         vma = find_vma(mm, vaddr);
 261         if (!vma)
 262                 goto inval;
 263 
 264         /*
 265          * Atomic lookup is faster & usually works even if called in non-atomic
 266          * context.
 267          */
 268         rmb();  /* Must/check ms_range_active before loading PTEs */
 269         ret = atomic_pte_lookup(vma, vaddr, write, &paddr, &ps);
 270         if (ret) {
 271                 if (atomic)
 272                         goto upm;
 273                 if (non_atomic_pte_lookup(vma, vaddr, write, &paddr, &ps))
 274                         goto inval;
 275         }
 276         if (is_gru_paddr(paddr))
 277                 goto inval;
 278         paddr = paddr & ~((1UL << ps) - 1);
 279         *gpa = uv_soc_phys_ram_to_gpa(paddr);
 280         *pageshift = ps;
 281         return VTOP_SUCCESS;
 282 
 283 inval:
 284         return VTOP_INVALID;
 285 upm:
 286         return VTOP_RETRY;
 287 }
 288 
 289 
 290 /*
 291  * Flush a CBE from cache. The CBE is clean in the cache. Dirty the
 292  * CBE cacheline so that the line will be written back to home agent.
 293  * Otherwise the line may be silently dropped. This has no impact
 294  * except on performance.
 295  */
 296 static void gru_flush_cache_cbe(struct gru_control_block_extended *cbe)
 297 {
 298         if (unlikely(cbe)) {
 299                 cbe->cbrexecstatus = 0;         /* make CL dirty */
 300                 gru_flush_cache(cbe);
 301         }
 302 }
 303 
 304 /*
 305  * Preload the TLB with entries that may be required. Currently, preloading
 306  * is implemented only for BCOPY. Preload  <tlb_preload_count> pages OR to
 307  * the end of the bcopy tranfer, whichever is smaller.
 308  */
 309 static void gru_preload_tlb(struct gru_state *gru,
 310                         struct gru_thread_state *gts, int atomic,
 311                         unsigned long fault_vaddr, int asid, int write,
 312                         unsigned char tlb_preload_count,
 313                         struct gru_tlb_fault_handle *tfh,
 314                         struct gru_control_block_extended *cbe)
 315 {
 316         unsigned long vaddr = 0, gpa;
 317         int ret, pageshift;
 318 
 319         if (cbe->opccpy != OP_BCOPY)
 320                 return;
 321 
 322         if (fault_vaddr == cbe->cbe_baddr0)
 323                 vaddr = fault_vaddr + GRU_CACHE_LINE_BYTES * cbe->cbe_src_cl - 1;
 324         else if (fault_vaddr == cbe->cbe_baddr1)
 325                 vaddr = fault_vaddr + (1 << cbe->xtypecpy) * cbe->cbe_nelemcur - 1;
 326 
 327         fault_vaddr &= PAGE_MASK;
 328         vaddr &= PAGE_MASK;
 329         vaddr = min(vaddr, fault_vaddr + tlb_preload_count * PAGE_SIZE);
 330 
 331         while (vaddr > fault_vaddr) {
 332                 ret = gru_vtop(gts, vaddr, write, atomic, &gpa, &pageshift);
 333                 if (ret || tfh_write_only(tfh, gpa, GAA_RAM, vaddr, asid, write,
 334                                           GRU_PAGESIZE(pageshift)))
 335                         return;
 336                 gru_dbg(grudev,
 337                         "%s: gid %d, gts 0x%p, tfh 0x%p, vaddr 0x%lx, asid 0x%x, rw %d, ps %d, gpa 0x%lx\n",
 338                         atomic ? "atomic" : "non-atomic", gru->gs_gid, gts, tfh,
 339                         vaddr, asid, write, pageshift, gpa);
 340                 vaddr -= PAGE_SIZE;
 341                 STAT(tlb_preload_page);
 342         }
 343 }
 344 
 345 /*
 346  * Drop a TLB entry into the GRU. The fault is described by info in an TFH.
