root/drivers/dma-buf/dma-buf.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. dmabuffs_dname
  2. dma_buf_fs_init_context
  3. dma_buf_release
  4. dma_buf_mmap_internal
  5. dma_buf_llseek
  6. dma_buf_poll_cb
  7. dma_buf_poll
  8. dma_buf_set_name
  9. dma_buf_ioctl
  10. dma_buf_show_fdinfo
  11. is_dma_buf_file
  12. dma_buf_getfile
  13. dma_buf_export
  14. dma_buf_fd
  15. dma_buf_get
  16. dma_buf_put
  17. dma_buf_detach
  18. dma_buf_map_attachment
  19. dma_buf_unmap_attachment
  20. __dma_buf_begin_cpu_access
  21. dma_buf_begin_cpu_access
  22. dma_buf_end_cpu_access
  23. dma_buf_kmap
  24. dma_buf_kunmap
  25. dma_buf_mmap
  26. dma_buf_vmap
  27. dma_buf_vunmap
  28. dma_buf_debug_show
  29. dma_buf_init_debugfs
  30. dma_buf_uninit_debugfs
  31. dma_buf_init_debugfs
  32. dma_buf_uninit_debugfs
  33. dma_buf_init
  34. dma_buf_deinit

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * Framework for buffer objects that can be shared across devices/subsystems.
   4  *
   5  * Copyright(C) 2011 Linaro Limited. All rights reserved.
   6  * Author: Sumit Semwal <sumit.semwal@ti.com>
   7  *
   8  * Many thanks to linaro-mm-sig list, and specially
   9  * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
  10  * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
  11  * refining of this idea.
  12  */
  13 
  14 #include <linux/fs.h>
  15 #include <linux/slab.h>
  16 #include <linux/dma-buf.h>
  17 #include <linux/dma-fence.h>
  18 #include <linux/anon_inodes.h>
  19 #include <linux/export.h>
  20 #include <linux/debugfs.h>
  21 #include <linux/module.h>
  22 #include <linux/seq_file.h>
  23 #include <linux/poll.h>
  24 #include <linux/dma-resv.h>
  25 #include <linux/mm.h>
  26 #include <linux/mount.h>
  27 #include <linux/pseudo_fs.h>
  28 
  29 #include <uapi/linux/dma-buf.h>
  30 #include <uapi/linux/magic.h>
  31 
  32 static inline int is_dma_buf_file(struct file *);
  33 
  34 struct dma_buf_list {
  35         struct list_head head;
  36         struct mutex lock;
  37 };
  38 
  39 static struct dma_buf_list db_list;
  40 
  41 static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen)
  42 {
  43         struct dma_buf *dmabuf;
  44         char name[DMA_BUF_NAME_LEN];
  45         size_t ret = 0;
  46 
  47         dmabuf = dentry->d_fsdata;
  48         mutex_lock(&dmabuf->lock);
  49         if (dmabuf->name)
  50                 ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN);
  51         mutex_unlock(&dmabuf->lock);
  52 
  53         return dynamic_dname(dentry, buffer, buflen, "/%s:%s",
  54                              dentry->d_name.name, ret > 0 ? name : "");
  55 }
  56 
  57 static const struct dentry_operations dma_buf_dentry_ops = {
  58         .d_dname = dmabuffs_dname,
  59 };
  60 
  61 static struct vfsmount *dma_buf_mnt;
  62 
  63 static int dma_buf_fs_init_context(struct fs_context *fc)
  64 {
  65         struct pseudo_fs_context *ctx;
  66 
  67         ctx = init_pseudo(fc, DMA_BUF_MAGIC);
  68         if (!ctx)
  69                 return -ENOMEM;
  70         ctx->dops = &dma_buf_dentry_ops;
  71         return 0;
  72 }
  73 
  74 static struct file_system_type dma_buf_fs_type = {
  75         .name = "dmabuf",
  76         .init_fs_context = dma_buf_fs_init_context,
  77         .kill_sb = kill_anon_super,
  78 };
  79 
  80 static int dma_buf_release(struct inode *inode, struct file *file)
  81 {
  82         struct dma_buf *dmabuf;
  83 
  84         if (!is_dma_buf_file(file))
  85                 return -EINVAL;
  86 
  87         dmabuf = file->private_data;
  88 
  89         BUG_ON(dmabuf->vmapping_counter);
  90 
  91         /*
  92          * Any fences that a dma-buf poll can wait on should be signaled
  93          * before releasing dma-buf. This is the responsibility of each
  94          * driver that uses the reservation objects.
  95          *
  96          * If you hit this BUG() it means someone dropped their ref to the
  97          * dma-buf while still having pending operation to the buffer.
  98          */
  99         BUG_ON(dmabuf->cb_shared.active || dmabuf->cb_excl.active);
 100 
 101         dmabuf->ops->release(dmabuf);
 102 
 103         mutex_lock(&db_list.lock);
 104         list_del(&dmabuf->list_node);
 105         mutex_unlock(&db_list.lock);
 106 
 107         if (dmabuf->resv == (struct dma_resv *)&dmabuf[1])
 108                 dma_resv_fini(dmabuf->resv);
 109 
 110         module_put(dmabuf->owner);
 111         kfree(dmabuf->name);
 112         kfree(dmabuf);
 113         return 0;
 114 }
 115 
 116 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
 117 {
 118         struct dma_buf *dmabuf;
 119 
 120         if (!is_dma_buf_file(file))
 121                 return -EINVAL;
 122 
 123         dmabuf = file->private_data;
 124 
 125         /* check if buffer supports mmap */
 126         if (!dmabuf->ops->mmap)
 127                 return -EINVAL;
 128 
 129         /* check for overflowing the buffer's size */
 130         if (vma->vm_pgoff + vma_pages(vma) >
 131             dmabuf->size >> PAGE_SHIFT)
 132                 return -EINVAL;
 133 
 134         return dmabuf->ops->mmap(dmabuf, vma);
 135 }
 136 
 137 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
 138 {
 139         struct dma_buf *dmabuf;
 140         loff_t base;
 141 
 142         if (!is_dma_buf_file(file))
 143                 return -EBADF;
 144 
 145         dmabuf = file->private_data;
 146 
 147         /* only support discovering the end of the buffer,
 148            but also allow SEEK_SET to maintain the idiomatic
 149            SEEK_END(0), SEEK_CUR(0) pattern */
 150         if (whence == SEEK_END)
 151                 base = dmabuf->size;
 152         else if (whence == SEEK_SET)
 153                 base = 0;
 154         else
 155                 return -EINVAL;
 156 
 157         if (offset != 0)
 158                 return -EINVAL;
 159 
 160         return base + offset;
 161 }
 162 
 163 /**
 164  * DOC: fence polling
 165  *
 166  * To support cross-device and cross-driver synchronization of buffer access
 167  * implicit fences (represented internally in the kernel with &struct fence) can
 168  * be attached to a &dma_buf. The glue for that and a few related things are
 169  * provided in the &dma_resv structure.
