root/drivers/auxdisplay/panel.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. lcd_get_bits
  2. set_data_bits
  3. set_ctrl_bits
  4. panel_set_bits
  5. pin_to_bits
  6. lcd_send_serial
  7. lcd_backlight
  8. lcd_write_cmd_s
  9. lcd_write_data_s
  10. lcd_write_cmd_p8
  11. lcd_write_data_p8
  12. lcd_write_cmd_tilcd
  13. lcd_write_data_tilcd
  14. lcd_clear_fast_s
  15. lcd_clear_fast_p8
  16. lcd_clear_fast_tilcd
  17. lcd_init
  18. keypad_read
  19. keypad_open
  20. keypad_release
  21. keypad_send_key
  22. phys_scan_contacts
  23. input_state_high
  24. input_state_falling
  25. panel_process_inputs
  26. panel_scan_timer
  27. init_scan_timer
  28. input_name2mask
  29. panel_bind_key
  30. panel_bind_callback
  31. keypad_init
  32. panel_attach
  33. panel_detach
  34. panel_init_module
  35. panel_cleanup_module

   1 // SPDX-License-Identifier: GPL-2.0+
   2 /*
   3  * Front panel driver for Linux
   4  * Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu>
   5  * Copyright (C) 2016-2017 Glider bvba
   6  *
   7  * This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad)
   8  * connected to a parallel printer port.
   9  *
  10  * The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit
  11  * serial module compatible with Samsung's KS0074. The pins may be connected in
  12  * any combination, everything is programmable.
  13  *
  14  * The keypad consists in a matrix of push buttons connecting input pins to
  15  * data output pins or to the ground. The combinations have to be hard-coded
  16  * in the driver, though several profiles exist and adding new ones is easy.
  17  *
  18  * Several profiles are provided for commonly found LCD+keypad modules on the
  19  * market, such as those found in Nexcom's appliances.
  20  *
  21  * FIXME:
  22  *      - the initialization/deinitialization process is very dirty and should
  23  *        be rewritten. It may even be buggy.
  24  *
  25  * TODO:
  26  *      - document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs)
  27  *      - make the LCD a part of a virtual screen of Vx*Vy
  28  *      - make the inputs list smp-safe
  29  *      - change the keyboard to a double mapping : signals -> key_id -> values
  30  *        so that applications can change values without knowing signals
  31  *
  32  */
  33 
  34 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  35 
  36 #include <linux/module.h>
  37 
  38 #include <linux/types.h>
  39 #include <linux/errno.h>
  40 #include <linux/signal.h>
  41 #include <linux/sched.h>
  42 #include <linux/spinlock.h>
  43 #include <linux/interrupt.h>
  44 #include <linux/miscdevice.h>
  45 #include <linux/slab.h>
  46 #include <linux/ioport.h>
  47 #include <linux/fcntl.h>
  48 #include <linux/init.h>
  49 #include <linux/delay.h>
  50 #include <linux/kernel.h>
  51 #include <linux/ctype.h>
  52 #include <linux/parport.h>
  53 #include <linux/list.h>
  54 
  55 #include <linux/io.h>
  56 #include <linux/uaccess.h>
  57 
  58 #include "charlcd.h"
  59 
  60 #define KEYPAD_MINOR            185
  61 
  62 #define LCD_MAXBYTES            256     /* max burst write */
  63 
  64 #define KEYPAD_BUFFER           64
  65 
  66 /* poll the keyboard this every second */
  67 #define INPUT_POLL_TIME         (HZ / 50)
  68 /* a key starts to repeat after this times INPUT_POLL_TIME */
  69 #define KEYPAD_REP_START        (10)
  70 /* a key repeats this times INPUT_POLL_TIME */
  71 #define KEYPAD_REP_DELAY        (2)
  72 
  73 /* converts an r_str() input to an active high, bits string : 000BAOSE */
  74 #define PNL_PINPUT(a)           ((((unsigned char)(a)) ^ 0x7F) >> 3)
  75 
  76 #define PNL_PBUSY               0x80    /* inverted input, active low */
  77 #define PNL_PACK                0x40    /* direct input, active low */
  78 #define PNL_POUTPA              0x20    /* direct input, active high */
  79 #define PNL_PSELECD             0x10    /* direct input, active high */
  80 #define PNL_PERRORP             0x08    /* direct input, active low */
  81 
  82 #define PNL_PBIDIR              0x20    /* bi-directional ports */
  83 /* high to read data in or-ed with data out */
  84 #define PNL_PINTEN              0x10
  85 #define PNL_PSELECP             0x08    /* inverted output, active low */
  86 #define PNL_PINITP              0x04    /* direct output, active low */
  87 #define PNL_PAUTOLF             0x02    /* inverted output, active low */
  88 #define PNL_PSTROBE             0x01    /* inverted output */
  89 
  90 #define PNL_PD0                 0x01
  91 #define PNL_PD1                 0x02
  92 #define PNL_PD2                 0x04
  93 #define PNL_PD3                 0x08
  94 #define PNL_PD4                 0x10
  95 #define PNL_PD5                 0x20
  96 #define PNL_PD6                 0x40
  97 #define PNL_PD7                 0x80
  98 
  99 #define PIN_NONE                0
 100 #define PIN_STROBE              1
 101 #define PIN_D0                  2
 102 #define PIN_D1                  3
 103 #define PIN_D2                  4
 104 #define PIN_D3                  5
 105 #define PIN_D4                  6
 106 #define PIN_D5                  7
 107 #define PIN_D6                  8
 108 #define PIN_D7                  9
 109 #define PIN_AUTOLF              14
 110 #define PIN_INITP               16
 111 #define PIN_SELECP              17
 112 #define PIN_NOT_SET             127
 113 
 114 #define NOT_SET                 -1
 115 
 116 /* macros to simplify use of the parallel port */
 117 #define r_ctr(x)        (parport_read_control((x)->port))
 118 #define r_dtr(x)        (parport_read_data((x)->port))
 119 #define r_str(x)        (parport_read_status((x)->port))
 120 #define w_ctr(x, y)     (parport_write_control((x)->port, (y)))
 121 #define w_dtr(x, y)     (parport_write_data((x)->port, (y)))
 122 
 123 /* this defines which bits are to be used and which ones to be ignored */
 124 /* logical or of the output bits involved in the scan matrix */
 125 static __u8 scan_mask_o;
 126 /* logical or of the input bits involved in the scan matrix */
 127 static __u8 scan_mask_i;
 128 
 129 enum input_type {
 130         INPUT_TYPE_STD,
 131         INPUT_TYPE_KBD,
 132 };
 133 
 134 enum input_state {
 135         INPUT_ST_LOW,
 136         INPUT_ST_RISING,
 137         INPUT_ST_HIGH,
 138         INPUT_ST_FALLING,
 139 };
 140 
 141 struct logical_input {
 142         struct list_head list;
 143         __u64 mask;
 144         __u64 value;
 145         enum input_type type;
 146         enum input_state state;
 147         __u8 rise_time, fall_time;
 148         __u8 rise_timer, fall_timer, high_timer;
 149 
 150         union {
 151                 struct {        /* valid when type == INPUT_TYPE_STD */
 152                         void (*press_fct)(int);
 153                         void (*release_fct)(int);
 154                         int press_data;
 155                         int release_data;
 156                 } std;
 157                 struct {        /* valid when type == INPUT_TYPE_KBD */
 158                         char press_str[sizeof(void *) + sizeof(int)] __nonstring;
 159                         char repeat_str[sizeof(void *) + sizeof(int)] __nonstring;
 160                         char release_str[sizeof(void *) + sizeof(int)] __nonstring;
 161                 } kbd;
 162         } u;
 163 };
 164 
 165 static LIST_HEAD(logical_inputs);       /* list of all defined logical inputs */
 166 
 167 /* physical contacts history
 168  * Physical contacts are a 45 bits string of 9 groups of 5 bits each.
 169  * The 8 lower groups correspond to output bits 0 to 7, and the 9th group
 170  * corresponds to the ground.
 171  * Within each group, bits are stored in the same order as read on the port :
 172  * BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0).
 173  * So, each __u64 is represented like this :
 174  * 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE
 175  * <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00>
 176  */
 177 
 178 /* what has just been read from the I/O ports */
 179 static __u64 phys_read;
 180 /* previous phys_read */
 181 static __u64 phys_read_prev;
 182 /* stabilized phys_read (phys_read|phys_read_prev) */
 183 static __u64 phys_curr;
 184 /* previous phys_curr */
 185 static __u64 phys_prev;
 186 /* 0 means that at least one logical signal needs be computed */
 187 static char inputs_stable;
 188 
 189 /* these variables are specific to the keypad */
 190 static struct {
 191         bool enabled;
 192 } keypad;
 193 
 194 static char keypad_buffer[KEYPAD_BUFFER];
 195 static int keypad_buflen;
 196 static int keypad_start;
 197 static char keypressed;
 198 static wait_queue_head_t keypad_read_wait;
 199 
 200 /* lcd-specific variables */
 201 static struct {
 202         bool enabled;
 203         bool initialized;
 204 
 205         int charset;
 206         int proto;
 207 
 208         /* TODO: use union here? */
 209         struct {
 210                 int e;
 211                 int rs;
 212                 int rw;
 213                 int cl;
 214                 int da;
 215                 int bl;
 216         } pins;
 217 
 218         struct charlcd *charlcd;
 219 } lcd;
 220 
 221 /* Needed only for init */
 222 static int selected_lcd_type = NOT_SET;
 223 
 224 /*
 225  * Bit masks to convert LCD signals to parallel port outputs.