 347  *      Input:
 348  *              cb    Address of user CBR. Null if not running in user context
 349  *      Return:
 350  *                0 = dropin, exception, or switch to UPM successful
 351  *                1 = range invalidate active
 352  *              < 0 = error code
 353  *
 354  */
 355 static int gru_try_dropin(struct gru_state *gru,
 356                           struct gru_thread_state *gts,
 357                           struct gru_tlb_fault_handle *tfh,
 358                           struct gru_instruction_bits *cbk)
 359 {
 360         struct gru_control_block_extended *cbe = NULL;
 361         unsigned char tlb_preload_count = gts->ts_tlb_preload_count;
 362         int pageshift = 0, asid, write, ret, atomic = !cbk, indexway;
 363         unsigned long gpa = 0, vaddr = 0;
 364 
 365         /*
 366          * NOTE: The GRU contains magic hardware that eliminates races between
 367          * TLB invalidates and TLB dropins. If an invalidate occurs
 368          * in the window between reading the TFH and the subsequent TLB dropin,
 369          * the dropin is ignored. This eliminates the need for additional locks.
 370          */
 371 
 372         /*
 373          * Prefetch the CBE if doing TLB preloading
 374          */
 375         if (unlikely(tlb_preload_count)) {
 376                 cbe = gru_tfh_to_cbe(tfh);
 377                 prefetchw(cbe);
 378         }
 379 
 380         /*
 381          * Error if TFH state is IDLE or FMM mode & the user issuing a UPM call.
 382          * Might be a hardware race OR a stupid user. Ignore FMM because FMM
 383          * is a transient state.
 384          */
 385         if (tfh->status != TFHSTATUS_EXCEPTION) {
 386                 gru_flush_cache(tfh);
 387                 sync_core();
 388                 if (tfh->status != TFHSTATUS_EXCEPTION)
 389                         goto failnoexception;
 390                 STAT(tfh_stale_on_fault);
 391         }
 392         if (tfh->state == TFHSTATE_IDLE)
 393                 goto failidle;
 394         if (tfh->state == TFHSTATE_MISS_FMM && cbk)
 395                 goto failfmm;
 396 
 397         write = (tfh->cause & TFHCAUSE_TLB_MOD) != 0;
 398         vaddr = tfh->missvaddr;
 399         asid = tfh->missasid;
 400         indexway = tfh->indexway;
 401         if (asid == 0)
 402                 goto failnoasid;
 403 
 404         rmb();  /* TFH must be cache resident before reading ms_range_active */
 405 
 406         /*
 407          * TFH is cache resident - at least briefly. Fail the dropin
 408          * if a range invalidate is active.
