root/arch/ia64/kernel/mca.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. ia64_mca_printk
  2. ia64_mlogbuf_dump
  3. ia64_mlogbuf_finish
  4. ia64_mlogbuf_dump_from_init
  5. ia64_mca_spin
  6. ia64_log_allocate
  7. ia64_log_init
  8. ia64_log_get
  9. ia64_mca_log_sal_error_record
  10. search_mca_table
  11. mca_recover_range
  12. ia64_mca_cpe_int_handler
  13. ia64_mca_register_cpev
  14. ia64_mca_cmc_vector_setup
  15. ia64_mca_cmc_vector_disable
  16. ia64_mca_cmc_vector_enable
  17. ia64_mca_cmc_vector_disable_keventd
  18. ia64_mca_cmc_vector_enable_keventd
  19. ia64_mca_wakeup
  20. ia64_mca_wakeup_all
  21. ia64_mca_rendez_int_handler
  22. ia64_mca_wakeup_int_handler
  23. ia64_reg_MCA_extension
  24. ia64_unreg_MCA_extension
  25. copy_reg
  26. ia64_mca_modify_comm
  27. finish_pt_regs
  28. ia64_mca_modify_original_stack
  29. ia64_wait_for_slaves
  30. mca_insert_tr
  31. ia64_mca_handler
  32. ia64_mca_cmc_int_handler
  33. ia64_mca_cmc_int_caller
  34. ia64_mca_cmc_poll
  35. ia64_mca_cpe_int_caller
  36. ia64_mca_cpe_poll
  37. default_monarch_init_process
  38. ia64_init_handler
  39. ia64_mca_disable_cpe_polling
  40. format_mca_init_stack
  41. mca_bootmem
  42. ia64_mca_cpu_init
  43. ia64_mca_cpu_online
  44. ia64_mca_init
  45. ia64_mca_irq_init
  46. ia64_mca_late_init

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * File:        mca.c
   4  * Purpose:     Generic MCA handling layer
   5  *
   6  * Copyright (C) 2003 Hewlett-Packard Co
   7  *      David Mosberger-Tang <davidm@hpl.hp.com>
   8  *
   9  * Copyright (C) 2002 Dell Inc.
  10  * Copyright (C) Matt Domsch <Matt_Domsch@dell.com>
  11  *
  12  * Copyright (C) 2002 Intel
  13  * Copyright (C) Jenna Hall <jenna.s.hall@intel.com>
  14  *
  15  * Copyright (C) 2001 Intel
  16  * Copyright (C) Fred Lewis <frederick.v.lewis@intel.com>
  17  *
  18  * Copyright (C) 2000 Intel
  19  * Copyright (C) Chuck Fleckenstein <cfleck@co.intel.com>
  20  *
  21  * Copyright (C) 1999, 2004-2008 Silicon Graphics, Inc.
  22  * Copyright (C) Vijay Chander <vijay@engr.sgi.com>
  23  *
  24  * Copyright (C) 2006 FUJITSU LIMITED
  25  * Copyright (C) Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
  26  *
  27  * 2000-03-29 Chuck Fleckenstein <cfleck@co.intel.com>
  28  *            Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
  29  *            added min save state dump, added INIT handler.
  30  *
  31  * 2001-01-03 Fred Lewis <frederick.v.lewis@intel.com>
  32  *            Added setup of CMCI and CPEI IRQs, logging of corrected platform
  33  *            errors, completed code for logging of corrected & uncorrected
  34  *            machine check errors, and updated for conformance with Nov. 2000
  35  *            revision of the SAL 3.0 spec.
  36  *
  37  * 2002-01-04 Jenna Hall <jenna.s.hall@intel.com>
  38  *            Aligned MCA stack to 16 bytes, added platform vs. CPU error flag,
  39  *            set SAL default return values, changed error record structure to
  40  *            linked list, added init call to sal_get_state_info_size().
  41  *
  42  * 2002-03-25 Matt Domsch <Matt_Domsch@dell.com>
  43  *            GUID cleanups.
  44  *
  45  * 2003-04-15 David Mosberger-Tang <davidm@hpl.hp.com>
  46  *            Added INIT backtrace support.
  47  *
  48  * 2003-12-08 Keith Owens <kaos@sgi.com>
  49  *            smp_call_function() must not be called from interrupt context
  50  *            (can deadlock on tasklist_lock).
  51  *            Use keventd to call smp_call_function().
  52  *
  53  * 2004-02-01 Keith Owens <kaos@sgi.com>
  54  *            Avoid deadlock when using printk() for MCA and INIT records.
  55  *            Delete all record printing code, moved to salinfo_decode in user
  56  *            space.  Mark variables and functions static where possible.
  57  *            Delete dead variables and functions.  Reorder to remove the need
  58  *            for forward declarations and to consolidate related code.
  59  *
  60  * 2005-08-12 Keith Owens <kaos@sgi.com>
  61  *            Convert MCA/INIT handlers to use per event stacks and SAL/OS
  62  *            state.
  63  *
  64  * 2005-10-07 Keith Owens <kaos@sgi.com>
  65  *            Add notify_die() hooks.
  66  *
  67  * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
  68  *            Add printing support for MCA/INIT.
  69  *
  70  * 2007-04-27 Russ Anderson <rja@sgi.com>
  71  *            Support multiple cpus going through OS_MCA in the same event.
  72  */
  73 #include <linux/jiffies.h>
  74 #include <linux/types.h>
  75 #include <linux/init.h>
  76 #include <linux/sched/signal.h>
  77 #include <linux/sched/debug.h>
  78 #include <linux/sched/task.h>
  79 #include <linux/interrupt.h>
  80 #include <linux/irq.h>
  81 #include <linux/memblock.h>
  82 #include <linux/acpi.h>
  83 #include <linux/timer.h>
  84 #include <linux/module.h>
  85 #include <linux/kernel.h>
  86 #include <linux/smp.h>
  87 #include <linux/workqueue.h>
  88 #include <linux/cpumask.h>
  89 #include <linux/kdebug.h>
  90 #include <linux/cpu.h>
  91 #include <linux/gfp.h>
  92 
  93 #include <asm/delay.h>
  94 #include <asm/meminit.h>
  95 #include <asm/page.h>
  96 #include <asm/ptrace.h>
  97 #include <asm/sal.h>
  98 #include <asm/mca.h>
  99 #include <asm/kexec.h>
 100 
 101 #include <asm/irq.h>
 102 #include <asm/hw_irq.h>
 103 #include <asm/tlb.h>
 104 
 105 #include "mca_drv.h"
 106 #include "entry.h"
 107 
 108 #if defined(IA64_MCA_DEBUG_INFO)
 109 # define IA64_MCA_DEBUG(fmt...) printk(fmt)
 110 #else
 111 # define IA64_MCA_DEBUG(fmt...)
 112 #endif
 113 
 114 #define NOTIFY_INIT(event, regs, arg, spin)                             \
 115 do {                                                                    \
 116         if ((notify_die((event), "INIT", (regs), (arg), 0, 0)           \
 117                         == NOTIFY_STOP) && ((spin) == 1))               \
 118                 ia64_mca_spin(__func__);                                \
 119 } while (0)
 120 
 121 #define NOTIFY_MCA(event, regs, arg, spin)                              \
 122 do {                                                                    \
 123         if ((notify_die((event), "MCA", (regs), (arg), 0, 0)            \
 124                         == NOTIFY_STOP) && ((spin) == 1))               \
 125                 ia64_mca_spin(__func__);                                \
 126 } while (0)
 127 
 128 /* Used by mca_asm.S */
 129 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
 130 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
 131 DEFINE_PER_CPU(u64, ia64_mca_pal_pte);      /* PTE to map PAL code */
 132 DEFINE_PER_CPU(u64, ia64_mca_pal_base);    /* vaddr PAL code granule */
 133 DEFINE_PER_CPU(u64, ia64_mca_tr_reload);   /* Flag for TR reload */
 134 
 135 unsigned long __per_cpu_mca[NR_CPUS];
 136 
 137 /* In mca_asm.S */
 138 extern void                     ia64_os_init_dispatch_monarch (void);
 139 extern void                     ia64_os_init_dispatch_slave (void);
 140 
 141 static int monarch_cpu = -1;
 142 
 143 static ia64_mc_info_t           ia64_mc_info;
 144 
 145 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
 146 #define MIN_CPE_POLL_INTERVAL (2*60*HZ)  /* 2 minutes */
 147 #define CMC_POLL_INTERVAL     (1*60*HZ)  /* 1 minute */
 148 #define CPE_HISTORY_LENGTH    5
 149 #define CMC_HISTORY_LENGTH    5
 150 
 151 static struct timer_list cpe_poll_timer;
 152 static struct timer_list cmc_poll_timer;
 153 /*
 154  * This variable tells whether we are currently in polling mode.
 155  * Start with this in the wrong state so we won't play w/ timers
 156  * before the system is ready.
