root/drivers/misc/vmw_vmci/vmci_queue_pair.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. qp_free_queue
  2. qp_alloc_queue
  3. qp_memcpy_to_queue_iter
  4. qp_memcpy_from_queue_iter
  5. qp_alloc_ppn_set
  6. qp_free_ppn_set
  7. qp_populate_ppn_set
  8. qp_host_alloc_queue
  9. qp_host_free_queue
  10. qp_init_queue_mutex
  11. qp_cleanup_queue_mutex
  12. qp_acquire_queue_mutex
  13. qp_release_queue_mutex
  14. qp_release_pages
  15. qp_host_get_user_memory
  16. qp_host_register_user_memory
  17. qp_host_unregister_user_memory
  18. qp_host_map_queues
  19. qp_host_unmap_queues
  20. qp_list_find
  21. qp_guest_handle_to_entry
  22. qp_broker_handle_to_entry
  23. qp_notify_peer_local
  24. qp_guest_endpoint_create
  25. qp_guest_endpoint_destroy
  26. qp_alloc_hypercall
  27. qp_detatch_hypercall
  28. qp_list_add_entry
  29. qp_list_remove_entry
  30. qp_detatch_guest_work
  31. qp_alloc_guest_work
  32. qp_broker_create
  33. qp_notify_peer
  34. qp_broker_attach
  35. qp_broker_alloc
  36. qp_alloc_host_work
  37. vmci_qp_alloc
  38. qp_detatch_host_work
  39. qp_detatch
  40. qp_list_get_head
  41. vmci_qp_broker_exit
  42. vmci_qp_broker_alloc
  43. vmci_qp_broker_set_page_store
  44. qp_reset_saved_headers
  45. vmci_qp_broker_detach
  46. vmci_qp_broker_map
  47. qp_save_headers
  48. vmci_qp_broker_unmap
  49. vmci_qp_guest_endpoints_exit
  50. qp_lock
  51. qp_unlock
  52. qp_map_queue_headers
  53. qp_get_queue_headers
  54. qp_wakeup_cb
  55. qp_wait_for_ready_queue
  56. qp_enqueue_locked
  57. qp_dequeue_locked
  58. vmci_qpair_alloc
  59. vmci_qpair_detach
  60. vmci_qpair_get_produce_indexes
  61. vmci_qpair_get_consume_indexes
  62. vmci_qpair_produce_free_space
  63. vmci_qpair_consume_free_space
  64. vmci_qpair_produce_buf_ready
  65. vmci_qpair_consume_buf_ready
  66. vmci_qpair_enqueue
  67. vmci_qpair_dequeue
  68. vmci_qpair_peek
  69. vmci_qpair_enquev
  70. vmci_qpair_dequev
  71. vmci_qpair_peekv

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * VMware VMCI Driver
   4  *
   5  * Copyright (C) 2012 VMware, Inc. All rights reserved.
   6  */
   7 
   8 #include <linux/vmw_vmci_defs.h>
   9 #include <linux/vmw_vmci_api.h>
  10 #include <linux/highmem.h>
  11 #include <linux/kernel.h>
  12 #include <linux/mm.h>
  13 #include <linux/module.h>
  14 #include <linux/mutex.h>
  15 #include <linux/pagemap.h>
  16 #include <linux/pci.h>
  17 #include <linux/sched.h>
  18 #include <linux/slab.h>
  19 #include <linux/uio.h>
  20 #include <linux/wait.h>
  21 #include <linux/vmalloc.h>
  22 #include <linux/skbuff.h>
  23 
  24 #include "vmci_handle_array.h"
  25 #include "vmci_queue_pair.h"
  26 #include "vmci_datagram.h"
  27 #include "vmci_resource.h"
  28 #include "vmci_context.h"
  29 #include "vmci_driver.h"
  30 #include "vmci_event.h"
  31 #include "vmci_route.h"
  32 
  33 /*
  34  * In the following, we will distinguish between two kinds of VMX processes -
  35  * the ones with versions lower than VMCI_VERSION_NOVMVM that use specialized
  36  * VMCI page files in the VMX and supporting VM to VM communication and the
  37  * newer ones that use the guest memory directly. We will in the following
  38  * refer to the older VMX versions as old-style VMX'en, and the newer ones as
  39  * new-style VMX'en.
  40  *
  41  * The state transition datagram is as follows (the VMCIQPB_ prefix has been
  42  * removed for readability) - see below for more details on the transtions:
  43  *
  44  *            --------------  NEW  -------------
  45  *            |                                |
  46  *           \_/                              \_/
  47  *     CREATED_NO_MEM <-----------------> CREATED_MEM
  48  *            |    |                           |
  49  *            |    o-----------------------o   |
  50  *            |                            |   |
  51  *           \_/                          \_/ \_/
  52  *     ATTACHED_NO_MEM <----------------> ATTACHED_MEM
  53  *            |                            |   |
  54  *            |     o----------------------o   |
  55  *            |     |                          |
  56  *           \_/   \_/                        \_/
  57  *     SHUTDOWN_NO_MEM <----------------> SHUTDOWN_MEM
  58  *            |                                |
  59  *            |                                |
  60  *            -------------> gone <-------------
  61  *
  62  * In more detail. When a VMCI queue pair is first created, it will be in the
  63  * VMCIQPB_NEW state. It will then move into one of the following states:
  64  *
  65  * - VMCIQPB_CREATED_NO_MEM: this state indicates that either:
  66  *
  67  *     - the created was performed by a host endpoint, in which case there is
  68  *       no backing memory yet.
  69  *
  70  *     - the create was initiated by an old-style VMX, that uses
  71  *       vmci_qp_broker_set_page_store to specify the UVAs of the queue pair at
  72  *       a later point in time. This state can be distinguished from the one
  73  *       above by the context ID of the creator. A host side is not allowed to
  74  *       attach until the page store has been set.
  75  *
  76  * - VMCIQPB_CREATED_MEM: this state is the result when the queue pair
  77  *     is created by a VMX using the queue pair device backend that
  78  *     sets the UVAs of the queue pair immediately and stores the
  79  *     information for later attachers. At this point, it is ready for
  80  *     the host side to attach to it.
  81  *
  82  * Once the queue pair is in one of the created states (with the exception of
  83  * the case mentioned for older VMX'en above), it is possible to attach to the
  84  * queue pair. Again we have two new states possible:
  85  *
  86  * - VMCIQPB_ATTACHED_MEM: this state can be reached through the following
  87  *   paths:
  88  *
  89  *     - from VMCIQPB_CREATED_NO_MEM when a new-style VMX allocates a queue
  90  *       pair, and attaches to a queue pair previously created by the host side.
  91  *
  92  *     - from VMCIQPB_CREATED_MEM when the host side attaches to a queue pair
  93  *       already created by a guest.
  94  *
  95  *     - from VMCIQPB_ATTACHED_NO_MEM, when an old-style VMX calls
  96  *       vmci_qp_broker_set_page_store (see below).
  97  *
  98  * - VMCIQPB_ATTACHED_NO_MEM: If the queue pair already was in the
  99  *     VMCIQPB_CREATED_NO_MEM due to a host side create, an old-style VMX will
 100  *     bring the queue pair into this state. Once vmci_qp_broker_set_page_store
 101  *     is called to register the user memory, the VMCIQPB_ATTACH_MEM state
 102  *     will be entered.
 103  *
 104  * From the attached queue pair, the queue pair can enter the shutdown states
 105  * when either side of the queue pair detaches. If the guest side detaches
 106  * first, the queue pair will enter the VMCIQPB_SHUTDOWN_NO_MEM state, where
 107  * the content of the queue pair will no longer be available. If the host
 108  * side detaches first, the queue pair will either enter the
 109  * VMCIQPB_SHUTDOWN_MEM, if the guest memory is currently mapped, or
 110  * VMCIQPB_SHUTDOWN_NO_MEM, if the guest memory is not mapped
 111  * (e.g., the host detaches while a guest is stunned).
 112  *
 113  * New-style VMX'en will also unmap guest memory, if the guest is
 114  * quiesced, e.g., during a snapshot operation. In that case, the guest
 115  * memory will no longer be available, and the queue pair will transition from
 116  * *_MEM state to a *_NO_MEM state. The VMX may later map the memory once more,
 117  * in which case the queue pair will transition from the *_NO_MEM state at that
 118  * point back to the *_MEM state. Note that the *_NO_MEM state may have changed,
 119  * since the peer may have either attached or detached in the meantime. The
 120  * values are laid out such that ++ on a state will move from a *_NO_MEM to a
 121  * *_MEM state, and vice versa.
 122  */
 123 
 124 /* The Kernel specific component of the struct vmci_queue structure. */
 125 struct vmci_queue_kern_if {
 126         struct mutex __mutex;   /* Protects the queue. */
 127         struct mutex *mutex;    /* Shared by producer and consumer queues. */
 128         size_t num_pages;       /* Number of pages incl. header. */
 129         bool host;              /* Host or guest? */
 130         union {
 131                 struct {
 132                         dma_addr_t *pas;
 133                         void **vas;
 134                 } g;            /* Used by the guest. */
 135                 struct {
 136                         struct page **page;
 137                         struct page **header_page;
 138                 } h;            /* Used by the host. */
 139         } u;
 140 };
 141 
 142 /*
 143  * This structure is opaque to the clients.
 144  */
 145 struct vmci_qp {
 146         struct vmci_handle handle;
 147         struct vmci_queue *produce_q;
 148         struct vmci_queue *consume_q;
 149         u64 produce_q_size;
 150         u64 consume_q_size;
 151         u32 peer;
 152         u32 flags;
 153         u32 priv_flags;
 154         bool guest_endpoint;
 155         unsigned int blocked;
 156         unsigned int generation;
 157         wait_queue_head_t event;
 158 };
 159 
 160 enum qp_broker_state {
 161         VMCIQPB_NEW,
 162         VMCIQPB_CREATED_NO_MEM,
 163         VMCIQPB_CREATED_MEM,
 164         VMCIQPB_ATTACHED_NO_MEM,
 165         VMCIQPB_ATTACHED_MEM,
 166         VMCIQPB_SHUTDOWN_NO_MEM,
 167         VMCIQPB_SHUTDOWN_MEM,
 168         VMCIQPB_GONE
 169 };
 170 
 171 #define QPBROKERSTATE_HAS_MEM(_qpb) (_qpb->state == VMCIQPB_CREATED_MEM || \
 172                                      _qpb->state == VMCIQPB_ATTACHED_MEM || \
 173                                      _qpb->state == VMCIQPB_SHUTDOWN_MEM)
 174 
 175 /*
 176  * In the queue pair broker, we always use the guest point of view for
 177  * the produce and consume queue values and references, e.g., the
 178  * produce queue size stored is the guests produce queue size. The
 179  * host endpoint will need to swap these around. The only exception is
 180  * the local queue pairs on the host, in which case the host endpoint
 181  * that creates the queue pair will have the right orientation, and
 182  * the attaching host endpoint will need to swap.
 183  */
 184 struct qp_entry {
 185         struct list_head list_item;
 186         struct vmci_handle handle;
 187         u32 peer;
 188         u32 flags;
 189         u64 produce_size;
 190         u64 consume_size;
 191         u32 ref_count;
 192 };
 193 
 194 struct qp_broker_entry {
 195         struct vmci_resource resource;
 196         struct qp_entry qp;
 197         u32 create_id;
 198         u32 attach_id;
 199         enum qp_broker_state state;
 200         bool require_trusted_attach;
 201         bool created_by_trusted;
 202         bool vmci_page_files;   /* Created by VMX using VMCI page files */
 203         struct vmci_queue *produce_q;
 204         struct vmci_queue *consume_q;
 205         struct vmci_queue_header saved_produce_q;
 206         struct vmci_queue_header saved_consume_q;
 207         vmci_event_release_cb wakeup_cb;
 208         void *client_data;
 209         void *local_mem;        /* Kernel memory for local queue pair */
 210 };
 211 
 212 struct qp_guest_endpoint {
 213         struct vmci_resource resource;
 214         struct qp_entry qp;
 215         u64 num_ppns;
 216         void *produce_q;
 217         void *consume_q;
 218         struct ppn_set ppn_set;
 219 };
 220 
 221 struct qp_list {
 222         struct list_head head;
 223         struct mutex mutex;     /* Protect queue list. */
 224 };
 225 
 226 static struct qp_list qp_broker_list = {
 227         .head = LIST_HEAD_INIT(qp_broker_list.head),
 228         .mutex = __MUTEX_INITIALIZER(qp_broker_list.mutex),
 229 };
 230 
 231 static struct qp_list qp_guest_endpoints = {
 232         .head = LIST_HEAD_INIT(qp_guest_endpoints.head),
 233         .mutex = __MUTEX_INITIALIZER(qp_guest_endpoints.mutex),
 234 };
 235 
 236 #define INVALID_VMCI_GUEST_MEM_ID  0
 237 #define QPE_NUM_PAGES(_QPE) ((u32) \
 238                              (DIV_ROUND_UP(_QPE.produce_size, PAGE_SIZE) + \
 239                               DIV_ROUND_UP(_QPE.consume_size, PAGE_SIZE) + 2))
 240 
 241 
 242 /*
 243  * Frees kernel VA space for a given queue and its queue header, and
 244  * frees physical data pages.
 245  */
 246 static void qp_free_queue(void *q, u64 size)
 247 {
 248         struct vmci_queue *queue = q;
 249 
 250         if (queue) {
 251                 u64 i;
 252 
 253                 /* Given size does not include header, so add in a page here. */
 254                 for (i = 0; i < DIV_ROUND_UP(size, PAGE_SIZE) + 1; i++) {
 255                         dma_free_coherent(&vmci_pdev->dev, PAGE_SIZE,
 256                                           queue->kernel_if->u.g.vas[i],
 257                                           queue->kernel_if->u.g.pas[i]);
 258                 }
 259 
 260                 vfree(queue);
 261         }
 262 }
 263 
 264 /*
 265  * Allocates kernel queue pages of specified size with IOMMU mappings,
 266  * plus space for the queue structure/kernel interface and the queue
 267  * header.
 268  */
 269 static void *qp_alloc_queue(u64 size, u32 flags)
 270 {
 271         u64 i;
 272         struct vmci_queue *queue;
 273         size_t pas_size;
 274         size_t vas_size;
 275         size_t queue_size = sizeof(*queue) + sizeof(*queue->kernel_if);
 276         u64 num_pages;
 277 
 278         if (size > SIZE_MAX - PAGE_SIZE)
 279                 return NULL;
 280         num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
 281         if (num_pages >
 282                  (SIZE_MAX - queue_size) /
 283                  (sizeof(*queue->kernel_if->u.g.pas) +
 284                   sizeof(*queue->kernel_if->u.g.vas)))
 285                 return NULL;
 286 
 287         pas_size = num_pages * sizeof(*queue->kernel_if->u.g.pas);
 288         vas_size = num_pages * sizeof(*queue->kernel_if->u.g.vas);
 289         queue_size += pas_size + vas_size;
 290 
 291         queue = vmalloc(queue_size);
 292         if (!queue)
 293                 return NULL;
 294 
 295         queue->q_header = NULL;
 296         queue->saved_header = NULL;
 297         queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
 298         queue->kernel_if->mutex = NULL;
 299         queue->kernel_if->num_pages = num_pages;
 300         queue->kernel_if->u.g.pas = (dma_addr_t *)(queue->kernel_if + 1);
 301         queue->kernel_if->u.g.vas =
 302                 (void **)((u8 *)queue->kernel_if->u.g.pas + pas_size);
 303         queue->kernel_if->host = false;
 304 
 305         for (i = 0; i < num_pages; i++) {
 306                 queue->kernel_if->u.g.vas[i] =
 307                         dma_alloc_coherent(&vmci_pdev->dev, PAGE_SIZE,
 308                                            &queue->kernel_if->u.g.pas[i],
 309                                            GFP_KERNEL);
 310                 if (!queue->kernel_if->u.g.vas[i]) {
 311                         /* Size excl. the header. */
 312                         qp_free_queue(queue, i * PAGE_SIZE);
 313                         return NULL;
 314                 }
 315         }
 316 
 317         /* Queue header is the first page. */
 318         queue->q_header = queue->kernel_if->u.g.vas[0];
 319 
 320         return queue;
 321 }
 322 
 323 /*
 324  * Copies from a given buffer or iovector to a VMCI Queue.  Uses
 325  * kmap()/kunmap() to dynamically map/unmap required portions of the queue
 326  * by traversing the offset -> page translation structure for the queue.