 409          */
 410         if (atomic_read(&gts->ts_gms->ms_range_active))
 411                 goto failactive;
 412 
 413         ret = gru_vtop(gts, vaddr, write, atomic, &gpa, &pageshift);
 414         if (ret == VTOP_INVALID)
 415                 goto failinval;
 416         if (ret == VTOP_RETRY)
 417                 goto failupm;
 418 
 419         if (!(gts->ts_sizeavail & GRU_SIZEAVAIL(pageshift))) {
 420                 gts->ts_sizeavail |= GRU_SIZEAVAIL(pageshift);
 421                 if (atomic || !gru_update_cch(gts)) {
 422                         gts->ts_force_cch_reload = 1;
 423                         goto failupm;
 424                 }
 425         }
 426 
 427         if (unlikely(cbe) && pageshift == PAGE_SHIFT) {
 428                 gru_preload_tlb(gru, gts, atomic, vaddr, asid, write, tlb_preload_count, tfh, cbe);
 429                 gru_flush_cache_cbe(cbe);
 430         }
 431 
 432         gru_cb_set_istatus_active(cbk);
 433         gts->ustats.tlbdropin++;
 434         tfh_write_restart(tfh, gpa, GAA_RAM, vaddr, asid, write,
 435                           GRU_PAGESIZE(pageshift));
 436         gru_dbg(grudev,
 437                 "%s: gid %d, gts 0x%p, tfh 0x%p, vaddr 0x%lx, asid 0x%x, indexway 0x%x,"
 438                 " rw %d, ps %d, gpa 0x%lx\n",
 439                 atomic ? "atomic" : "non-atomic", gru->gs_gid, gts, tfh, vaddr, asid,
 440                 indexway, write, pageshift, gpa);
 441         STAT(tlb_dropin);
 442         return 0;
 443 
 444 failnoasid:
 445         /* No asid (delayed unload). */
 446         STAT(tlb_dropin_fail_no_asid);
 447         gru_dbg(grudev, "FAILED no_asid tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr);
 448         if (!cbk)
 449                 tfh_user_polling_mode(tfh);
 450         else
 451                 gru_flush_cache(tfh);
 452         gru_flush_cache_cbe(cbe);
 453         return -EAGAIN;
 454 
 455 failupm:
 456         /* Atomic failure switch CBR to UPM */
 457         tfh_user_polling_mode(tfh);
 458         gru_flush_cache_cbe(cbe);
 459         STAT(tlb_dropin_fail_upm);
 460         gru_dbg(grudev, "FAILED upm tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr);
 461         return 1;
 462 
 463 failfmm:
 464         /* FMM state on UPM call */
 465         gru_flush_cache(tfh);
 466         gru_flush_cache_cbe(cbe);
 467         STAT(tlb_dropin_fail_fmm);
 468         gru_dbg(grudev, "FAILED fmm tfh: 0x%p, state %d\n", tfh, tfh->state);
 469         return 0;
 470 
 471 failnoexception:
 472         /* TFH status did not show exception pending */
 473         gru_flush_cache(tfh);
 474         gru_flush_cache_cbe(cbe);
 475         if (cbk)
 476                 gru_flush_cache(cbk);
 477         STAT(tlb_dropin_fail_no_exception);
 478         gru_dbg(grudev, "FAILED non-exception tfh: 0x%p, status %d, state %d\n",
 479                 tfh, tfh->status, tfh->state);
 480         return 0;
 481 
 482 failidle:
 483         /* TFH state was idle  - no miss pending */
 484         gru_flush_cache(tfh);
 485         gru_flush_cache_cbe(cbe);
 486         if (cbk)
 487                 gru_flush_cache(cbk);
 488         STAT(tlb_dropin_fail_idle);
 489         gru_dbg(grudev, "FAILED idle tfh: 0x%p, state %d\n", tfh, tfh->state);
 490         return 0;
 491 
 492 failinval:
 493         /* All errors (atomic & non-atomic) switch CBR to EXCEPTION state */
 494         tfh_exception(tfh);
 495         gru_flush_cache_cbe(cbe);
 496         STAT(tlb_dropin_fail_invalid);
 497         gru_dbg(grudev, "FAILED inval tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr);
 498         return -EFAULT;
 499 
 500 failactive:
 501         /* Range invalidate active. Switch to UPM iff atomic */
 502         if (!cbk)
 503                 tfh_user_polling_mode(tfh);
 504         else
 505                 gru_flush_cache(tfh);
 506         gru_flush_cache_cbe(cbe);
 507         STAT(tlb_dropin_fail_range_active);
 508         gru_dbg(grudev, "FAILED range active: tfh 0x%p, vaddr 0x%lx\n",
 509                 tfh, vaddr);
 510         return 1;
 511 }
 512 
 513 /*
 514  * Process an external interrupt from the GRU. This interrupt is
 515  * caused by a TLB miss.
 516  * Note that this is the interrupt handler that is registered with linux
 517  * interrupt handlers.