 157  */
 158 static int cmc_polling_enabled = 1;
 159 
 160 /*
 161  * Clearing this variable prevents CPE polling from getting activated
 162  * in mca_late_init.  Use it if your system doesn't provide a CPEI,
 163  * but encounters problems retrieving CPE logs.  This should only be
 164  * necessary for debugging.
 165  */
 166 static int cpe_poll_enabled = 1;
 167 
 168 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
 169 
 170 static int mca_init __initdata;
 171 
 172 /*
 173  * limited & delayed printing support for MCA/INIT handler
 174  */
 175 
 176 #define mprintk(fmt...) ia64_mca_printk(fmt)
 177 
 178 #define MLOGBUF_SIZE (512+256*NR_CPUS)
 179 #define MLOGBUF_MSGMAX 256
 180 static char mlogbuf[MLOGBUF_SIZE];
 181 static DEFINE_SPINLOCK(mlogbuf_wlock);  /* mca context only */
 182 static DEFINE_SPINLOCK(mlogbuf_rlock);  /* normal context only */
 183 static unsigned long mlogbuf_start;
 184 static unsigned long mlogbuf_end;
 185 static unsigned int mlogbuf_finished = 0;
 186 static unsigned long mlogbuf_timestamp = 0;
 187 
 188 static int loglevel_save = -1;
 189 #define BREAK_LOGLEVEL(__console_loglevel)              \
 190         oops_in_progress = 1;                           \
 191         if (loglevel_save < 0)                          \
 192                 loglevel_save = __console_loglevel;     \
 193         __console_loglevel = 15;
 194 
 195 #define RESTORE_LOGLEVEL(__console_loglevel)            \
 196         if (loglevel_save >= 0) {                       \
 197                 __console_loglevel = loglevel_save;     \
 198                 loglevel_save = -1;                     \
 199         }                                               \
 200         mlogbuf_finished = 0;                           \
 201         oops_in_progress = 0;
 202 
 203 /*
 204  * Push messages into buffer, print them later if not urgent.
 205  */
 206 void ia64_mca_printk(const char *fmt, ...)
 207 {
 208         va_list args;
 209         int printed_len;
 210         char temp_buf[MLOGBUF_MSGMAX];
 211         char *p;
 212 
 213         va_start(args, fmt);
 214         printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
 215         va_end(args);
 216 
 217         /* Copy the output into mlogbuf */
 218         if (oops_in_progress) {
 219                 /* mlogbuf was abandoned, use printk directly instead. */
 220                 printk("%s", temp_buf);
 221         } else {
 222                 spin_lock(&mlogbuf_wlock);
 223                 for (p = temp_buf; *p; p++) {
 224                         unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
 225                         if (next != mlogbuf_start) {
 226                                 mlogbuf[mlogbuf_end] = *p;
 227                                 mlogbuf_end = next;
 228                         } else {
 229                                 /* buffer full */
 230                                 break;
 231                         }
 232                 }
 233                 mlogbuf[mlogbuf_end] = '\0';
 234                 spin_unlock(&mlogbuf_wlock);
 235         }
 236 }
 237 EXPORT_SYMBOL(ia64_mca_printk);
 238 
 239 /*
 240  * Print buffered messages.
 241  *  NOTE: call this after returning normal context. (ex. from salinfod)
 242  */
 243 void ia64_mlogbuf_dump(void)
 244 {
 245         char temp_buf[MLOGBUF_MSGMAX];
 246         char *p;
 247         unsigned long index;
 248         unsigned long flags;
 249         unsigned int printed_len;
 250 
 251         /* Get output from mlogbuf */
 252         while (mlogbuf_start != mlogbuf_end) {
 253                 temp_buf[0] = '\0';
 254                 p = temp_buf;
 255                 printed_len = 0;
 256 
 257                 spin_lock_irqsave(&mlogbuf_rlock, flags);
 258 
 259                 index = mlogbuf_start;
 260                 while (index != mlogbuf_end) {
 261                         *p = mlogbuf[index];
 262                         index = (index + 1) % MLOGBUF_SIZE;
 263                         if (!*p)
 264                                 break;
 265                         p++;
 266                         if (++printed_len >= MLOGBUF_MSGMAX - 1)
 267                                 break;
 268                 }
 269                 *p = '\0';
 270                 if (temp_buf[0])
 271                         printk("%s", temp_buf);
 272                 mlogbuf_start = index;
 273 
 274                 mlogbuf_timestamp = 0;
 275                 spin_unlock_irqrestore(&mlogbuf_rlock, flags);
 276         }
 277 }
 278 EXPORT_SYMBOL(ia64_mlogbuf_dump);
 279 
 280 /*
 281  * Call this if system is going to down or if immediate flushing messages to
 282  * console is required. (ex. recovery was failed, crash dump is going to be
 283  * invoked, long-wait rendezvous etc.)
 284  *  NOTE: this should be called from monarch.
 285  */
 286 static void ia64_mlogbuf_finish(int wait)
 287 {
 288         BREAK_LOGLEVEL(console_loglevel);
 289 
 290         spin_lock_init(&mlogbuf_rlock);
 291         ia64_mlogbuf_dump();
 292         printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
 293                 "MCA/INIT might be dodgy or fail.\n");
 294 
 295         if (!wait)
 296                 return;
 297 
 298         /* wait for console */
 299         printk("Delaying for 5 seconds...\n");
 300         udelay(5*1000000);
 301 
 302         mlogbuf_finished = 1;
 303 }
 304 
 305 /*
 306  * Print buffered messages from INIT context.
 307  */
 308 static void ia64_mlogbuf_dump_from_init(void)
 309 {
 310         if (mlogbuf_finished)
 311                 return;
 312 
 313         if (mlogbuf_timestamp &&
 314                         time_before(jiffies, mlogbuf_timestamp + 30 * HZ)) {
 315                 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
 316                         " and the system seems to be messed up.\n");
 317                 ia64_mlogbuf_finish(0);
 318                 return;
 319         }
 320 
 321         if (!spin_trylock(&mlogbuf_rlock)) {
 322                 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
 323                         "Generated messages other than stack dump will be "
 324                         "buffered to mlogbuf and will be printed later.\n");
 325                 printk(KERN_ERR "INIT: If messages would not printed after "
 326                         "this INIT, wait 30sec and assert INIT again.\n");
 327                 if (!mlogbuf_timestamp)
 328                         mlogbuf_timestamp = jiffies;
 329                 return;
 330         }
 331         spin_unlock(&mlogbuf_rlock);
 332         ia64_mlogbuf_dump();
 333 }
 334 
 335 static inline void
 336 ia64_mca_spin(const char *func)
 337 {
 338         if (monarch_cpu == smp_processor_id())
 339                 ia64_mlogbuf_finish(0);
 340         mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
 341         while (1)
 342                 cpu_relax();
 343 }
 344 /*
 345  * IA64_MCA log support
 346  */
 347 #define IA64_MAX_LOGS           2       /* Double-buffering for nested MCAs */
 348 #define IA64_MAX_LOG_TYPES      4   /* MCA, INIT, CMC, CPE */
 349 
 350 typedef struct ia64_state_log_s
 351 {
 352         spinlock_t      isl_lock;
 353         int             isl_index;
 354         unsigned long   isl_count;
 355         ia64_err_rec_t  *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
 356 } ia64_state_log_t;
 357 
 358 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
 359 
 360 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
 361 #define IA64_LOG_LOCK(it)      spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
 362 #define IA64_LOG_UNLOCK(it)    spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
 363 #define IA64_LOG_NEXT_INDEX(it)    ia64_state_log[it].isl_index
 364 #define IA64_LOG_CURR_INDEX(it)    1 - ia64_state_log[it].isl_index
 365 #define IA64_LOG_INDEX_INC(it) \
 366     {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
 367     ia64_state_log[it].isl_count++;}
 368 #define IA64_LOG_INDEX_DEC(it) \
 369     ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
 370 #define IA64_LOG_NEXT_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
 371 #define IA64_LOG_CURR_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
 372 #define IA64_LOG_COUNT(it)         ia64_state_log[it].isl_count
 373 
 374 static inline void ia64_log_allocate(int it, u64 size)
 375 {
 376         ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] =
 377                 (ia64_err_rec_t *)memblock_alloc(size, SMP_CACHE_BYTES);
 378         if (!ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)])
 379                 panic("%s: Failed to allocate %llu bytes\n", __func__, size);
 380 
 381         ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] =
 382                 (ia64_err_rec_t *)memblock_alloc(size, SMP_CACHE_BYTES);
 383         if (!ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)])
 384                 panic("%s: Failed to allocate %llu bytes\n", __func__, size);
 385 }
 386 
 387 /*
 388  * ia64_log_init
 389  *      Reset the OS ia64 log buffer
 390  * Inputs   :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
 391  * Outputs      :       None
 392  */
 393 static void __init
 394 ia64_log_init(int sal_info_type)
 395 {
 396         u64     max_size = 0;
 397 
 398         IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
 399         IA64_LOG_LOCK_INIT(sal_info_type);
 400 
 401         // SAL will tell us the maximum size of any error record of this type
 402         max_size = ia64_sal_get_state_info_size(sal_info_type);
 403         if (!max_size)
 404                 /* alloc_bootmem() doesn't like zero-sized allocations! */
 405                 return;
 406 
 407         // set up OS data structures to hold error info
 408         ia64_log_allocate(sal_info_type, max_size);
 409 }
 410 
 411 /*
 412  * ia64_log_get
 413  *
 414  *      Get the current MCA log from SAL and copy it into the OS log buffer.