 327  * Assumes that offset + size does not wrap around in the queue.
 328  */
 329 static int qp_memcpy_to_queue_iter(struct vmci_queue *queue,
 330                                   u64 queue_offset,
 331                                   struct iov_iter *from,
 332                                   size_t size)
 333 {
 334         struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
 335         size_t bytes_copied = 0;
 336 
 337         while (bytes_copied < size) {
 338                 const u64 page_index =
 339                         (queue_offset + bytes_copied) / PAGE_SIZE;
 340                 const size_t page_offset =
 341                     (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
 342                 void *va;
 343                 size_t to_copy;
 344 
 345                 if (kernel_if->host)
 346                         va = kmap(kernel_if->u.h.page[page_index]);
 347                 else
 348                         va = kernel_if->u.g.vas[page_index + 1];
 349                         /* Skip header. */
 350 
 351                 if (size - bytes_copied > PAGE_SIZE - page_offset)
 352                         /* Enough payload to fill up from this page. */
 353                         to_copy = PAGE_SIZE - page_offset;
 354                 else
 355                         to_copy = size - bytes_copied;
 356 
 357                 if (!copy_from_iter_full((u8 *)va + page_offset, to_copy,
 358                                          from)) {
 359                         if (kernel_if->host)
 360                                 kunmap(kernel_if->u.h.page[page_index]);
 361                         return VMCI_ERROR_INVALID_ARGS;
 362                 }
 363                 bytes_copied += to_copy;
 364                 if (kernel_if->host)
 365                         kunmap(kernel_if->u.h.page[page_index]);
 366         }
 367 
 368         return VMCI_SUCCESS;
 369 }
 370 
 371 /*
 372  * Copies to a given buffer or iovector from a VMCI Queue.  Uses
 373  * kmap()/kunmap() to dynamically map/unmap required portions of the queue
 374  * by traversing the offset -> page translation structure for the queue.
 375  * Assumes that offset + size does not wrap around in the queue.
 376  */
 377 static int qp_memcpy_from_queue_iter(struct iov_iter *to,
 378                                     const struct vmci_queue *queue,
 379                                     u64 queue_offset, size_t size)
 380 {
 381         struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
 382         size_t bytes_copied = 0;
 383 
 384         while (bytes_copied < size) {
 385                 const u64 page_index =
 386                         (queue_offset + bytes_copied) / PAGE_SIZE;
 387                 const size_t page_offset =
 388                     (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
 389                 void *va;
 390                 size_t to_copy;
 391                 int err;
 392 
 393                 if (kernel_if->host)
 394                         va = kmap(kernel_if->u.h.page[page_index]);
 395                 else
 396                         va = kernel_if->u.g.vas[page_index + 1];
 397                         /* Skip header. */
 398 
 399                 if (size - bytes_copied > PAGE_SIZE - page_offset)
 400                         /* Enough payload to fill up this page. */
 401                         to_copy = PAGE_SIZE - page_offset;
 402                 else
 403                         to_copy = size - bytes_copied;
 404 
 405                 err = copy_to_iter((u8 *)va + page_offset, to_copy, to);
 406                 if (err != to_copy) {
 407                         if (kernel_if->host)
 408                                 kunmap(kernel_if->u.h.page[page_index]);
 409                         return VMCI_ERROR_INVALID_ARGS;
 410                 }
 411                 bytes_copied += to_copy;
 412                 if (kernel_if->host)
 413                         kunmap(kernel_if->u.h.page[page_index]);
 414         }
 415 
 416         return VMCI_SUCCESS;
 417 }
 418 
 419 /*
 420  * Allocates two list of PPNs --- one for the pages in the produce queue,
 421  * and the other for the pages in the consume queue. Intializes the list
 422  * of PPNs with the page frame numbers of the KVA for the two queues (and
 423  * the queue headers).
 424  */
 425 static int qp_alloc_ppn_set(void *prod_q,
 426                             u64 num_produce_pages,
 427                             void *cons_q,
 428                             u64 num_consume_pages, struct ppn_set *ppn_set)
 429 {
 430         u64 *produce_ppns;
 431         u64 *consume_ppns;
 432         struct vmci_queue *produce_q = prod_q;
 433         struct vmci_queue *consume_q = cons_q;
 434         u64 i;
 435 
 436         if (!produce_q || !num_produce_pages || !consume_q ||
 437             !num_consume_pages || !ppn_set)
 438                 return VMCI_ERROR_INVALID_ARGS;
 439 
 440         if (ppn_set->initialized)
 441                 return VMCI_ERROR_ALREADY_EXISTS;
 442 
 443         produce_ppns =
 444             kmalloc_array(num_produce_pages, sizeof(*produce_ppns),
 445                           GFP_KERNEL);
 446         if (!produce_ppns)
 447                 return VMCI_ERROR_NO_MEM;
 448 
 449         consume_ppns =
 450             kmalloc_array(num_consume_pages, sizeof(*consume_ppns),
 451                           GFP_KERNEL);
 452         if (!consume_ppns) {
 453                 kfree(produce_ppns);
 454                 return VMCI_ERROR_NO_MEM;
 455         }
 456 
 457         for (i = 0; i < num_produce_pages; i++)
 458                 produce_ppns[i] =
 459                         produce_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
 460 
 461         for (i = 0; i < num_consume_pages; i++)
 462                 consume_ppns[i] =
 463                         consume_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
 464 
 465         ppn_set->num_produce_pages = num_produce_pages;
 466         ppn_set->num_consume_pages = num_consume_pages;
 467         ppn_set->produce_ppns = produce_ppns;
 468         ppn_set->consume_ppns = consume_ppns;
 469         ppn_set->initialized = true;
 470         return VMCI_SUCCESS;
 471 }
 472 
 473 /*
 474  * Frees the two list of PPNs for a queue pair.
 475  */
 476 static void qp_free_ppn_set(struct ppn_set *ppn_set)
 477 {
 478         if (ppn_set->initialized) {
 479                 /* Do not call these functions on NULL inputs. */
 480                 kfree(ppn_set->produce_ppns);
 481                 kfree(ppn_set->consume_ppns);
 482         }
 483         memset(ppn_set, 0, sizeof(*ppn_set));
 484 }
 485 
 486 /*
 487  * Populates the list of PPNs in the hypercall structure with the PPNS
 488  * of the produce queue and the consume queue.
 489  */
 490 static int qp_populate_ppn_set(u8 *call_buf, const struct ppn_set *ppn_set)
 491 {
 492         if (vmci_use_ppn64()) {
 493                 memcpy(call_buf, ppn_set->produce_ppns,
 494                        ppn_set->num_produce_pages *
 495                        sizeof(*ppn_set->produce_ppns));
 496                 memcpy(call_buf +
 497                        ppn_set->num_produce_pages *
 498                        sizeof(*ppn_set->produce_ppns),
 499                        ppn_set->consume_ppns,
 500                        ppn_set->num_consume_pages *
 501                        sizeof(*ppn_set->consume_ppns));
 502         } else {
 503                 int i;
 504                 u32 *ppns = (u32 *) call_buf;
 505 
 506                 for (i = 0; i < ppn_set->num_produce_pages; i++)
 507                         ppns[i] = (u32) ppn_set->produce_ppns[i];
 508 
 509                 ppns = &ppns[ppn_set->num_produce_pages];
 510 
 511                 for (i = 0; i < ppn_set->num_consume_pages; i++)
 512                         ppns[i] = (u32) ppn_set->consume_ppns[i];
 513         }
 514 
 515         return VMCI_SUCCESS;
 516 }
 517 
 518 /*
 519  * Allocates kernel VA space of specified size plus space for the queue
 520  * and kernel interface.  This is different from the guest queue allocator,
 521  * because we do not allocate our own queue header/data pages here but
 522  * share those of the guest.
 523  */
 524 static struct vmci_queue *qp_host_alloc_queue(u64 size)
 525 {
 526         struct vmci_queue *queue;
 527         size_t queue_page_size;
 528         u64 num_pages;
 529         const size_t queue_size = sizeof(*queue) + sizeof(*(queue->kernel_if));
 530 
 531         if (size > SIZE_MAX - PAGE_SIZE)
 532                 return NULL;
 533         num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
 534         if (num_pages > (SIZE_MAX - queue_size) /
 535                  sizeof(*queue->kernel_if->u.h.page))
 536                 return NULL;
 537 
 538         queue_page_size = num_pages * sizeof(*queue->kernel_if->u.h.page);
 539 
 540         queue = kzalloc(queue_size + queue_page_size, GFP_KERNEL);
 541         if (queue) {
 542                 queue->q_header = NULL;
 543                 queue->saved_header = NULL;
 544                 queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
 545                 queue->kernel_if->host = true;
 546                 queue->kernel_if->mutex = NULL;
 547                 queue->kernel_if->num_pages = num_pages;
 548                 queue->kernel_if->u.h.header_page =
 549                     (struct page **)((u8 *)queue + queue_size);
 550                 queue->kernel_if->u.h.page =
 551                         &queue->kernel_if->u.h.header_page[1];
 552         }
 553 
 554         return queue;
 555 }
 556 
 557 /*
 558  * Frees kernel memory for a given queue (header plus translation
 559  * structure).
 560  */
 561 static void qp_host_free_queue(struct vmci_queue *queue, u64 queue_size)
 562 {
 563         kfree(queue);
 564 }
 565 
 566 /*
 567  * Initialize the mutex for the pair of queues.  This mutex is used to
 568  * protect the q_header and the buffer from changing out from under any
 569  * users of either queue.  Of course, it's only any good if the mutexes
 570  * are actually acquired.  Queue structure must lie on non-paged memory
 571  * or we cannot guarantee access to the mutex.
 572  */
 573 static void qp_init_queue_mutex(struct vmci_queue *produce_q,
 574                                 struct vmci_queue *consume_q)
 575 {
 576         /*
 577          * Only the host queue has shared state - the guest queues do not
 578          * need to synchronize access using a queue mutex.
 579          */
 580 
 581         if (produce_q->kernel_if->host) {
 582                 produce_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
 583                 consume_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
 584                 mutex_init(produce_q->kernel_if->mutex);
 585         }
 586 }
 587 
 588 /*
 589  * Cleans up the mutex for the pair of queues.
 590  */
 591 static void qp_cleanup_queue_mutex(struct vmci_queue *produce_q,
 592                                    struct vmci_queue *consume_q)
 593 {
 594         if (produce_q->kernel_if->host) {
 595                 produce_q->kernel_if->mutex = NULL;
 596                 consume_q->kernel_if->mutex = NULL;
 597         }
 598 }
 599 
 600 /*
 601  * Acquire the mutex for the queue.  Note that the produce_q and
 602  * the consume_q share a mutex.  So, only one of the two need to
 603  * be passed in to this routine.  Either will work just fine.
 604  */
 605 static void qp_acquire_queue_mutex(struct vmci_queue *queue)
 606 {
 607         if (queue->kernel_if->host)
 608                 mutex_lock(queue->kernel_if->mutex);
 609 }
 610 
 611 /*
 612  * Release the mutex for the queue.  Note that the produce_q and
 613  * the consume_q share a mutex.  So, only one of the two need to
 614  * be passed in to this routine.  Either will work just fine.
 615  */
 616 static void qp_release_queue_mutex(struct vmci_queue *queue)
 617 {
 618         if (queue->kernel_if->host)
 619                 mutex_unlock(queue->kernel_if->mutex);
 620 }
 621 
 622 /*
 623  * Helper function to release pages in the PageStoreAttachInfo
 624  * previously obtained using get_user_pages.
 625  */
 626 static void qp_release_pages(struct page **pages,
 627                              u64 num_pages, bool dirty)
 628 {
 629         int i;
 630 
 631         for (i = 0; i < num_pages; i++) {
 632                 if (dirty)
 633                         set_page_dirty(pages[i]);
 634 
 635                 put_page(pages[i]);
 636                 pages[i] = NULL;
 637         }
 638 }
 639 
 640 /*
 641  * Lock the user pages referenced by the {produce,consume}Buffer
 642  * struct into memory and populate the {produce,consume}Pages
 643  * arrays in the attach structure with them.
 644  */
 645 static int qp_host_get_user_memory(u64 produce_uva,
 646                                    u64 consume_uva,
 647                                    struct vmci_queue *produce_q,
 648                                    struct vmci_queue *consume_q)
 649 {
 650         int retval;
 651         int err = VMCI_SUCCESS;
 652 
 653         retval = get_user_pages_fast((uintptr_t) produce_uva,
 654                                      produce_q->kernel_if->num_pages,
 655                                      FOLL_WRITE,
 656                                      produce_q->kernel_if->u.h.header_page);
 657         if (retval < (int)produce_q->kernel_if->num_pages) {
 658                 pr_debug("get_user_pages_fast(produce) failed (retval=%d)",
 659                         retval);
 660                 qp_release_pages(produce_q->kernel_if->u.h.header_page,
 661                                  retval, false);
 662                 err = VMCI_ERROR_NO_MEM;
 663                 goto out;
 664         }
 665 
 666         retval = get_user_pages_fast((uintptr_t) consume_uva,
 667                                      consume_q->kernel_if->num_pages,
 668                                      FOLL_WRITE,
 669                                      consume_q->kernel_if->u.h.header_page);
 670         if (retval < (int)consume_q->kernel_if->num_pages) {
 671                 pr_debug("get_user_pages_fast(consume) failed (retval=%d)",
 672                         retval);
 673                 qp_release_pages(consume_q->kernel_if->u.h.header_page,
 674                                  retval, false);
 675                 qp_release_pages(produce_q->kernel_if->u.h.header_page,
 676                                  produce_q->kernel_if->num_pages, false);
 677                 err = VMCI_ERROR_NO_MEM;
 678         }
 679 
 680  out:
 681         return err;
 682 }
 683 
 684 /*
 685  * Registers the specification of the user pages used for backing a queue
 686  * pair. Enough information to map in pages is stored in the OS specific
 687  * part of the struct vmci_queue structure.
 688  */
 689 static int qp_host_register_user_memory(struct vmci_qp_page_store *page_store,
 690                                         struct vmci_queue *produce_q,
 691                                         struct vmci_queue *consume_q)
 692 {
 693         u64 produce_uva;
 694         u64 consume_uva;
 695 
 696         /*
 697          * The new style and the old style mapping only differs in
 698          * that we either get a single or two UVAs, so we split the
 699          * single UVA range at the appropriate spot.
 700          */
 701         produce_uva = page_store->pages;
 702         consume_uva = page_store->pages +
 703             produce_q->kernel_if->num_pages * PAGE_SIZE;
 704         return qp_host_get_user_memory(produce_uva, consume_uva, produce_q,
 705                                        consume_q);
 706 }
 707 
 708 /*
 709  * Releases and removes the references to user pages stored in the attach
 710  * struct.  Pages are released from the page cache and may become
 711  * swappable again.
 712  */
 713 static void qp_host_unregister_user_memory(struct vmci_queue *produce_q,
 714                                            struct vmci_queue *consume_q)
 715 {
 716         qp_release_pages(produce_q->kernel_if->u.h.header_page,
 717                          produce_q->kernel_if->num_pages, true);
 718         memset(produce_q->kernel_if->u.h.header_page, 0,
 719                sizeof(*produce_q->kernel_if->u.h.header_page) *
 720                produce_q->kernel_if->num_pages);
 721         qp_release_pages(consume_q->kernel_if->u.h.header_page,
 722                          consume_q->kernel_if->num_pages, true);
 723         memset(consume_q->kernel_if->u.h.header_page, 0,
 724                sizeof(*consume_q->kernel_if->u.h.header_page) *
 725                consume_q->kernel_if->num_pages);
 726 }
 727 
 728 /*
 729  * Once qp_host_register_user_memory has been performed on a
 730  * queue, the queue pair headers can be mapped into the
 731  * kernel. Once mapped, they must be unmapped with
 732  * qp_host_unmap_queues prior to calling
 733  * qp_host_unregister_user_memory.