 518  */
 519 static irqreturn_t gru_intr(int chiplet, int blade)
 520 {
 521         struct gru_state *gru;
 522         struct gru_tlb_fault_map imap, dmap;
 523         struct gru_thread_state *gts;
 524         struct gru_tlb_fault_handle *tfh = NULL;
 525         struct completion *cmp;
 526         int cbrnum, ctxnum;
 527 
 528         STAT(intr);
 529 
 530         gru = &gru_base[blade]->bs_grus[chiplet];
 531         if (!gru) {
 532                 dev_err(grudev, "GRU: invalid interrupt: cpu %d, chiplet %d\n",
 533                         raw_smp_processor_id(), chiplet);
 534                 return IRQ_NONE;
 535         }
 536         get_clear_fault_map(gru, &imap, &dmap);
 537         gru_dbg(grudev,
 538                 "cpu %d, chiplet %d, gid %d, imap %016lx %016lx, dmap %016lx %016lx\n",
 539                 smp_processor_id(), chiplet, gru->gs_gid,
 540                 imap.fault_bits[0], imap.fault_bits[1],
 541                 dmap.fault_bits[0], dmap.fault_bits[1]);
 542 
 543         for_each_cbr_in_tfm(cbrnum, dmap.fault_bits) {
 544                 STAT(intr_cbr);
 545                 cmp = gru->gs_blade->bs_async_wq;
 546                 if (cmp)
 547                         complete(cmp);
 548                 gru_dbg(grudev, "gid %d, cbr_done %d, done %d\n",
 549                         gru->gs_gid, cbrnum, cmp ? cmp->done : -1);
 550         }
 551 
 552         for_each_cbr_in_tfm(cbrnum, imap.fault_bits) {
 553                 STAT(intr_tfh);
 554                 tfh = get_tfh_by_index(gru, cbrnum);
 555                 prefetchw(tfh); /* Helps on hdw, required for emulator */
 556 
 557                 /*
 558                  * When hardware sets a bit in the faultmap, it implicitly
 559                  * locks the GRU context so that it cannot be unloaded.
 560                  * The gts cannot change until a TFH start/writestart command
 561                  * is issued.
 562                  */
 563                 ctxnum = tfh->ctxnum;
 564                 gts = gru->gs_gts[ctxnum];
 565 
 566                 /* Spurious interrupts can cause this. Ignore. */
 567                 if (!gts) {
 568                         STAT(intr_spurious);
 569                         continue;
 570                 }
 571 
 572                 /*
 573                  * This is running in interrupt context. Trylock the mmap_sem.
 574                  * If it fails, retry the fault in user context.
 575                  */
 576                 gts->ustats.fmm_tlbmiss++;
 577                 if (!gts->ts_force_cch_reload &&
 578                                         down_read_trylock(&gts->ts_mm->mmap_sem)) {
 579                         gru_try_dropin(gru, gts, tfh, NULL);
 580                         up_read(&gts->ts_mm->mmap_sem);
 581                 } else {
 582                         tfh_user_polling_mode(tfh);
 583                         STAT(intr_mm_lock_failed);
 584                 }
 585         }
 586         return IRQ_HANDLED;
 587 }
 588 
 589 irqreturn_t gru0_intr(int irq, void *dev_id)
 590 {
 591         return gru_intr(0, uv_numa_blade_id());
 592 }
 593 
 594 irqreturn_t gru1_intr(int irq, void *dev_id)
 595 {
 596         return gru_intr(1, uv_numa_blade_id());
 597 }
 598 
 599 irqreturn_t gru_intr_mblade(int irq, void *dev_id)
 600 {
 601         int blade;
 602 
 603         for_each_possible_blade(blade) {
 604                 if (uv_blade_nr_possible_cpus(blade))
 605                         continue;
 606                 gru_intr(0, blade);
 607                 gru_intr(1, blade);
 608         }
 609         return IRQ_HANDLED;
 610 }
 611 
 612 
 613 static int gru_user_dropin(struct gru_thread_state *gts,
 614                            struct gru_tlb_fault_handle *tfh,
 615                            void *cb)
 616 {
 617         struct gru_mm_struct *gms = gts->ts_gms;
 618         int ret;
 619 
 620         gts->ustats.upm_tlbmiss++;
 621         while (1) {
 622                 wait_event(gms->ms_wait_queue,
 623                            atomic_read(&gms->ms_range_active) == 0);
 624                 prefetchw(tfh); /* Helps on hdw, required for emulator */
 625                 ret = gru_try_dropin(gts->ts_gru, gts, tfh, cb);
 626                 if (ret <= 0)
 627                         return ret;
 628                 STAT(call_os_wait_queue);
 629         }
 630 }
 631 
 632 /*
 633  * This interface is called as a result of a user detecting a "call OS" bit
 634  * in a user CB. Normally means that a TLB fault has occurred.