 226  * _d_ are values for data port, _c_ are for control port.
 227  * [0] = signal OFF, [1] = signal ON, [2] = mask
 228  */
 229 #define BIT_CLR         0
 230 #define BIT_SET         1
 231 #define BIT_MSK         2
 232 #define BIT_STATES      3
 233 /*
 234  * one entry for each bit on the LCD
 235  */
 236 #define LCD_BIT_E       0
 237 #define LCD_BIT_RS      1
 238 #define LCD_BIT_RW      2
 239 #define LCD_BIT_BL      3
 240 #define LCD_BIT_CL      4
 241 #define LCD_BIT_DA      5
 242 #define LCD_BITS        6
 243 
 244 /*
 245  * each bit can be either connected to a DATA or CTRL port
 246  */
 247 #define LCD_PORT_C      0
 248 #define LCD_PORT_D      1
 249 #define LCD_PORTS       2
 250 
 251 static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES];
 252 
 253 /*
 254  * LCD protocols
 255  */
 256 #define LCD_PROTO_PARALLEL      0
 257 #define LCD_PROTO_SERIAL        1
 258 #define LCD_PROTO_TI_DA8XX_LCD  2
 259 
 260 /*
 261  * LCD character sets
 262  */
 263 #define LCD_CHARSET_NORMAL      0
 264 #define LCD_CHARSET_KS0074      1
 265 
 266 /*
 267  * LCD types
 268  */
 269 #define LCD_TYPE_NONE           0
 270 #define LCD_TYPE_CUSTOM         1
 271 #define LCD_TYPE_OLD            2
 272 #define LCD_TYPE_KS0074         3
 273 #define LCD_TYPE_HANTRONIX      4
 274 #define LCD_TYPE_NEXCOM         5
 275 
 276 /*
 277  * keypad types
 278  */
 279 #define KEYPAD_TYPE_NONE        0
 280 #define KEYPAD_TYPE_OLD         1
 281 #define KEYPAD_TYPE_NEW         2
 282 #define KEYPAD_TYPE_NEXCOM      3
 283 
 284 /*
 285  * panel profiles
 286  */
 287 #define PANEL_PROFILE_CUSTOM    0
 288 #define PANEL_PROFILE_OLD       1
 289 #define PANEL_PROFILE_NEW       2
 290 #define PANEL_PROFILE_HANTRONIX 3
 291 #define PANEL_PROFILE_NEXCOM    4
 292 #define PANEL_PROFILE_LARGE     5
 293 
 294 /*
 295  * Construct custom config from the kernel's configuration
 296  */
 297 #define DEFAULT_PARPORT         0
 298 #define DEFAULT_PROFILE         PANEL_PROFILE_LARGE
 299 #define DEFAULT_KEYPAD_TYPE     KEYPAD_TYPE_OLD
 300 #define DEFAULT_LCD_TYPE        LCD_TYPE_OLD
 301 #define DEFAULT_LCD_HEIGHT      2
 302 #define DEFAULT_LCD_WIDTH       40
 303 #define DEFAULT_LCD_BWIDTH      40
 304 #define DEFAULT_LCD_HWIDTH      64
 305 #define DEFAULT_LCD_CHARSET     LCD_CHARSET_NORMAL
 306 #define DEFAULT_LCD_PROTO       LCD_PROTO_PARALLEL
 307 
 308 #define DEFAULT_LCD_PIN_E       PIN_AUTOLF
 309 #define DEFAULT_LCD_PIN_RS      PIN_SELECP
 310 #define DEFAULT_LCD_PIN_RW      PIN_INITP
 311 #define DEFAULT_LCD_PIN_SCL     PIN_STROBE
 312 #define DEFAULT_LCD_PIN_SDA     PIN_D0
 313 #define DEFAULT_LCD_PIN_BL      PIN_NOT_SET
 314 
 315 #ifdef CONFIG_PANEL_PARPORT
 316 #undef DEFAULT_PARPORT
 317 #define DEFAULT_PARPORT CONFIG_PANEL_PARPORT
 318 #endif
 319 
 320 #ifdef CONFIG_PANEL_PROFILE
 321 #undef DEFAULT_PROFILE
 322 #define DEFAULT_PROFILE CONFIG_PANEL_PROFILE
 323 #endif
 324 
 325 #if DEFAULT_PROFILE == 0        /* custom */
 326 #ifdef CONFIG_PANEL_KEYPAD
 327 #undef DEFAULT_KEYPAD_TYPE
 328 #define DEFAULT_KEYPAD_TYPE CONFIG_PANEL_KEYPAD
 329 #endif
 330 
 331 #ifdef CONFIG_PANEL_LCD
 332 #undef DEFAULT_LCD_TYPE
 333 #define DEFAULT_LCD_TYPE CONFIG_PANEL_LCD
 334 #endif
 335 
 336 #ifdef CONFIG_PANEL_LCD_HEIGHT
 337 #undef DEFAULT_LCD_HEIGHT
 338 #define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT
 339 #endif
 340 
 341 #ifdef CONFIG_PANEL_LCD_WIDTH
 342 #undef DEFAULT_LCD_WIDTH
 343 #define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH
 344 #endif
 345 
 346 #ifdef CONFIG_PANEL_LCD_BWIDTH
 347 #undef DEFAULT_LCD_BWIDTH
 348 #define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH
 349 #endif
 350 
 351 #ifdef CONFIG_PANEL_LCD_HWIDTH
 352 #undef DEFAULT_LCD_HWIDTH
 353 #define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH
 354 #endif
 355 
 356 #ifdef CONFIG_PANEL_LCD_CHARSET
 357 #undef DEFAULT_LCD_CHARSET
 358 #define DEFAULT_LCD_CHARSET CONFIG_PANEL_LCD_CHARSET
 359 #endif
 360 
 361 #ifdef CONFIG_PANEL_LCD_PROTO
 362 #undef DEFAULT_LCD_PROTO
 363 #define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO
 364 #endif
 365 
 366 #ifdef CONFIG_PANEL_LCD_PIN_E
 367 #undef DEFAULT_LCD_PIN_E
 368 #define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E
 369 #endif
 370 
 371 #ifdef CONFIG_PANEL_LCD_PIN_RS
 372 #undef DEFAULT_LCD_PIN_RS
 373 #define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS
 374 #endif
 375 
 376 #ifdef CONFIG_PANEL_LCD_PIN_RW
 377 #undef DEFAULT_LCD_PIN_RW
 378 #define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW
 379 #endif
 380 
 381 #ifdef CONFIG_PANEL_LCD_PIN_SCL
 382 #undef DEFAULT_LCD_PIN_SCL
 383 #define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL
 384 #endif
 385 
 386 #ifdef CONFIG_PANEL_LCD_PIN_SDA
 387 #undef DEFAULT_LCD_PIN_SDA
 388 #define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA
 389 #endif
 390 
 391 #ifdef CONFIG_PANEL_LCD_PIN_BL
 392 #undef DEFAULT_LCD_PIN_BL
 393 #define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL
 394 #endif
 395 
 396 #endif /* DEFAULT_PROFILE == 0 */
 397 
 398 /* global variables */
 399 
 400 /* Device single-open policy control */
 401 static atomic_t keypad_available = ATOMIC_INIT(1);
 402 
 403 static struct pardevice *pprt;
 404 
 405 static int keypad_initialized;
 406 
 407 static DEFINE_SPINLOCK(pprt_lock);
 408 static struct timer_list scan_timer;
 409 
 410 MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver");
 411 
 412 static int parport = DEFAULT_PARPORT;
 413 module_param(parport, int, 0000);
 414 MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)");
 415 
 416 static int profile = DEFAULT_PROFILE;
 417 module_param(profile, int, 0000);
 418 MODULE_PARM_DESC(profile,
 419                  "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; "
 420                  "4=16x2 nexcom; default=40x2, old kp");
 421 
 422 static int keypad_type = NOT_SET;
 423 module_param(keypad_type, int, 0000);
 424 MODULE_PARM_DESC(keypad_type,
 425                  "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, 3=nexcom 4 keys");
 426 
 427 static int lcd_type = NOT_SET;
 428 module_param(lcd_type, int, 0000);
 429 MODULE_PARM_DESC(lcd_type,
 430                  "LCD type: 0=none, 1=compiled-in, 2=old, 3=serial ks0074, 4=hantronix, 5=nexcom");
 431 
 432 static int lcd_height = NOT_SET;
 433 module_param(lcd_height, int, 0000);
 434 MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD");
 435 
 436 static int lcd_width = NOT_SET;
 437 module_param(lcd_width, int, 0000);
 438 MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD");
 439 
 440 static int lcd_bwidth = NOT_SET;        /* internal buffer width (usually 40) */
 441 module_param(lcd_bwidth, int, 0000);
 442 MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)");
 443 
 444 static int lcd_hwidth = NOT_SET;        /* hardware buffer width (usually 64) */
 445 module_param(lcd_hwidth, int, 0000);
 446 MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)");
 447 
 448 static int lcd_charset = NOT_SET;
 449 module_param(lcd_charset, int, 0000);
 450 MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074");
 451 
 452 static int lcd_proto = NOT_SET;
 453 module_param(lcd_proto, int, 0000);
 454 MODULE_PARM_DESC(lcd_proto,
 455                  "LCD communication: 0=parallel (//), 1=serial, 2=TI LCD Interface");
 456 
 457 /*
 458  * These are the parallel port pins the LCD control signals are connected to.