 734  * Pages are pinned.
 735  */
 736 static int qp_host_map_queues(struct vmci_queue *produce_q,
 737                               struct vmci_queue *consume_q)
 738 {
 739         int result;
 740 
 741         if (!produce_q->q_header || !consume_q->q_header) {
 742                 struct page *headers[2];
 743 
 744                 if (produce_q->q_header != consume_q->q_header)
 745                         return VMCI_ERROR_QUEUEPAIR_MISMATCH;
 746 
 747                 if (produce_q->kernel_if->u.h.header_page == NULL ||
 748                     *produce_q->kernel_if->u.h.header_page == NULL)
 749                         return VMCI_ERROR_UNAVAILABLE;
 750 
 751                 headers[0] = *produce_q->kernel_if->u.h.header_page;
 752                 headers[1] = *consume_q->kernel_if->u.h.header_page;
 753 
 754                 produce_q->q_header = vmap(headers, 2, VM_MAP, PAGE_KERNEL);
 755                 if (produce_q->q_header != NULL) {
 756                         consume_q->q_header =
 757                             (struct vmci_queue_header *)((u8 *)
 758                                                          produce_q->q_header +
 759                                                          PAGE_SIZE);
 760                         result = VMCI_SUCCESS;
 761                 } else {
 762                         pr_warn("vmap failed\n");
 763                         result = VMCI_ERROR_NO_MEM;
 764                 }
 765         } else {
 766                 result = VMCI_SUCCESS;
 767         }
 768 
 769         return result;
 770 }
 771 
 772 /*
 773  * Unmaps previously mapped queue pair headers from the kernel.
 774  * Pages are unpinned.
 775  */
 776 static int qp_host_unmap_queues(u32 gid,
 777                                 struct vmci_queue *produce_q,
 778                                 struct vmci_queue *consume_q)
 779 {
 780         if (produce_q->q_header) {
 781                 if (produce_q->q_header < consume_q->q_header)
 782                         vunmap(produce_q->q_header);
 783                 else
 784                         vunmap(consume_q->q_header);
 785 
 786                 produce_q->q_header = NULL;
 787                 consume_q->q_header = NULL;
 788         }
 789 
 790         return VMCI_SUCCESS;
 791 }
 792 
 793 /*
 794  * Finds the entry in the list corresponding to a given handle. Assumes
 795  * that the list is locked.
 796  */
 797 static struct qp_entry *qp_list_find(struct qp_list *qp_list,
 798                                      struct vmci_handle handle)
 799 {
 800         struct qp_entry *entry;
 801 
 802         if (vmci_handle_is_invalid(handle))
 803                 return NULL;
 804 
 805         list_for_each_entry(entry, &qp_list->head, list_item) {
 806                 if (vmci_handle_is_equal(entry->handle, handle))
 807                         return entry;
 808         }
 809 
 810         return NULL;
 811 }
 812 
 813 /*
 814  * Finds the entry in the list corresponding to a given handle.
 815  */
 816 static struct qp_guest_endpoint *
 817 qp_guest_handle_to_entry(struct vmci_handle handle)
 818 {
 819         struct qp_guest_endpoint *entry;
 820         struct qp_entry *qp = qp_list_find(&qp_guest_endpoints, handle);
 821 
 822         entry = qp ? container_of(
 823                 qp, struct qp_guest_endpoint, qp) : NULL;
 824         return entry;
 825 }
 826 
 827 /*
 828  * Finds the entry in the list corresponding to a given handle.
 829  */
 830 static struct qp_broker_entry *
 831 qp_broker_handle_to_entry(struct vmci_handle handle)
 832 {
 833         struct qp_broker_entry *entry;
 834         struct qp_entry *qp = qp_list_find(&qp_broker_list, handle);
 835 
 836         entry = qp ? container_of(
 837                 qp, struct qp_broker_entry, qp) : NULL;
 838         return entry;
 839 }
 840 
 841 /*
 842  * Dispatches a queue pair event message directly into the local event
 843  * queue.
 844  */
 845 static int qp_notify_peer_local(bool attach, struct vmci_handle handle)
 846 {
 847         u32 context_id = vmci_get_context_id();
 848         struct vmci_event_qp ev;
 849 
 850         ev.msg.hdr.dst = vmci_make_handle(context_id, VMCI_EVENT_HANDLER);
 851         ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
 852                                           VMCI_CONTEXT_RESOURCE_ID);
 853         ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
 854         ev.msg.event_data.event =
 855             attach ? VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
 856         ev.payload.peer_id = context_id;
 857         ev.payload.handle = handle;
 858 
 859         return vmci_event_dispatch(&ev.msg.hdr);
 860 }
 861 
 862 /*
 863  * Allocates and initializes a qp_guest_endpoint structure.
 864  * Allocates a queue_pair rid (and handle) iff the given entry has
 865  * an invalid handle.  0 through VMCI_RESERVED_RESOURCE_ID_MAX
 866  * are reserved handles.  Assumes that the QP list mutex is held
 867  * by the caller.
 868  */
 869 static struct qp_guest_endpoint *
 870 qp_guest_endpoint_create(struct vmci_handle handle,
 871                          u32 peer,
 872                          u32 flags,
 873                          u64 produce_size,
 874                          u64 consume_size,
 875                          void *produce_q,
 876                          void *consume_q)
 877 {
 878         int result;
 879         struct qp_guest_endpoint *entry;
 880         /* One page each for the queue headers. */
 881         const u64 num_ppns = DIV_ROUND_UP(produce_size, PAGE_SIZE) +
 882             DIV_ROUND_UP(consume_size, PAGE_SIZE) + 2;
 883 
 884         if (vmci_handle_is_invalid(handle)) {
 885                 u32 context_id = vmci_get_context_id();
 886 
 887                 handle = vmci_make_handle(context_id, VMCI_INVALID_ID);
 888         }
 889 
 890         entry = kzalloc(sizeof(*entry), GFP_KERNEL);
 891         if (entry) {
 892                 entry->qp.peer = peer;
 893                 entry->qp.flags = flags;
 894                 entry->qp.produce_size = produce_size;
 895                 entry->qp.consume_size = consume_size;
 896                 entry->qp.ref_count = 0;
 897                 entry->num_ppns = num_ppns;
 898                 entry->produce_q = produce_q;
 899                 entry->consume_q = consume_q;
 900                 INIT_LIST_HEAD(&entry->qp.list_item);
 901 
 902                 /* Add resource obj */
 903                 result = vmci_resource_add(&entry->resource,
 904                                            VMCI_RESOURCE_TYPE_QPAIR_GUEST,
 905                                            handle);
 906                 entry->qp.handle = vmci_resource_handle(&entry->resource);
 907                 if ((result != VMCI_SUCCESS) ||
 908                     qp_list_find(&qp_guest_endpoints, entry->qp.handle)) {
 909                         pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
 910                                 handle.context, handle.resource, result);
 911                         kfree(entry);
 912                         entry = NULL;
 913                 }
 914         }
 915         return entry;
 916 }
 917 
 918 /*
 919  * Frees a qp_guest_endpoint structure.
 920  */
 921 static void qp_guest_endpoint_destroy(struct qp_guest_endpoint *entry)
 922 {
 923         qp_free_ppn_set(&entry->ppn_set);
 924         qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
 925         qp_free_queue(entry->produce_q, entry->qp.produce_size);
 926         qp_free_queue(entry->consume_q, entry->qp.consume_size);
 927         /* Unlink from resource hash table and free callback */
 928         vmci_resource_remove(&entry->resource);
 929 
 930         kfree(entry);
 931 }
 932 
 933 /*
 934  * Helper to make a queue_pairAlloc hypercall when the driver is
 935  * supporting a guest device.
 936  */
 937 static int qp_alloc_hypercall(const struct qp_guest_endpoint *entry)
 938 {
 939         struct vmci_qp_alloc_msg *alloc_msg;
 940         size_t msg_size;
 941         size_t ppn_size;
 942         int result;
 943 
 944         if (!entry || entry->num_ppns <= 2)
 945                 return VMCI_ERROR_INVALID_ARGS;
 946 
 947         ppn_size = vmci_use_ppn64() ? sizeof(u64) : sizeof(u32);
 948         msg_size = sizeof(*alloc_msg) +
 949             (size_t) entry->num_ppns * ppn_size;
 950         alloc_msg = kmalloc(msg_size, GFP_KERNEL);
 951         if (!alloc_msg)
 952                 return VMCI_ERROR_NO_MEM;
 953 
 954         alloc_msg->hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
 955                                               VMCI_QUEUEPAIR_ALLOC);
 956         alloc_msg->hdr.src = VMCI_ANON_SRC_HANDLE;
 957         alloc_msg->hdr.payload_size = msg_size - VMCI_DG_HEADERSIZE;
 958         alloc_msg->handle = entry->qp.handle;
 959         alloc_msg->peer = entry->qp.peer;
 960         alloc_msg->flags = entry->qp.flags;
 961         alloc_msg->produce_size = entry->qp.produce_size;
 962         alloc_msg->consume_size = entry->qp.consume_size;
 963         alloc_msg->num_ppns = entry->num_ppns;
 964 
 965         result = qp_populate_ppn_set((u8 *)alloc_msg + sizeof(*alloc_msg),
 966                                      &entry->ppn_set);
 967         if (result == VMCI_SUCCESS)
 968                 result = vmci_send_datagram(&alloc_msg->hdr);
 969 
 970         kfree(alloc_msg);
 971 
 972         return result;
 973 }
 974 
 975 /*
 976  * Helper to make a queue_pairDetach hypercall when the driver is
 977  * supporting a guest device.
 978  */
 979 static int qp_detatch_hypercall(struct vmci_handle handle)
 980 {
 981         struct vmci_qp_detach_msg detach_msg;
 982 
 983         detach_msg.hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
 984                                               VMCI_QUEUEPAIR_DETACH);
 985         detach_msg.hdr.src = VMCI_ANON_SRC_HANDLE;
 986         detach_msg.hdr.payload_size = sizeof(handle);
 987         detach_msg.handle = handle;
 988 
 989         return vmci_send_datagram(&detach_msg.hdr);
 990 }
 991 
 992 /*
 993  * Adds the given entry to the list. Assumes that the list is locked.
 994  */
 995 static void qp_list_add_entry(struct qp_list *qp_list, struct qp_entry *entry)
 996 {
 997         if (entry)
 998                 list_add(&entry->list_item, &qp_list->head);
 999 }
1000 
1001 /*
1002  * Removes the given entry from the list. Assumes that the list is locked.
1003  */
1004 static void qp_list_remove_entry(struct qp_list *qp_list,
1005                                  struct qp_entry *entry)
1006 {
1007         if (entry)
1008                 list_del(&entry->list_item);
1009 }
1010 
1011 /*
1012  * Helper for VMCI queue_pair detach interface. Frees the physical
1013  * pages for the queue pair.
1014  */
1015 static int qp_detatch_guest_work(struct vmci_handle handle)
1016 {
1017         int result;
1018         struct qp_guest_endpoint *entry;
1019         u32 ref_count = ~0;     /* To avoid compiler warning below */
1020 
1021         mutex_lock(&qp_guest_endpoints.mutex);
1022 
1023         entry = qp_guest_handle_to_entry(handle);
1024         if (!entry) {
1025                 mutex_unlock(&qp_guest_endpoints.mutex);
1026                 return VMCI_ERROR_NOT_FOUND;
1027         }
1028 
1029         if (entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1030                 result = VMCI_SUCCESS;
1031 
1032                 if (entry->qp.ref_count > 1) {
1033                         result = qp_notify_peer_local(false, handle);
1034                         /*
1035                          * We can fail to notify a local queuepair
1036                          * because we can't allocate.  We still want
1037                          * to release the entry if that happens, so
1038                          * don't bail out yet.
1039                          */
1040                 }
1041         } else {
1042                 result = qp_detatch_hypercall(handle);
1043                 if (result < VMCI_SUCCESS) {
1044                         /*
1045                          * We failed to notify a non-local queuepair.
1046                          * That other queuepair might still be
1047                          * accessing the shared memory, so don't
1048                          * release the entry yet.  It will get cleaned
1049                          * up by VMCIqueue_pair_Exit() if necessary
1050                          * (assuming we are going away, otherwise why
1051                          * did this fail?).
1052                          */
1053 
1054                         mutex_unlock(&qp_guest_endpoints.mutex);
1055                         return result;
1056                 }
1057         }
1058 
1059         /*
1060          * If we get here then we either failed to notify a local queuepair, or
1061          * we succeeded in all cases.  Release the entry if required.
1062          */
1063 
1064         entry->qp.ref_count--;
1065         if (entry->qp.ref_count == 0)
1066                 qp_list_remove_entry(&qp_guest_endpoints, &entry->qp);
1067 
1068         /* If we didn't remove the entry, this could change once we unlock. */
1069         if (entry)
1070                 ref_count = entry->qp.ref_count;
1071 
1072         mutex_unlock(&qp_guest_endpoints.mutex);
1073 
1074         if (ref_count == 0)
1075                 qp_guest_endpoint_destroy(entry);
1076 
1077         return result;
1078 }
1079 
1080 /*
1081  * This functions handles the actual allocation of a VMCI queue
1082  * pair guest endpoint. Allocates physical pages for the queue
1083  * pair. It makes OS dependent calls through generic wrappers.
1084  */
1085 static int qp_alloc_guest_work(struct vmci_handle *handle,
1086                                struct vmci_queue **produce_q,
1087                                u64 produce_size,
1088                                struct vmci_queue **consume_q,
1089                                u64 consume_size,
1090                                u32 peer,
1091                                u32 flags,
1092                                u32 priv_flags)
1093 {
1094         const u64 num_produce_pages =
1095             DIV_ROUND_UP(produce_size, PAGE_SIZE) + 1;
1096         const u64 num_consume_pages =
1097             DIV_ROUND_UP(consume_size, PAGE_SIZE) + 1;
1098         void *my_produce_q = NULL;
1099         void *my_consume_q = NULL;
1100         int result;
1101         struct qp_guest_endpoint *queue_pair_entry = NULL;
1102 
1103         if (priv_flags != VMCI_NO_PRIVILEGE_FLAGS)
1104                 return VMCI_ERROR_NO_ACCESS;
1105 
1106         mutex_lock(&qp_guest_endpoints.mutex);
1107 
1108         queue_pair_entry = qp_guest_handle_to_entry(*handle);
1109         if (queue_pair_entry) {
1110                 if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1111                         /* Local attach case. */
1112                         if (queue_pair_entry->qp.ref_count > 1) {
1113                                 pr_devel("Error attempting to attach more than once\n");
1114                                 result = VMCI_ERROR_UNAVAILABLE;
1115                                 goto error_keep_entry;
1116                         }
1117 
1118                         if (queue_pair_entry->qp.produce_size != consume_size ||
1119                             queue_pair_entry->qp.consume_size !=
1120                             produce_size ||
1121                             queue_pair_entry->qp.flags !=
1122                             (flags & ~VMCI_QPFLAG_ATTACH_ONLY)) {
1123                                 pr_devel("Error mismatched queue pair in local attach\n");
1124                                 result = VMCI_ERROR_QUEUEPAIR_MISMATCH;
1125                                 goto error_keep_entry;
1126                         }
1127 
1128                         /*
1129                          * Do a local attach.  We swap the consume and
1130                          * produce queues for the attacher and deliver
1131                          * an attach event.