 415  *
 416  *  Inputs  :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
 417  *              irq_safe    whether you can use printk at this point
 418  *  Outputs :   size        (total record length)
 419  *              *buffer     (ptr to error record)
 420  *
 421  */
 422 static u64
 423 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
 424 {
 425         sal_log_record_header_t     *log_buffer;
 426         u64                         total_len = 0;
 427         unsigned long               s;
 428 
 429         IA64_LOG_LOCK(sal_info_type);
 430 
 431         /* Get the process state information */
 432         log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
 433 
 434         total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
 435 
 436         if (total_len) {
 437                 IA64_LOG_INDEX_INC(sal_info_type);
 438                 IA64_LOG_UNLOCK(sal_info_type);
 439                 if (irq_safe) {
 440                         IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. Record length = %ld\n",
 441                                        __func__, sal_info_type, total_len);
 442                 }
 443                 *buffer = (u8 *) log_buffer;
 444                 return total_len;
 445         } else {
 446                 IA64_LOG_UNLOCK(sal_info_type);
 447                 return 0;
 448         }
 449 }
 450 
 451 /*
 452  *  ia64_mca_log_sal_error_record
 453  *
 454  *  This function retrieves a specified error record type from SAL
 455  *  and wakes up any processes waiting for error records.
 456  *
 457  *  Inputs  :   sal_info_type   (Type of error record MCA/CMC/CPE)
 458  *              FIXME: remove MCA and irq_safe.
 459  */
 460 static void
 461 ia64_mca_log_sal_error_record(int sal_info_type)
 462 {
 463         u8 *buffer;
 464         sal_log_record_header_t *rh;
 465         u64 size;
 466         int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
 467 #ifdef IA64_MCA_DEBUG_INFO
 468         static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
 469 #endif
 470 
 471         size = ia64_log_get(sal_info_type, &buffer, irq_safe);
 472         if (!size)
 473                 return;
 474 
 475         salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
 476 
 477         if (irq_safe)
 478                 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
 479                         smp_processor_id(),
 480                         sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
 481 
 482         /* Clear logs from corrected errors in case there's no user-level logger */
 483         rh = (sal_log_record_header_t *)buffer;
 484         if (rh->severity == sal_log_severity_corrected)
 485                 ia64_sal_clear_state_info(sal_info_type);
 486 }
 487 
 488 /*
 489  * search_mca_table
 490  *  See if the MCA surfaced in an instruction range
 491  *  that has been tagged as recoverable.
 492  *
 493  *  Inputs
 494  *      first   First address range to check
 495  *      last    Last address range to check
 496  *      ip      Instruction pointer, address we are looking for
 497  *
 498  * Return value:
 499  *      1 on Success (in the table)/ 0 on Failure (not in the  table)
 500  */
 501 int
 502 search_mca_table (const struct mca_table_entry *first,
 503                 const struct mca_table_entry *last,
 504                 unsigned long ip)
 505 {
 506         const struct mca_table_entry *curr;
 507         u64 curr_start, curr_end;
 508 
 509         curr = first;
 510         while (curr <= last) {
 511                 curr_start = (u64) &curr->start_addr + curr->start_addr;
 512                 curr_end = (u64) &curr->end_addr + curr->end_addr;
 513 
 514                 if ((ip >= curr_start) && (ip <= curr_end)) {
 515                         return 1;
 516                 }
 517                 curr++;
 518         }
 519         return 0;
 520 }
 521 
 522 /* Given an address, look for it in the mca tables. */
 523 int mca_recover_range(unsigned long addr)
 524 {
 525         extern struct mca_table_entry __start___mca_table[];
 526         extern struct mca_table_entry __stop___mca_table[];
 527 
 528         return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
 529 }
 530 EXPORT_SYMBOL_GPL(mca_recover_range);
 531 
 532 int cpe_vector = -1;
 533 int ia64_cpe_irq = -1;
 534 
 535 static irqreturn_t
 536 ia64_mca_cpe_int_handler (int cpe_irq, void *arg)
 537 {
 538         static unsigned long    cpe_history[CPE_HISTORY_LENGTH];
 539         static int              index;
 540         static DEFINE_SPINLOCK(cpe_history_lock);
 541 
 542         IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
 543                        __func__, cpe_irq, smp_processor_id());
 544 
 545         /* SAL spec states this should run w/ interrupts enabled */
 546         local_irq_enable();
 547 
 548         spin_lock(&cpe_history_lock);
 549         if (!cpe_poll_enabled && cpe_vector >= 0) {
 550 
 551                 int i, count = 1; /* we know 1 happened now */
 552                 unsigned long now = jiffies;
 553 
 554                 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
 555                         if (now - cpe_history[i] <= HZ)
 556                                 count++;
 557                 }
 558 
 559                 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
 560                 if (count >= CPE_HISTORY_LENGTH) {
 561 
 562                         cpe_poll_enabled = 1;
 563                         spin_unlock(&cpe_history_lock);
 564                         disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
 565 
 566                         /*
 567                          * Corrected errors will still be corrected, but
 568                          * make sure there's a log somewhere that indicates
 569                          * something is generating more than we can handle.
 570                          */
 571                         printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
 572 
 573                         mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
 574 
 575                         /* lock already released, get out now */
 576                         goto out;
 577                 } else {
 578                         cpe_history[index++] = now;
 579                         if (index == CPE_HISTORY_LENGTH)
 580                                 index = 0;
 581                 }
 582         }
 583         spin_unlock(&cpe_history_lock);
 584 out:
 585         /* Get the CPE error record and log it */
 586         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
 587 
 588         local_irq_disable();
 589 
 590         return IRQ_HANDLED;
 591 }
 592 
 593 /*
 594  * ia64_mca_register_cpev
 595  *
 596  *  Register the corrected platform error vector with SAL.
 597  *
 598  *  Inputs
 599  *      cpev        Corrected Platform Error Vector number
 600  *
 601  *  Outputs
 602  *      None
 603  */
 604 void
 605 ia64_mca_register_cpev (int cpev)
 606 {
 607         /* Register the CPE interrupt vector with SAL */
 608         struct ia64_sal_retval isrv;
 609 
 610         isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
 611         if (isrv.status) {
 612                 printk(KERN_ERR "Failed to register Corrected Platform "
 613                        "Error interrupt vector with SAL (status %ld)\n", isrv.status);
 614                 return;
 615         }
 616 
 617         IA64_MCA_DEBUG("%s: corrected platform error "
 618                        "vector %#x registered\n", __func__, cpev);
 619 }
 620 
 621 /*
 622  * ia64_mca_cmc_vector_setup
 623  *
 624  *  Setup the corrected machine check vector register in the processor.
 625  *  (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
 626  *  This function is invoked on a per-processor basis.
 627  *
 628  * Inputs
 629  *      None
 630  *
 631  * Outputs
 632  *      None
 633  */
 634 void
 635 ia64_mca_cmc_vector_setup (void)
 636 {
 637         cmcv_reg_t      cmcv;
 638 
 639         cmcv.cmcv_regval        = 0;
 640         cmcv.cmcv_mask          = 1;        /* Mask/disable interrupt at first */
 641         cmcv.cmcv_vector        = IA64_CMC_VECTOR;
 642         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
 643 
 644         IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x registered.\n",
 645                        __func__, smp_processor_id(), IA64_CMC_VECTOR);
 646 
 647         IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
 648                        __func__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
 649 }
 650 
 651 /*
 652  * ia64_mca_cmc_vector_disable
 653  *
 654  *  Mask the corrected machine check vector register in the processor.
 655  *  This function is invoked on a per-processor basis.
 656  *
 657  * Inputs
 658  *      dummy(unused)
 659  *
 660  * Outputs
 661  *      None
 662  */
 663 static void
 664 ia64_mca_cmc_vector_disable (void *dummy)
 665 {
 666         cmcv_reg_t      cmcv;
 667 
 668         cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
 669 
 670         cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
 671         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
 672 
 673         IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x disabled.\n",
 674                        __func__, smp_processor_id(), cmcv.cmcv_vector);
 675 }
 676 
 677 /*
 678  * ia64_mca_cmc_vector_enable
 679  *
 680  *  Unmask the corrected machine check vector register in the processor.
 681  *  This function is invoked on a per-processor basis.