 459  * Set this to 0 if the signal is not used. Set it to its opposite value
 460  * (negative) if the signal is negated. -MAXINT is used to indicate that the
 461  * pin has not been explicitly specified.
 462  *
 463  * WARNING! no check will be performed about collisions with keypad !
 464  */
 465 
 466 static int lcd_e_pin  = PIN_NOT_SET;
 467 module_param(lcd_e_pin, int, 0000);
 468 MODULE_PARM_DESC(lcd_e_pin,
 469                  "# of the // port pin connected to LCD 'E' signal, with polarity (-17..17)");
 470 
 471 static int lcd_rs_pin = PIN_NOT_SET;
 472 module_param(lcd_rs_pin, int, 0000);
 473 MODULE_PARM_DESC(lcd_rs_pin,
 474                  "# of the // port pin connected to LCD 'RS' signal, with polarity (-17..17)");
 475 
 476 static int lcd_rw_pin = PIN_NOT_SET;
 477 module_param(lcd_rw_pin, int, 0000);
 478 MODULE_PARM_DESC(lcd_rw_pin,
 479                  "# of the // port pin connected to LCD 'RW' signal, with polarity (-17..17)");
 480 
 481 static int lcd_cl_pin = PIN_NOT_SET;
 482 module_param(lcd_cl_pin, int, 0000);
 483 MODULE_PARM_DESC(lcd_cl_pin,
 484                  "# of the // port pin connected to serial LCD 'SCL' signal, with polarity (-17..17)");
 485 
 486 static int lcd_da_pin = PIN_NOT_SET;
 487 module_param(lcd_da_pin, int, 0000);
 488 MODULE_PARM_DESC(lcd_da_pin,
 489                  "# of the // port pin connected to serial LCD 'SDA' signal, with polarity (-17..17)");
 490 
 491 static int lcd_bl_pin = PIN_NOT_SET;
 492 module_param(lcd_bl_pin, int, 0000);
 493 MODULE_PARM_DESC(lcd_bl_pin,
 494                  "# of the // port pin connected to LCD backlight, with polarity (-17..17)");
 495 
 496 /* Deprecated module parameters - consider not using them anymore */
 497 
 498 static int lcd_enabled = NOT_SET;
 499 module_param(lcd_enabled, int, 0000);
 500 MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead");
 501 
 502 static int keypad_enabled = NOT_SET;
 503 module_param(keypad_enabled, int, 0000);
 504 MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead");
 505 
 506 /* for some LCD drivers (ks0074) we need a charset conversion table. */
 507 static const unsigned char lcd_char_conv_ks0074[256] = {
 508         /*          0|8   1|9   2|A   3|B   4|C   5|D   6|E   7|F */
 509         /* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
 510         /* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
 511         /* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
 512         /* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
 513         /* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27,
 514         /* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
 515         /* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
 516         /* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
 517         /* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
 518         /* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
 519         /* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
 520         /* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4,
 521         /* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
 522         /* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
 523         /* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
 524         /* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20,
 525         /* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
 526         /* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
 527         /* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
 528         /* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
 529         /* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f,
 530         /* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96,
 531         /* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd,
 532         /* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60,
 533         /* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9,
 534         /* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3,
 535         /* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78,
 536         /* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe,
 537         /* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8,
 538         /* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69,
 539         /* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25,
 540         /* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79,
 541 };
 542 
 543 static const char old_keypad_profile[][4][9] = {
 544         {"S0", "Left\n", "Left\n", ""},
 545         {"S1", "Down\n", "Down\n", ""},
 546         {"S2", "Up\n", "Up\n", ""},
 547         {"S3", "Right\n", "Right\n", ""},
 548         {"S4", "Esc\n", "Esc\n", ""},
 549         {"S5", "Ret\n", "Ret\n", ""},
 550         {"", "", "", ""}
 551 };
 552 
 553 /* signals, press, repeat, release */
 554 static const char new_keypad_profile[][4][9] = {
 555         {"S0", "Left\n", "Left\n", ""},
 556         {"S1", "Down\n", "Down\n", ""},
 557         {"S2", "Up\n", "Up\n", ""},
 558         {"S3", "Right\n", "Right\n", ""},
 559         {"S4s5", "", "Esc\n", "Esc\n"},
 560         {"s4S5", "", "Ret\n", "Ret\n"},
 561         {"S4S5", "Help\n", "", ""},
 562         /* add new signals above this line */
 563         {"", "", "", ""}
 564 };
 565 
 566 /* signals, press, repeat, release */
 567 static const char nexcom_keypad_profile[][4][9] = {
 568         {"a-p-e-", "Down\n", "Down\n", ""},
 569         {"a-p-E-", "Ret\n", "Ret\n", ""},
 570         {"a-P-E-", "Esc\n", "Esc\n", ""},
 571         {"a-P-e-", "Up\n", "Up\n", ""},
 572         /* add new signals above this line */
 573         {"", "", "", ""}
 574 };
 575 
 576 static const char (*keypad_profile)[4][9] = old_keypad_profile;
 577 
 578 static DECLARE_BITMAP(bits, LCD_BITS);
 579 
 580 static void lcd_get_bits(unsigned int port, int *val)
 581 {
 582         unsigned int bit, state;
 583 
 584         for (bit = 0; bit < LCD_BITS; bit++) {
 585                 state = test_bit(bit, bits) ? BIT_SET : BIT_CLR;
 586                 *val &= lcd_bits[port][bit][BIT_MSK];
 587                 *val |= lcd_bits[port][bit][state];
 588         }
 589 }
 590 
 591 /* sets data port bits according to current signals values */
 592 static int set_data_bits(void)
 593 {
 594         int val;
 595 
 596         val = r_dtr(pprt);
 597         lcd_get_bits(LCD_PORT_D, &val);
 598         w_dtr(pprt, val);
 599         return val;
 600 }
 601 
 602 /* sets ctrl port bits according to current signals values */
 603 static int set_ctrl_bits(void)
 604 {
 605         int val;
 606 
 607         val = r_ctr(pprt);
 608         lcd_get_bits(LCD_PORT_C, &val);
 609         w_ctr(pprt, val);
 610         return val;
 611 }
 612 
 613 /* sets ctrl & data port bits according to current signals values */
 614 static void panel_set_bits(void)
 615 {
 616         set_data_bits();
 617         set_ctrl_bits();
 618 }
 619 
 620 /*
 621  * Converts a parallel port pin (from -25 to 25) to data and control ports
 622  * masks, and data and control port bits. The signal will be considered
 623  * unconnected if it's on pin 0 or an invalid pin (<-25 or >25).
 624  *
 625  * Result will be used this way :
 626  *   out(dport, in(dport) & d_val[2] | d_val[signal_state])
 627  *   out(cport, in(cport) & c_val[2] | c_val[signal_state])
 628  */
 629 static void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val)
 630 {
 631         int d_bit, c_bit, inv;
 632 
 633         d_val[0] = 0;
 634         c_val[0] = 0;
 635         d_val[1] = 0;
 636         c_val[1] = 0;
 637         d_val[2] = 0xFF;
 638         c_val[2] = 0xFF;
 639 
 640         if (pin == 0)
 641                 return;
 642 
 643         inv = (pin < 0);
 644         if (inv)
 645                 pin = -pin;
 646 
 647         d_bit = 0;
 648         c_bit = 0;
 649 
 650         switch (pin) {
 651         case PIN_STROBE:        /* strobe, inverted */
 652                 c_bit = PNL_PSTROBE;
 653                 inv = !inv;
 654                 break;
 655         case PIN_D0...PIN_D7:   /* D0 - D7 = 2 - 9 */
 656                 d_bit = 1 << (pin - 2);
 657                 break;
 658         case PIN_AUTOLF:        /* autofeed, inverted */
 659                 c_bit = PNL_PAUTOLF;
 660                 inv = !inv;
 661                 break;
 662         case PIN_INITP:         /* init, direct */
 663                 c_bit = PNL_PINITP;
 664                 break;
 665         case PIN_SELECP:        /* select_in, inverted */
 666                 c_bit = PNL_PSELECP;
 667                 inv = !inv;
 668                 break;
 669         default:                /* unknown pin, ignore */
 670                 break;
 671         }
 672 
 673         if (c_bit) {
 674                 c_val[2] &= ~c_bit;
 675                 c_val[!inv] = c_bit;
 676         } else if (d_bit) {
 677                 d_val[2] &= ~d_bit;
 678                 d_val[!inv] = d_bit;
 679         }
 680 }
 681 
 682 /*
 683  * send a serial byte to the LCD panel. The caller is responsible for locking
 684  * if needed.