 635  *      cb - user virtual address of the CB
 636  */
 637 int gru_handle_user_call_os(unsigned long cb)
 638 {
 639         struct gru_tlb_fault_handle *tfh;
 640         struct gru_thread_state *gts;
 641         void *cbk;
 642         int ucbnum, cbrnum, ret = -EINVAL;
 643 
 644         STAT(call_os);
 645 
 646         /* sanity check the cb pointer */
 647         ucbnum = get_cb_number((void *)cb);
 648         if ((cb & (GRU_HANDLE_STRIDE - 1)) || ucbnum >= GRU_NUM_CB)
 649                 return -EINVAL;
 650 
 651         gts = gru_find_lock_gts(cb);
 652         if (!gts)
 653                 return -EINVAL;
 654         gru_dbg(grudev, "address 0x%lx, gid %d, gts 0x%p\n", cb, gts->ts_gru ? gts->ts_gru->gs_gid : -1, gts);
 655 
 656         if (ucbnum >= gts->ts_cbr_au_count * GRU_CBR_AU_SIZE)
 657                 goto exit;
 658 
 659         gru_check_context_placement(gts);
 660 
 661         /*
 662          * CCH may contain stale data if ts_force_cch_reload is set.
 663          */
 664         if (gts->ts_gru && gts->ts_force_cch_reload) {
 665                 gts->ts_force_cch_reload = 0;
 666                 gru_update_cch(gts);
 667         }
 668 
 669         ret = -EAGAIN;
 670         cbrnum = thread_cbr_number(gts, ucbnum);
 671         if (gts->ts_gru) {
 672                 tfh = get_tfh_by_index(gts->ts_gru, cbrnum);
 673                 cbk = get_gseg_base_address_cb(gts->ts_gru->gs_gru_base_vaddr,
 674                                 gts->ts_ctxnum, ucbnum);
 675                 ret = gru_user_dropin(gts, tfh, cbk);
 676         }
 677 exit:
 678         gru_unlock_gts(gts);
 679         return ret;
 680 }
 681 
 682 /*
 683  * Fetch the exception detail information for a CB that terminated with
 684  * an exception.