1132                          */
1133                         result = qp_notify_peer_local(true, *handle);
1134                         if (result < VMCI_SUCCESS)
1135                                 goto error_keep_entry;
1136 
1137                         my_produce_q = queue_pair_entry->consume_q;
1138                         my_consume_q = queue_pair_entry->produce_q;
1139                         goto out;
1140                 }
1141 
1142                 result = VMCI_ERROR_ALREADY_EXISTS;
1143                 goto error_keep_entry;
1144         }
1145 
1146         my_produce_q = qp_alloc_queue(produce_size, flags);
1147         if (!my_produce_q) {
1148                 pr_warn("Error allocating pages for produce queue\n");
1149                 result = VMCI_ERROR_NO_MEM;
1150                 goto error;
1151         }
1152 
1153         my_consume_q = qp_alloc_queue(consume_size, flags);
1154         if (!my_consume_q) {
1155                 pr_warn("Error allocating pages for consume queue\n");
1156                 result = VMCI_ERROR_NO_MEM;
1157                 goto error;
1158         }
1159 
1160         queue_pair_entry = qp_guest_endpoint_create(*handle, peer, flags,
1161                                                     produce_size, consume_size,
1162                                                     my_produce_q, my_consume_q);
1163         if (!queue_pair_entry) {
1164                 pr_warn("Error allocating memory in %s\n", __func__);
1165                 result = VMCI_ERROR_NO_MEM;
1166                 goto error;
1167         }
1168 
1169         result = qp_alloc_ppn_set(my_produce_q, num_produce_pages, my_consume_q,
1170                                   num_consume_pages,
1171                                   &queue_pair_entry->ppn_set);
1172         if (result < VMCI_SUCCESS) {
1173                 pr_warn("qp_alloc_ppn_set failed\n");
1174                 goto error;
1175         }
1176 
1177         /*
1178          * It's only necessary to notify the host if this queue pair will be
1179          * attached to from another context.
1180          */
1181         if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1182                 /* Local create case. */
1183                 u32 context_id = vmci_get_context_id();
1184 
1185                 /*
1186                  * Enforce similar checks on local queue pairs as we
1187                  * do for regular ones.  The handle's context must
1188                  * match the creator or attacher context id (here they
1189                  * are both the current context id) and the
1190                  * attach-only flag cannot exist during create.  We
1191                  * also ensure specified peer is this context or an
1192                  * invalid one.
1193                  */
1194                 if (queue_pair_entry->qp.handle.context != context_id ||
1195                     (queue_pair_entry->qp.peer != VMCI_INVALID_ID &&
1196                      queue_pair_entry->qp.peer != context_id)) {
1197                         result = VMCI_ERROR_NO_ACCESS;
1198                         goto error;
1199                 }
1200 
1201                 if (queue_pair_entry->qp.flags & VMCI_QPFLAG_ATTACH_ONLY) {
1202                         result = VMCI_ERROR_NOT_FOUND;
1203                         goto error;
1204                 }
1205         } else {
1206                 result = qp_alloc_hypercall(queue_pair_entry);
1207                 if (result < VMCI_SUCCESS) {
1208                         pr_warn("qp_alloc_hypercall result = %d\n", result);
1209                         goto error;
1210                 }
1211         }
1212 
1213         qp_init_queue_mutex((struct vmci_queue *)my_produce_q,
1214                             (struct vmci_queue *)my_consume_q);
1215 
1216         qp_list_add_entry(&qp_guest_endpoints, &queue_pair_entry->qp);
1217 
1218  out:
1219         queue_pair_entry->qp.ref_count++;
1220         *handle = queue_pair_entry->qp.handle;
1221         *produce_q = (struct vmci_queue *)my_produce_q;
1222         *consume_q = (struct vmci_queue *)my_consume_q;
1223 
1224         /*
1225          * We should initialize the queue pair header pages on a local
1226          * queue pair create.  For non-local queue pairs, the
1227          * hypervisor initializes the header pages in the create step.
1228          */
1229         if ((queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) &&
1230             queue_pair_entry->qp.ref_count == 1) {
1231                 vmci_q_header_init((*produce_q)->q_header, *handle);
1232                 vmci_q_header_init((*consume_q)->q_header, *handle);
1233         }
1234 
1235         mutex_unlock(&qp_guest_endpoints.mutex);
1236 
1237         return VMCI_SUCCESS;
1238 
1239  error:
1240         mutex_unlock(&qp_guest_endpoints.mutex);
1241         if (queue_pair_entry) {
1242                 /* The queues will be freed inside the destroy routine. */
1243                 qp_guest_endpoint_destroy(queue_pair_entry);
1244         } else {
1245                 qp_free_queue(my_produce_q, produce_size);
1246                 qp_free_queue(my_consume_q, consume_size);
1247         }
1248         return result;
1249 
1250  error_keep_entry:
1251         /* This path should only be used when an existing entry was found. */
1252         mutex_unlock(&qp_guest_endpoints.mutex);
1253         return result;
1254 }
1255 
1256 /*
1257  * The first endpoint issuing a queue pair allocation will create the state
1258  * of the queue pair in the queue pair broker.
1259  *
1260  * If the creator is a guest, it will associate a VMX virtual address range
1261  * with the queue pair as specified by the page_store. For compatibility with
1262  * older VMX'en, that would use a separate step to set the VMX virtual
1263  * address range, the virtual address range can be registered later using
1264  * vmci_qp_broker_set_page_store. In that case, a page_store of NULL should be
1265  * used.
1266  *
1267  * If the creator is the host, a page_store of NULL should be used as well,
1268  * since the host is not able to supply a page store for the queue pair.
1269  *
1270  * For older VMX and host callers, the queue pair will be created in the
1271  * VMCIQPB_CREATED_NO_MEM state, and for current VMX callers, it will be
1272  * created in VMCOQPB_CREATED_MEM state.
1273  */
1274 static int qp_broker_create(struct vmci_handle handle,
1275                             u32 peer,
1276                             u32 flags,
1277                             u32 priv_flags,
1278                             u64 produce_size,
1279                             u64 consume_size,
1280                             struct vmci_qp_page_store *page_store,
1281                             struct vmci_ctx *context,
1282                             vmci_event_release_cb wakeup_cb,
1283                             void *client_data, struct qp_broker_entry **ent)
1284 {
1285         struct qp_broker_entry *entry = NULL;
1286         const u32 context_id = vmci_ctx_get_id(context);
1287         bool is_local = flags & VMCI_QPFLAG_LOCAL;
1288         int result;
1289         u64 guest_produce_size;
1290         u64 guest_consume_size;
1291 
1292         /* Do not create if the caller asked not to. */
1293         if (flags & VMCI_QPFLAG_ATTACH_ONLY)
1294                 return VMCI_ERROR_NOT_FOUND;
1295 
1296         /*
1297          * Creator's context ID should match handle's context ID or the creator
1298          * must allow the context in handle's context ID as the "peer".
1299          */
1300         if (handle.context != context_id && handle.context != peer)
1301                 return VMCI_ERROR_NO_ACCESS;
1302 
1303         if (VMCI_CONTEXT_IS_VM(context_id) && VMCI_CONTEXT_IS_VM(peer))
1304                 return VMCI_ERROR_DST_UNREACHABLE;
1305 
1306         /*
1307          * Creator's context ID for local queue pairs should match the
1308          * peer, if a peer is specified.
1309          */
1310         if (is_local && peer != VMCI_INVALID_ID && context_id != peer)
1311                 return VMCI_ERROR_NO_ACCESS;
1312 
1313         entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
1314         if (!entry)
1315                 return VMCI_ERROR_NO_MEM;
1316 
1317         if (vmci_ctx_get_id(context) == VMCI_HOST_CONTEXT_ID && !is_local) {
1318                 /*
1319                  * The queue pair broker entry stores values from the guest
1320                  * point of view, so a creating host side endpoint should swap
1321                  * produce and consume values -- unless it is a local queue
1322                  * pair, in which case no swapping is necessary, since the local
1323                  * attacher will swap queues.
1324                  */
1325 
1326                 guest_produce_size = consume_size;
1327                 guest_consume_size = produce_size;
1328         } else {
1329                 guest_produce_size = produce_size;
1330                 guest_consume_size = consume_size;
1331         }
1332 
1333         entry->qp.handle = handle;
1334         entry->qp.peer = peer;
1335         entry->qp.flags = flags;
1336         entry->qp.produce_size = guest_produce_size;
1337         entry->qp.consume_size = guest_consume_size;
1338         entry->qp.ref_count = 1;
1339         entry->create_id = context_id;
1340         entry->attach_id = VMCI_INVALID_ID;
1341         entry->state = VMCIQPB_NEW;
1342         entry->require_trusted_attach =
1343             !!(context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED);
1344         entry->created_by_trusted =
1345             !!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED);
1346         entry->vmci_page_files = false;
1347         entry->wakeup_cb = wakeup_cb;
1348         entry->client_data = client_data;
1349         entry->produce_q = qp_host_alloc_queue(guest_produce_size);
1350         if (entry->produce_q == NULL) {
1351                 result = VMCI_ERROR_NO_MEM;
1352                 goto error;
1353         }
1354         entry->consume_q = qp_host_alloc_queue(guest_consume_size);
1355         if (entry->consume_q == NULL) {
1356                 result = VMCI_ERROR_NO_MEM;
1357                 goto error;
1358         }
1359 
1360         qp_init_queue_mutex(entry->produce_q, entry->consume_q);
1361 
1362         INIT_LIST_HEAD(&entry->qp.list_item);
1363 
1364         if (is_local) {
1365                 u8 *tmp;
1366 
1367                 entry->local_mem = kcalloc(QPE_NUM_PAGES(entry->qp),
1368                                            PAGE_SIZE, GFP_KERNEL);
1369                 if (entry->local_mem == NULL) {
1370                         result = VMCI_ERROR_NO_MEM;
1371                         goto error;
1372                 }
1373                 entry->state = VMCIQPB_CREATED_MEM;
1374                 entry->produce_q->q_header = entry->local_mem;
1375                 tmp = (u8 *)entry->local_mem + PAGE_SIZE *
1376                     (DIV_ROUND_UP(entry->qp.produce_size, PAGE_SIZE) + 1);
1377                 entry->consume_q->q_header = (struct vmci_queue_header *)tmp;
1378         } else if (page_store) {
1379                 /*
1380                  * The VMX already initialized the queue pair headers, so no
1381                  * need for the kernel side to do that.
1382                  */
1383                 result = qp_host_register_user_memory(page_store,
1384                                                       entry->produce_q,
1385                                                       entry->consume_q);
1386                 if (result < VMCI_SUCCESS)
1387                         goto error;
1388 
1389                 entry->state = VMCIQPB_CREATED_MEM;
1390         } else {
1391                 /*
1392                  * A create without a page_store may be either a host
1393                  * side create (in which case we are waiting for the
1394                  * guest side to supply the memory) or an old style
1395                  * queue pair create (in which case we will expect a
1396                  * set page store call as the next step).
1397                  */
1398                 entry->state = VMCIQPB_CREATED_NO_MEM;
1399         }
1400 
1401         qp_list_add_entry(&qp_broker_list, &entry->qp);
1402         if (ent != NULL)
1403                 *ent = entry;
1404 
1405         /* Add to resource obj */
1406         result = vmci_resource_add(&entry->resource,
1407                                    VMCI_RESOURCE_TYPE_QPAIR_HOST,
1408                                    handle);
1409         if (result != VMCI_SUCCESS) {
1410                 pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
1411                         handle.context, handle.resource, result);
1412                 goto error;
1413         }
1414 
1415         entry->qp.handle = vmci_resource_handle(&entry->resource);
1416         if (is_local) {
1417                 vmci_q_header_init(entry->produce_q->q_header,
1418                                    entry->qp.handle);
1419                 vmci_q_header_init(entry->consume_q->q_header,
1420                                    entry->qp.handle);
1421         }
1422 
1423         vmci_ctx_qp_create(context, entry->qp.handle);
1424 
1425         return VMCI_SUCCESS;
1426 
1427  error:
1428         if (entry != NULL) {
1429                 qp_host_free_queue(entry->produce_q, guest_produce_size);
1430                 qp_host_free_queue(entry->consume_q, guest_consume_size);
1431                 kfree(entry);
1432         }
1433 
1434         return result;
1435 }
1436 
1437 /*
1438  * Enqueues an event datagram to notify the peer VM attached to
1439  * the given queue pair handle about attach/detach event by the
1440  * given VM.  Returns Payload size of datagram enqueued on
1441  * success, error code otherwise.
1442  */
1443 static int qp_notify_peer(bool attach,
1444                           struct vmci_handle handle,
1445                           u32 my_id,
1446                           u32 peer_id)
1447 {
1448         int rv;
1449         struct vmci_event_qp ev;
1450 
1451         if (vmci_handle_is_invalid(handle) || my_id == VMCI_INVALID_ID ||
1452             peer_id == VMCI_INVALID_ID)
1453                 return VMCI_ERROR_INVALID_ARGS;
1454 
1455         /*
1456          * In vmci_ctx_enqueue_datagram() we enforce the upper limit on
1457          * number of pending events from the hypervisor to a given VM
1458          * otherwise a rogue VM could do an arbitrary number of attach
1459          * and detach operations causing memory pressure in the host
1460          * kernel.
1461          */
1462 
1463         ev.msg.hdr.dst = vmci_make_handle(peer_id, VMCI_EVENT_HANDLER);
1464         ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1465                                           VMCI_CONTEXT_RESOURCE_ID);
1466         ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
1467         ev.msg.event_data.event = attach ?
1468             VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
1469         ev.payload.handle = handle;
1470         ev.payload.peer_id = my_id;
1471 
1472         rv = vmci_datagram_dispatch(VMCI_HYPERVISOR_CONTEXT_ID,
1473                                     &ev.msg.hdr, false);
1474         if (rv < VMCI_SUCCESS)
1475                 pr_warn("Failed to enqueue queue_pair %s event datagram for context (ID=0x%x)\n",
1476                         attach ? "ATTACH" : "DETACH", peer_id);
1477 
1478         return rv;
1479 }
1480 
1481 /*
1482  * The second endpoint issuing a queue pair allocation will attach to
1483  * the queue pair registered with the queue pair broker.
1484  *
1485  * If the attacher is a guest, it will associate a VMX virtual address
1486  * range with the queue pair as specified by the page_store. At this
1487  * point, the already attach host endpoint may start using the queue
1488  * pair, and an attach event is sent to it. For compatibility with
1489  * older VMX'en, that used a separate step to set the VMX virtual
1490  * address range, the virtual address range can be registered later
1491  * using vmci_qp_broker_set_page_store. In that case, a page_store of
1492  * NULL should be used, and the attach event will be generated once
1493  * the actual page store has been set.
1494  *
1495  * If the attacher is the host, a page_store of NULL should be used as
1496  * well, since the page store information is already set by the guest.
1497  *
1498  * For new VMX and host callers, the queue pair will be moved to the
1499  * VMCIQPB_ATTACHED_MEM state, and for older VMX callers, it will be
1500  * moved to the VMCOQPB_ATTACHED_NO_MEM state.
1501  */
1502 static int qp_broker_attach(struct qp_broker_entry *entry,
1503                             u32 peer,
1504                             u32 flags,
1505                             u32 priv_flags,
1506                             u64 produce_size,
1507                             u64 consume_size,
1508                             struct vmci_qp_page_store *page_store,
1509                             struct vmci_ctx *context,
1510                             vmci_event_release_cb wakeup_cb,
1511                             void *client_data,
1512                             struct qp_broker_entry **ent)
1513 {
1514         const u32 context_id = vmci_ctx_get_id(context);
1515         bool is_local = flags & VMCI_QPFLAG_LOCAL;
1516         int result;
1517 
1518         if (entry->state != VMCIQPB_CREATED_NO_MEM &&
1519             entry->state != VMCIQPB_CREATED_MEM)
1520                 return VMCI_ERROR_UNAVAILABLE;
1521 
1522         if (is_local) {
1523                 if (!(entry->qp.flags & VMCI_QPFLAG_LOCAL) ||
1524                     context_id != entry->create_id) {
1525                         return VMCI_ERROR_INVALID_ARGS;
1526                 }
1527         } else if (context_id == entry->create_id ||
1528                    context_id == entry->attach_id) {
1529                 return VMCI_ERROR_ALREADY_EXISTS;
1530         }
1531 
1532         if (VMCI_CONTEXT_IS_VM(context_id) &&
1533             VMCI_CONTEXT_IS_VM(entry->create_id))
1534                 return VMCI_ERROR_DST_UNREACHABLE;
1535 
1536         /*
1537          * If we are attaching from a restricted context then the queuepair
1538          * must have been created by a trusted endpoint.