 682  *
 683  * Inputs
 684  *      dummy(unused)
 685  *
 686  * Outputs
 687  *      None
 688  */
 689 static void
 690 ia64_mca_cmc_vector_enable (void *dummy)
 691 {
 692         cmcv_reg_t      cmcv;
 693 
 694         cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
 695 
 696         cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
 697         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
 698 
 699         IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x enabled.\n",
 700                        __func__, smp_processor_id(), cmcv.cmcv_vector);
 701 }
 702 
 703 /*
 704  * ia64_mca_cmc_vector_disable_keventd
 705  *
 706  * Called via keventd (smp_call_function() is not safe in interrupt context) to
 707  * disable the cmc interrupt vector.
 708  */
 709 static void
 710 ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused)
 711 {
 712         on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 0);
 713 }
 714 
 715 /*
 716  * ia64_mca_cmc_vector_enable_keventd
 717  *
 718  * Called via keventd (smp_call_function() is not safe in interrupt context) to
 719  * enable the cmc interrupt vector.
 720  */
 721 static void
 722 ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused)
 723 {
 724         on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 0);
 725 }
 726 
 727 /*
 728  * ia64_mca_wakeup
 729  *
 730  *      Send an inter-cpu interrupt to wake-up a particular cpu.
 731  *
 732  *  Inputs  :   cpuid
 733  *  Outputs :   None
 734  */
 735 static void
 736 ia64_mca_wakeup(int cpu)
 737 {
 738         ia64_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
 739 }
 740 
 741 /*
 742  * ia64_mca_wakeup_all
 743  *
 744  *      Wakeup all the slave cpus which have rendez'ed previously.
 745  *
 746  *  Inputs  :   None
 747  *  Outputs :   None
 748  */
 749 static void
 750 ia64_mca_wakeup_all(void)
 751 {
 752         int cpu;
 753 
 754         /* Clear the Rendez checkin flag for all cpus */
 755         for_each_online_cpu(cpu) {
 756                 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
 757                         ia64_mca_wakeup(cpu);
 758         }
 759 
 760 }
 761 
 762 /*
 763  * ia64_mca_rendez_interrupt_handler
 764  *
 765  *      This is handler used to put slave processors into spinloop
 766  *      while the monarch processor does the mca handling and later
 767  *      wake each slave up once the monarch is done.  The state
 768  *      IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed
 769  *      in SAL.  The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates
 770  *      the cpu has come out of OS rendezvous.
 771  *
 772  *  Inputs  :   None
 773  *  Outputs :   None
 774  */
 775 static irqreturn_t
 776 ia64_mca_rendez_int_handler(int rendez_irq, void *arg)
 777 {
 778         unsigned long flags;
 779         int cpu = smp_processor_id();
 780         struct ia64_mca_notify_die nd =
 781                 { .sos = NULL, .monarch_cpu = &monarch_cpu };
 782 
 783         /* Mask all interrupts */
 784         local_irq_save(flags);
 785 
 786         NOTIFY_MCA(DIE_MCA_RENDZVOUS_ENTER, get_irq_regs(), (long)&nd, 1);
 787 
 788         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
 789         /* Register with the SAL monarch that the slave has
 790          * reached SAL
 791          */
 792         ia64_sal_mc_rendez();
 793 
 794         NOTIFY_MCA(DIE_MCA_RENDZVOUS_PROCESS, get_irq_regs(), (long)&nd, 1);
 795 
 796         /* Wait for the monarch cpu to exit. */
 797         while (monarch_cpu != -1)
 798                cpu_relax();     /* spin until monarch leaves */
 799 
 800         NOTIFY_MCA(DIE_MCA_RENDZVOUS_LEAVE, get_irq_regs(), (long)&nd, 1);
 801 
 802         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
 803         /* Enable all interrupts */
 804         local_irq_restore(flags);
 805         return IRQ_HANDLED;
 806 }
 807 
 808 /*
 809  * ia64_mca_wakeup_int_handler
 810  *
 811  *      The interrupt handler for processing the inter-cpu interrupt to the
 812  *      slave cpu which was spinning in the rendez loop.
 813  *      Since this spinning is done by turning off the interrupts and
 814  *      polling on the wakeup-interrupt bit in the IRR, there is
 815  *      nothing useful to be done in the handler.
 816  *
 817  *  Inputs  :   wakeup_irq  (Wakeup-interrupt bit)
 818  *      arg             (Interrupt handler specific argument)
 819  *  Outputs :   None
 820  *
 821  */
 822 static irqreturn_t
 823 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg)
 824 {
 825         return IRQ_HANDLED;
 826 }
 827 
 828 /* Function pointer for extra MCA recovery */
 829 int (*ia64_mca_ucmc_extension)
 830         (void*,struct ia64_sal_os_state*)
 831         = NULL;
 832 
 833 int
 834 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
 835 {
 836         if (ia64_mca_ucmc_extension)
 837                 return 1;
 838 
 839         ia64_mca_ucmc_extension = fn;
 840         return 0;
 841 }
 842 
 843 void
 844 ia64_unreg_MCA_extension(void)
 845 {
 846         if (ia64_mca_ucmc_extension)
 847                 ia64_mca_ucmc_extension = NULL;
 848 }
 849 
 850 EXPORT_SYMBOL(ia64_reg_MCA_extension);
 851 EXPORT_SYMBOL(ia64_unreg_MCA_extension);
 852 
 853 
 854 static inline void
 855 copy_reg(const u64 *fr, u64 fnat, unsigned long *tr, unsigned long *tnat)
 856 {
 857         u64 fslot, tslot, nat;
 858         *tr = *fr;
 859         fslot = ((unsigned long)fr >> 3) & 63;
 860         tslot = ((unsigned long)tr >> 3) & 63;
 861         *tnat &= ~(1UL << tslot);
 862         nat = (fnat >> fslot) & 1;
 863         *tnat |= (nat << tslot);
 864 }
 865 
 866 /* Change the comm field on the MCA/INT task to include the pid that
 867  * was interrupted, it makes for easier debugging.  If that pid was 0
 868  * (swapper or nested MCA/INIT) then use the start of the previous comm
 869  * field suffixed with its cpu.
 870  */
 871 
 872 static void
 873 ia64_mca_modify_comm(const struct task_struct *previous_current)
 874 {
 875         char *p, comm[sizeof(current->comm)];
 876         if (previous_current->pid)
 877                 snprintf(comm, sizeof(comm), "%s %d",
 878                         current->comm, previous_current->pid);
 879         else {
 880                 int l;
 881                 if ((p = strchr(previous_current->comm, ' ')))
 882                         l = p - previous_current->comm;
 883                 else
 884                         l = strlen(previous_current->comm);
 885                 snprintf(comm, sizeof(comm), "%s %*s %d",
 886                         current->comm, l, previous_current->comm,
 887                         task_thread_info(previous_current)->cpu);
 888         }
 889         memcpy(current->comm, comm, sizeof(current->comm));
 890 }
 891 
 892 static void
 893 finish_pt_regs(struct pt_regs *regs, struct ia64_sal_os_state *sos,
 894                 unsigned long *nat)
 895 {
 896         const pal_min_state_area_t *ms = sos->pal_min_state;
 897         const u64 *bank;
 898 
 899         /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
 900          * pmsa_{xip,xpsr,xfs}
 901          */
 902         if (ia64_psr(regs)->ic) {
 903                 regs->cr_iip = ms->pmsa_iip;
 904                 regs->cr_ipsr = ms->pmsa_ipsr;
 905                 regs->cr_ifs = ms->pmsa_ifs;
 906         } else {
 907                 regs->cr_iip = ms->pmsa_xip;
 908                 regs->cr_ipsr = ms->pmsa_xpsr;
 909                 regs->cr_ifs = ms->pmsa_xfs;
 910 
 911                 sos->iip = ms->pmsa_iip;
 912                 sos->ipsr = ms->pmsa_ipsr;
 913                 sos->ifs = ms->pmsa_ifs;
 914         }
 915         regs->pr = ms->pmsa_pr;
 916         regs->b0 = ms->pmsa_br0;
 917         regs->ar_rsc = ms->pmsa_rsc;
 918         copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &regs->r1, nat);
 919         copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &regs->r2, nat);
 920         copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &regs->r3, nat);
 921         copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &regs->r8, nat);
 922         copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &regs->r9, nat);
 923         copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &regs->r10, nat);
 924         copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &regs->r11, nat);
 925         copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &regs->r12, nat);
 926         copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &regs->r13, nat);
 927         copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &regs->r14, nat);
 928         copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &regs->r15, nat);
 929         if (ia64_psr(regs)->bn)
 930                 bank = ms->pmsa_bank1_gr;
 931         else
 932                 bank = ms->pmsa_bank0_gr;
 933         copy_reg(&bank[16-16], ms->pmsa_nat_bits, &regs->r16, nat);
 934         copy_reg(&bank[17-16], ms->pmsa_nat_bits, &regs->r17, nat);
 935         copy_reg(&bank[18-16], ms->pmsa_nat_bits, &regs->r18, nat);
 936         copy_reg(&bank[19-16], ms->pmsa_nat_bits, &regs->r19, nat);
 937         copy_reg(&bank[20-16], ms->pmsa_nat_bits, &regs->r20, nat);
 938         copy_reg(&bank[21-16], ms->pmsa_nat_bits, &regs->r21, nat);
 939         copy_reg(&bank[22-16], ms->pmsa_nat_bits, &regs->r22, nat);
 940         copy_reg(&bank[23-16], ms->pmsa_nat_bits, &regs->r23, nat);
 941         copy_reg(&bank[24-16], ms->pmsa_nat_bits, &regs->r24, nat);
 942         copy_reg(&bank[25-16], ms->pmsa_nat_bits, &regs->r25, nat);
 943         copy_reg(&bank[26-16], ms->pmsa_nat_bits, &regs->r26, nat);
 944         copy_reg(&bank[27-16], ms->pmsa_nat_bits, &regs->r27, nat);
 945         copy_reg(&bank[28-16], ms->pmsa_nat_bits, &regs->r28, nat);
 946         copy_reg(&bank[29-16], ms->pmsa_nat_bits, &regs->r29, nat);
 947         copy_reg(&bank[30-16], ms->pmsa_nat_bits, &regs->r30, nat);
 948         copy_reg(&bank[31-16], ms->pmsa_nat_bits, &regs->r31, nat);
 949 }
 950 
 951 /* On entry to this routine, we are running on the per cpu stack, see
 952  * mca_asm.h.  The original stack has not been touched by this event.  Some of
 953  * the original stack's registers will be in the RBS on this stack.  This stack
 954  * also contains a partial pt_regs and switch_stack, the rest of the data is in
 955  * PAL minstate.