 685  */
 686 int gru_get_exception_detail(unsigned long arg)
 687 {
 688         struct control_block_extended_exc_detail excdet;
 689         struct gru_control_block_extended *cbe;
 690         struct gru_thread_state *gts;
 691         int ucbnum, cbrnum, ret;
 692 
 693         STAT(user_exception);
 694         if (copy_from_user(&excdet, (void __user *)arg, sizeof(excdet)))
 695                 return -EFAULT;
 696 
 697         gts = gru_find_lock_gts(excdet.cb);
 698         if (!gts)
 699                 return -EINVAL;
 700 
 701         gru_dbg(grudev, "address 0x%lx, gid %d, gts 0x%p\n", excdet.cb, gts->ts_gru ? gts->ts_gru->gs_gid : -1, gts);
 702         ucbnum = get_cb_number((void *)excdet.cb);
 703         if (ucbnum >= gts->ts_cbr_au_count * GRU_CBR_AU_SIZE) {
 704                 ret = -EINVAL;
 705         } else if (gts->ts_gru) {
 706                 cbrnum = thread_cbr_number(gts, ucbnum);
 707                 cbe = get_cbe_by_index(gts->ts_gru, cbrnum);
 708                 gru_flush_cache(cbe);   /* CBE not coherent */
 709                 sync_core();            /* make sure we are have current data */
 710                 excdet.opc = cbe->opccpy;
 711                 excdet.exopc = cbe->exopccpy;
 712                 excdet.ecause = cbe->ecause;
 713                 excdet.exceptdet0 = cbe->idef1upd;
 714                 excdet.exceptdet1 = cbe->idef3upd;
 715                 excdet.cbrstate = cbe->cbrstate;
 716                 excdet.cbrexecstatus = cbe->cbrexecstatus;
 717                 gru_flush_cache_cbe(cbe);
 718                 ret = 0;
 719         } else {
 720                 ret = -EAGAIN;
 721         }
 722         gru_unlock_gts(gts);
 723 
 724         gru_dbg(grudev,
 725                 "cb 0x%lx, op %d, exopc %d, cbrstate %d, cbrexecstatus 0x%x, ecause 0x%x, "
 726                 "exdet0 0x%lx, exdet1 0x%x\n",
 727                 excdet.cb, excdet.opc, excdet.exopc, excdet.cbrstate, excdet.cbrexecstatus,
 728                 excdet.ecause, excdet.exceptdet0, excdet.exceptdet1);
 729         if (!ret && copy_to_user((void __user *)arg, &excdet, sizeof(excdet)))
 730                 ret = -EFAULT;
 731         return ret;
 732 }
 733 
 734 /*
 735  * User request to unload a context. Content is saved for possible reload.
 736  */
 737 static int gru_unload_all_contexts(void)
 738 {
 739         struct gru_thread_state *gts;
 740         struct gru_state *gru;
 741         int gid, ctxnum;
 742 
 743         if (!capable(CAP_SYS_ADMIN))
 744                 return -EPERM;
 745         foreach_gid(gid) {
 746                 gru = GID_TO_GRU(gid);
 747                 spin_lock(&gru->gs_lock);
 748                 for (ctxnum = 0; ctxnum < GRU_NUM_CCH; ctxnum++) {
 749                         gts = gru->gs_gts[ctxnum];
 750                         if (gts && mutex_trylock(&gts->ts_ctxlock)) {
 751                                 spin_unlock(&gru->gs_lock);
 752                                 gru_unload_context(gts, 1);
 753                                 mutex_unlock(&gts->ts_ctxlock);
 754                                 spin_lock(&gru->gs_lock);
 755                         }
 756                 }
 757                 spin_unlock(&gru->gs_lock);
 758         }
 759         return 0;
 760 }
 761 
 762 int gru_user_unload_context(unsigned long arg)
 763 {
 764         struct gru_thread_state *gts;
 765         struct gru_unload_context_req req;
 766 
 767         STAT(user_unload_context);
 768         if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
 769                 return -EFAULT;
 770 
 771         gru_dbg(grudev, "gseg 0x%lx\n", req.gseg);
 772 
 773         if (!req.gseg)
 774                 return gru_unload_all_contexts();
 775 
 776         gts = gru_find_lock_gts(req.gseg);
 777         if (!gts)
 778                 return -EINVAL;
 779 
 780         if (gts->ts_gru)
 781                 gru_unload_context(gts, 1);
 782         gru_unlock_gts(gts);
 783 
 784         return 0;
 785 }
 786 
 787 /*
 788  * User request to flush a range of virtual addresses from the GRU TLB
 789  * (Mainly for testing).