 170  *
 171  * Userspace can query the state of these implicitly tracked fences using poll()
 172  * and related system calls:
 173  *
 174  * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
 175  *   most recent write or exclusive fence.
 176  *
 177  * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
 178  *   all attached fences, shared and exclusive ones.
 179  *
 180  * Note that this only signals the completion of the respective fences, i.e. the
 181  * DMA transfers are complete. Cache flushing and any other necessary
 182  * preparations before CPU access can begin still need to happen.
 183  */
 184 
 185 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
 186 {
 187         struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
 188         unsigned long flags;
 189 
 190         spin_lock_irqsave(&dcb->poll->lock, flags);
 191         wake_up_locked_poll(dcb->poll, dcb->active);
 192         dcb->active = 0;
 193         spin_unlock_irqrestore(&dcb->poll->lock, flags);
 194 }
 195 
 196 static __poll_t dma_buf_poll(struct file *file, poll_table *poll)
 197 {
 198         struct dma_buf *dmabuf;
 199         struct dma_resv *resv;
 200         struct dma_resv_list *fobj;
 201         struct dma_fence *fence_excl;
 202         __poll_t events;
 203         unsigned shared_count, seq;
 204 
 205         dmabuf = file->private_data;
 206         if (!dmabuf || !dmabuf->resv)
 207                 return EPOLLERR;
 208 
 209         resv = dmabuf->resv;
 210 
 211         poll_wait(file, &dmabuf->poll, poll);
 212 
 213         events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT);
 214         if (!events)
 215                 return 0;
 216 
 217 retry:
 218         seq = read_seqcount_begin(&resv->seq);
 219         rcu_read_lock();
 220 
 221         fobj = rcu_dereference(resv->fence);
 222         if (fobj)
 223                 shared_count = fobj->shared_count;
 224         else
 225                 shared_count = 0;
 226         fence_excl = rcu_dereference(resv->fence_excl);
 227         if (read_seqcount_retry(&resv->seq, seq)) {
 228                 rcu_read_unlock();
 229                 goto retry;
 230         }
 231 
 232         if (fence_excl && (!(events & EPOLLOUT) || shared_count == 0)) {
 233                 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_excl;
 234                 __poll_t pevents = EPOLLIN;
 235 
 236                 if (shared_count == 0)
 237                         pevents |= EPOLLOUT;
 238 
 239                 spin_lock_irq(&dmabuf->poll.lock);
 240                 if (dcb->active) {
 241                         dcb->active |= pevents;
 242                         events &= ~pevents;
 243                 } else
 244                         dcb->active = pevents;
 245                 spin_unlock_irq(&dmabuf->poll.lock);
 246 
 247                 if (events & pevents) {
 248                         if (!dma_fence_get_rcu(fence_excl)) {
 249                                 /* force a recheck */
 250                                 events &= ~pevents;
 251                                 dma_buf_poll_cb(NULL, &dcb->cb);
 252                         } else if (!dma_fence_add_callback(fence_excl, &dcb->cb,
 253                                                            dma_buf_poll_cb)) {
 254                                 events &= ~pevents;
 255                                 dma_fence_put(fence_excl);
 256                         } else {
 257                                 /*
 258                                  * No callback queued, wake up any additional
 259                                  * waiters.
 260                                  */
 261                                 dma_fence_put(fence_excl);
 262                                 dma_buf_poll_cb(NULL, &dcb->cb);
 263                         }
 264                 }
 265         }
 266 
 267         if ((events & EPOLLOUT) && shared_count > 0) {
 268                 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_shared;
 269                 int i;
 270 
 271                 /* Only queue a new callback if no event has fired yet */
 272                 spin_lock_irq(&dmabuf->poll.lock);
 273                 if (dcb->active)
 274                         events &= ~EPOLLOUT;
 275                 else
 276                         dcb->active = EPOLLOUT;
 277                 spin_unlock_irq(&dmabuf->poll.lock);
 278 
 279                 if (!(events & EPOLLOUT))
 280                         goto out;
 281 
 282                 for (i = 0; i < shared_count; ++i) {
 283                         struct dma_fence *fence = rcu_dereference(fobj->shared[i]);
 284 
 285                         if (!dma_fence_get_rcu(fence)) {
 286                                 /*
 287                                  * fence refcount dropped to zero, this means
 288                                  * that fobj has been freed
 289                                  *
 290                                  * call dma_buf_poll_cb and force a recheck!
 291                                  */
 292                                 events &= ~EPOLLOUT;
 293                                 dma_buf_poll_cb(NULL, &dcb->cb);
 294                                 break;
 295                         }
 296                         if (!dma_fence_add_callback(fence, &dcb->cb,
 297                                                     dma_buf_poll_cb)) {
 298                                 dma_fence_put(fence);
 299                                 events &= ~EPOLLOUT;
 300                                 break;
 301                         }
 302                         dma_fence_put(fence);
 303                 }
 304 
 305                 /* No callback queued, wake up any additional waiters. */
 306                 if (i == shared_count)
 307                         dma_buf_poll_cb(NULL, &dcb->cb);
 308         }
 309 
 310 out:
 311         rcu_read_unlock();
 312         return events;
 313 }
 314 
 315 /**
 316  * dma_buf_set_name - Set a name to a specific dma_buf to track the usage.
 317  * The name of the dma-buf buffer can only be set when the dma-buf is not
 318  * attached to any devices. It could theoritically support changing the
 319  * name of the dma-buf if the same piece of memory is used for multiple
 320  * purpose between different devices.