 956  *
 957  * The first thing to do is modify the original stack to look like a blocked
 958  * task so we can run backtrace on the original task.  Also mark the per cpu
 959  * stack as current to ensure that we use the correct task state, it also means
 960  * that we can do backtrace on the MCA/INIT handler code itself.
 961  */
 962 
 963 static struct task_struct *
 964 ia64_mca_modify_original_stack(struct pt_regs *regs,
 965                 const struct switch_stack *sw,
 966                 struct ia64_sal_os_state *sos,
 967                 const char *type)
 968 {
 969         char *p;
 970         ia64_va va;
 971         extern char ia64_leave_kernel[];        /* Need asm address, not function descriptor */
 972         const pal_min_state_area_t *ms = sos->pal_min_state;
 973         struct task_struct *previous_current;
 974         struct pt_regs *old_regs;
 975         struct switch_stack *old_sw;
 976         unsigned size = sizeof(struct pt_regs) +
 977                         sizeof(struct switch_stack) + 16;
 978         unsigned long *old_bspstore, *old_bsp;
 979         unsigned long *new_bspstore, *new_bsp;
 980         unsigned long old_unat, old_rnat, new_rnat, nat;
 981         u64 slots, loadrs = regs->loadrs;
 982         u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
 983         u64 ar_bspstore = regs->ar_bspstore;
 984         u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
 985         const char *msg;
 986         int cpu = smp_processor_id();
 987 
 988         previous_current = curr_task(cpu);
 989         ia64_set_curr_task(cpu, current);
 990         if ((p = strchr(current->comm, ' ')))
 991                 *p = '\0';
 992 
 993         /* Best effort attempt to cope with MCA/INIT delivered while in
 994          * physical mode.
 995          */
 996         regs->cr_ipsr = ms->pmsa_ipsr;
 997         if (ia64_psr(regs)->dt == 0) {
 998                 va.l = r12;
 999                 if (va.f.reg == 0) {
1000                         va.f.reg = 7;
1001                         r12 = va.l;
1002                 }
1003                 va.l = r13;
1004                 if (va.f.reg == 0) {
1005                         va.f.reg = 7;
1006                         r13 = va.l;
1007                 }
1008         }
1009         if (ia64_psr(regs)->rt == 0) {
1010                 va.l = ar_bspstore;
1011                 if (va.f.reg == 0) {
1012                         va.f.reg = 7;
1013                         ar_bspstore = va.l;
1014                 }
1015                 va.l = ar_bsp;
1016                 if (va.f.reg == 0) {
1017                         va.f.reg = 7;
1018                         ar_bsp = va.l;
1019                 }
1020         }
1021 
1022         /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
1023          * have been copied to the old stack, the old stack may fail the
1024          * validation tests below.  So ia64_old_stack() must restore the dirty
1025          * registers from the new stack.  The old and new bspstore probably
1026          * have different alignments, so loadrs calculated on the old bsp
1027          * cannot be used to restore from the new bsp.  Calculate a suitable
1028          * loadrs for the new stack and save it in the new pt_regs, where
1029          * ia64_old_stack() can get it.
1030          */
1031         old_bspstore = (unsigned long *)ar_bspstore;
1032         old_bsp = (unsigned long *)ar_bsp;
1033         slots = ia64_rse_num_regs(old_bspstore, old_bsp);
1034         new_bspstore = (unsigned long *)((u64)current + IA64_RBS_OFFSET);
1035         new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
1036         regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
1037 
1038         /* Verify the previous stack state before we change it */
1039         if (user_mode(regs)) {
1040                 msg = "occurred in user space";
1041                 /* previous_current is guaranteed to be valid when the task was
1042                  * in user space, so ...
1043                  */
1044                 ia64_mca_modify_comm(previous_current);
1045                 goto no_mod;
1046         }
1047 
1048         if (r13 != sos->prev_IA64_KR_CURRENT) {
1049                 msg = "inconsistent previous current and r13";
1050                 goto no_mod;
1051         }
1052 
1053         if (!mca_recover_range(ms->pmsa_iip)) {
1054                 if ((r12 - r13) >= KERNEL_STACK_SIZE) {
1055                         msg = "inconsistent r12 and r13";
1056                         goto no_mod;
1057                 }
1058                 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
1059                         msg = "inconsistent ar.bspstore and r13";
1060                         goto no_mod;
1061                 }
1062                 va.p = old_bspstore;
1063                 if (va.f.reg < 5) {
1064                         msg = "old_bspstore is in the wrong region";
1065                         goto no_mod;
1066                 }
1067                 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
1068                         msg = "inconsistent ar.bsp and r13";
1069                         goto no_mod;
1070                 }
1071                 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
1072                 if (ar_bspstore + size > r12) {
1073                         msg = "no room for blocked state";
1074                         goto no_mod;
1075                 }
1076         }
1077 
1078         ia64_mca_modify_comm(previous_current);
1079 
1080         /* Make the original task look blocked.  First stack a struct pt_regs,
1081          * describing the state at the time of interrupt.  mca_asm.S built a
1082          * partial pt_regs, copy it and fill in the blanks using minstate.
1083          */
1084         p = (char *)r12 - sizeof(*regs);
1085         old_regs = (struct pt_regs *)p;
1086         memcpy(old_regs, regs, sizeof(*regs));
1087         old_regs->loadrs = loadrs;
1088         old_unat = old_regs->ar_unat;
1089         finish_pt_regs(old_regs, sos, &old_unat);
1090 
1091         /* Next stack a struct switch_stack.  mca_asm.S built a partial
1092          * switch_stack, copy it and fill in the blanks using pt_regs and
1093          * minstate.
1094          *
1095          * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1096          * ar.pfs is set to 0.
1097          *
1098          * unwind.c::unw_unwind() does special processing for interrupt frames.
1099          * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1100          * is clear then unw_unwind() does _not_ adjust bsp over pt_regs.  Not
1101          * that this is documented, of course.  Set PRED_NON_SYSCALL in the
1102          * switch_stack on the original stack so it will unwind correctly when
1103          * unwind.c reads pt_regs.
1104          *
1105          * thread.ksp is updated to point to the synthesized switch_stack.
1106          */
1107         p -= sizeof(struct switch_stack);
1108         old_sw = (struct switch_stack *)p;
1109         memcpy(old_sw, sw, sizeof(*sw));
1110         old_sw->caller_unat = old_unat;
1111         old_sw->ar_fpsr = old_regs->ar_fpsr;
1112         copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
1113         copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
1114         copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
1115         copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
1116         old_sw->b0 = (u64)ia64_leave_kernel;
1117         old_sw->b1 = ms->pmsa_br1;
1118         old_sw->ar_pfs = 0;
1119         old_sw->ar_unat = old_unat;
1120         old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
1121         previous_current->thread.ksp = (u64)p - 16;
1122 
1123         /* Finally copy the original stack's registers back to its RBS.
1124          * Registers from ar.bspstore through ar.bsp at the time of the event
1125          * are in the current RBS, copy them back to the original stack.  The
1126          * copy must be done register by register because the original bspstore
1127          * and the current one have different alignments, so the saved RNAT
1128          * data occurs at different places.
1129          *
1130          * mca_asm does cover, so the old_bsp already includes all registers at
1131          * the time of MCA/INIT.  It also does flushrs, so all registers before
1132          * this function have been written to backing store on the MCA/INIT
1133          * stack.