 790  */
 791 int gru_user_flush_tlb(unsigned long arg)
 792 {
 793         struct gru_thread_state *gts;
 794         struct gru_flush_tlb_req req;
 795         struct gru_mm_struct *gms;
 796 
 797         STAT(user_flush_tlb);
 798         if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
 799                 return -EFAULT;
 800 
 801         gru_dbg(grudev, "gseg 0x%lx, vaddr 0x%lx, len 0x%lx\n", req.gseg,
 802                 req.vaddr, req.len);
 803 
 804         gts = gru_find_lock_gts(req.gseg);
 805         if (!gts)
 806                 return -EINVAL;
 807 
 808         gms = gts->ts_gms;
 809         gru_unlock_gts(gts);
 810         gru_flush_tlb_range(gms, req.vaddr, req.len);
 811 
 812         return 0;
 813 }
 814 
 815 /*
 816  * Fetch GSEG statisticss
 817  */
 818 long gru_get_gseg_statistics(unsigned long arg)
 819 {
 820         struct gru_thread_state *gts;
 821         struct gru_get_gseg_statistics_req req;
 822 
 823         if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
 824                 return -EFAULT;
 825 
 826         /*
 827          * The library creates arrays of contexts for threaded programs.
 828          * If no gts exists in the array, the context has never been used & all
 829          * statistics are implicitly 0.
 830          */
 831         gts = gru_find_lock_gts(req.gseg);
 832         if (gts) {
 833                 memcpy(&req.stats, &gts->ustats, sizeof(gts->ustats));
 834                 gru_unlock_gts(gts);
 835         } else {
 836                 memset(&req.stats, 0, sizeof(gts->ustats));
 837         }
 838 
 839         if (copy_to_user((void __user *)arg, &req, sizeof(req)))
 840                 return -EFAULT;
 841 
 842         return 0;
 843 }
 844 
 845 /*
 846  * Register the current task as the user of the GSEG slice.
 847  * Needed for TLB fault interrupt targeting.
 848  */
 849 int gru_set_context_option(unsigned long arg)
 850 {
 851         struct gru_thread_state *gts;
 852         struct gru_set_context_option_req req;
 853         int ret = 0;
 854 
 855         STAT(set_context_option);
 856         if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
 857                 return -EFAULT;
 858         gru_dbg(grudev, "op %d, gseg 0x%lx, value1 0x%lx\n", req.op, req.gseg, req.val1);
 859 
 860         gts = gru_find_lock_gts(req.gseg);
 861         if (!gts) {
 862                 gts = gru_alloc_locked_gts(req.gseg);
 863                 if (IS_ERR(gts))
 864                         return PTR_ERR(gts);
 865         }
 866 
 867         switch (req.op) {
 868         case sco_blade_chiplet:
 869                 /* Select blade/chiplet for GRU context */
 870                 if (req.val0 < -1 || req.val0 >= GRU_CHIPLETS_PER_HUB ||
 871                     req.val1 < -1 || req.val1 >= GRU_MAX_BLADES ||
 872                     (req.val1 >= 0 && !gru_base[req.val1])) {
 873                         ret = -EINVAL;
 874                 } else {
 875                         gts->ts_user_blade_id = req.val1;
 876                         gts->ts_user_chiplet_id = req.val0;
 877                         gru_check_context_placement(gts);
 878                 }
 879                 break;
 880         case sco_gseg_owner:
 881                 /* Register the current task as the GSEG owner */
 882                 gts->ts_tgid_owner = current->tgid;
 883                 break;
 884         case sco_cch_req_slice:
 885                 /* Set the CCH slice option */
 886                 gts->ts_cch_req_slice = req.val1 & 3;
 887                 break;
 888         default:
 889                 ret = -EINVAL;
 890         }
 891         gru_unlock_gts(gts);
 892 
 893         return ret;
 894 }

/* [<][>][^][v][top][bottom][index][help] */