 685  */
 686 static void lcd_send_serial(int byte)
 687 {
 688         int bit;
 689 
 690         /*
 691          * the data bit is set on D0, and the clock on STROBE.
 692          * LCD reads D0 on STROBE's rising edge.
 693          */
 694         for (bit = 0; bit < 8; bit++) {
 695                 clear_bit(LCD_BIT_CL, bits);    /* CLK low */
 696                 panel_set_bits();
 697                 if (byte & 1) {
 698                         set_bit(LCD_BIT_DA, bits);
 699                 } else {
 700                         clear_bit(LCD_BIT_DA, bits);
 701                 }
 702 
 703                 panel_set_bits();
 704                 udelay(2);  /* maintain the data during 2 us before CLK up */
 705                 set_bit(LCD_BIT_CL, bits);      /* CLK high */
 706                 panel_set_bits();
 707                 udelay(1);  /* maintain the strobe during 1 us */
 708                 byte >>= 1;
 709         }
 710 }
 711 
 712 /* turn the backlight on or off */
 713 static void lcd_backlight(struct charlcd *charlcd, int on)
 714 {
 715         if (lcd.pins.bl == PIN_NONE)
 716                 return;
 717 
 718         /* The backlight is activated by setting the AUTOFEED line to +5V  */
 719         spin_lock_irq(&pprt_lock);
 720         if (on)
 721                 set_bit(LCD_BIT_BL, bits);
 722         else
 723                 clear_bit(LCD_BIT_BL, bits);
 724         panel_set_bits();
 725         spin_unlock_irq(&pprt_lock);
 726 }
 727 
 728 /* send a command to the LCD panel in serial mode */
 729 static void lcd_write_cmd_s(struct charlcd *charlcd, int cmd)
 730 {
 731         spin_lock_irq(&pprt_lock);
 732         lcd_send_serial(0x1F);  /* R/W=W, RS=0 */
 733         lcd_send_serial(cmd & 0x0F);
 734         lcd_send_serial((cmd >> 4) & 0x0F);
 735         udelay(40);             /* the shortest command takes at least 40 us */
 736         spin_unlock_irq(&pprt_lock);
 737 }
 738 
 739 /* send data to the LCD panel in serial mode */
 740 static void lcd_write_data_s(struct charlcd *charlcd, int data)
 741 {
 742         spin_lock_irq(&pprt_lock);
 743         lcd_send_serial(0x5F);  /* R/W=W, RS=1 */
 744         lcd_send_serial(data & 0x0F);
 745         lcd_send_serial((data >> 4) & 0x0F);
 746         udelay(40);             /* the shortest data takes at least 40 us */
 747         spin_unlock_irq(&pprt_lock);
 748 }
 749 
 750 /* send a command to the LCD panel in 8 bits parallel mode */
 751 static void lcd_write_cmd_p8(struct charlcd *charlcd, int cmd)
 752 {
 753         spin_lock_irq(&pprt_lock);
 754         /* present the data to the data port */
 755         w_dtr(pprt, cmd);
 756         udelay(20);     /* maintain the data during 20 us before the strobe */
 757 
 758         set_bit(LCD_BIT_E, bits);
 759         clear_bit(LCD_BIT_RS, bits);
 760         clear_bit(LCD_BIT_RW, bits);
 761         set_ctrl_bits();
 762 
 763         udelay(40);     /* maintain the strobe during 40 us */
 764 
 765         clear_bit(LCD_BIT_E, bits);
 766         set_ctrl_bits();
 767 
 768         udelay(120);    /* the shortest command takes at least 120 us */
 769         spin_unlock_irq(&pprt_lock);
 770 }
 771 
 772 /* send data to the LCD panel in 8 bits parallel mode */
 773 static void lcd_write_data_p8(struct charlcd *charlcd, int data)
 774 {
 775         spin_lock_irq(&pprt_lock);
 776         /* present the data to the data port */
 777         w_dtr(pprt, data);
 778         udelay(20);     /* maintain the data during 20 us before the strobe */
 779 
 780         set_bit(LCD_BIT_E, bits);
 781         set_bit(LCD_BIT_RS, bits);
 782         clear_bit(LCD_BIT_RW, bits);
 783         set_ctrl_bits();
 784 
 785         udelay(40);     /* maintain the strobe during 40 us */
 786 
 787         clear_bit(LCD_BIT_E, bits);
 788         set_ctrl_bits();
 789 
 790         udelay(45);     /* the shortest data takes at least 45 us */
 791         spin_unlock_irq(&pprt_lock);
 792 }
 793 
 794 /* send a command to the TI LCD panel */
 795 static void lcd_write_cmd_tilcd(struct charlcd *charlcd, int cmd)
 796 {
 797         spin_lock_irq(&pprt_lock);
 798         /* present the data to the control port */
 799         w_ctr(pprt, cmd);
 800         udelay(60);
 801         spin_unlock_irq(&pprt_lock);
 802 }
 803 
 804 /* send data to the TI LCD panel */
 805 static void lcd_write_data_tilcd(struct charlcd *charlcd, int data)
 806 {
 807         spin_lock_irq(&pprt_lock);
 808         /* present the data to the data port */
 809         w_dtr(pprt, data);
 810         udelay(60);
 811         spin_unlock_irq(&pprt_lock);
 812 }
 813 
 814 /* fills the display with spaces and resets X/Y */
 815 static void lcd_clear_fast_s(struct charlcd *charlcd)
 816 {
 817         int pos;
 818 
 819         spin_lock_irq(&pprt_lock);
 820         for (pos = 0; pos < charlcd->height * charlcd->hwidth; pos++) {
 821                 lcd_send_serial(0x5F);  /* R/W=W, RS=1 */
 822                 lcd_send_serial(' ' & 0x0F);
 823                 lcd_send_serial((' ' >> 4) & 0x0F);
 824                 /* the shortest data takes at least 40 us */
 825                 udelay(40);
 826         }
 827         spin_unlock_irq(&pprt_lock);
 828 }
 829 
 830 /* fills the display with spaces and resets X/Y */
 831 static void lcd_clear_fast_p8(struct charlcd *charlcd)
 832 {
 833         int pos;
 834 
 835         spin_lock_irq(&pprt_lock);
 836         for (pos = 0; pos < charlcd->height * charlcd->hwidth; pos++) {
 837                 /* present the data to the data port */
 838                 w_dtr(pprt, ' ');
 839 
 840                 /* maintain the data during 20 us before the strobe */
 841                 udelay(20);
 842 
 843                 set_bit(LCD_BIT_E, bits);
 844                 set_bit(LCD_BIT_RS, bits);
 845                 clear_bit(LCD_BIT_RW, bits);
 846                 set_ctrl_bits();
 847 
 848                 /* maintain the strobe during 40 us */
 849                 udelay(40);
 850 
 851                 clear_bit(LCD_BIT_E, bits);
 852                 set_ctrl_bits();
 853 
 854                 /* the shortest data takes at least 45 us */
 855                 udelay(45);
 856         }
 857         spin_unlock_irq(&pprt_lock);
 858 }
 859 
 860 /* fills the display with spaces and resets X/Y */
 861 static void lcd_clear_fast_tilcd(struct charlcd *charlcd)
 862 {
 863         int pos;
 864 
 865         spin_lock_irq(&pprt_lock);
 866         for (pos = 0; pos < charlcd->height * charlcd->hwidth; pos++) {
 867                 /* present the data to the data port */
 868                 w_dtr(pprt, ' ');
 869                 udelay(60);
 870         }
 871 
 872         spin_unlock_irq(&pprt_lock);
 873 }
 874 
 875 static const struct charlcd_ops charlcd_serial_ops = {
 876         .write_cmd      = lcd_write_cmd_s,
 877         .write_data     = lcd_write_data_s,
 878         .clear_fast     = lcd_clear_fast_s,
 879         .backlight      = lcd_backlight,
 880 };
 881 
 882 static const struct charlcd_ops charlcd_parallel_ops = {
 883         .write_cmd      = lcd_write_cmd_p8,
 884         .write_data     = lcd_write_data_p8,
 885         .clear_fast     = lcd_clear_fast_p8,
 886         .backlight      = lcd_backlight,
 887 };
 888 
 889 static const struct charlcd_ops charlcd_tilcd_ops = {
 890         .write_cmd      = lcd_write_cmd_tilcd,
 891         .write_data     = lcd_write_data_tilcd,
 892         .clear_fast     = lcd_clear_fast_tilcd,
 893         .backlight      = lcd_backlight,
 894 };
 895 
 896 /* initialize the LCD driver */
 897 static void lcd_init(void)
 898 {
 899         struct charlcd *charlcd;
 900 
 901         charlcd = charlcd_alloc(0);
 902         if (!charlcd)
 903                 return;
 904 
 905         /*
 906          * Init lcd struct with load-time values to preserve exact
 907          * current functionality (at least for now).