1539          */
1540         if ((context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED) &&
1541             !entry->created_by_trusted)
1542                 return VMCI_ERROR_NO_ACCESS;
1543 
1544         /*
1545          * If we are attaching to a queuepair that was created by a restricted
1546          * context then we must be trusted.
1547          */
1548         if (entry->require_trusted_attach &&
1549             (!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED)))
1550                 return VMCI_ERROR_NO_ACCESS;
1551 
1552         /*
1553          * If the creator specifies VMCI_INVALID_ID in "peer" field, access
1554          * control check is not performed.
1555          */
1556         if (entry->qp.peer != VMCI_INVALID_ID && entry->qp.peer != context_id)
1557                 return VMCI_ERROR_NO_ACCESS;
1558 
1559         if (entry->create_id == VMCI_HOST_CONTEXT_ID) {
1560                 /*
1561                  * Do not attach if the caller doesn't support Host Queue Pairs
1562                  * and a host created this queue pair.
1563                  */
1564 
1565                 if (!vmci_ctx_supports_host_qp(context))
1566                         return VMCI_ERROR_INVALID_RESOURCE;
1567 
1568         } else if (context_id == VMCI_HOST_CONTEXT_ID) {
1569                 struct vmci_ctx *create_context;
1570                 bool supports_host_qp;
1571 
1572                 /*
1573                  * Do not attach a host to a user created queue pair if that
1574                  * user doesn't support host queue pair end points.
1575                  */
1576 
1577                 create_context = vmci_ctx_get(entry->create_id);
1578                 supports_host_qp = vmci_ctx_supports_host_qp(create_context);
1579                 vmci_ctx_put(create_context);
1580 
1581                 if (!supports_host_qp)
1582                         return VMCI_ERROR_INVALID_RESOURCE;
1583         }
1584 
1585         if ((entry->qp.flags & ~VMCI_QP_ASYMM) != (flags & ~VMCI_QP_ASYMM_PEER))
1586                 return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1587 
1588         if (context_id != VMCI_HOST_CONTEXT_ID) {
1589                 /*
1590                  * The queue pair broker entry stores values from the guest
1591                  * point of view, so an attaching guest should match the values
1592                  * stored in the entry.
1593                  */
1594 
1595                 if (entry->qp.produce_size != produce_size ||
1596                     entry->qp.consume_size != consume_size) {
1597                         return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1598                 }
1599         } else if (entry->qp.produce_size != consume_size ||
1600                    entry->qp.consume_size != produce_size) {
1601                 return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1602         }
1603 
1604         if (context_id != VMCI_HOST_CONTEXT_ID) {
1605                 /*
1606                  * If a guest attached to a queue pair, it will supply
1607                  * the backing memory.  If this is a pre NOVMVM vmx,
1608                  * the backing memory will be supplied by calling
1609                  * vmci_qp_broker_set_page_store() following the
1610                  * return of the vmci_qp_broker_alloc() call. If it is
1611                  * a vmx of version NOVMVM or later, the page store
1612                  * must be supplied as part of the
1613                  * vmci_qp_broker_alloc call.  Under all circumstances
1614                  * must the initially created queue pair not have any
1615                  * memory associated with it already.
1616                  */
1617 
1618                 if (entry->state != VMCIQPB_CREATED_NO_MEM)
1619                         return VMCI_ERROR_INVALID_ARGS;
1620 
1621                 if (page_store != NULL) {
1622                         /*
1623                          * Patch up host state to point to guest
1624                          * supplied memory. The VMX already
1625                          * initialized the queue pair headers, so no
1626                          * need for the kernel side to do that.
1627                          */
1628 
1629                         result = qp_host_register_user_memory(page_store,
1630                                                               entry->produce_q,
1631                                                               entry->consume_q);
1632                         if (result < VMCI_SUCCESS)
1633                                 return result;
1634 
1635                         entry->state = VMCIQPB_ATTACHED_MEM;
1636                 } else {
1637                         entry->state = VMCIQPB_ATTACHED_NO_MEM;
1638                 }
1639         } else if (entry->state == VMCIQPB_CREATED_NO_MEM) {
1640                 /*
1641                  * The host side is attempting to attach to a queue
1642                  * pair that doesn't have any memory associated with
1643                  * it. This must be a pre NOVMVM vmx that hasn't set
1644                  * the page store information yet, or a quiesced VM.
1645                  */
1646 
1647                 return VMCI_ERROR_UNAVAILABLE;
1648         } else {
1649                 /* The host side has successfully attached to a queue pair. */
1650                 entry->state = VMCIQPB_ATTACHED_MEM;
1651         }
1652 
1653         if (entry->state == VMCIQPB_ATTACHED_MEM) {
1654                 result =
1655                     qp_notify_peer(true, entry->qp.handle, context_id,
1656                                    entry->create_id);
1657                 if (result < VMCI_SUCCESS)
1658                         pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
1659                                 entry->create_id, entry->qp.handle.context,
1660                                 entry->qp.handle.resource);
1661         }
1662 
1663         entry->attach_id = context_id;
1664         entry->qp.ref_count++;
1665         if (wakeup_cb) {
1666                 entry->wakeup_cb = wakeup_cb;
1667                 entry->client_data = client_data;
1668         }
1669 
1670         /*
1671          * When attaching to local queue pairs, the context already has
1672          * an entry tracking the queue pair, so don't add another one.
1673          */
1674         if (!is_local)
1675                 vmci_ctx_qp_create(context, entry->qp.handle);
1676 
1677         if (ent != NULL)
1678                 *ent = entry;
1679 
1680         return VMCI_SUCCESS;
1681 }
1682 
1683 /*
1684  * queue_pair_Alloc for use when setting up queue pair endpoints
1685  * on the host.
1686  */
1687 static int qp_broker_alloc(struct vmci_handle handle,
1688                            u32 peer,
1689                            u32 flags,
1690                            u32 priv_flags,
1691                            u64 produce_size,
1692                            u64 consume_size,
1693                            struct vmci_qp_page_store *page_store,
1694                            struct vmci_ctx *context,
1695                            vmci_event_release_cb wakeup_cb,
1696                            void *client_data,
1697                            struct qp_broker_entry **ent,
1698                            bool *swap)
1699 {
1700         const u32 context_id = vmci_ctx_get_id(context);
1701         bool create;
1702         struct qp_broker_entry *entry = NULL;
1703         bool is_local = flags & VMCI_QPFLAG_LOCAL;
1704         int result;
1705 
1706         if (vmci_handle_is_invalid(handle) ||
1707             (flags & ~VMCI_QP_ALL_FLAGS) || is_local ||
1708             !(produce_size || consume_size) ||
1709             !context || context_id == VMCI_INVALID_ID ||
1710             handle.context == VMCI_INVALID_ID) {
1711                 return VMCI_ERROR_INVALID_ARGS;
1712         }
1713 
1714         if (page_store && !VMCI_QP_PAGESTORE_IS_WELLFORMED(page_store))
1715                 return VMCI_ERROR_INVALID_ARGS;
1716 
1717         /*
1718          * In the initial argument check, we ensure that non-vmkernel hosts
1719          * are not allowed to create local queue pairs.
1720          */
1721 
1722         mutex_lock(&qp_broker_list.mutex);
1723 
1724         if (!is_local && vmci_ctx_qp_exists(context, handle)) {
1725                 pr_devel("Context (ID=0x%x) already attached to queue pair (handle=0x%x:0x%x)\n",
1726                          context_id, handle.context, handle.resource);
1727                 mutex_unlock(&qp_broker_list.mutex);
1728                 return VMCI_ERROR_ALREADY_EXISTS;
1729         }
1730 
1731         if (handle.resource != VMCI_INVALID_ID)
1732                 entry = qp_broker_handle_to_entry(handle);
1733 
1734         if (!entry) {
1735                 create = true;
1736                 result =
1737                     qp_broker_create(handle, peer, flags, priv_flags,
1738                                      produce_size, consume_size, page_store,
1739                                      context, wakeup_cb, client_data, ent);
1740         } else {
1741                 create = false;
1742                 result =
1743                     qp_broker_attach(entry, peer, flags, priv_flags,
1744                                      produce_size, consume_size, page_store,
1745                                      context, wakeup_cb, client_data, ent);
1746         }
1747 
1748         mutex_unlock(&qp_broker_list.mutex);
1749 
1750         if (swap)
1751                 *swap = (context_id == VMCI_HOST_CONTEXT_ID) &&
1752                     !(create && is_local);
1753 
1754         return result;
1755 }
1756 
1757 /*
1758  * This function implements the kernel API for allocating a queue
1759  * pair.
1760  */
1761 static int qp_alloc_host_work(struct vmci_handle *handle,
1762                               struct vmci_queue **produce_q,
1763                               u64 produce_size,
1764                               struct vmci_queue **consume_q,
1765                               u64 consume_size,
1766                               u32 peer,
1767                               u32 flags,
1768                               u32 priv_flags,
1769                               vmci_event_release_cb wakeup_cb,
1770                               void *client_data)
1771 {
1772         struct vmci_handle new_handle;
1773         struct vmci_ctx *context;
1774         struct qp_broker_entry *entry;
1775         int result;
1776         bool swap;
1777 
1778         if (vmci_handle_is_invalid(*handle)) {
1779                 new_handle = vmci_make_handle(
1780                         VMCI_HOST_CONTEXT_ID, VMCI_INVALID_ID);
1781         } else
1782                 new_handle = *handle;
1783 
1784         context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1785         entry = NULL;
1786         result =
1787             qp_broker_alloc(new_handle, peer, flags, priv_flags,
1788                             produce_size, consume_size, NULL, context,
1789                             wakeup_cb, client_data, &entry, &swap);
1790         if (result == VMCI_SUCCESS) {
1791                 if (swap) {
1792                         /*
1793                          * If this is a local queue pair, the attacher
1794                          * will swap around produce and consume
1795                          * queues.
1796                          */
1797 
1798                         *produce_q = entry->consume_q;
1799                         *consume_q = entry->produce_q;
1800                 } else {
1801                         *produce_q = entry->produce_q;
1802                         *consume_q = entry->consume_q;
1803                 }
1804 
1805                 *handle = vmci_resource_handle(&entry->resource);
1806         } else {
1807                 *handle = VMCI_INVALID_HANDLE;
1808                 pr_devel("queue pair broker failed to alloc (result=%d)\n",
1809                          result);
1810         }
1811         vmci_ctx_put(context);
1812         return result;
1813 }
1814 
1815 /*
1816  * Allocates a VMCI queue_pair. Only checks validity of input
1817  * arguments. The real work is done in the host or guest
1818  * specific function.
1819  */
1820 int vmci_qp_alloc(struct vmci_handle *handle,
1821                   struct vmci_queue **produce_q,
1822                   u64 produce_size,
1823                   struct vmci_queue **consume_q,
1824                   u64 consume_size,
1825                   u32 peer,
1826                   u32 flags,
1827                   u32 priv_flags,
1828                   bool guest_endpoint,
1829                   vmci_event_release_cb wakeup_cb,
1830                   void *client_data)
1831 {
1832         if (!handle || !produce_q || !consume_q ||
1833             (!produce_size && !consume_size) || (flags & ~VMCI_QP_ALL_FLAGS))
1834                 return VMCI_ERROR_INVALID_ARGS;
1835 
1836         if (guest_endpoint) {
1837                 return qp_alloc_guest_work(handle, produce_q,
1838                                            produce_size, consume_q,
1839                                            consume_size, peer,
1840                                            flags, priv_flags);
1841         } else {
1842                 return qp_alloc_host_work(handle, produce_q,
1843                                           produce_size, consume_q,
1844                                           consume_size, peer, flags,
1845                                           priv_flags, wakeup_cb, client_data);
1846         }
1847 }
1848 
1849 /*
1850  * This function implements the host kernel API for detaching from
1851  * a queue pair.
1852  */
1853 static int qp_detatch_host_work(struct vmci_handle handle)
1854 {
1855         int result;
1856         struct vmci_ctx *context;
1857 
1858         context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1859 
1860         result = vmci_qp_broker_detach(handle, context);
1861 
1862         vmci_ctx_put(context);
1863         return result;
1864 }
1865 
1866 /*
1867  * Detaches from a VMCI queue_pair. Only checks validity of input argument.
1868  * Real work is done in the host or guest specific function.
1869  */
1870 static int qp_detatch(struct vmci_handle handle, bool guest_endpoint)
1871 {
1872         if (vmci_handle_is_invalid(handle))
1873                 return VMCI_ERROR_INVALID_ARGS;
1874 
1875         if (guest_endpoint)
1876                 return qp_detatch_guest_work(handle);
1877         else
1878                 return qp_detatch_host_work(handle);
1879 }
1880 
1881 /*
1882  * Returns the entry from the head of the list. Assumes that the list is
1883  * locked.
1884  */
1885 static struct qp_entry *qp_list_get_head(struct qp_list *qp_list)
1886 {
1887         if (!list_empty(&qp_list->head)) {
1888                 struct qp_entry *entry =
1889                     list_first_entry(&qp_list->head, struct qp_entry,
1890                                      list_item);
1891                 return entry;
1892         }
1893 
1894         return NULL;
1895 }
1896 
1897 void vmci_qp_broker_exit(void)
1898 {
1899         struct qp_entry *entry;
1900         struct qp_broker_entry *be;
1901 
1902         mutex_lock(&qp_broker_list.mutex);
1903 
1904         while ((entry = qp_list_get_head(&qp_broker_list))) {
1905                 be = (struct qp_broker_entry *)entry;
1906 
1907                 qp_list_remove_entry(&qp_broker_list, entry);
1908                 kfree(be);
1909         }
1910 
1911         mutex_unlock(&qp_broker_list.mutex);
1912 }
1913 
1914 /*
1915  * Requests that a queue pair be allocated with the VMCI queue
1916  * pair broker. Allocates a queue pair entry if one does not
1917  * exist. Attaches to one if it exists, and retrieves the page
1918  * files backing that queue_pair.  Assumes that the queue pair
1919  * broker lock is held.
1920  */
1921 int vmci_qp_broker_alloc(struct vmci_handle handle,
1922                          u32 peer,
1923                          u32 flags,
1924                          u32 priv_flags,
1925                          u64 produce_size,
1926                          u64 consume_size,
1927                          struct vmci_qp_page_store *page_store,
1928                          struct vmci_ctx *context)
1929 {
1930         return qp_broker_alloc(handle, peer, flags, priv_flags,
1931                                produce_size, consume_size,
1932                                page_store, context, NULL, NULL, NULL, NULL);
1933 }
1934 
1935 /*
1936  * VMX'en with versions lower than VMCI_VERSION_NOVMVM use a separate
1937  * step to add the UVAs of the VMX mapping of the queue pair. This function
1938  * provides backwards compatibility with such VMX'en, and takes care of
1939  * registering the page store for a queue pair previously allocated by the
1940  * VMX during create or attach. This function will move the queue pair state
1941  * to either from VMCIQBP_CREATED_NO_MEM to VMCIQBP_CREATED_MEM or
1942  * VMCIQBP_ATTACHED_NO_MEM to VMCIQBP_ATTACHED_MEM. If moving to the
1943  * attached state with memory, the queue pair is ready to be used by the
1944  * host peer, and an attached event will be generated.
1945  *
1946  * Assumes that the queue pair broker lock is held.
1947  *
1948  * This function is only used by the hosted platform, since there is no
1949  * issue with backwards compatibility for vmkernel.
1950  */
1951 int vmci_qp_broker_set_page_store(struct vmci_handle handle,
1952                                   u64 produce_uva,
1953                                   u64 consume_uva,
1954                                   struct vmci_ctx *context)
1955 {
1956         struct qp_broker_entry *entry;
1957         int result;
1958         const u32 context_id = vmci_ctx_get_id(context);
1959 
1960         if (vmci_handle_is_invalid(handle) || !context ||
1961             context_id == VMCI_INVALID_ID)
1962                 return VMCI_ERROR_INVALID_ARGS;
1963 
1964         /*
1965          * We only support guest to host queue pairs, so the VMX must
1966          * supply UVAs for the mapped page files.