 321  *
 322  * @dmabuf [in]     dmabuf buffer that will be renamed.
 323  * @buf:   [in]     A piece of userspace memory that contains the name of
 324  *                  the dma-buf.
 325  *
 326  * Returns 0 on success. If the dma-buf buffer is already attached to
 327  * devices, return -EBUSY.
 328  *
 329  */
 330 static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf)
 331 {
 332         char *name = strndup_user(buf, DMA_BUF_NAME_LEN);
 333         long ret = 0;
 334 
 335         if (IS_ERR(name))
 336                 return PTR_ERR(name);
 337 
 338         mutex_lock(&dmabuf->lock);
 339         if (!list_empty(&dmabuf->attachments)) {
 340                 ret = -EBUSY;
 341                 kfree(name);
 342                 goto out_unlock;
 343         }
 344         kfree(dmabuf->name);
 345         dmabuf->name = name;
 346 
 347 out_unlock:
 348         mutex_unlock(&dmabuf->lock);
 349         return ret;
 350 }
 351 
 352 static long dma_buf_ioctl(struct file *file,
 353                           unsigned int cmd, unsigned long arg)
 354 {
 355         struct dma_buf *dmabuf;
 356         struct dma_buf_sync sync;
 357         enum dma_data_direction direction;
 358         int ret;
 359 
 360         dmabuf = file->private_data;
 361 
 362         switch (cmd) {
 363         case DMA_BUF_IOCTL_SYNC:
 364                 if (copy_from_user(&sync, (void __user *) arg, sizeof(sync)))
 365                         return -EFAULT;
 366 
 367                 if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK)
 368                         return -EINVAL;
 369 
 370                 switch (sync.flags & DMA_BUF_SYNC_RW) {
 371                 case DMA_BUF_SYNC_READ:
 372                         direction = DMA_FROM_DEVICE;
 373                         break;
 374                 case DMA_BUF_SYNC_WRITE:
 375                         direction = DMA_TO_DEVICE;
 376                         break;
 377                 case DMA_BUF_SYNC_RW:
 378                         direction = DMA_BIDIRECTIONAL;
 379                         break;
 380                 default:
 381                         return -EINVAL;
 382                 }
 383 
 384                 if (sync.flags & DMA_BUF_SYNC_END)
 385                         ret = dma_buf_end_cpu_access(dmabuf, direction);
 386                 else
 387                         ret = dma_buf_begin_cpu_access(dmabuf, direction);
 388 
 389                 return ret;
 390 
 391         case DMA_BUF_SET_NAME_A:
 392         case DMA_BUF_SET_NAME_B:
 393                 return dma_buf_set_name(dmabuf, (const char __user *)arg);
 394 
 395         default:
 396                 return -ENOTTY;
 397         }
 398 }
 399 
 400 static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file)
 401 {
 402         struct dma_buf *dmabuf = file->private_data;
 403 
 404         seq_printf(m, "size:\t%zu\n", dmabuf->size);
 405         /* Don't count the temporary reference taken inside procfs seq_show */
 406         seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1);
 407         seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name);
 408         mutex_lock(&dmabuf->lock);
 409         if (dmabuf->name)
 410                 seq_printf(m, "name:\t%s\n", dmabuf->name);
 411         mutex_unlock(&dmabuf->lock);
 412 }
 413 
 414 static const struct file_operations dma_buf_fops = {
 415         .release        = dma_buf_release,
 416         .mmap           = dma_buf_mmap_internal,
 417         .llseek         = dma_buf_llseek,
 418         .poll           = dma_buf_poll,
 419         .unlocked_ioctl = dma_buf_ioctl,
 420 #ifdef CONFIG_COMPAT
 421         .compat_ioctl   = dma_buf_ioctl,
 422 #endif
 423         .show_fdinfo    = dma_buf_show_fdinfo,
 424 };
 425 
 426 /*
 427  * is_dma_buf_file - Check if struct file* is associated with dma_buf
 428  */
 429 static inline int is_dma_buf_file(struct file *file)
 430 {
 431         return file->f_op == &dma_buf_fops;
 432 }
 433 
 434 static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags)
 435 {
 436         struct file *file;
 437         struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb);
 438 
 439         if (IS_ERR(inode))
 440                 return ERR_CAST(inode);
 441 
 442         inode->i_size = dmabuf->size;
 443         inode_set_bytes(inode, dmabuf->size);
 444 
 445         file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf",
 446                                  flags, &dma_buf_fops);
 447         if (IS_ERR(file))
 448                 goto err_alloc_file;
 449         file->f_flags = flags & (O_ACCMODE | O_NONBLOCK);
 450         file->private_data = dmabuf;
 451         file->f_path.dentry->d_fsdata = dmabuf;
 452 
 453         return file;
 454 
 455 err_alloc_file:
 456         iput(inode);
 457         return file;
 458 }
 459 
 460 /**
 461  * DOC: dma buf device access
 462  *
 463  * For device DMA access to a shared DMA buffer the usual sequence of operations
 464  * is fairly simple:
 465  *
 466  * 1. The exporter defines his exporter instance using
 467  *    DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
 468  *    buffer object into a &dma_buf. It then exports that &dma_buf to userspace
 469  *    as a file descriptor by calling dma_buf_fd().
 470  *
 471  * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
 472  *    to share with: First the filedescriptor is converted to a &dma_buf using
 473  *    dma_buf_get(). Then the buffer is attached to the device using
 474  *    dma_buf_attach().
 475  *
 476  *    Up to this stage the exporter is still free to migrate or reallocate the
 477  *    backing storage.
 478  *
 479  * 3. Once the buffer is attached to all devices userspace can initiate DMA
 480  *    access to the shared buffer. In the kernel this is done by calling
 481  *    dma_buf_map_attachment() and dma_buf_unmap_attachment().
 482  *
 483  * 4. Once a driver is done with a shared buffer it needs to call
 484  *    dma_buf_detach() (after cleaning up any mappings) and then release the
 485  *    reference acquired with dma_buf_get by calling dma_buf_put().
 486  *
 487  * For the detailed semantics exporters are expected to implement see
 488  * &dma_buf_ops.