 908          */
 909         charlcd->height = lcd_height;
 910         charlcd->width = lcd_width;
 911         charlcd->bwidth = lcd_bwidth;
 912         charlcd->hwidth = lcd_hwidth;
 913 
 914         switch (selected_lcd_type) {
 915         case LCD_TYPE_OLD:
 916                 /* parallel mode, 8 bits */
 917                 lcd.proto = LCD_PROTO_PARALLEL;
 918                 lcd.charset = LCD_CHARSET_NORMAL;
 919                 lcd.pins.e = PIN_STROBE;
 920                 lcd.pins.rs = PIN_AUTOLF;
 921 
 922                 charlcd->width = 40;
 923                 charlcd->bwidth = 40;
 924                 charlcd->hwidth = 64;
 925                 charlcd->height = 2;
 926                 break;
 927         case LCD_TYPE_KS0074:
 928                 /* serial mode, ks0074 */
 929                 lcd.proto = LCD_PROTO_SERIAL;
 930                 lcd.charset = LCD_CHARSET_KS0074;
 931                 lcd.pins.bl = PIN_AUTOLF;
 932                 lcd.pins.cl = PIN_STROBE;
 933                 lcd.pins.da = PIN_D0;
 934 
 935                 charlcd->width = 16;
 936                 charlcd->bwidth = 40;
 937                 charlcd->hwidth = 16;
 938                 charlcd->height = 2;
 939                 break;
 940         case LCD_TYPE_NEXCOM:
 941                 /* parallel mode, 8 bits, generic */
 942                 lcd.proto = LCD_PROTO_PARALLEL;
 943                 lcd.charset = LCD_CHARSET_NORMAL;
 944                 lcd.pins.e = PIN_AUTOLF;
 945                 lcd.pins.rs = PIN_SELECP;
 946                 lcd.pins.rw = PIN_INITP;
 947 
 948                 charlcd->width = 16;
 949                 charlcd->bwidth = 40;
 950                 charlcd->hwidth = 64;
 951                 charlcd->height = 2;
 952                 break;
 953         case LCD_TYPE_CUSTOM:
 954                 /* customer-defined */
 955                 lcd.proto = DEFAULT_LCD_PROTO;
 956                 lcd.charset = DEFAULT_LCD_CHARSET;
 957                 /* default geometry will be set later */
 958                 break;
 959         case LCD_TYPE_HANTRONIX:
 960                 /* parallel mode, 8 bits, hantronix-like */
 961         default:
 962                 lcd.proto = LCD_PROTO_PARALLEL;
 963                 lcd.charset = LCD_CHARSET_NORMAL;
 964                 lcd.pins.e = PIN_STROBE;
 965                 lcd.pins.rs = PIN_SELECP;
 966 
 967                 charlcd->width = 16;
 968                 charlcd->bwidth = 40;
 969                 charlcd->hwidth = 64;
 970                 charlcd->height = 2;
 971                 break;
 972         }
 973 
 974         /* Overwrite with module params set on loading */
 975         if (lcd_height != NOT_SET)
 976                 charlcd->height = lcd_height;
 977         if (lcd_width != NOT_SET)
 978                 charlcd->width = lcd_width;
 979         if (lcd_bwidth != NOT_SET)
 980                 charlcd->bwidth = lcd_bwidth;
 981         if (lcd_hwidth != NOT_SET)
 982                 charlcd->hwidth = lcd_hwidth;
 983         if (lcd_charset != NOT_SET)
 984                 lcd.charset = lcd_charset;
 985         if (lcd_proto != NOT_SET)
 986                 lcd.proto = lcd_proto;
 987         if (lcd_e_pin != PIN_NOT_SET)
 988                 lcd.pins.e = lcd_e_pin;
 989         if (lcd_rs_pin != PIN_NOT_SET)
 990                 lcd.pins.rs = lcd_rs_pin;
 991         if (lcd_rw_pin != PIN_NOT_SET)
 992                 lcd.pins.rw = lcd_rw_pin;
 993         if (lcd_cl_pin != PIN_NOT_SET)
 994                 lcd.pins.cl = lcd_cl_pin;
 995         if (lcd_da_pin != PIN_NOT_SET)
 996                 lcd.pins.da = lcd_da_pin;
 997         if (lcd_bl_pin != PIN_NOT_SET)
 998                 lcd.pins.bl = lcd_bl_pin;
 999 
1000         /* this is used to catch wrong and default values */
1001         if (charlcd->width <= 0)
1002                 charlcd->width = DEFAULT_LCD_WIDTH;
1003         if (charlcd->bwidth <= 0)
1004                 charlcd->bwidth = DEFAULT_LCD_BWIDTH;
1005         if (charlcd->hwidth <= 0)
1006                 charlcd->hwidth = DEFAULT_LCD_HWIDTH;
1007         if (charlcd->height <= 0)
1008                 charlcd->height = DEFAULT_LCD_HEIGHT;
1009 
1010         if (lcd.proto == LCD_PROTO_SERIAL) {    /* SERIAL */
1011                 charlcd->ops = &charlcd_serial_ops;
1012 
1013                 if (lcd.pins.cl == PIN_NOT_SET)
1014                         lcd.pins.cl = DEFAULT_LCD_PIN_SCL;
1015                 if (lcd.pins.da == PIN_NOT_SET)
1016                         lcd.pins.da = DEFAULT_LCD_PIN_SDA;
1017 
1018         } else if (lcd.proto == LCD_PROTO_PARALLEL) {   /* PARALLEL */
1019                 charlcd->ops = &charlcd_parallel_ops;
1020 
1021                 if (lcd.pins.e == PIN_NOT_SET)
1022                         lcd.pins.e = DEFAULT_LCD_PIN_E;
1023                 if (lcd.pins.rs == PIN_NOT_SET)
1024                         lcd.pins.rs = DEFAULT_LCD_PIN_RS;
1025                 if (lcd.pins.rw == PIN_NOT_SET)
1026                         lcd.pins.rw = DEFAULT_LCD_PIN_RW;
1027         } else {
1028                 charlcd->ops = &charlcd_tilcd_ops;
1029         }
1030 
1031         if (lcd.pins.bl == PIN_NOT_SET)
1032                 lcd.pins.bl = DEFAULT_LCD_PIN_BL;
1033 
1034         if (lcd.pins.e == PIN_NOT_SET)
1035                 lcd.pins.e = PIN_NONE;
1036         if (lcd.pins.rs == PIN_NOT_SET)
1037                 lcd.pins.rs = PIN_NONE;
1038         if (lcd.pins.rw == PIN_NOT_SET)
1039                 lcd.pins.rw = PIN_NONE;
1040         if (lcd.pins.bl == PIN_NOT_SET)
1041                 lcd.pins.bl = PIN_NONE;
1042         if (lcd.pins.cl == PIN_NOT_SET)
1043                 lcd.pins.cl = PIN_NONE;
1044         if (lcd.pins.da == PIN_NOT_SET)
1045                 lcd.pins.da = PIN_NONE;
1046 
1047         if (lcd.charset == NOT_SET)
1048                 lcd.charset = DEFAULT_LCD_CHARSET;
1049 
1050         if (lcd.charset == LCD_CHARSET_KS0074)
1051                 charlcd->char_conv = lcd_char_conv_ks0074;
1052         else
1053                 charlcd->char_conv = NULL;
1054 
1055         pin_to_bits(lcd.pins.e, lcd_bits[LCD_PORT_D][LCD_BIT_E],
1056                     lcd_bits[LCD_PORT_C][LCD_BIT_E]);
1057         pin_to_bits(lcd.pins.rs, lcd_bits[LCD_PORT_D][LCD_BIT_RS],
1058                     lcd_bits[LCD_PORT_C][LCD_BIT_RS]);
1059         pin_to_bits(lcd.pins.rw, lcd_bits[LCD_PORT_D][LCD_BIT_RW],
1060                     lcd_bits[LCD_PORT_C][LCD_BIT_RW]);
1061         pin_to_bits(lcd.pins.bl, lcd_bits[LCD_PORT_D][LCD_BIT_BL],
1062                     lcd_bits[LCD_PORT_C][LCD_BIT_BL]);
1063         pin_to_bits(lcd.pins.cl, lcd_bits[LCD_PORT_D][LCD_BIT_CL],
1064                     lcd_bits[LCD_PORT_C][LCD_BIT_CL]);
1065         pin_to_bits(lcd.pins.da, lcd_bits[LCD_PORT_D][LCD_BIT_DA],
1066                     lcd_bits[LCD_PORT_C][LCD_BIT_DA]);
1067 
1068         lcd.charlcd = charlcd;
1069         lcd.initialized = true;
1070 }
1071 
1072 /*
1073  * These are the file operation function for user access to /dev/keypad
1074  */
1075 
1076 static ssize_t keypad_read(struct file *file,
1077                            char __user *buf, size_t count, loff_t *ppos)
1078 {
1079         unsigned i = *ppos;
1080         char __user *tmp = buf;
1081 
1082         if (keypad_buflen == 0) {
1083                 if (file->f_flags & O_NONBLOCK)
1084                         return -EAGAIN;
1085 
1086                 if (wait_event_interruptible(keypad_read_wait,
1087                                              keypad_buflen != 0))
1088                         return -EINTR;
1089         }
1090 
1091         for (; count-- > 0 && (keypad_buflen > 0);
1092              ++i, ++tmp, --keypad_buflen) {
1093                 put_user(keypad_buffer[keypad_start], tmp);
1094                 keypad_start = (keypad_start + 1) % KEYPAD_BUFFER;
1095         }
1096         *ppos = i;
1097 
1098         return tmp - buf;
1099 }
1100 
1101 static int keypad_open(struct inode *inode, struct file *file)
1102 {
1103         int ret;
1104 
1105         ret = -EBUSY;
1106         if (!atomic_dec_and_test(&keypad_available))
1107                 goto fail;      /* open only once at a time */
1108 
1109         ret = -EPERM;
1110         if (file->f_mode & FMODE_WRITE) /* device is read-only */
1111                 goto fail;
1112 
1113         keypad_buflen = 0;      /* flush the buffer on opening */
1114         return 0;
1115  fail:
1116         atomic_inc(&keypad_available);
1117         return ret;
1118 }
1119 
1120 static int keypad_release(struct inode *inode, struct file *file)
1121 {
1122         atomic_inc(&keypad_available);
1123         return 0;
1124 }
1125 
1126 static const struct file_operations keypad_fops = {
1127         .read    = keypad_read,         /* read */
1128         .open    = keypad_open,         /* open */
1129         .release = keypad_release,      /* close */
1130         .llseek  = default_llseek,
1131 };
1132 
1133 static struct miscdevice keypad_dev = {
1134         .minor  = KEYPAD_MINOR,
1135         .name   = "keypad",
1136         .fops   = &keypad_fops,
1137 };
1138 
1139 static void keypad_send_key(const char *string, int max_len)
1140 {
1141         /* send the key to the device only if a process is attached to it. */
1142         if (!atomic_read(&keypad_available)) {
1143                 while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) {
1144                         keypad_buffer[(keypad_start + keypad_buflen++) %