1134          */
1135         new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
1136         old_rnat = regs->ar_rnat;
1137         while (slots--) {
1138                 if (ia64_rse_is_rnat_slot(new_bspstore)) {
1139                         new_rnat = ia64_get_rnat(new_bspstore++);
1140                 }
1141                 if (ia64_rse_is_rnat_slot(old_bspstore)) {
1142                         *old_bspstore++ = old_rnat;
1143                         old_rnat = 0;
1144                 }
1145                 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
1146                 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
1147                 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
1148                 *old_bspstore++ = *new_bspstore++;
1149         }
1150         old_sw->ar_bspstore = (unsigned long)old_bspstore;
1151         old_sw->ar_rnat = old_rnat;
1152 
1153         sos->prev_task = previous_current;
1154         return previous_current;
1155 
1156 no_mod:
1157         mprintk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
1158                         smp_processor_id(), type, msg);
1159         old_unat = regs->ar_unat;
1160         finish_pt_regs(regs, sos, &old_unat);
1161         return previous_current;
1162 }
1163 
1164 /* The monarch/slave interaction is based on monarch_cpu and requires that all
1165  * slaves have entered rendezvous before the monarch leaves.  If any cpu has
1166  * not entered rendezvous yet then wait a bit.  The assumption is that any
1167  * slave that has not rendezvoused after a reasonable time is never going to do
1168  * so.  In this context, slave includes cpus that respond to the MCA rendezvous
1169  * interrupt, as well as cpus that receive the INIT slave event.
1170  */
1171 
1172 static void
1173 ia64_wait_for_slaves(int monarch, const char *type)
1174 {
1175         int c, i , wait;
1176 
1177         /*
1178          * wait 5 seconds total for slaves (arbitrary)
1179          */
1180         for (i = 0; i < 5000; i++) {
1181                 wait = 0;
1182                 for_each_online_cpu(c) {
1183                         if (c == monarch)
1184                                 continue;
1185                         if (ia64_mc_info.imi_rendez_checkin[c]
1186                                         == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1187                                 udelay(1000);           /* short wait */
1188                                 wait = 1;
1189                                 break;
1190                         }
1191                 }
1192                 if (!wait)
1193                         goto all_in;
1194         }
1195 
1196         /*
1197          * Maybe slave(s) dead. Print buffered messages immediately.
1198          */
1199         ia64_mlogbuf_finish(0);
1200         mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
1201         for_each_online_cpu(c) {
1202                 if (c == monarch)
1203                         continue;
1204                 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1205                         mprintk(" %d", c);
1206         }
1207         mprintk("\n");
1208         return;
1209 
1210 all_in:
1211         mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
1212         return;
1213 }
1214 
1215 /*  mca_insert_tr
1216  *
1217  *  Switch rid when TR reload and needed!
1218  *  iord: 1: itr, 2: itr;
1219  *
1220 */
1221 static void mca_insert_tr(u64 iord)
1222 {
1223 
1224         int i;
1225         u64 old_rr;
1226         struct ia64_tr_entry *p;
1227         unsigned long psr;
1228         int cpu = smp_processor_id();
1229 
1230         if (!ia64_idtrs[cpu])
1231                 return;
1232 
1233         psr = ia64_clear_ic();
1234         for (i = IA64_TR_ALLOC_BASE; i < IA64_TR_ALLOC_MAX; i++) {
1235                 p = ia64_idtrs[cpu] + (iord - 1) * IA64_TR_ALLOC_MAX;
1236                 if (p->pte & 0x1) {
1237                         old_rr = ia64_get_rr(p->ifa);
1238                         if (old_rr != p->rr) {
1239                                 ia64_set_rr(p->ifa, p->rr);
1240                                 ia64_srlz_d();
1241                         }
1242                         ia64_ptr(iord, p->ifa, p->itir >> 2);
1243                         ia64_srlz_i();
1244                         if (iord & 0x1) {
1245                                 ia64_itr(0x1, i, p->ifa, p->pte, p->itir >> 2);
1246                                 ia64_srlz_i();
1247                         }
1248                         if (iord & 0x2) {
1249                                 ia64_itr(0x2, i, p->ifa, p->pte, p->itir >> 2);
1250                                 ia64_srlz_i();
1251                         }
1252                         if (old_rr != p->rr) {
1253                                 ia64_set_rr(p->ifa, old_rr);
1254                                 ia64_srlz_d();
1255                         }
1256                 }
1257         }
1258         ia64_set_psr(psr);
1259 }
1260 
1261 /*
1262  * ia64_mca_handler
1263  *
1264  *      This is uncorrectable machine check handler called from OS_MCA
1265  *      dispatch code which is in turn called from SAL_CHECK().
1266  *      This is the place where the core of OS MCA handling is done.
1267  *      Right now the logs are extracted and displayed in a well-defined
1268  *      format. This handler code is supposed to be run only on the
1269  *      monarch processor. Once the monarch is done with MCA handling
1270  *      further MCA logging is enabled by clearing logs.
1271  *      Monarch also has the duty of sending wakeup-IPIs to pull the
1272  *      slave processors out of rendezvous spinloop.
1273  *
1274  *      If multiple processors call into OS_MCA, the first will become
1275  *      the monarch.  Subsequent cpus will be recorded in the mca_cpu
1276  *      bitmask.  After the first monarch has processed its MCA, it
1277  *      will wake up the next cpu in the mca_cpu bitmask and then go
1278  *      into the rendezvous loop.  When all processors have serviced
1279  *      their MCA, the last monarch frees up the rest of the processors.
1280  */
1281 void
1282 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1283                  struct ia64_sal_os_state *sos)
1284 {
1285         int recover, cpu = smp_processor_id();
1286         struct task_struct *previous_current;
1287         struct ia64_mca_notify_die nd =
1288                 { .sos = sos, .monarch_cpu = &monarch_cpu, .data = &recover };
1289         static atomic_t mca_count;
1290         static cpumask_t mca_cpu;
1291 
1292         if (atomic_add_return(1, &mca_count) == 1) {
1293                 monarch_cpu = cpu;
1294                 sos->monarch = 1;
1295         } else {
1296                 cpumask_set_cpu(cpu, &mca_cpu);
1297                 sos->monarch = 0;
1298         }
1299         mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
1300                 "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);
1301 
1302         previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1303 
1304         NOTIFY_MCA(DIE_MCA_MONARCH_ENTER, regs, (long)&nd, 1);
1305 
1306         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA;
1307         if (sos->monarch) {
1308                 ia64_wait_for_slaves(cpu, "MCA");
1309 
1310                 /* Wakeup all the processors which are spinning in the
1311                  * rendezvous loop.  They will leave SAL, then spin in the OS
1312                  * with interrupts disabled until this monarch cpu leaves the
1313                  * MCA handler.  That gets control back to the OS so we can
1314                  * backtrace the other cpus, backtrace when spinning in SAL
1315                  * does not work.
1316                  */
1317                 ia64_mca_wakeup_all();
1318         } else {
1319                 while (cpumask_test_cpu(cpu, &mca_cpu))
1320                         cpu_relax();    /* spin until monarch wakes us */
1321         }
1322 
1323         NOTIFY_MCA(DIE_MCA_MONARCH_PROCESS, regs, (long)&nd, 1);
1324 
1325         /* Get the MCA error record and log it */
1326         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1327 
1328         /* MCA error recovery */
1329         recover = (ia64_mca_ucmc_extension
1330                 && ia64_mca_ucmc_extension(
1331                         IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1332                         sos));
1333 
1334         if (recover) {
1335                 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1336                 rh->severity = sal_log_severity_corrected;
1337                 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1338                 sos->os_status = IA64_MCA_CORRECTED;
1339         } else {
1340                 /* Dump buffered message to console */
1341                 ia64_mlogbuf_finish(1);
1342         }
1343 
1344         if (__this_cpu_read(ia64_mca_tr_reload)) {
1345                 mca_insert_tr(0x1); /*Reload dynamic itrs*/
1346                 mca_insert_tr(0x2); /*Reload dynamic itrs*/
1347         }
1348 
1349         NOTIFY_MCA(DIE_MCA_MONARCH_LEAVE, regs, (long)&nd, 1);
1350 
1351         if (atomic_dec_return(&mca_count) > 0) {
1352                 int i;
1353 
1354                 /* wake up the next monarch cpu,
1355                  * and put this cpu in the rendez loop.
1356                  */
1357                 for_each_online_cpu(i) {
1358                         if (cpumask_test_cpu(i, &mca_cpu)) {
1359                                 monarch_cpu = i;
1360                                 cpumask_clear_cpu(i, &mca_cpu); /* wake next cpu */
1361                                 while (monarch_cpu != -1)
1362                                         cpu_relax();    /* spin until last cpu leaves */
1363                                 ia64_set_curr_task(cpu, previous_current);
1364                                 ia64_mc_info.imi_rendez_checkin[cpu]
1365                                                 = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1366                                 return;
1367                         }
1368                 }
1369         }
1370         ia64_set_curr_task(cpu, previous_current);
1371         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1372         monarch_cpu = -1;       /* This frees the slaves and previous monarchs */
1373 }
1374 
1375 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd);
1376 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd);
1377 
1378 /*
1379  * ia64_mca_cmc_int_handler
1380  *
1381  *  This is corrected machine check interrupt handler.