 489  */
 490 
 491 /**
 492  * dma_buf_export - Creates a new dma_buf, and associates an anon file
 493  * with this buffer, so it can be exported.
 494  * Also connect the allocator specific data and ops to the buffer.
 495  * Additionally, provide a name string for exporter; useful in debugging.
 496  *
 497  * @exp_info:   [in]    holds all the export related information provided
 498  *                      by the exporter. see &struct dma_buf_export_info
 499  *                      for further details.
 500  *
 501  * Returns, on success, a newly created dma_buf object, which wraps the
 502  * supplied private data and operations for dma_buf_ops. On either missing
 503  * ops, or error in allocating struct dma_buf, will return negative error.
 504  *
 505  * For most cases the easiest way to create @exp_info is through the
 506  * %DEFINE_DMA_BUF_EXPORT_INFO macro.
 507  */
 508 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
 509 {
 510         struct dma_buf *dmabuf;
 511         struct dma_resv *resv = exp_info->resv;
 512         struct file *file;
 513         size_t alloc_size = sizeof(struct dma_buf);
 514         int ret;
 515 
 516         if (!exp_info->resv)
 517                 alloc_size += sizeof(struct dma_resv);
 518         else
 519                 /* prevent &dma_buf[1] == dma_buf->resv */
 520                 alloc_size += 1;
 521 
 522         if (WARN_ON(!exp_info->priv
 523                           || !exp_info->ops
 524                           || !exp_info->ops->map_dma_buf
 525                           || !exp_info->ops->unmap_dma_buf
 526                           || !exp_info->ops->release)) {
 527                 return ERR_PTR(-EINVAL);
 528         }
 529 
 530         if (!try_module_get(exp_info->owner))
 531                 return ERR_PTR(-ENOENT);
 532 
 533         dmabuf = kzalloc(alloc_size, GFP_KERNEL);
 534         if (!dmabuf) {
 535                 ret = -ENOMEM;
 536                 goto err_module;
 537         }
 538 
 539         dmabuf->priv = exp_info->priv;
 540         dmabuf->ops = exp_info->ops;
 541         dmabuf->size = exp_info->size;
 542         dmabuf->exp_name = exp_info->exp_name;
 543         dmabuf->owner = exp_info->owner;
 544         init_waitqueue_head(&dmabuf->poll);
 545         dmabuf->cb_excl.poll = dmabuf->cb_shared.poll = &dmabuf->poll;
 546         dmabuf->cb_excl.active = dmabuf->cb_shared.active = 0;
 547 
 548         if (!resv) {
 549                 resv = (struct dma_resv *)&dmabuf[1];
 550                 dma_resv_init(resv);
 551         }
 552         dmabuf->resv = resv;
 553 
 554         file = dma_buf_getfile(dmabuf, exp_info->flags);
 555         if (IS_ERR(file)) {
 556                 ret = PTR_ERR(file);
 557                 goto err_dmabuf;
 558         }
 559 
 560         file->f_mode |= FMODE_LSEEK;
 561         dmabuf->file = file;
 562 
 563         mutex_init(&dmabuf->lock);
 564         INIT_LIST_HEAD(&dmabuf->attachments);
 565 
 566         mutex_lock(&db_list.lock);
 567         list_add(&dmabuf->list_node, &db_list.head);
 568         mutex_unlock(&db_list.lock);
 569 
 570         return dmabuf;
 571 
 572 err_dmabuf:
 573         kfree(dmabuf);
 574 err_module:
 575         module_put(exp_info->owner);
 576         return ERR_PTR(ret);
 577 }
 578 EXPORT_SYMBOL_GPL(dma_buf_export);
 579 
 580 /**
 581  * dma_buf_fd - returns a file descriptor for the given dma_buf
 582  * @dmabuf:     [in]    pointer to dma_buf for which fd is required.
 583  * @flags:      [in]    flags to give to fd
 584  *
 585  * On success, returns an associated 'fd'. Else, returns error.
 586  */
 587 int dma_buf_fd(struct dma_buf *dmabuf, int flags)
 588 {
 589         int fd;
 590 
 591         if (!dmabuf || !dmabuf->file)
 592                 return -EINVAL;
 593 
 594         fd = get_unused_fd_flags(flags);
 595         if (fd < 0)
 596                 return fd;
 597 
 598         fd_install(fd, dmabuf->file);
 599 
 600         return fd;
 601 }
 602 EXPORT_SYMBOL_GPL(dma_buf_fd);
 603 
 604 /**
 605  * dma_buf_get - returns the dma_buf structure related to an fd
 606  * @fd: [in]    fd associated with the dma_buf to be returned
 607  *
 608  * On success, returns the dma_buf structure associated with an fd; uses
 609  * file's refcounting done by fget to increase refcount. returns ERR_PTR
 610  * otherwise.
 611  */
 612 struct dma_buf *dma_buf_get(int fd)
 613 {
 614         struct file *file;
 615 
 616         file = fget(fd);
 617 
 618         if (!file)
 619                 return ERR_PTR(-EBADF);
 620 
 621         if (!is_dma_buf_file(file)) {
 622                 fput(file);
 623                 return ERR_PTR(-EINVAL);
 624         }
 625 
 626         return file->private_data;
 627 }
 628 EXPORT_SYMBOL_GPL(dma_buf_get);
 629 
 630 /**
 631  * dma_buf_put - decreases refcount of the buffer
 632  * @dmabuf:     [in]    buffer to reduce refcount of
 633  *
 634  * Uses file's refcounting done implicitly by fput().
 635  *
 636  * If, as a result of this call, the refcount becomes 0, the 'release' file
 637  * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
 638  * in turn, and frees the memory allocated for dmabuf when exported.
 639  */
 640 void dma_buf_put(struct dma_buf *dmabuf)
 641 {
 642         if (WARN_ON(!dmabuf || !dmabuf->file))
 643                 return;
 644 
 645         fput(dmabuf->file);
 646 }
 647 EXPORT_SYMBOL_GPL(dma_buf_put);
 648 
 649 /**
 650  * dma_buf_attach - Add the device to dma_buf's attachments list; optionally,
 651  * calls attach() of dma_buf_ops to allow device-specific attach functionality
 652  * @dmabuf:     [in]    buffer to attach device to.