1145                                       KEYPAD_BUFFER] = *string++;
1146                 }
1147                 wake_up_interruptible(&keypad_read_wait);
1148         }
1149 }
1150 
1151 /* this function scans all the bits involving at least one logical signal,
1152  * and puts the results in the bitfield "phys_read" (one bit per established
1153  * contact), and sets "phys_read_prev" to "phys_read".
1154  *
1155  * Note: to debounce input signals, we will only consider as switched a signal
1156  * which is stable across 2 measures. Signals which are different between two
1157  * reads will be kept as they previously were in their logical form (phys_prev).
1158  * A signal which has just switched will have a 1 in
1159  * (phys_read ^ phys_read_prev).
1160  */
1161 static void phys_scan_contacts(void)
1162 {
1163         int bit, bitval;
1164         char oldval;
1165         char bitmask;
1166         char gndmask;
1167 
1168         phys_prev = phys_curr;
1169         phys_read_prev = phys_read;
1170         phys_read = 0;          /* flush all signals */
1171 
1172         /* keep track of old value, with all outputs disabled */
1173         oldval = r_dtr(pprt) | scan_mask_o;
1174         /* activate all keyboard outputs (active low) */
1175         w_dtr(pprt, oldval & ~scan_mask_o);
1176 
1177         /* will have a 1 for each bit set to gnd */
1178         bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1179         /* disable all matrix signals */
1180         w_dtr(pprt, oldval);
1181 
1182         /* now that all outputs are cleared, the only active input bits are
1183          * directly connected to the ground
1184          */
1185 
1186         /* 1 for each grounded input */
1187         gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1188 
1189         /* grounded inputs are signals 40-44 */
1190         phys_read |= (__u64)gndmask << 40;
1191 
1192         if (bitmask != gndmask) {
1193                 /*
1194                  * since clearing the outputs changed some inputs, we know
1195                  * that some input signals are currently tied to some outputs.
1196                  * So we'll scan them.
1197                  */
1198                 for (bit = 0; bit < 8; bit++) {
1199                         bitval = BIT(bit);
1200 
1201                         if (!(scan_mask_o & bitval))    /* skip unused bits */
1202                                 continue;
1203 
1204                         w_dtr(pprt, oldval & ~bitval);  /* enable this output */
1205                         bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask;
1206                         phys_read |= (__u64)bitmask << (5 * bit);
1207                 }
1208                 w_dtr(pprt, oldval);    /* disable all outputs */
1209         }
1210         /*
1211          * this is easy: use old bits when they are flapping,
1212          * use new ones when stable
1213          */
1214         phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) |
1215                     (phys_read & ~(phys_read ^ phys_read_prev));
1216 }
1217 
1218 static inline int input_state_high(struct logical_input *input)
1219 {
1220 #if 0
1221         /* FIXME:
1222          * this is an invalid test. It tries to catch
1223          * transitions from single-key to multiple-key, but
1224          * doesn't take into account the contacts polarity.
1225          * The only solution to the problem is to parse keys
1226          * from the most complex to the simplest combinations,
1227          * and mark them as 'caught' once a combination
1228          * matches, then unmatch it for all other ones.
1229          */
1230 
1231         /* try to catch dangerous transitions cases :
1232          * someone adds a bit, so this signal was a false
1233          * positive resulting from a transition. We should
1234          * invalidate the signal immediately and not call the
1235          * release function.
1236          * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
1237          */
1238         if (((phys_prev & input->mask) == input->value) &&
1239             ((phys_curr & input->mask) >  input->value)) {
1240                 input->state = INPUT_ST_LOW; /* invalidate */
1241                 return 1;
1242         }
1243 #endif
1244 
1245         if ((phys_curr & input->mask) == input->value) {
1246                 if ((input->type == INPUT_TYPE_STD) &&
1247                     (input->high_timer == 0)) {
1248                         input->high_timer++;
1249                         if (input->u.std.press_fct)
1250                                 input->u.std.press_fct(input->u.std.press_data);
1251                 } else if (input->type == INPUT_TYPE_KBD) {
1252                         /* will turn on the light */
1253                         keypressed = 1;
1254 
1255                         if (input->high_timer == 0) {
1256                                 char *press_str = input->u.kbd.press_str;
1257 
1258                                 if (press_str[0]) {
1259                                         int s = sizeof(input->u.kbd.press_str);
1260 
1261                                         keypad_send_key(press_str, s);
1262                                 }
1263                         }
1264 
1265                         if (input->u.kbd.repeat_str[0]) {
1266                                 char *repeat_str = input->u.kbd.repeat_str;
1267 
1268                                 if (input->high_timer >= KEYPAD_REP_START) {
1269                                         int s = sizeof(input->u.kbd.repeat_str);
1270 
1271                                         input->high_timer -= KEYPAD_REP_DELAY;
1272                                         keypad_send_key(repeat_str, s);
1273                                 }
1274                                 /* we will need to come back here soon */
1275                                 inputs_stable = 0;
1276                         }
1277 
1278                         if (input->high_timer < 255)
1279                                 input->high_timer++;
1280                 }
1281                 return 1;
1282         }
1283 
1284         /* else signal falling down. Let's fall through. */
1285         input->state = INPUT_ST_FALLING;
1286         input->fall_timer = 0;
1287 
1288         return 0;
1289 }
1290 
1291 static inline void input_state_falling(struct logical_input *input)
1292 {
1293 #if 0
1294         /* FIXME !!! same comment as in input_state_high */
1295         if (((phys_prev & input->mask) == input->value) &&
1296             ((phys_curr & input->mask) >  input->value)) {
1297                 input->state = INPUT_ST_LOW;    /* invalidate */
1298                 return;
1299         }
1300 #endif
1301 
1302         if ((phys_curr & input->mask) == input->value) {
1303                 if (input->type == INPUT_TYPE_KBD) {
1304                         /* will turn on the light */
1305                         keypressed = 1;
1306 
1307                         if (input->u.kbd.repeat_str[0]) {
1308                                 char *repeat_str = input->u.kbd.repeat_str;
1309 
1310                                 if (input->high_timer >= KEYPAD_REP_START) {
1311                                         int s = sizeof(input->u.kbd.repeat_str);
1312 
1313                                         input->high_timer -= KEYPAD_REP_DELAY;
1314                                         keypad_send_key(repeat_str, s);
1315                                 }
1316                                 /* we will need to come back here soon */
1317                                 inputs_stable = 0;
1318                         }
1319 
1320                         if (input->high_timer < 255)
1321                                 input->high_timer++;
1322                 }
1323                 input->state = INPUT_ST_HIGH;
1324         } else if (input->fall_timer >= input->fall_time) {
1325                 /* call release event */
1326                 if (input->type == INPUT_TYPE_STD) {
1327                         void (*release_fct)(int) = input->u.std.release_fct;
1328 
1329                         if (release_fct)
1330                                 release_fct(input->u.std.release_data);
1331                 } else if (input->type == INPUT_TYPE_KBD) {
1332                         char *release_str = input->u.kbd.release_str;
1333 
1334                         if (release_str[0]) {
1335                                 int s = sizeof(input->u.kbd.release_str);
1336 
1337                                 keypad_send_key(release_str, s);
1338                         }
1339                 }
1340 
1341                 input->state = INPUT_ST_LOW;
1342         } else {
1343                 input->fall_timer++;
1344                 inputs_stable = 0;
1345         }
1346 }
1347 
1348 static void panel_process_inputs(void)
1349 {
1350         struct logical_input *input;
1351 
1352         keypressed = 0;
1353         inputs_stable = 1;
1354         list_for_each_entry(input, &logical_inputs, list) {
1355                 switch (input->state) {
1356                 case INPUT_ST_LOW:
1357                         if ((phys_curr & input->mask) != input->value)
1358                                 break;
1359                         /* if all needed ones were already set previously,
1360                          * this means that this logical signal has been
1361                          * activated by the releasing of another combined
1362                          * signal, so we don't want to match.