1967          */
1968 
1969         if (produce_uva == 0 || consume_uva == 0)
1970                 return VMCI_ERROR_INVALID_ARGS;
1971 
1972         mutex_lock(&qp_broker_list.mutex);
1973 
1974         if (!vmci_ctx_qp_exists(context, handle)) {
1975                 pr_warn("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
1976                         context_id, handle.context, handle.resource);
1977                 result = VMCI_ERROR_NOT_FOUND;
1978                 goto out;
1979         }
1980 
1981         entry = qp_broker_handle_to_entry(handle);
1982         if (!entry) {
1983                 result = VMCI_ERROR_NOT_FOUND;
1984                 goto out;
1985         }
1986 
1987         /*
1988          * If I'm the owner then I can set the page store.
1989          *
1990          * Or, if a host created the queue_pair and I'm the attached peer
1991          * then I can set the page store.
1992          */
1993         if (entry->create_id != context_id &&
1994             (entry->create_id != VMCI_HOST_CONTEXT_ID ||
1995              entry->attach_id != context_id)) {
1996                 result = VMCI_ERROR_QUEUEPAIR_NOTOWNER;
1997                 goto out;
1998         }
1999 
2000         if (entry->state != VMCIQPB_CREATED_NO_MEM &&
2001             entry->state != VMCIQPB_ATTACHED_NO_MEM) {
2002                 result = VMCI_ERROR_UNAVAILABLE;
2003                 goto out;
2004         }
2005 
2006         result = qp_host_get_user_memory(produce_uva, consume_uva,
2007                                          entry->produce_q, entry->consume_q);
2008         if (result < VMCI_SUCCESS)
2009                 goto out;
2010 
2011         result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2012         if (result < VMCI_SUCCESS) {
2013                 qp_host_unregister_user_memory(entry->produce_q,
2014                                                entry->consume_q);
2015                 goto out;
2016         }
2017 
2018         if (entry->state == VMCIQPB_CREATED_NO_MEM)
2019                 entry->state = VMCIQPB_CREATED_MEM;
2020         else
2021                 entry->state = VMCIQPB_ATTACHED_MEM;
2022 
2023         entry->vmci_page_files = true;
2024 
2025         if (entry->state == VMCIQPB_ATTACHED_MEM) {
2026                 result =
2027                     qp_notify_peer(true, handle, context_id, entry->create_id);
2028                 if (result < VMCI_SUCCESS) {
2029                         pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
2030                                 entry->create_id, entry->qp.handle.context,
2031                                 entry->qp.handle.resource);
2032                 }
2033         }
2034 
2035         result = VMCI_SUCCESS;
2036  out:
2037         mutex_unlock(&qp_broker_list.mutex);
2038         return result;
2039 }
2040 
2041 /*
2042  * Resets saved queue headers for the given QP broker
2043  * entry. Should be used when guest memory becomes available
2044  * again, or the guest detaches.
2045  */
2046 static void qp_reset_saved_headers(struct qp_broker_entry *entry)
2047 {
2048         entry->produce_q->saved_header = NULL;
2049         entry->consume_q->saved_header = NULL;
2050 }
2051 
2052 /*
2053  * The main entry point for detaching from a queue pair registered with the
2054  * queue pair broker. If more than one endpoint is attached to the queue
2055  * pair, the first endpoint will mainly decrement a reference count and
2056  * generate a notification to its peer. The last endpoint will clean up
2057  * the queue pair state registered with the broker.
2058  *
2059  * When a guest endpoint detaches, it will unmap and unregister the guest
2060  * memory backing the queue pair. If the host is still attached, it will
2061  * no longer be able to access the queue pair content.
2062  *
2063  * If the queue pair is already in a state where there is no memory
2064  * registered for the queue pair (any *_NO_MEM state), it will transition to
2065  * the VMCIQPB_SHUTDOWN_NO_MEM state. This will also happen, if a guest
2066  * endpoint is the first of two endpoints to detach. If the host endpoint is
2067  * the first out of two to detach, the queue pair will move to the
2068  * VMCIQPB_SHUTDOWN_MEM state.
2069  */
2070 int vmci_qp_broker_detach(struct vmci_handle handle, struct vmci_ctx *context)
2071 {
2072         struct qp_broker_entry *entry;
2073         const u32 context_id = vmci_ctx_get_id(context);
2074         u32 peer_id;
2075         bool is_local = false;
2076         int result;
2077 
2078         if (vmci_handle_is_invalid(handle) || !context ||
2079             context_id == VMCI_INVALID_ID) {
2080                 return VMCI_ERROR_INVALID_ARGS;
2081         }
2082 
2083         mutex_lock(&qp_broker_list.mutex);
2084 
2085         if (!vmci_ctx_qp_exists(context, handle)) {
2086                 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2087                          context_id, handle.context, handle.resource);
2088                 result = VMCI_ERROR_NOT_FOUND;
2089                 goto out;
2090         }
2091 
2092         entry = qp_broker_handle_to_entry(handle);
2093         if (!entry) {
2094                 pr_devel("Context (ID=0x%x) reports being attached to queue pair(handle=0x%x:0x%x) that isn't present in broker\n",
2095                          context_id, handle.context, handle.resource);
2096                 result = VMCI_ERROR_NOT_FOUND;
2097                 goto out;
2098         }
2099 
2100         if (context_id != entry->create_id && context_id != entry->attach_id) {
2101                 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2102                 goto out;
2103         }
2104 
2105         if (context_id == entry->create_id) {
2106                 peer_id = entry->attach_id;
2107                 entry->create_id = VMCI_INVALID_ID;
2108         } else {
2109                 peer_id = entry->create_id;
2110                 entry->attach_id = VMCI_INVALID_ID;
2111         }
2112         entry->qp.ref_count--;
2113 
2114         is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2115 
2116         if (context_id != VMCI_HOST_CONTEXT_ID) {
2117                 bool headers_mapped;
2118 
2119                 /*
2120                  * Pre NOVMVM vmx'en may detach from a queue pair
2121                  * before setting the page store, and in that case
2122                  * there is no user memory to detach from. Also, more
2123                  * recent VMX'en may detach from a queue pair in the
2124                  * quiesced state.
2125                  */
2126 
2127                 qp_acquire_queue_mutex(entry->produce_q);
2128                 headers_mapped = entry->produce_q->q_header ||
2129                     entry->consume_q->q_header;
2130                 if (QPBROKERSTATE_HAS_MEM(entry)) {
2131                         result =
2132                             qp_host_unmap_queues(INVALID_VMCI_GUEST_MEM_ID,
2133                                                  entry->produce_q,
2134                                                  entry->consume_q);
2135                         if (result < VMCI_SUCCESS)
2136                                 pr_warn("Failed to unmap queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2137                                         handle.context, handle.resource,
2138                                         result);
2139 
2140                         qp_host_unregister_user_memory(entry->produce_q,
2141                                                        entry->consume_q);
2142 
2143                 }
2144 
2145                 if (!headers_mapped)
2146                         qp_reset_saved_headers(entry);
2147 
2148                 qp_release_queue_mutex(entry->produce_q);
2149 
2150                 if (!headers_mapped && entry->wakeup_cb)
2151                         entry->wakeup_cb(entry->client_data);
2152 
2153         } else {
2154                 if (entry->wakeup_cb) {
2155                         entry->wakeup_cb = NULL;
2156                         entry->client_data = NULL;
2157                 }
2158         }
2159 
2160         if (entry->qp.ref_count == 0) {
2161                 qp_list_remove_entry(&qp_broker_list, &entry->qp);
2162 
2163                 if (is_local)
2164                         kfree(entry->local_mem);
2165 
2166                 qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
2167                 qp_host_free_queue(entry->produce_q, entry->qp.produce_size);
2168                 qp_host_free_queue(entry->consume_q, entry->qp.consume_size);
2169                 /* Unlink from resource hash table and free callback */
2170                 vmci_resource_remove(&entry->resource);
2171 
2172                 kfree(entry);
2173 
2174                 vmci_ctx_qp_destroy(context, handle);
2175         } else {
2176                 qp_notify_peer(false, handle, context_id, peer_id);
2177                 if (context_id == VMCI_HOST_CONTEXT_ID &&
2178                     QPBROKERSTATE_HAS_MEM(entry)) {
2179                         entry->state = VMCIQPB_SHUTDOWN_MEM;
2180                 } else {
2181                         entry->state = VMCIQPB_SHUTDOWN_NO_MEM;
2182                 }
2183 
2184                 if (!is_local)
2185                         vmci_ctx_qp_destroy(context, handle);
2186 
2187         }
2188         result = VMCI_SUCCESS;
2189  out:
2190         mutex_unlock(&qp_broker_list.mutex);
2191         return result;
2192 }
2193 
2194 /*
2195  * Establishes the necessary mappings for a queue pair given a
2196  * reference to the queue pair guest memory. This is usually
2197  * called when a guest is unquiesced and the VMX is allowed to
2198  * map guest memory once again.
2199  */
2200 int vmci_qp_broker_map(struct vmci_handle handle,
2201                        struct vmci_ctx *context,
2202                        u64 guest_mem)
2203 {
2204         struct qp_broker_entry *entry;
2205         const u32 context_id = vmci_ctx_get_id(context);
2206         int result;
2207 
2208         if (vmci_handle_is_invalid(handle) || !context ||
2209             context_id == VMCI_INVALID_ID)
2210                 return VMCI_ERROR_INVALID_ARGS;
2211 
2212         mutex_lock(&qp_broker_list.mutex);
2213 
2214         if (!vmci_ctx_qp_exists(context, handle)) {
2215                 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2216                          context_id, handle.context, handle.resource);
2217                 result = VMCI_ERROR_NOT_FOUND;
2218                 goto out;
2219         }
2220 
2221         entry = qp_broker_handle_to_entry(handle);
2222         if (!entry) {
2223                 pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2224                          context_id, handle.context, handle.resource);
2225                 result = VMCI_ERROR_NOT_FOUND;
2226                 goto out;
2227         }
2228 
2229         if (context_id != entry->create_id && context_id != entry->attach_id) {
2230                 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2231                 goto out;
2232         }
2233 
2234         result = VMCI_SUCCESS;
2235 
2236         if (context_id != VMCI_HOST_CONTEXT_ID) {
2237                 struct vmci_qp_page_store page_store;
2238 
2239                 page_store.pages = guest_mem;
2240                 page_store.len = QPE_NUM_PAGES(entry->qp);
2241 
2242                 qp_acquire_queue_mutex(entry->produce_q);
2243                 qp_reset_saved_headers(entry);
2244                 result =
2245                     qp_host_register_user_memory(&page_store,
2246                                                  entry->produce_q,
2247                                                  entry->consume_q);
2248                 qp_release_queue_mutex(entry->produce_q);
2249                 if (result == VMCI_SUCCESS) {
2250                         /* Move state from *_NO_MEM to *_MEM */
2251 
2252                         entry->state++;
2253 
2254                         if (entry->wakeup_cb)
2255                                 entry->wakeup_cb(entry->client_data);
2256                 }
2257         }
2258 
2259  out:
2260         mutex_unlock(&qp_broker_list.mutex);
2261         return result;
2262 }
2263 
2264 /*
2265  * Saves a snapshot of the queue headers for the given QP broker
2266  * entry. Should be used when guest memory is unmapped.
2267  * Results:
2268  * VMCI_SUCCESS on success, appropriate error code if guest memory
2269  * can't be accessed..
2270  */
2271 static int qp_save_headers(struct qp_broker_entry *entry)
2272 {
2273         int result;
2274 
2275         if (entry->produce_q->saved_header != NULL &&
2276             entry->consume_q->saved_header != NULL) {
2277                 /*
2278                  *  If the headers have already been saved, we don't need to do
2279                  *  it again, and we don't want to map in the headers
2280                  *  unnecessarily.
2281                  */
2282 
2283                 return VMCI_SUCCESS;
2284         }
2285 
2286         if (NULL == entry->produce_q->q_header ||
2287             NULL == entry->consume_q->q_header) {
2288                 result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2289                 if (result < VMCI_SUCCESS)
2290                         return result;
2291         }
2292 
2293         memcpy(&entry->saved_produce_q, entry->produce_q->q_header,
2294                sizeof(entry->saved_produce_q));
2295         entry->produce_q->saved_header = &entry->saved_produce_q;
2296         memcpy(&entry->saved_consume_q, entry->consume_q->q_header,
2297                sizeof(entry->saved_consume_q));
2298         entry->consume_q->saved_header = &entry->saved_consume_q;
2299 
2300         return VMCI_SUCCESS;
2301 }
2302 
2303 /*
2304  * Removes all references to the guest memory of a given queue pair, and
2305  * will move the queue pair from state *_MEM to *_NO_MEM. It is usually
2306  * called when a VM is being quiesced where access to guest memory should
2307  * avoided.
2308  */
2309 int vmci_qp_broker_unmap(struct vmci_handle handle,
2310                          struct vmci_ctx *context,
2311                          u32 gid)
2312 {
2313         struct qp_broker_entry *entry;
2314         const u32 context_id = vmci_ctx_get_id(context);
2315         int result;
2316 
2317         if (vmci_handle_is_invalid(handle) || !context ||
2318             context_id == VMCI_INVALID_ID)
2319                 return VMCI_ERROR_INVALID_ARGS;
2320 
2321         mutex_lock(&qp_broker_list.mutex);
2322 
2323         if (!vmci_ctx_qp_exists(context, handle)) {
2324                 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2325                          context_id, handle.context, handle.resource);
2326                 result = VMCI_ERROR_NOT_FOUND;
2327                 goto out;
2328         }
2329 
2330         entry = qp_broker_handle_to_entry(handle);
2331         if (!entry) {
2332                 pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2333                          context_id, handle.context, handle.resource);
2334                 result = VMCI_ERROR_NOT_FOUND;
2335                 goto out;
2336         }
2337 
2338         if (context_id != entry->create_id && context_id != entry->attach_id) {
2339                 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2340                 goto out;
2341         }
2342 
2343         if (context_id != VMCI_HOST_CONTEXT_ID) {
2344                 qp_acquire_queue_mutex(entry->produce_q);
2345                 result = qp_save_headers(entry);
2346                 if (result < VMCI_SUCCESS)
2347                         pr_warn("Failed to save queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2348                                 handle.context, handle.resource, result);
2349 
2350                 qp_host_unmap_queues(gid, entry->produce_q, entry->consume_q);
2351 
2352                 /*
2353                  * On hosted, when we unmap queue pairs, the VMX will also
2354                  * unmap the guest memory, so we invalidate the previously
2355                  * registered memory. If the queue pair is mapped again at a
2356                  * later point in time, we will need to reregister the user
2357                  * memory with a possibly new user VA.
2358                  */
2359                 qp_host_unregister_user_memory(entry->produce_q,
2360                                                entry->consume_q);
2361 
2362                 /*
2363                  * Move state from *_MEM to *_NO_MEM.
2364                  */
2365                 entry->state--;
2366 
2367                 qp_release_queue_mutex(entry->produce_q);
2368         }
2369 
2370         result = VMCI_SUCCESS;
2371 
2372  out:
2373         mutex_unlock(&qp_broker_list.mutex);
2374         return result;
2375 }
2376 
2377 /*
2378  * Destroys all guest queue pair endpoints. If active guest queue
2379  * pairs still exist, hypercalls to attempt detach from these
2380  * queue pairs will be made. Any failure to detach is silently
2381  * ignored.
2382  */
2383 void vmci_qp_guest_endpoints_exit(void)
2384 {
2385         struct qp_entry *entry;
2386         struct qp_guest_endpoint *ep;
2387 
2388         mutex_lock(&qp_guest_endpoints.mutex);
2389 
2390         while ((entry = qp_list_get_head(&qp_guest_endpoints))) {
2391                 ep = (struct qp_guest_endpoint *)entry;
2392 
2393                 /* Don't make a hypercall for local queue_pairs. */
2394                 if (!(entry->flags & VMCI_QPFLAG_LOCAL))
2395                         qp_detatch_hypercall(entry->handle);
2396 
2397                 /* We cannot fail the exit, so let's reset ref_count. */
2398                 entry->ref_count = 0;
2399                 qp_list_remove_entry(&qp_guest_endpoints, entry);
2400 
2401                 qp_guest_endpoint_destroy(ep);
2402         }
2403 
2404         mutex_unlock(&qp_guest_endpoints.mutex);
2405 }
2406 
2407 /*
2408  * Helper routine that will lock the queue pair before subsequent
2409  * operations.