 653  * @dev:        [in]    device to be attached.
 654  *
 655  * Returns struct dma_buf_attachment pointer for this attachment. Attachments
 656  * must be cleaned up by calling dma_buf_detach().
 657  *
 658  * Returns:
 659  *
 660  * A pointer to newly created &dma_buf_attachment on success, or a negative
 661  * error code wrapped into a pointer on failure.
 662  *
 663  * Note that this can fail if the backing storage of @dmabuf is in a place not
 664  * accessible to @dev, and cannot be moved to a more suitable place. This is
 665  * indicated with the error code -EBUSY.
 666  */
 667 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
 668                                           struct device *dev)
 669 {
 670         struct dma_buf_attachment *attach;
 671         int ret;
 672 
 673         if (WARN_ON(!dmabuf || !dev))
 674                 return ERR_PTR(-EINVAL);
 675 
 676         attach = kzalloc(sizeof(*attach), GFP_KERNEL);
 677         if (!attach)
 678                 return ERR_PTR(-ENOMEM);
 679 
 680         attach->dev = dev;
 681         attach->dmabuf = dmabuf;
 682 
 683         mutex_lock(&dmabuf->lock);
 684 
 685         if (dmabuf->ops->attach) {
 686                 ret = dmabuf->ops->attach(dmabuf, attach);
 687                 if (ret)
 688                         goto err_attach;
 689         }
 690         list_add(&attach->node, &dmabuf->attachments);
 691 
 692         mutex_unlock(&dmabuf->lock);
 693 
 694         return attach;
 695 
 696 err_attach:
 697         kfree(attach);
 698         mutex_unlock(&dmabuf->lock);
 699         return ERR_PTR(ret);
 700 }
 701 EXPORT_SYMBOL_GPL(dma_buf_attach);
 702 
 703 /**
 704  * dma_buf_detach - Remove the given attachment from dmabuf's attachments list;
 705  * optionally calls detach() of dma_buf_ops for device-specific detach
 706  * @dmabuf:     [in]    buffer to detach from.
 707  * @attach:     [in]    attachment to be detached; is free'd after this call.
 708  *
 709  * Clean up a device attachment obtained by calling dma_buf_attach().
 710  */
 711 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
 712 {
 713         if (WARN_ON(!dmabuf || !attach))
 714                 return;
 715 
 716         if (attach->sgt)
 717                 dmabuf->ops->unmap_dma_buf(attach, attach->sgt, attach->dir);
 718 
 719         mutex_lock(&dmabuf->lock);
 720         list_del(&attach->node);
 721         if (dmabuf->ops->detach)
 722                 dmabuf->ops->detach(dmabuf, attach);
 723 
 724         mutex_unlock(&dmabuf->lock);
 725         kfree(attach);
 726 }
 727 EXPORT_SYMBOL_GPL(dma_buf_detach);
 728 
 729 /**
 730  * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
 731  * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
 732  * dma_buf_ops.
 733  * @attach:     [in]    attachment whose scatterlist is to be returned
 734  * @direction:  [in]    direction of DMA transfer
 735  *
 736  * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
 737  * on error. May return -EINTR if it is interrupted by a signal.
 738  *
 739  * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
 740  * the underlying backing storage is pinned for as long as a mapping exists,
 741  * therefore users/importers should not hold onto a mapping for undue amounts of
 742  * time.
 743  */
 744 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach,
 745                                         enum dma_data_direction direction)
 746 {
 747         struct sg_table *sg_table;
 748 
 749         might_sleep();
 750 
 751         if (WARN_ON(!attach || !attach->dmabuf))
 752                 return ERR_PTR(-EINVAL);
 753 
 754         if (attach->sgt) {
 755                 /*
 756                  * Two mappings with different directions for the same
 757                  * attachment are not allowed.
 758                  */
 759                 if (attach->dir != direction &&
 760                     attach->dir != DMA_BIDIRECTIONAL)
 761                         return ERR_PTR(-EBUSY);
 762 
 763                 return attach->sgt;
 764         }
 765 
 766         sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
 767         if (!sg_table)
 768                 sg_table = ERR_PTR(-ENOMEM);
 769 
 770         if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) {
 771                 attach->sgt = sg_table;
 772                 attach->dir = direction;
 773         }
 774 
 775         return sg_table;
 776 }
 777 EXPORT_SYMBOL_GPL(dma_buf_map_attachment);
 778 
 779 /**
 780  * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
 781  * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
 782  * dma_buf_ops.
 783  * @attach:     [in]    attachment to unmap buffer from
 784  * @sg_table:   [in]    scatterlist info of the buffer to unmap
 785  * @direction:  [in]    direction of DMA transfer
 786  *
 787  * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
 788  */
 789 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
 790                                 struct sg_table *sg_table,
 791                                 enum dma_data_direction direction)
 792 {
 793         might_sleep();
 794 
 795         if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
 796                 return;
 797 
 798         if (attach->sgt == sg_table)
 799                 return;
 800 
 801         attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction);
 802 }
 803 EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment);
 804 
 805 /**
 806  * DOC: cpu access
 807  *
 808  * There are mutliple reasons for supporting CPU access to a dma buffer object:
 809  *
 810  * - Fallback operations in the kernel, for example when a device is connected
 811  *   over USB and the kernel needs to shuffle the data around first before
 812  *   sending it away. Cache coherency is handled by braketing any transactions
 813  *   with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
 814  *   access.
 815  *
 816  *   To support dma_buf objects residing in highmem cpu access is page-based
 817  *   using an api similar to kmap. Accessing a dma_buf is done in aligned chunks
 818  *   of PAGE_SIZE size. Before accessing a chunk it needs to be mapped, which
 819  *   returns a pointer in kernel virtual address space. Afterwards the chunk
 820  *   needs to be unmapped again. There is no limit on how often a given chunk
 821  *   can be mapped and unmapped, i.e. the importer does not need to call
 822  *   begin_cpu_access again before mapping the same chunk again.