1363                          * eg: AB -(release B)-> A -(release A)-> 0 :
1364                          *     don't match A.
1365                          */
1366                         if ((phys_prev & input->mask) == input->value)
1367                                 break;
1368                         input->rise_timer = 0;
1369                         input->state = INPUT_ST_RISING;
1370                         /* fall through */
1371                 case INPUT_ST_RISING:
1372                         if ((phys_curr & input->mask) != input->value) {
1373                                 input->state = INPUT_ST_LOW;
1374                                 break;
1375                         }
1376                         if (input->rise_timer < input->rise_time) {
1377                                 inputs_stable = 0;
1378                                 input->rise_timer++;
1379                                 break;
1380                         }
1381                         input->high_timer = 0;
1382                         input->state = INPUT_ST_HIGH;
1383                         /* fall through */
1384                 case INPUT_ST_HIGH:
1385                         if (input_state_high(input))
1386                                 break;
1387                         /* fall through */
1388                 case INPUT_ST_FALLING:
1389                         input_state_falling(input);
1390                 }
1391         }
1392 }
1393 
1394 static void panel_scan_timer(struct timer_list *unused)
1395 {
1396         if (keypad.enabled && keypad_initialized) {
1397                 if (spin_trylock_irq(&pprt_lock)) {
1398                         phys_scan_contacts();
1399 
1400                         /* no need for the parport anymore */
1401                         spin_unlock_irq(&pprt_lock);
1402                 }
1403 
1404                 if (!inputs_stable || phys_curr != phys_prev)
1405                         panel_process_inputs();
1406         }
1407 
1408         if (keypressed && lcd.enabled && lcd.initialized)
1409                 charlcd_poke(lcd.charlcd);
1410 
1411         mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME);
1412 }
1413 
1414 static void init_scan_timer(void)
1415 {
1416         if (scan_timer.function)
1417                 return;         /* already started */
1418 
1419         timer_setup(&scan_timer, panel_scan_timer, 0);
1420         scan_timer.expires = jiffies + INPUT_POLL_TIME;
1421         add_timer(&scan_timer);
1422 }
1423 
1424 /* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits.
1425  * if <omask> or <imask> are non-null, they will be or'ed with the bits
1426  * corresponding to out and in bits respectively.
1427  * returns 1 if ok, 0 if error (in which case, nothing is written).
1428  */
1429 static u8 input_name2mask(const char *name, __u64 *mask, __u64 *value,
1430                           u8 *imask, u8 *omask)
1431 {
1432         const char sigtab[] = "EeSsPpAaBb";
1433         u8 im, om;
1434         __u64 m, v;
1435 
1436         om = 0;
1437         im = 0;
1438         m = 0ULL;
1439         v = 0ULL;
1440         while (*name) {
1441                 int in, out, bit, neg;
1442                 const char *idx;
1443 
1444                 idx = strchr(sigtab, *name);
1445                 if (!idx)
1446                         return 0;       /* input name not found */
1447 
1448                 in = idx - sigtab;
1449                 neg = (in & 1); /* odd (lower) names are negated */
1450                 in >>= 1;
1451                 im |= BIT(in);
1452 
1453                 name++;
1454                 if (*name >= '0' && *name <= '7') {
1455                         out = *name - '0';
1456                         om |= BIT(out);
1457                 } else if (*name == '-') {
1458                         out = 8;
1459                 } else {
1460                         return 0;       /* unknown bit name */
1461                 }
1462 
1463                 bit = (out * 5) + in;
1464 
1465                 m |= 1ULL << bit;
1466                 if (!neg)
1467                         v |= 1ULL << bit;
1468                 name++;
1469         }
1470         *mask = m;
1471         *value = v;
1472         if (imask)
1473                 *imask |= im;
1474         if (omask)
1475                 *omask |= om;
1476         return 1;
1477 }
1478 
1479 /* tries to bind a key to the signal name <name>. The key will send the
1480  * strings <press>, <repeat>, <release> for these respective events.
1481  * Returns the pointer to the new key if ok, NULL if the key could not be bound.
1482  */
1483 static struct logical_input *panel_bind_key(const char *name, const char *press,
1484                                             const char *repeat,
1485                                             const char *release)
1486 {
1487         struct logical_input *key;
1488 
1489         key = kzalloc(sizeof(*key), GFP_KERNEL);
1490         if (!key)
1491                 return NULL;
1492 
1493         if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i,
1494                              &scan_mask_o)) {
1495                 kfree(key);
1496                 return NULL;
1497         }
1498 
1499         key->type = INPUT_TYPE_KBD;
1500         key->state = INPUT_ST_LOW;
1501         key->rise_time = 1;
1502         key->fall_time = 1;
1503 
1504         strncpy(key->u.kbd.press_str, press, sizeof(key->u.kbd.press_str));
1505         strncpy(key->u.kbd.repeat_str, repeat, sizeof(key->u.kbd.repeat_str));
1506         strncpy(key->u.kbd.release_str, release,
1507                 sizeof(key->u.kbd.release_str));
1508         list_add(&key->list, &logical_inputs);
1509         return key;
1510 }
1511 
1512 #if 0
1513 /* tries to bind a callback function to the signal name <name>. The function
1514  * <press_fct> will be called with the <press_data> arg when the signal is
1515  * activated, and so on for <release_fct>/<release_data>
1516  * Returns the pointer to the new signal if ok, NULL if the signal could not
1517  * be bound.