1382  *      Right now the logs are extracted and displayed in a well-defined
1383  *      format.
1384  *
1385  * Inputs
1386  *      interrupt number
1387  *      client data arg ptr
1388  *
1389  * Outputs
1390  *      None
1391  */
1392 static irqreturn_t
1393 ia64_mca_cmc_int_handler(int cmc_irq, void *arg)
1394 {
1395         static unsigned long    cmc_history[CMC_HISTORY_LENGTH];
1396         static int              index;
1397         static DEFINE_SPINLOCK(cmc_history_lock);
1398 
1399         IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1400                        __func__, cmc_irq, smp_processor_id());
1401 
1402         /* SAL spec states this should run w/ interrupts enabled */
1403         local_irq_enable();
1404 
1405         spin_lock(&cmc_history_lock);
1406         if (!cmc_polling_enabled) {
1407                 int i, count = 1; /* we know 1 happened now */
1408                 unsigned long now = jiffies;
1409 
1410                 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1411                         if (now - cmc_history[i] <= HZ)
1412                                 count++;
1413                 }
1414 
1415                 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1416                 if (count >= CMC_HISTORY_LENGTH) {
1417 
1418                         cmc_polling_enabled = 1;
1419                         spin_unlock(&cmc_history_lock);
1420                         /* If we're being hit with CMC interrupts, we won't
1421                          * ever execute the schedule_work() below.  Need to
1422                          * disable CMC interrupts on this processor now.
1423                          */
1424                         ia64_mca_cmc_vector_disable(NULL);
1425                         schedule_work(&cmc_disable_work);
1426 
1427                         /*
1428                          * Corrected errors will still be corrected, but
1429                          * make sure there's a log somewhere that indicates
1430                          * something is generating more than we can handle.
1431                          */
1432                         printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1433 
1434                         mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1435 
1436                         /* lock already released, get out now */
1437                         goto out;
1438                 } else {
1439                         cmc_history[index++] = now;
1440                         if (index == CMC_HISTORY_LENGTH)
1441                                 index = 0;
1442                 }
1443         }
1444         spin_unlock(&cmc_history_lock);
1445 out:
1446         /* Get the CMC error record and log it */
1447         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1448 
1449         local_irq_disable();
1450 
1451         return IRQ_HANDLED;
1452 }
1453 
1454 /*
1455  *  ia64_mca_cmc_int_caller
1456  *
1457  *      Triggered by sw interrupt from CMC polling routine.  Calls
1458  *      real interrupt handler and either triggers a sw interrupt
1459  *      on the next cpu or does cleanup at the end.
1460  *
1461  * Inputs
1462  *      interrupt number
1463  *      client data arg ptr
1464  * Outputs
1465  *      handled
1466  */
1467 static irqreturn_t
1468 ia64_mca_cmc_int_caller(int cmc_irq, void *arg)
1469 {
1470         static int start_count = -1;
1471         unsigned int cpuid;
1472 
1473         cpuid = smp_processor_id();
1474 
1475         /* If first cpu, update count */
1476         if (start_count == -1)
1477                 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1478 
1479         ia64_mca_cmc_int_handler(cmc_irq, arg);
1480 
1481         cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1482 
1483         if (cpuid < nr_cpu_ids) {
1484                 ia64_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1485         } else {
1486                 /* If no log record, switch out of polling mode */
1487                 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1488 
1489                         printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1490                         schedule_work(&cmc_enable_work);
1491                         cmc_polling_enabled = 0;
1492 
1493                 } else {
1494 
1495                         mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1496                 }
1497 
1498                 start_count = -1;
1499         }
1500 
1501         return IRQ_HANDLED;
1502 }
1503 
1504 /*
1505  *  ia64_mca_cmc_poll
1506  *
1507  *      Poll for Corrected Machine Checks (CMCs)
1508  *
1509  * Inputs   :   dummy(unused)
1510  * Outputs  :   None
1511  *
1512  */
1513 static void
1514 ia64_mca_cmc_poll (struct timer_list *unused)
1515 {
1516         /* Trigger a CMC interrupt cascade  */
1517         ia64_send_ipi(cpumask_first(cpu_online_mask), IA64_CMCP_VECTOR,
1518                                                         IA64_IPI_DM_INT, 0);
1519 }
1520 
1521 /*
1522  *  ia64_mca_cpe_int_caller
1523  *
1524  *      Triggered by sw interrupt from CPE polling routine.  Calls
1525  *      real interrupt handler and either triggers a sw interrupt
1526  *      on the next cpu or does cleanup at the end.
1527  *
1528  * Inputs
1529  *      interrupt number
1530  *      client data arg ptr
1531  * Outputs
1532  *      handled
1533  */
1534 static irqreturn_t
1535 ia64_mca_cpe_int_caller(int cpe_irq, void *arg)
1536 {
1537         static int start_count = -1;
1538         static int poll_time = MIN_CPE_POLL_INTERVAL;
1539         unsigned int cpuid;
1540 
1541         cpuid = smp_processor_id();
1542 
1543         /* If first cpu, update count */
1544         if (start_count == -1)
1545                 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1546 
1547         ia64_mca_cpe_int_handler(cpe_irq, arg);
1548 
1549         cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1550 
1551         if (cpuid < NR_CPUS) {
1552                 ia64_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1553         } else {
1554                 /*
1555                  * If a log was recorded, increase our polling frequency,
1556                  * otherwise, backoff or return to interrupt mode.
1557                  */
1558                 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1559                         poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1560                 } else if (cpe_vector < 0) {
1561                         poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1562                 } else {
1563                         poll_time = MIN_CPE_POLL_INTERVAL;
1564 
1565                         printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1566                         enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1567                         cpe_poll_enabled = 0;
1568                 }
1569 
1570                 if (cpe_poll_enabled)
1571                         mod_timer(&cpe_poll_timer, jiffies + poll_time);
1572                 start_count = -1;
1573         }
1574 
1575         return IRQ_HANDLED;
1576 }
1577 
1578 /*
1579  *  ia64_mca_cpe_poll
1580  *
1581  *      Poll for Corrected Platform Errors (CPEs), trigger interrupt
1582  *      on first cpu, from there it will trickle through all the cpus.
1583  *
1584  * Inputs   :   dummy(unused)
1585  * Outputs  :   None
1586  *
1587  */
1588 static void
1589 ia64_mca_cpe_poll (struct timer_list *unused)
1590 {
1591         /* Trigger a CPE interrupt cascade  */
1592         ia64_send_ipi(cpumask_first(cpu_online_mask), IA64_CPEP_VECTOR,
1593                                                         IA64_IPI_DM_INT, 0);
1594 }
1595 
1596 static int
1597 default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1598 {
1599         int c;
1600         struct task_struct *g, *t;
1601         if (val != DIE_INIT_MONARCH_PROCESS)
1602                 return NOTIFY_DONE;
1603 #ifdef CONFIG_KEXEC
1604         if (atomic_read(&kdump_in_progress))
1605                 return NOTIFY_DONE;
1606 #endif
1607 
1608         /*
1609          * FIXME: mlogbuf will brim over with INIT stack dumps.
1610          * To enable show_stack from INIT, we use oops_in_progress which should
1611          * be used in real oops. This would cause something wrong after INIT.
1612          */
1613         BREAK_LOGLEVEL(console_loglevel);
1614         ia64_mlogbuf_dump_from_init();
1615 
1616         printk(KERN_ERR "Processes interrupted by INIT -");
1617         for_each_online_cpu(c) {
1618                 struct ia64_sal_os_state *s;
1619                 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1620                 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1621                 g = s->prev_task;
1622                 if (g) {
1623                         if (g->pid)
1624                                 printk(" %d", g->pid);
1625                         else
1626                                 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1627                 }
1628         }
1629         printk("\n\n");
1630         if (read_trylock(&tasklist_lock)) {
1631                 do_each_thread (g, t) {
1632                         printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1633                         show_stack(t, NULL);
1634                 } while_each_thread (g, t);
1635                 read_unlock(&tasklist_lock);
1636         }
1637         /* FIXME: This will not restore zapped printk locks. */
1638         RESTORE_LOGLEVEL(console_loglevel);
1639         return NOTIFY_DONE;
1640 }
1641 
1642 /*
1643  * C portion of the OS INIT handler
1644  *
1645  * Called from ia64_os_init_dispatch
1646  *
1647  * Inputs: pointer to pt_regs where processor info was saved.  SAL/OS state for
1648  * this event.  This code is used for both monarch and slave INIT events, see
1649  * sos->monarch.
1650  *
1651  * All INIT events switch to the INIT stack and change the previous process to
1652  * blocked status.  If one of the INIT events is the monarch then we are
1653  * probably processing the nmi button/command.  Use the monarch cpu to dump all
1654  * the processes.  The slave INIT events all spin until the monarch cpu
1655  * returns.  We can also get INIT slave events for MCA, in which case the MCA
1656  * process is the monarch.