 823  *
 824  *   Interfaces::
 825  *      void \*dma_buf_kmap(struct dma_buf \*, unsigned long);
 826  *      void dma_buf_kunmap(struct dma_buf \*, unsigned long, void \*);
 827  *
 828  *   Implementing the functions is optional for exporters and for importers all
 829  *   the restrictions of using kmap apply.
 830  *
 831  *   dma_buf kmap calls outside of the range specified in begin_cpu_access are
 832  *   undefined. If the range is not PAGE_SIZE aligned, kmap needs to succeed on
 833  *   the partial chunks at the beginning and end but may return stale or bogus
 834  *   data outside of the range (in these partial chunks).
 835  *
 836  *   For some cases the overhead of kmap can be too high, a vmap interface
 837  *   is introduced. This interface should be used very carefully, as vmalloc
 838  *   space is a limited resources on many architectures.
 839  *
 840  *   Interfaces::
 841  *      void \*dma_buf_vmap(struct dma_buf \*dmabuf)
 842  *      void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr)
 843  *
 844  *   The vmap call can fail if there is no vmap support in the exporter, or if
 845  *   it runs out of vmalloc space. Fallback to kmap should be implemented. Note
 846  *   that the dma-buf layer keeps a reference count for all vmap access and
 847  *   calls down into the exporter's vmap function only when no vmapping exists,
 848  *   and only unmaps it once. Protection against concurrent vmap/vunmap calls is
 849  *   provided by taking the dma_buf->lock mutex.
 850  *
 851  * - For full compatibility on the importer side with existing userspace
 852  *   interfaces, which might already support mmap'ing buffers. This is needed in
 853  *   many processing pipelines (e.g. feeding a software rendered image into a
 854  *   hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
 855  *   framework already supported this and for DMA buffer file descriptors to
 856  *   replace ION buffers mmap support was needed.
 857  *
 858  *   There is no special interfaces, userspace simply calls mmap on the dma-buf
 859  *   fd. But like for CPU access there's a need to braket the actual access,
 860  *   which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
 861  *   DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
 862  *   be restarted.
 863  *
 864  *   Some systems might need some sort of cache coherency management e.g. when
 865  *   CPU and GPU domains are being accessed through dma-buf at the same time.
 866  *   To circumvent this problem there are begin/end coherency markers, that
 867  *   forward directly to existing dma-buf device drivers vfunc hooks. Userspace
 868  *   can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
 869  *   sequence would be used like following:
 870  *
 871  *     - mmap dma-buf fd
 872  *     - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
 873  *       to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
 874  *       want (with the new data being consumed by say the GPU or the scanout
 875  *       device)
 876  *     - munmap once you don't need the buffer any more
 877  *
 878  *    For correctness and optimal performance, it is always required to use
 879  *    SYNC_START and SYNC_END before and after, respectively, when accessing the
 880  *    mapped address. Userspace cannot rely on coherent access, even when there
 881  *    are systems where it just works without calling these ioctls.
 882  *
 883  * - And as a CPU fallback in userspace processing pipelines.
 884  *
 885  *   Similar to the motivation for kernel cpu access it is again important that
 886  *   the userspace code of a given importing subsystem can use the same
 887  *   interfaces with a imported dma-buf buffer object as with a native buffer
 888  *   object. This is especially important for drm where the userspace part of
 889  *   contemporary OpenGL, X, and other drivers is huge, and reworking them to
 890  *   use a different way to mmap a buffer rather invasive.
 891  *
 892  *   The assumption in the current dma-buf interfaces is that redirecting the
 893  *   initial mmap is all that's needed. A survey of some of the existing
 894  *   subsystems shows that no driver seems to do any nefarious thing like
 895  *   syncing up with outstanding asynchronous processing on the device or
 896  *   allocating special resources at fault time. So hopefully this is good
 897  *   enough, since adding interfaces to intercept pagefaults and allow pte
 898  *   shootdowns would increase the complexity quite a bit.
 899  *
 900  *   Interface::
 901  *      int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
 902  *                     unsigned long);
 903  *
 904  *   If the importing subsystem simply provides a special-purpose mmap call to
 905  *   set up a mapping in userspace, calling do_mmap with dma_buf->file will
 906  *   equally achieve that for a dma-buf object.
 907  */
 908 
 909 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
 910                                       enum dma_data_direction direction)
 911 {
 912         bool write = (direction == DMA_BIDIRECTIONAL ||
 913                       direction == DMA_TO_DEVICE);
 914         struct dma_resv *resv = dmabuf->resv;
 915         long ret;
 916 
 917         /* Wait on any implicit rendering fences */
 918         ret = dma_resv_wait_timeout_rcu(resv, write, true,
 919                                                   MAX_SCHEDULE_TIMEOUT);
 920         if (ret < 0)
 921                 return ret;
 922 
 923         return 0;
 924 }
 925 
 926 /**
 927  * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
 928  * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
 929  * preparations. Coherency is only guaranteed in the specified range for the
 930  * specified access direction.
 931  * @dmabuf:     [in]    buffer to prepare cpu access for.
 932  * @direction:  [in]    length of range for cpu access.
 933  *
 934  * After the cpu access is complete the caller should call
 935  * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is
 936  * it guaranteed to be coherent with other DMA access.
 937  *
 938  * Can return negative error values, returns 0 on success.
 939  */
 940 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
 941                              enum dma_data_direction direction)
 942 {
 943         int ret = 0;
 944 
 945         if (WARN_ON(!dmabuf))
 946                 return -EINVAL;
 947 
 948         if (dmabuf->ops->begin_cpu_access)
 949                 ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
 950 
 951         /* Ensure that all fences are waited upon - but we first allow
 952          * the native handler the chance to do so more efficiently if it
 953          * chooses. A double invocation here will be reasonably cheap no-op.
 954          */
 955         if (ret == 0)
 956                 ret = __dma_buf_begin_cpu_access(dmabuf, direction);
 957 
 958         return ret;
 959 }
 960 EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access);
 961 
 962 /**
 963  * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
 964  * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
 965  * actions. Coherency is only guaranteed in the specified range for the
 966  * specified access direction.
 967  * @dmabuf:     [in]    buffer to complete cpu access for.
 968  * @direction:  [in]    length of range for cpu access.
 969  *
 970  * This terminates CPU access started with dma_buf_begin_cpu_access().