1518  */
1519 static struct logical_input *panel_bind_callback(char *name,
1520                                                  void (*press_fct)(int),
1521                                                  int press_data,
1522                                                  void (*release_fct)(int),
1523                                                  int release_data)
1524 {
1525         struct logical_input *callback;
1526 
1527         callback = kmalloc(sizeof(*callback), GFP_KERNEL);
1528         if (!callback)
1529                 return NULL;
1530 
1531         memset(callback, 0, sizeof(struct logical_input));
1532         if (!input_name2mask(name, &callback->mask, &callback->value,
1533                              &scan_mask_i, &scan_mask_o))
1534                 return NULL;
1535 
1536         callback->type = INPUT_TYPE_STD;
1537         callback->state = INPUT_ST_LOW;
1538         callback->rise_time = 1;
1539         callback->fall_time = 1;
1540         callback->u.std.press_fct = press_fct;
1541         callback->u.std.press_data = press_data;
1542         callback->u.std.release_fct = release_fct;
1543         callback->u.std.release_data = release_data;
1544         list_add(&callback->list, &logical_inputs);
1545         return callback;
1546 }
1547 #endif
1548 
1549 static void keypad_init(void)
1550 {
1551         int keynum;
1552 
1553         init_waitqueue_head(&keypad_read_wait);
1554         keypad_buflen = 0;      /* flushes any eventual noisy keystroke */
1555 
1556         /* Let's create all known keys */
1557 
1558         for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) {
1559                 panel_bind_key(keypad_profile[keynum][0],
1560                                keypad_profile[keynum][1],
1561                                keypad_profile[keynum][2],
1562                                keypad_profile[keynum][3]);
1563         }
1564 
1565         init_scan_timer();
1566         keypad_initialized = 1;
1567 }
1568 
1569 /**************************************************/
1570 /* device initialization                          */
1571 /**************************************************/
1572 
1573 static void panel_attach(struct parport *port)
1574 {
1575         struct pardev_cb panel_cb;
1576 
1577         if (port->number != parport)
1578                 return;
1579 
1580         if (pprt) {
1581                 pr_err("%s: port->number=%d parport=%d, already registered!\n",
1582                        __func__, port->number, parport);
1583                 return;
1584         }
1585 
1586         memset(&panel_cb, 0, sizeof(panel_cb));
1587         panel_cb.private = &pprt;
1588         /* panel_cb.flags = 0 should be PARPORT_DEV_EXCL? */
1589 
1590         pprt = parport_register_dev_model(port, "panel", &panel_cb, 0);
1591         if (!pprt) {
1592                 pr_err("%s: port->number=%d parport=%d, parport_register_device() failed\n",
1593                        __func__, port->number, parport);
1594                 return;
1595         }
1596 
1597         if (parport_claim(pprt)) {
1598                 pr_err("could not claim access to parport%d. Aborting.\n",
1599                        parport);
1600                 goto err_unreg_device;
1601         }
1602 
1603         /* must init LCD first, just in case an IRQ from the keypad is
1604          * generated at keypad init
1605          */
1606         if (lcd.enabled) {
1607                 lcd_init();
1608                 if (!lcd.charlcd || charlcd_register(lcd.charlcd))
1609                         goto err_unreg_device;
1610         }
1611 
1612         if (keypad.enabled) {
1613                 keypad_init();
1614                 if (misc_register(&keypad_dev))
1615                         goto err_lcd_unreg;
1616         }
1617         return;
1618 
1619 err_lcd_unreg:
1620         if (scan_timer.function)
1621                 del_timer_sync(&scan_timer);
1622         if (lcd.enabled)
1623                 charlcd_unregister(lcd.charlcd);
1624 err_unreg_device:
1625         charlcd_free(lcd.charlcd);
1626         lcd.charlcd = NULL;
1627         parport_unregister_device(pprt);
1628         pprt = NULL;
1629 }
1630 
1631 static void panel_detach(struct parport *port)
1632 {
1633         if (port->number != parport)
1634                 return;
1635 
1636         if (!pprt) {
1637                 pr_err("%s: port->number=%d parport=%d, nothing to unregister.\n",
1638                        __func__, port->number, parport);
1639                 return;
1640         }
1641         if (scan_timer.function)
1642                 del_timer_sync(&scan_timer);
1643 
1644         if (keypad.enabled) {
1645                 misc_deregister(&keypad_dev);
1646                 keypad_initialized = 0;
1647         }
1648 
1649         if (lcd.enabled) {
1650                 charlcd_unregister(lcd.charlcd);
1651                 lcd.initialized = false;
1652                 charlcd_free(lcd.charlcd);
1653                 lcd.charlcd = NULL;
1654         }
1655 
1656         /* TODO: free all input signals */
1657         parport_release(pprt);
1658         parport_unregister_device(pprt);
1659         pprt = NULL;
1660 }
1661 
1662 static struct parport_driver panel_driver = {
1663         .name = "panel",
1664         .match_port = panel_attach,
1665         .detach = panel_detach,
1666         .devmodel = true,
1667 };
1668 
1669 /* init function */
1670 static int __init panel_init_module(void)
1671 {
1672         int selected_keypad_type = NOT_SET, err;
1673 
1674         /* take care of an eventual profile */
1675         switch (profile) {
1676         case PANEL_PROFILE_CUSTOM:
1677                 /* custom profile */
1678                 selected_keypad_type = DEFAULT_KEYPAD_TYPE;
1679                 selected_lcd_type = DEFAULT_LCD_TYPE;
1680                 break;
1681         case PANEL_PROFILE_OLD:
1682                 /* 8 bits, 2*16, old keypad */
1683                 selected_keypad_type = KEYPAD_TYPE_OLD;
1684                 selected_lcd_type = LCD_TYPE_OLD;
1685 
1686                 /* TODO: This two are a little hacky, sort it out later */
1687                 if (lcd_width == NOT_SET)
1688                         lcd_width = 16;
1689                 if (lcd_hwidth == NOT_SET)
1690                         lcd_hwidth = 16;
1691                 break;
1692         case PANEL_PROFILE_NEW:
1693                 /* serial, 2*16, new keypad */
1694                 selected_keypad_type = KEYPAD_TYPE_NEW;
1695                 selected_lcd_type = LCD_TYPE_KS0074;
1696                 break;
1697         case PANEL_PROFILE_HANTRONIX:
1698                 /* 8 bits, 2*16 hantronix-like, no keypad */
1699                 selected_keypad_type = KEYPAD_TYPE_NONE;
1700                 selected_lcd_type = LCD_TYPE_HANTRONIX;
1701                 break;
1702         case PANEL_PROFILE_NEXCOM:
1703                 /* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
1704                 selected_keypad_type = KEYPAD_TYPE_NEXCOM;
1705                 selected_lcd_type = LCD_TYPE_NEXCOM;
1706                 break;
1707         case PANEL_PROFILE_LARGE:
1708                 /* 8 bits, 2*40, old keypad */
1709                 selected_keypad_type = KEYPAD_TYPE_OLD;
1710                 selected_lcd_type = LCD_TYPE_OLD;
1711                 break;
1712         }
1713 
1714         /*
1715          * Overwrite selection with module param values (both keypad and lcd),
1716          * where the deprecated params have lower prio.
1717          */
1718         if (keypad_enabled != NOT_SET)
1719                 selected_keypad_type = keypad_enabled;
1720         if (keypad_type != NOT_SET)
1721                 selected_keypad_type = keypad_type;
1722 
1723         keypad.enabled = (selected_keypad_type > 0);
1724 
1725         if (lcd_enabled != NOT_SET)
1726                 selected_lcd_type = lcd_enabled;
1727         if (lcd_type != NOT_SET)
1728                 selected_lcd_type = lcd_type;
1729 
1730         lcd.enabled = (selected_lcd_type > 0);
1731 
1732         if (lcd.enabled) {
1733                 /*
1734                  * Init lcd struct with load-time values to preserve exact
1735                  * current functionality (at least for now).
1736                  */
1737                 lcd.charset = lcd_charset;
1738                 lcd.proto = lcd_proto;
1739                 lcd.pins.e = lcd_e_pin;
1740                 lcd.pins.rs = lcd_rs_pin;
1741                 lcd.pins.rw = lcd_rw_pin;
1742                 lcd.pins.cl = lcd_cl_pin;
1743                 lcd.pins.da = lcd_da_pin;
1744                 lcd.pins.bl = lcd_bl_pin;
1745         }
1746 
1747         switch (selected_keypad_type) {
1748         case KEYPAD_TYPE_OLD:
1749                 keypad_profile = old_keypad_profile;
1750                 break;
1751         case KEYPAD_TYPE_NEW:
1752                 keypad_profile = new_keypad_profile;
1753                 break;
1754         case KEYPAD_TYPE_NEXCOM:
1755                 keypad_profile = nexcom_keypad_profile;
1756                 break;
1757         default:
1758                 keypad_profile = NULL;
1759                 break;
1760         }
1761 
1762         if (!lcd.enabled && !keypad.enabled) {
1763                 /* no device enabled, let's exit */
1764                 pr_err("panel driver disabled.\n");
1765                 return -ENODEV;
1766         }
1767 
1768         err = parport_register_driver(&panel_driver);
1769         if (err) {
1770                 pr_err("could not register with parport. Aborting.\n");
1771                 return err;
1772         }
1773 
1774         if (pprt)
1775                 pr_info("panel driver registered on parport%d (io=0x%lx).\n",
1776                         parport, pprt->port->base);
1777         else
1778                 pr_info("panel driver not yet registered\n");
1779         return 0;
1780 }
1781 
1782 static void __exit panel_cleanup_module(void)
1783 {
1784         parport_unregister_driver(&panel_driver);
1785 }
1786 
1787 module_init(panel_init_module);
1788 module_exit(panel_cleanup_module);
1789 MODULE_AUTHOR("Willy Tarreau");
1790 MODULE_LICENSE("GPL");
1791 
1792 /*
1793  * Local variables:
1794  *  c-indent-level: 4
1795  *  tab-width: 8
1796  * End:
1797  */

/* [<][>][^][v][top][bottom][index][help] */