2410  * Note: Non-blocking on the host side is currently only implemented in ESX.
2411  * Since non-blocking isn't yet implemented on the host personality we
2412  * have no reason to acquire a spin lock.  So to avoid the use of an
2413  * unnecessary lock only acquire the mutex if we can block.
2414  */
2415 static void qp_lock(const struct vmci_qp *qpair)
2416 {
2417         qp_acquire_queue_mutex(qpair->produce_q);
2418 }
2419 
2420 /*
2421  * Helper routine that unlocks the queue pair after calling
2422  * qp_lock.
2423  */
2424 static void qp_unlock(const struct vmci_qp *qpair)
2425 {
2426         qp_release_queue_mutex(qpair->produce_q);
2427 }
2428 
2429 /*
2430  * The queue headers may not be mapped at all times. If a queue is
2431  * currently not mapped, it will be attempted to do so.
2432  */
2433 static int qp_map_queue_headers(struct vmci_queue *produce_q,
2434                                 struct vmci_queue *consume_q)
2435 {
2436         int result;
2437 
2438         if (NULL == produce_q->q_header || NULL == consume_q->q_header) {
2439                 result = qp_host_map_queues(produce_q, consume_q);
2440                 if (result < VMCI_SUCCESS)
2441                         return (produce_q->saved_header &&
2442                                 consume_q->saved_header) ?
2443                             VMCI_ERROR_QUEUEPAIR_NOT_READY :
2444                             VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2445         }
2446 
2447         return VMCI_SUCCESS;
2448 }
2449 
2450 /*
2451  * Helper routine that will retrieve the produce and consume
2452  * headers of a given queue pair. If the guest memory of the
2453  * queue pair is currently not available, the saved queue headers
2454  * will be returned, if these are available.
2455  */
2456 static int qp_get_queue_headers(const struct vmci_qp *qpair,
2457                                 struct vmci_queue_header **produce_q_header,
2458                                 struct vmci_queue_header **consume_q_header)
2459 {
2460         int result;
2461 
2462         result = qp_map_queue_headers(qpair->produce_q, qpair->consume_q);
2463         if (result == VMCI_SUCCESS) {
2464                 *produce_q_header = qpair->produce_q->q_header;
2465                 *consume_q_header = qpair->consume_q->q_header;
2466         } else if (qpair->produce_q->saved_header &&
2467                    qpair->consume_q->saved_header) {
2468                 *produce_q_header = qpair->produce_q->saved_header;
2469                 *consume_q_header = qpair->consume_q->saved_header;
2470                 result = VMCI_SUCCESS;
2471         }
2472 
2473         return result;
2474 }
2475 
2476 /*
2477  * Callback from VMCI queue pair broker indicating that a queue
2478  * pair that was previously not ready, now either is ready or
2479  * gone forever.
2480  */
2481 static int qp_wakeup_cb(void *client_data)
2482 {
2483         struct vmci_qp *qpair = (struct vmci_qp *)client_data;
2484 
2485         qp_lock(qpair);
2486         while (qpair->blocked > 0) {
2487                 qpair->blocked--;
2488                 qpair->generation++;
2489                 wake_up(&qpair->event);
2490         }
2491         qp_unlock(qpair);
2492 
2493         return VMCI_SUCCESS;
2494 }
2495 
2496 /*
2497  * Makes the calling thread wait for the queue pair to become
2498  * ready for host side access.  Returns true when thread is
2499  * woken up after queue pair state change, false otherwise.
2500  */
2501 static bool qp_wait_for_ready_queue(struct vmci_qp *qpair)
2502 {
2503         unsigned int generation;
2504 
2505         qpair->blocked++;
2506         generation = qpair->generation;
2507         qp_unlock(qpair);
2508         wait_event(qpair->event, generation != qpair->generation);
2509         qp_lock(qpair);
2510 
2511         return true;
2512 }
2513 
2514 /*
2515  * Enqueues a given buffer to the produce queue using the provided
2516  * function. As many bytes as possible (space available in the queue)
2517  * are enqueued.  Assumes the queue->mutex has been acquired.  Returns
2518  * VMCI_ERROR_QUEUEPAIR_NOSPACE if no space was available to enqueue
2519  * data, VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the
2520  * queue (as defined by the queue size), VMCI_ERROR_INVALID_ARGS, if
2521  * an error occured when accessing the buffer,
2522  * VMCI_ERROR_QUEUEPAIR_NOTATTACHED, if the queue pair pages aren't
2523  * available.  Otherwise, the number of bytes written to the queue is
2524  * returned.  Updates the tail pointer of the produce queue.
2525  */
2526 static ssize_t qp_enqueue_locked(struct vmci_queue *produce_q,
2527                                  struct vmci_queue *consume_q,
2528                                  const u64 produce_q_size,
2529                                  struct iov_iter *from)
2530 {
2531         s64 free_space;
2532         u64 tail;
2533         size_t buf_size = iov_iter_count(from);
2534         size_t written;
2535         ssize_t result;
2536 
2537         result = qp_map_queue_headers(produce_q, consume_q);
2538         if (unlikely(result != VMCI_SUCCESS))
2539                 return result;
2540 
2541         free_space = vmci_q_header_free_space(produce_q->q_header,
2542                                               consume_q->q_header,
2543                                               produce_q_size);
2544         if (free_space == 0)
2545                 return VMCI_ERROR_QUEUEPAIR_NOSPACE;
2546 
2547         if (free_space < VMCI_SUCCESS)
2548                 return (ssize_t) free_space;
2549 
2550         written = (size_t) (free_space > buf_size ? buf_size : free_space);
2551         tail = vmci_q_header_producer_tail(produce_q->q_header);
2552         if (likely(tail + written < produce_q_size)) {
2553                 result = qp_memcpy_to_queue_iter(produce_q, tail, from, written);
2554         } else {
2555                 /* Tail pointer wraps around. */
2556 
2557                 const size_t tmp = (size_t) (produce_q_size - tail);
2558 
2559                 result = qp_memcpy_to_queue_iter(produce_q, tail, from, tmp);
2560                 if (result >= VMCI_SUCCESS)
2561                         result = qp_memcpy_to_queue_iter(produce_q, 0, from,
2562                                                  written - tmp);
2563         }
2564 
2565         if (result < VMCI_SUCCESS)
2566                 return result;
2567 
2568         vmci_q_header_add_producer_tail(produce_q->q_header, written,
2569                                         produce_q_size);
2570         return written;
2571 }
2572 
2573 /*
2574  * Dequeues data (if available) from the given consume queue. Writes data
2575  * to the user provided buffer using the provided function.
2576  * Assumes the queue->mutex has been acquired.
2577  * Results:
2578  * VMCI_ERROR_QUEUEPAIR_NODATA if no data was available to dequeue.
2579  * VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the queue
2580  * (as defined by the queue size).
2581  * VMCI_ERROR_INVALID_ARGS, if an error occured when accessing the buffer.
2582  * Otherwise the number of bytes dequeued is returned.
2583  * Side effects:
2584  * Updates the head pointer of the consume queue.
2585  */
2586 static ssize_t qp_dequeue_locked(struct vmci_queue *produce_q,
2587                                  struct vmci_queue *consume_q,
2588                                  const u64 consume_q_size,
2589                                  struct iov_iter *to,
2590                                  bool update_consumer)
2591 {
2592         size_t buf_size = iov_iter_count(to);
2593         s64 buf_ready;
2594         u64 head;
2595         size_t read;
2596         ssize_t result;
2597 
2598         result = qp_map_queue_headers(produce_q, consume_q);
2599         if (unlikely(result != VMCI_SUCCESS))
2600                 return result;
2601 
2602         buf_ready = vmci_q_header_buf_ready(consume_q->q_header,
2603                                             produce_q->q_header,
2604                                             consume_q_size);
2605         if (buf_ready == 0)
2606                 return VMCI_ERROR_QUEUEPAIR_NODATA;
2607 
2608         if (buf_ready < VMCI_SUCCESS)
2609                 return (ssize_t) buf_ready;
2610 
2611         read = (size_t) (buf_ready > buf_size ? buf_size : buf_ready);
2612         head = vmci_q_header_consumer_head(produce_q->q_header);
2613         if (likely(head + read < consume_q_size)) {
2614                 result = qp_memcpy_from_queue_iter(to, consume_q, head, read);
2615         } else {
2616                 /* Head pointer wraps around. */
2617 
2618                 const size_t tmp = (size_t) (consume_q_size - head);
2619 
2620                 result = qp_memcpy_from_queue_iter(to, consume_q, head, tmp);
2621                 if (result >= VMCI_SUCCESS)
2622                         result = qp_memcpy_from_queue_iter(to, consume_q, 0,
2623                                                    read - tmp);
2624 
2625         }
2626 
2627         if (result < VMCI_SUCCESS)
2628                 return result;
2629 
2630         if (update_consumer)
2631                 vmci_q_header_add_consumer_head(produce_q->q_header,
2632                                                 read, consume_q_size);
2633 
2634         return read;
2635 }
2636 
2637 /*
2638  * vmci_qpair_alloc() - Allocates a queue pair.
2639  * @qpair:      Pointer for the new vmci_qp struct.
2640  * @handle:     Handle to track the resource.
2641  * @produce_qsize:      Desired size of the producer queue.
2642  * @consume_qsize:      Desired size of the consumer queue.
2643  * @peer:       ContextID of the peer.
2644  * @flags:      VMCI flags.
2645  * @priv_flags: VMCI priviledge flags.
2646  *
2647  * This is the client interface for allocating the memory for a
2648  * vmci_qp structure and then attaching to the underlying
2649  * queue.  If an error occurs allocating the memory for the
2650  * vmci_qp structure no attempt is made to attach.  If an
2651  * error occurs attaching, then the structure is freed.
2652  */
2653 int vmci_qpair_alloc(struct vmci_qp **qpair,
2654                      struct vmci_handle *handle,
2655                      u64 produce_qsize,
2656                      u64 consume_qsize,
2657                      u32 peer,
2658                      u32 flags,
2659                      u32 priv_flags)
2660 {
2661         struct vmci_qp *my_qpair;
2662         int retval;
2663         struct vmci_handle src = VMCI_INVALID_HANDLE;
2664         struct vmci_handle dst = vmci_make_handle(peer, VMCI_INVALID_ID);
2665         enum vmci_route route;
2666         vmci_event_release_cb wakeup_cb;
2667         void *client_data;
2668 
2669         /*
2670          * Restrict the size of a queuepair.  The device already
2671          * enforces a limit on the total amount of memory that can be
2672          * allocated to queuepairs for a guest.  However, we try to
2673          * allocate this memory before we make the queuepair
2674          * allocation hypercall.  On Linux, we allocate each page
2675          * separately, which means rather than fail, the guest will
2676          * thrash while it tries to allocate, and will become
2677          * increasingly unresponsive to the point where it appears to
2678          * be hung.  So we place a limit on the size of an individual
2679          * queuepair here, and leave the device to enforce the
2680          * restriction on total queuepair memory.  (Note that this
2681          * doesn't prevent all cases; a user with only this much
2682          * physical memory could still get into trouble.)  The error
2683          * used by the device is NO_RESOURCES, so use that here too.
2684          */
2685 
2686         if (produce_qsize + consume_qsize < max(produce_qsize, consume_qsize) ||
2687             produce_qsize + consume_qsize > VMCI_MAX_GUEST_QP_MEMORY)
2688                 return VMCI_ERROR_NO_RESOURCES;
2689 
2690         retval = vmci_route(&src, &dst, false, &route);
2691         if (retval < VMCI_SUCCESS)
2692                 route = vmci_guest_code_active() ?
2693                     VMCI_ROUTE_AS_GUEST : VMCI_ROUTE_AS_HOST;
2694 
2695         if (flags & (VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED)) {
2696                 pr_devel("NONBLOCK OR PINNED set");
2697                 return VMCI_ERROR_INVALID_ARGS;
2698         }
2699 
2700         my_qpair = kzalloc(sizeof(*my_qpair), GFP_KERNEL);
2701         if (!my_qpair)
2702                 return VMCI_ERROR_NO_MEM;
2703 
2704         my_qpair->produce_q_size = produce_qsize;
2705         my_qpair->consume_q_size = consume_qsize;
2706         my_qpair->peer = peer;
2707         my_qpair->flags = flags;
2708         my_qpair->priv_flags = priv_flags;
2709 
2710         wakeup_cb = NULL;
2711         client_data = NULL;
2712 
2713         if (VMCI_ROUTE_AS_HOST == route) {
2714                 my_qpair->guest_endpoint = false;
2715                 if (!(flags & VMCI_QPFLAG_LOCAL)) {
2716                         my_qpair->blocked = 0;
2717                         my_qpair->generation = 0;
2718                         init_waitqueue_head(&my_qpair->event);
2719                         wakeup_cb = qp_wakeup_cb;
2720                         client_data = (void *)my_qpair;
2721                 }
2722         } else {
2723                 my_qpair->guest_endpoint = true;
2724         }
2725 
2726         retval = vmci_qp_alloc(handle,
2727                                &my_qpair->produce_q,
2728                                my_qpair->produce_q_size,
2729                                &my_qpair->consume_q,
2730                                my_qpair->consume_q_size,
2731                                my_qpair->peer,
2732                                my_qpair->flags,
2733                                my_qpair->priv_flags,
2734                                my_qpair->guest_endpoint,
2735                                wakeup_cb, client_data);
2736 
2737         if (retval < VMCI_SUCCESS) {
2738                 kfree(my_qpair);
2739                 return retval;
2740         }
2741 
2742         *qpair = my_qpair;
2743         my_qpair->handle = *handle;
2744 
2745         return retval;
2746 }
2747 EXPORT_SYMBOL_GPL(vmci_qpair_alloc);
2748 
2749 /*
2750  * vmci_qpair_detach() - Detatches the client from a queue pair.
2751  * @qpair:      Reference of a pointer to the qpair struct.
2752  *
2753  * This is the client interface for detaching from a VMCIQPair.
2754  * Note that this routine will free the memory allocated for the
2755  * vmci_qp structure too.
2756  */
2757 int vmci_qpair_detach(struct vmci_qp **qpair)
2758 {
2759         int result;
2760         struct vmci_qp *old_qpair;
2761 
2762         if (!qpair || !(*qpair))
2763                 return VMCI_ERROR_INVALID_ARGS;
2764 
2765         old_qpair = *qpair;
2766         result = qp_detatch(old_qpair->handle, old_qpair->guest_endpoint);
2767 
2768         /*
2769          * The guest can fail to detach for a number of reasons, and
2770          * if it does so, it will cleanup the entry (if there is one).
2771          * The host can fail too, but it won't cleanup the entry
2772          * immediately, it will do that later when the context is
2773          * freed.  Either way, we need to release the qpair struct
2774          * here; there isn't much the caller can do, and we don't want
2775          * to leak.
2776          */
2777 
2778         memset(old_qpair, 0, sizeof(*old_qpair));
2779         old_qpair->handle = VMCI_INVALID_HANDLE;
2780         old_qpair->peer = VMCI_INVALID_ID;
2781         kfree(old_qpair);
2782         *qpair = NULL;
2783 
2784         return result;
2785 }
2786 EXPORT_SYMBOL_GPL(vmci_qpair_detach);
2787 
2788 /*
2789  * vmci_qpair_get_produce_indexes() - Retrieves the indexes of the producer.
2790  * @qpair:      Pointer to the queue pair struct.
2791  * @producer_tail:      Reference used for storing producer tail index.
2792  * @consumer_head:      Reference used for storing the consumer head index.
2793  *
2794  * This is the client interface for getting the current indexes of the
2795  * QPair from the point of the view of the caller as the producer.