 971  *
 972  * Can return negative error values, returns 0 on success.
 973  */
 974 int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
 975                            enum dma_data_direction direction)
 976 {
 977         int ret = 0;
 978 
 979         WARN_ON(!dmabuf);
 980 
 981         if (dmabuf->ops->end_cpu_access)
 982                 ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
 983 
 984         return ret;
 985 }
 986 EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access);
 987 
 988 /**
 989  * dma_buf_kmap - Map a page of the buffer object into kernel address space. The
 990  * same restrictions as for kmap and friends apply.
 991  * @dmabuf:     [in]    buffer to map page from.
 992  * @page_num:   [in]    page in PAGE_SIZE units to map.
 993  *
 994  * This call must always succeed, any necessary preparations that might fail
 995  * need to be done in begin_cpu_access.
 996  */
 997 void *dma_buf_kmap(struct dma_buf *dmabuf, unsigned long page_num)
 998 {
 999         WARN_ON(!dmabuf);
1000 
1001         if (!dmabuf->ops->map)
1002                 return NULL;
1003         return dmabuf->ops->map(dmabuf, page_num);
1004 }
1005 EXPORT_SYMBOL_GPL(dma_buf_kmap);
1006 
1007 /**
1008  * dma_buf_kunmap - Unmap a page obtained by dma_buf_kmap.
1009  * @dmabuf:     [in]    buffer to unmap page from.
1010  * @page_num:   [in]    page in PAGE_SIZE units to unmap.
1011  * @vaddr:      [in]    kernel space pointer obtained from dma_buf_kmap.
1012  *
1013  * This call must always succeed.
1014  */
1015 void dma_buf_kunmap(struct dma_buf *dmabuf, unsigned long page_num,
1016                     void *vaddr)
1017 {
1018         WARN_ON(!dmabuf);
1019 
1020         if (dmabuf->ops->unmap)
1021                 dmabuf->ops->unmap(dmabuf, page_num, vaddr);
1022 }
1023 EXPORT_SYMBOL_GPL(dma_buf_kunmap);
1024 
1025 
1026 /**
1027  * dma_buf_mmap - Setup up a userspace mmap with the given vma
1028  * @dmabuf:     [in]    buffer that should back the vma
1029  * @vma:        [in]    vma for the mmap
1030  * @pgoff:      [in]    offset in pages where this mmap should start within the
1031  *                      dma-buf buffer.
1032  *
1033  * This function adjusts the passed in vma so that it points at the file of the
1034  * dma_buf operation. It also adjusts the starting pgoff and does bounds
1035  * checking on the size of the vma. Then it calls the exporters mmap function to
1036  * set up the mapping.
1037  *
1038  * Can return negative error values, returns 0 on success.
1039  */
1040 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma,
1041                  unsigned long pgoff)
1042 {
1043         struct file *oldfile;
1044         int ret;
1045 
1046         if (WARN_ON(!dmabuf || !vma))
1047                 return -EINVAL;
1048 
1049         /* check if buffer supports mmap */
1050         if (!dmabuf->ops->mmap)
1051                 return -EINVAL;
1052 
1053         /* check for offset overflow */
1054         if (pgoff + vma_pages(vma) < pgoff)
1055                 return -EOVERFLOW;
1056 
1057         /* check for overflowing the buffer's size */
1058         if (pgoff + vma_pages(vma) >
1059             dmabuf->size >> PAGE_SHIFT)
1060                 return -EINVAL;
1061 
1062         /* readjust the vma */
1063         get_file(dmabuf->file);
1064         oldfile = vma->vm_file;
1065         vma->vm_file = dmabuf->file;
1066         vma->vm_pgoff = pgoff;
1067 
1068         ret = dmabuf->ops->mmap(dmabuf, vma);
1069         if (ret) {
1070                 /* restore old parameters on failure */
1071                 vma->vm_file = oldfile;
1072                 fput(dmabuf->file);
1073         } else {
1074                 if (oldfile)
1075                         fput(oldfile);
1076         }
1077         return ret;
1078 
1079 }
1080 EXPORT_SYMBOL_GPL(dma_buf_mmap);
1081 
1082 /**
1083  * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
1084  * address space. Same restrictions as for vmap and friends apply.
1085  * @dmabuf:     [in]    buffer to vmap
1086  *
1087  * This call may fail due to lack of virtual mapping address space.
1088  * These calls are optional in drivers. The intended use for them
1089  * is for mapping objects linear in kernel space for high use objects.
1090  * Please attempt to use kmap/kunmap before thinking about these interfaces.
1091  *
1092  * Returns NULL on error.
1093  */
1094 void *dma_buf_vmap(struct dma_buf *dmabuf)
1095 {
1096         void *ptr;
1097 
1098         if (WARN_ON(!dmabuf))
1099                 return NULL;
1100 
1101         if (!dmabuf->ops->vmap)
1102                 return NULL;
1103 
1104         mutex_lock(&dmabuf->lock);
1105         if (dmabuf->vmapping_counter) {
1106                 dmabuf->vmapping_counter++;
1107                 BUG_ON(!dmabuf->vmap_ptr);
1108                 ptr = dmabuf->vmap_ptr;
1109                 goto out_unlock;
1110         }
1111 
1112         BUG_ON(dmabuf->vmap_ptr);
1113 
1114         ptr = dmabuf->ops->vmap(dmabuf);
1115         if (WARN_ON_ONCE(IS_ERR(ptr)))
1116                 ptr = NULL;
1117         if (!ptr)
1118                 goto out_unlock;
1119 
1120         dmabuf->vmap_ptr = ptr;
1121         dmabuf->vmapping_counter = 1;
1122 
1123 out_unlock:
1124         mutex_unlock(&dmabuf->lock);
1125         return ptr;
1126 }
1127 EXPORT_SYMBOL_GPL(dma_buf_vmap);
1128 
1129 /**
1130  * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1131  * @dmabuf:     [in]    buffer to vunmap
1132  * @vaddr:      [in]    vmap to vunmap
1133  */
1134 void dma_buf_vunmap(struct dma_buf *dmabuf, void *vaddr)
1135 {
1136         if (WARN_ON(!dmabuf))
1137                 return;
1138 
1139         BUG_ON(!dmabuf->vmap_ptr);
1140         BUG_ON(dmabuf->vmapping_counter == 0);
1141         BUG_ON(dmabuf->vmap_ptr != vaddr);
1142 
1143         mutex_lock(&dmabuf->lock);
1144         if (--dmabuf->vmapping_counter == 0) {
1145                 if (dmabuf->ops->vunmap)
1146                         dmabuf->ops->vunmap(dmabuf, vaddr);
1147                 dmabuf->vmap_ptr = NULL;
1148         }
1149         mutex_unlock(&dmabuf->lock);
1150 }
1151 EXPORT_SYMBOL_GPL(dma_buf_vunmap);
1152 
1153 #ifdef CONFIG_DEBUG_FS
1154 static int dma_buf_debug_show(struct seq_file *s, void *unused)
1155 {
1156         int ret;
1157         struct dma_buf *buf_obj;
1158         struct dma_buf_attachment *attach_obj;
1159         struct dma_resv *robj;
1160         struct dma_resv_list *fobj;
1161         struct dma_fence *fence;
1162         unsigned seq;
1163         int count = 0, attach_count, shared_count, i;
1164         size_t size = 0;
1165 
1166         ret = mutex_lock_interruptible(&db_list.lock);
1167 
1168         if (ret)
1169                 return ret;
1170 
1171         seq_puts(s, "\nDma-buf Objects:\n");
1172         seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\n",
1173                    "size", "flags", "mode", "count", "ino");
1174 
1175         list_for_each_entry(buf_obj, &db_list.head, list_node) {
1176                 ret = mutex_lock_interruptible(&buf_obj->lock);
1177 
1178                 if (ret) {
1179                         seq_puts(s,
1180                                  "\tERROR locking buffer object: skipping\n");
1181                         continue;
1182                 }
1183 
1184                 seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n",
1185                                 buf_obj->size,
1186                                 buf_obj->file->f_flags, buf_obj->file->f_mode,
1187                                 file_count(buf_obj->file),
1188                                 buf_obj->exp_name,
1189                                 file_inode(buf_obj->file)->i_ino,
1190                                 buf_obj->name ?: "");
1191 
1192                 robj = buf_obj->resv;
1193                 while (true) {
1194                         seq = read_seqcount_begin(&robj->seq);
1195                         rcu_read_lock();
1196                         fobj = rcu_dereference(robj->fence);
1197                         shared_count = fobj ? fobj->shared_count : 0;
1198                         fence = rcu_dereference(robj->fence_excl);
1199                         if (!read_seqcount_retry(&robj->seq, seq))
1200                                 break;
1201                         rcu_read_unlock();
1202                 }
1203 
1204                 if (fence)
1205                         seq_printf(s, "\tExclusive fence: %s %s %ssignalled\n",
1206                                    fence->ops->get_driver_name(fence),
1207                                    fence->ops->get_timeline_name(fence),
1208                                    dma_fence_is_signaled(fence) ? "" : "un");
1209                 for (i = 0; i < shared_count; i++) {
1210                         fence = rcu_dereference(fobj->shared[i]);
1211                         if (!dma_fence_get_rcu(fence))
1212                                 continue;
1213                         seq_printf(s, "\tShared fence: %s %s %ssignalled\n",
1214                                    fence->ops->get_driver_name(fence),
1215                                    fence->ops->get_timeline_name(fence),
1216                                    dma_fence_is_signaled(fence) ? "" : "un");
1217                         dma_fence_put(fence);
1218                 }
1219                 rcu_read_unlock();
1220 
1221                 seq_puts(s, "\tAttached Devices:\n");
1222                 attach_count = 0;
1223 
1224                 list_for_each_entry(attach_obj, &buf_obj->attachments, node) {
1225                         seq_printf(s, "\t%s\n", dev_name(attach_obj->dev));
1226                         attach_count++;
1227                 }
1228 
1229                 seq_printf(s, "Total %d devices attached\n\n",
1230                                 attach_count);
1231 
1232                 count++;
1233                 size += buf_obj->size;
1234                 mutex_unlock(&buf_obj->lock);
1235         }
1236 
1237         seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);
1238 
1239         mutex_unlock(&db_list.lock);
1240         return 0;
1241 }
1242 
1243 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug);
1244 
1245 static struct dentry *dma_buf_debugfs_dir;
1246 
1247 static int dma_buf_init_debugfs(void)
1248 {
1249         struct dentry *d;
1250         int err = 0;
1251 
1252         d = debugfs_create_dir("dma_buf", NULL);
1253         if (IS_ERR(d))
1254                 return PTR_ERR(d);
1255 
1256         dma_buf_debugfs_dir = d;
1257 
1258         d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir,
1259                                 NULL, &dma_buf_debug_fops);
1260         if (IS_ERR(d)) {
1261                 pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1262                 debugfs_remove_recursive(dma_buf_debugfs_dir);
1263                 dma_buf_debugfs_dir = NULL;
1264                 err = PTR_ERR(d);
1265         }
1266 
1267         return err;
1268 }
1269 
1270 static void dma_buf_uninit_debugfs(void)
1271 {
1272         debugfs_remove_recursive(dma_buf_debugfs_dir);
1273 }
1274 #else
1275 static inline int dma_buf_init_debugfs(void)
1276 {
1277         return 0;
1278 }
1279 static inline void dma_buf_uninit_debugfs(void)
1280 {
1281 }
1282 #endif
1283 
1284 static int __init dma_buf_init(void)
1285 {
1286         dma_buf_mnt = kern_mount(&dma_buf_fs_type);
1287         if (IS_ERR(dma_buf_mnt))
1288                 return PTR_ERR(dma_buf_mnt);
1289 
1290         mutex_init(&db_list.lock);
1291         INIT_LIST_HEAD(&db_list.head);
1292         dma_buf_init_debugfs();
1293         return 0;
1294 }
1295 subsys_initcall(dma_buf_init);
1296 
1297 static void __exit dma_buf_deinit(void)
1298 {
1299         dma_buf_uninit_debugfs();
1300         kern_unmount(dma_buf_mnt);
1301 }
1302 __exitcall(dma_buf_deinit);

/* [<][>][^][v][top][bottom][index][help] */