2796  */
2797 int vmci_qpair_get_produce_indexes(const struct vmci_qp *qpair,
2798                                    u64 *producer_tail,
2799                                    u64 *consumer_head)
2800 {
2801         struct vmci_queue_header *produce_q_header;
2802         struct vmci_queue_header *consume_q_header;
2803         int result;
2804 
2805         if (!qpair)
2806                 return VMCI_ERROR_INVALID_ARGS;
2807 
2808         qp_lock(qpair);
2809         result =
2810             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2811         if (result == VMCI_SUCCESS)
2812                 vmci_q_header_get_pointers(produce_q_header, consume_q_header,
2813                                            producer_tail, consumer_head);
2814         qp_unlock(qpair);
2815 
2816         if (result == VMCI_SUCCESS &&
2817             ((producer_tail && *producer_tail >= qpair->produce_q_size) ||
2818              (consumer_head && *consumer_head >= qpair->produce_q_size)))
2819                 return VMCI_ERROR_INVALID_SIZE;
2820 
2821         return result;
2822 }
2823 EXPORT_SYMBOL_GPL(vmci_qpair_get_produce_indexes);
2824 
2825 /*
2826  * vmci_qpair_get_consume_indexes() - Retrieves the indexes of the consumer.
2827  * @qpair:      Pointer to the queue pair struct.
2828  * @consumer_tail:      Reference used for storing consumer tail index.
2829  * @producer_head:      Reference used for storing the producer head index.
2830  *
2831  * This is the client interface for getting the current indexes of the
2832  * QPair from the point of the view of the caller as the consumer.
2833  */
2834 int vmci_qpair_get_consume_indexes(const struct vmci_qp *qpair,
2835                                    u64 *consumer_tail,
2836                                    u64 *producer_head)
2837 {
2838         struct vmci_queue_header *produce_q_header;
2839         struct vmci_queue_header *consume_q_header;
2840         int result;
2841 
2842         if (!qpair)
2843                 return VMCI_ERROR_INVALID_ARGS;
2844 
2845         qp_lock(qpair);
2846         result =
2847             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2848         if (result == VMCI_SUCCESS)
2849                 vmci_q_header_get_pointers(consume_q_header, produce_q_header,
2850                                            consumer_tail, producer_head);
2851         qp_unlock(qpair);
2852 
2853         if (result == VMCI_SUCCESS &&
2854             ((consumer_tail && *consumer_tail >= qpair->consume_q_size) ||
2855              (producer_head && *producer_head >= qpair->consume_q_size)))
2856                 return VMCI_ERROR_INVALID_SIZE;
2857 
2858         return result;
2859 }
2860 EXPORT_SYMBOL_GPL(vmci_qpair_get_consume_indexes);
2861 
2862 /*
2863  * vmci_qpair_produce_free_space() - Retrieves free space in producer queue.
2864  * @qpair:      Pointer to the queue pair struct.
2865  *
2866  * This is the client interface for getting the amount of free
2867  * space in the QPair from the point of the view of the caller as
2868  * the producer which is the common case.  Returns < 0 if err, else
2869  * available bytes into which data can be enqueued if > 0.
2870  */
2871 s64 vmci_qpair_produce_free_space(const struct vmci_qp *qpair)
2872 {
2873         struct vmci_queue_header *produce_q_header;
2874         struct vmci_queue_header *consume_q_header;
2875         s64 result;
2876 
2877         if (!qpair)
2878                 return VMCI_ERROR_INVALID_ARGS;
2879 
2880         qp_lock(qpair);
2881         result =
2882             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2883         if (result == VMCI_SUCCESS)
2884                 result = vmci_q_header_free_space(produce_q_header,
2885                                                   consume_q_header,
2886                                                   qpair->produce_q_size);
2887         else
2888                 result = 0;
2889 
2890         qp_unlock(qpair);
2891 
2892         return result;
2893 }
2894 EXPORT_SYMBOL_GPL(vmci_qpair_produce_free_space);
2895 
2896 /*
2897  * vmci_qpair_consume_free_space() - Retrieves free space in consumer queue.
2898  * @qpair:      Pointer to the queue pair struct.
2899  *
2900  * This is the client interface for getting the amount of free
2901  * space in the QPair from the point of the view of the caller as
2902  * the consumer which is not the common case.  Returns < 0 if err, else
2903  * available bytes into which data can be enqueued if > 0.
2904  */
2905 s64 vmci_qpair_consume_free_space(const struct vmci_qp *qpair)
2906 {
2907         struct vmci_queue_header *produce_q_header;
2908         struct vmci_queue_header *consume_q_header;
2909         s64 result;
2910 
2911         if (!qpair)
2912                 return VMCI_ERROR_INVALID_ARGS;
2913 
2914         qp_lock(qpair);
2915         result =
2916             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2917         if (result == VMCI_SUCCESS)
2918                 result = vmci_q_header_free_space(consume_q_header,
2919                                                   produce_q_header,
2920                                                   qpair->consume_q_size);
2921         else
2922                 result = 0;
2923 
2924         qp_unlock(qpair);
2925 
2926         return result;
2927 }
2928 EXPORT_SYMBOL_GPL(vmci_qpair_consume_free_space);
2929 
2930 /*
2931  * vmci_qpair_produce_buf_ready() - Gets bytes ready to read from
2932  * producer queue.
2933  * @qpair:      Pointer to the queue pair struct.
2934  *
2935  * This is the client interface for getting the amount of
2936  * enqueued data in the QPair from the point of the view of the
2937  * caller as the producer which is not the common case.  Returns < 0 if err,
2938  * else available bytes that may be read.
2939  */
2940 s64 vmci_qpair_produce_buf_ready(const struct vmci_qp *qpair)
2941 {
2942         struct vmci_queue_header *produce_q_header;
2943         struct vmci_queue_header *consume_q_header;
2944         s64 result;
2945 
2946         if (!qpair)
2947                 return VMCI_ERROR_INVALID_ARGS;
2948 
2949         qp_lock(qpair);
2950         result =
2951             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2952         if (result == VMCI_SUCCESS)
2953                 result = vmci_q_header_buf_ready(produce_q_header,
2954                                                  consume_q_header,
2955                                                  qpair->produce_q_size);
2956         else
2957                 result = 0;
2958 
2959         qp_unlock(qpair);
2960 
2961         return result;
2962 }
2963 EXPORT_SYMBOL_GPL(vmci_qpair_produce_buf_ready);
2964 
2965 /*
2966  * vmci_qpair_consume_buf_ready() - Gets bytes ready to read from
2967  * consumer queue.
2968  * @qpair:      Pointer to the queue pair struct.
2969  *
2970  * This is the client interface for getting the amount of
2971  * enqueued data in the QPair from the point of the view of the
2972  * caller as the consumer which is the normal case.  Returns < 0 if err,
2973  * else available bytes that may be read.
2974  */
2975 s64 vmci_qpair_consume_buf_ready(const struct vmci_qp *qpair)
2976 {
2977         struct vmci_queue_header *produce_q_header;
2978         struct vmci_queue_header *consume_q_header;
2979         s64 result;
2980 
2981         if (!qpair)
2982                 return VMCI_ERROR_INVALID_ARGS;
2983 
2984         qp_lock(qpair);
2985         result =
2986             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2987         if (result == VMCI_SUCCESS)
2988                 result = vmci_q_header_buf_ready(consume_q_header,
2989                                                  produce_q_header,
2990                                                  qpair->consume_q_size);
2991         else
2992                 result = 0;
2993 
2994         qp_unlock(qpair);
2995 
2996         return result;
2997 }
2998 EXPORT_SYMBOL_GPL(vmci_qpair_consume_buf_ready);
2999 
3000 /*
3001  * vmci_qpair_enqueue() - Throw data on the queue.
3002  * @qpair:      Pointer to the queue pair struct.
3003  * @buf:        Pointer to buffer containing data
3004  * @buf_size:   Length of buffer.
3005  * @buf_type:   Buffer type (Unused).
3006  *
3007  * This is the client interface for enqueueing data into the queue.
3008  * Returns number of bytes enqueued or < 0 on error.
3009  */
3010 ssize_t vmci_qpair_enqueue(struct vmci_qp *qpair,
3011                            const void *buf,
3012                            size_t buf_size,
3013                            int buf_type)
3014 {
3015         ssize_t result;
3016         struct iov_iter from;
3017         struct kvec v = {.iov_base = (void *)buf, .iov_len = buf_size};
3018 
3019         if (!qpair || !buf)
3020                 return VMCI_ERROR_INVALID_ARGS;
3021 
3022         iov_iter_kvec(&from, WRITE, &v, 1, buf_size);
3023 
3024         qp_lock(qpair);
3025 
3026         do {
3027                 result = qp_enqueue_locked(qpair->produce_q,
3028                                            qpair->consume_q,
3029                                            qpair->produce_q_size,
3030                                            &from);
3031 
3032                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3033                     !qp_wait_for_ready_queue(qpair))
3034                         result = VMCI_ERROR_WOULD_BLOCK;
3035 
3036         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3037 
3038         qp_unlock(qpair);
3039 
3040         return result;
3041 }
3042 EXPORT_SYMBOL_GPL(vmci_qpair_enqueue);
3043 
3044 /*
3045  * vmci_qpair_dequeue() - Get data from the queue.
3046  * @qpair:      Pointer to the queue pair struct.
3047  * @buf:        Pointer to buffer for the data
3048  * @buf_size:   Length of buffer.
3049  * @buf_type:   Buffer type (Unused).
3050  *
3051  * This is the client interface for dequeueing data from the queue.
3052  * Returns number of bytes dequeued or < 0 on error.
3053  */
3054 ssize_t vmci_qpair_dequeue(struct vmci_qp *qpair,
3055                            void *buf,
3056                            size_t buf_size,
3057                            int buf_type)
3058 {
3059         ssize_t result;
3060         struct iov_iter to;
3061         struct kvec v = {.iov_base = buf, .iov_len = buf_size};
3062 
3063         if (!qpair || !buf)
3064                 return VMCI_ERROR_INVALID_ARGS;
3065 
3066         iov_iter_kvec(&to, READ, &v, 1, buf_size);
3067 
3068         qp_lock(qpair);
3069 
3070         do {
3071                 result = qp_dequeue_locked(qpair->produce_q,
3072                                            qpair->consume_q,
3073                                            qpair->consume_q_size,
3074                                            &to, true);
3075 
3076                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3077                     !qp_wait_for_ready_queue(qpair))
3078                         result = VMCI_ERROR_WOULD_BLOCK;
3079 
3080         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3081 
3082         qp_unlock(qpair);
3083 
3084         return result;
3085 }
3086 EXPORT_SYMBOL_GPL(vmci_qpair_dequeue);
3087 
3088 /*
3089  * vmci_qpair_peek() - Peek at the data in the queue.
3090  * @qpair:      Pointer to the queue pair struct.
3091  * @buf:        Pointer to buffer for the data
3092  * @buf_size:   Length of buffer.
3093  * @buf_type:   Buffer type (Unused on Linux).
3094  *
3095  * This is the client interface for peeking into a queue.  (I.e.,
3096  * copy data from the queue without updating the head pointer.)
3097  * Returns number of bytes dequeued or < 0 on error.
3098  */
3099 ssize_t vmci_qpair_peek(struct vmci_qp *qpair,
3100                         void *buf,
3101                         size_t buf_size,
3102                         int buf_type)
3103 {
3104         struct iov_iter to;
3105         struct kvec v = {.iov_base = buf, .iov_len = buf_size};
3106         ssize_t result;
3107 
3108         if (!qpair || !buf)
3109                 return VMCI_ERROR_INVALID_ARGS;
3110 
3111         iov_iter_kvec(&to, READ, &v, 1, buf_size);
3112 
3113         qp_lock(qpair);
3114 
3115         do {
3116                 result = qp_dequeue_locked(qpair->produce_q,
3117                                            qpair->consume_q,
3118                                            qpair->consume_q_size,
3119                                            &to, false);
3120 
3121                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3122                     !qp_wait_for_ready_queue(qpair))
3123                         result = VMCI_ERROR_WOULD_BLOCK;
3124 
3125         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3126 
3127         qp_unlock(qpair);
3128 
3129         return result;
3130 }
3131 EXPORT_SYMBOL_GPL(vmci_qpair_peek);
3132 
3133 /*
3134  * vmci_qpair_enquev() - Throw data on the queue using iov.
3135  * @qpair:      Pointer to the queue pair struct.
3136  * @iov:        Pointer to buffer containing data
3137  * @iov_size:   Length of buffer.
3138  * @buf_type:   Buffer type (Unused).
3139  *
3140  * This is the client interface for enqueueing data into the queue.
3141  * This function uses IO vectors to handle the work. Returns number
3142  * of bytes enqueued or < 0 on error.
3143  */
3144 ssize_t vmci_qpair_enquev(struct vmci_qp *qpair,
3145                           struct msghdr *msg,
3146                           size_t iov_size,
3147                           int buf_type)
3148 {
3149         ssize_t result;
3150 
3151         if (!qpair)
3152                 return VMCI_ERROR_INVALID_ARGS;
3153 
3154         qp_lock(qpair);
3155 
3156         do {
3157                 result = qp_enqueue_locked(qpair->produce_q,
3158                                            qpair->consume_q,
3159                                            qpair->produce_q_size,
3160                                            &msg->msg_iter);
3161 
3162                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3163                     !qp_wait_for_ready_queue(qpair))
3164                         result = VMCI_ERROR_WOULD_BLOCK;
3165 
3166         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3167 
3168         qp_unlock(qpair);
3169 
3170         return result;
3171 }
3172 EXPORT_SYMBOL_GPL(vmci_qpair_enquev);
3173 
3174 /*
3175  * vmci_qpair_dequev() - Get data from the queue using iov.
3176  * @qpair:      Pointer to the queue pair struct.
3177  * @iov:        Pointer to buffer for the data
3178  * @iov_size:   Length of buffer.
3179  * @buf_type:   Buffer type (Unused).
3180  *
3181  * This is the client interface for dequeueing data from the queue.
3182  * This function uses IO vectors to handle the work. Returns number
3183  * of bytes dequeued or < 0 on error.
3184  */
3185 ssize_t vmci_qpair_dequev(struct vmci_qp *qpair,
3186                           struct msghdr *msg,
3187                           size_t iov_size,
3188                           int buf_type)
3189 {
3190         ssize_t result;
3191 
3192         if (!qpair)
3193                 return VMCI_ERROR_INVALID_ARGS;
3194 
3195         qp_lock(qpair);
3196 
3197         do {
3198                 result = qp_dequeue_locked(qpair->produce_q,
3199                                            qpair->consume_q,
3200                                            qpair->consume_q_size,
3201                                            &msg->msg_iter, true);
3202 
3203                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3204                     !qp_wait_for_ready_queue(qpair))
3205                         result = VMCI_ERROR_WOULD_BLOCK;
3206 
3207         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3208 
3209         qp_unlock(qpair);
3210 
3211         return result;
3212 }
3213 EXPORT_SYMBOL_GPL(vmci_qpair_dequev);
3214 
3215 /*
3216  * vmci_qpair_peekv() - Peek at the data in the queue using iov.
3217  * @qpair:      Pointer to the queue pair struct.
3218  * @iov:        Pointer to buffer for the data
3219  * @iov_size:   Length of buffer.
3220  * @buf_type:   Buffer type (Unused on Linux).
3221  *
3222  * This is the client interface for peeking into a queue.  (I.e.,
3223  * copy data from the queue without updating the head pointer.)
3224  * This function uses IO vectors to handle the work. Returns number
3225  * of bytes peeked or < 0 on error.
3226  */
3227 ssize_t vmci_qpair_peekv(struct vmci_qp *qpair,
3228                          struct msghdr *msg,
3229                          size_t iov_size,
3230                          int buf_type)
3231 {
3232         ssize_t result;
3233 
3234         if (!qpair)
3235                 return VMCI_ERROR_INVALID_ARGS;
3236 
3237         qp_lock(qpair);
3238 
3239         do {
3240                 result = qp_dequeue_locked(qpair->produce_q,
3241                                            qpair->consume_q,
3242                                            qpair->consume_q_size,
3243                                            &msg->msg_iter, false);
3244 
3245                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3246                     !qp_wait_for_ready_queue(qpair))
3247                         result = VMCI_ERROR_WOULD_BLOCK;
3248 
3249         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3250 
3251         qp_unlock(qpair);
3252         return result;
3253 }
3254 EXPORT_SYMBOL_GPL(vmci_qpair_peekv);

/* [<][>][^][v][top][bottom][index][help] */