1657  */
1658 
1659 void
1660 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1661                   struct ia64_sal_os_state *sos)
1662 {
1663         static atomic_t slaves;
1664         static atomic_t monarchs;
1665         struct task_struct *previous_current;
1666         int cpu = smp_processor_id();
1667         struct ia64_mca_notify_die nd =
1668                 { .sos = sos, .monarch_cpu = &monarch_cpu };
1669 
1670         NOTIFY_INIT(DIE_INIT_ENTER, regs, (long)&nd, 0);
1671 
1672         mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1673                 sos->proc_state_param, cpu, sos->monarch);
1674         salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1675 
1676         previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1677         sos->os_status = IA64_INIT_RESUME;
1678 
1679         /* FIXME: Workaround for broken proms that drive all INIT events as
1680          * slaves.  The last slave that enters is promoted to be a monarch.
1681          * Remove this code in September 2006, that gives platforms a year to
1682          * fix their proms and get their customers updated.
1683          */
1684         if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1685                 mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1686                         __func__, cpu);
1687                 atomic_dec(&slaves);
1688                 sos->monarch = 1;
1689         }
1690 
1691         /* FIXME: Workaround for broken proms that drive all INIT events as
1692          * monarchs.  Second and subsequent monarchs are demoted to slaves.
1693          * Remove this code in September 2006, that gives platforms a year to
1694          * fix their proms and get their customers updated.
1695          */
1696         if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1697                 mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1698                                __func__, cpu);
1699                 atomic_dec(&monarchs);
1700                 sos->monarch = 0;
1701         }
1702 
1703         if (!sos->monarch) {
1704                 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1705 
1706 #ifdef CONFIG_KEXEC
1707                 while (monarch_cpu == -1 && !atomic_read(&kdump_in_progress))
1708                         udelay(1000);
1709 #else
1710                 while (monarch_cpu == -1)
1711                         cpu_relax();    /* spin until monarch enters */
1712 #endif
1713 
1714                 NOTIFY_INIT(DIE_INIT_SLAVE_ENTER, regs, (long)&nd, 1);
1715                 NOTIFY_INIT(DIE_INIT_SLAVE_PROCESS, regs, (long)&nd, 1);
1716 
1717 #ifdef CONFIG_KEXEC
1718                 while (monarch_cpu != -1 && !atomic_read(&kdump_in_progress))
1719                         udelay(1000);
1720 #else
1721                 while (monarch_cpu != -1)
1722                         cpu_relax();    /* spin until monarch leaves */
1723 #endif
1724 
1725                 NOTIFY_INIT(DIE_INIT_SLAVE_LEAVE, regs, (long)&nd, 1);
1726 
1727                 mprintk("Slave on cpu %d returning to normal service.\n", cpu);
1728                 ia64_set_curr_task(cpu, previous_current);
1729                 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1730                 atomic_dec(&slaves);
1731                 return;
1732         }
1733 
1734         monarch_cpu = cpu;
1735         NOTIFY_INIT(DIE_INIT_MONARCH_ENTER, regs, (long)&nd, 1);
1736 
1737         /*
1738          * Wait for a bit.  On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1739          * generated via the BMC's command-line interface, but since the console is on the
1740          * same serial line, the user will need some time to switch out of the BMC before
1741          * the dump begins.
1742          */
1743         mprintk("Delaying for 5 seconds...\n");
1744         udelay(5*1000000);
1745         ia64_wait_for_slaves(cpu, "INIT");
1746         /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1747          * to default_monarch_init_process() above and just print all the
1748          * tasks.
1749          */
1750         NOTIFY_INIT(DIE_INIT_MONARCH_PROCESS, regs, (long)&nd, 1);
1751         NOTIFY_INIT(DIE_INIT_MONARCH_LEAVE, regs, (long)&nd, 1);
1752 
1753         mprintk("\nINIT dump complete.  Monarch on cpu %d returning to normal service.\n", cpu);
1754         atomic_dec(&monarchs);
1755         ia64_set_curr_task(cpu, previous_current);
1756         monarch_cpu = -1;
1757         return;
1758 }
1759 
1760 static int __init
1761 ia64_mca_disable_cpe_polling(char *str)
1762 {
1763         cpe_poll_enabled = 0;
1764         return 1;
1765 }
1766 
1767 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1768 
1769 static struct irqaction cmci_irqaction = {
1770         .handler =      ia64_mca_cmc_int_handler,
1771         .name =         "cmc_hndlr"
1772 };
1773 
1774 static struct irqaction cmcp_irqaction = {
1775         .handler =      ia64_mca_cmc_int_caller,
1776         .name =         "cmc_poll"
1777 };
1778 
1779 static struct irqaction mca_rdzv_irqaction = {
1780         .handler =      ia64_mca_rendez_int_handler,
1781         .name =         "mca_rdzv"
1782 };
1783 
1784 static struct irqaction mca_wkup_irqaction = {
1785         .handler =      ia64_mca_wakeup_int_handler,
1786         .name =         "mca_wkup"
1787 };
1788 
1789 static struct irqaction mca_cpe_irqaction = {
1790         .handler =      ia64_mca_cpe_int_handler,
1791         .name =         "cpe_hndlr"
1792 };
1793 
1794 static struct irqaction mca_cpep_irqaction = {
1795         .handler =      ia64_mca_cpe_int_caller,
1796         .name =         "cpe_poll"
1797 };
1798 
1799 /* Minimal format of the MCA/INIT stacks.  The pseudo processes that run on
1800  * these stacks can never sleep, they cannot return from the kernel to user
1801  * space, they do not appear in a normal ps listing.  So there is no need to
1802  * format most of the fields.
1803  */
1804 
1805 static void
1806 format_mca_init_stack(void *mca_data, unsigned long offset,
1807                 const char *type, int cpu)
1808 {
1809         struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1810         struct thread_info *ti;
1811         memset(p, 0, KERNEL_STACK_SIZE);
1812         ti = task_thread_info(p);
1813         ti->flags = _TIF_MCA_INIT;
1814         ti->preempt_count = 1;
1815         ti->task = p;
1816         ti->cpu = cpu;
1817         p->stack = ti;
1818         p->state = TASK_UNINTERRUPTIBLE;
1819         cpumask_set_cpu(cpu, &p->cpus_mask);
1820         INIT_LIST_HEAD(&p->tasks);
1821         p->parent = p->real_parent = p->group_leader = p;
1822         INIT_LIST_HEAD(&p->children);
1823         INIT_LIST_HEAD(&p->sibling);
1824         strncpy(p->comm, type, sizeof(p->comm)-1);
1825 }
1826 
1827 /* Caller prevents this from being called after init */
1828 static void * __ref mca_bootmem(void)
1829 {
1830         return memblock_alloc(sizeof(struct ia64_mca_cpu), KERNEL_STACK_SIZE);
1831 }
1832 
1833 /* Do per-CPU MCA-related initialization.  */
1834 void
1835 ia64_mca_cpu_init(void *cpu_data)
1836 {
1837         void *pal_vaddr;
1838         void *data;
1839         long sz = sizeof(struct ia64_mca_cpu);
1840         int cpu = smp_processor_id();
1841         static int first_time = 1;
1842 
1843         /*
1844          * Structure will already be allocated if cpu has been online,
1845          * then offlined.
1846          */
1847         if (__per_cpu_mca[cpu]) {
1848                 data = __va(__per_cpu_mca[cpu]);
1849         } else {
1850                 if (first_time) {
1851                         data = mca_bootmem();
1852                         first_time = 0;
1853                 } else
1854                         data = (void *)__get_free_pages(GFP_KERNEL,
1855                                                         get_order(sz));
1856                 if (!data)
1857                         panic("Could not allocate MCA memory for cpu %d\n",
1858                                         cpu);
1859         }
1860         format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, mca_stack),
1861                 "MCA", cpu);
1862         format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, init_stack),
1863                 "INIT", cpu);
1864         __this_cpu_write(ia64_mca_data, (__per_cpu_mca[cpu] = __pa(data)));
1865 
1866         /*
1867          * Stash away a copy of the PTE needed to map the per-CPU page.
1868          * We may need it during MCA recovery.
1869          */
1870         __this_cpu_write(ia64_mca_per_cpu_pte,
1871                 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL)));
1872 
1873         /*
1874          * Also, stash away a copy of the PAL address and the PTE
1875          * needed to map it.
1876          */
1877         pal_vaddr = efi_get_pal_addr();
1878         if (!pal_vaddr)
1879                 return;
1880         __this_cpu_write(ia64_mca_pal_base,
1881                 GRANULEROUNDDOWN((unsigned long) pal_vaddr));
1882         __this_cpu_write(ia64_mca_pal_pte, pte_val(mk_pte_phys(__pa(pal_vaddr),
1883                                                               PAGE_KERNEL)));
1884 }
1885 
1886 static int ia64_mca_cpu_online(unsigned int cpu)
1887 {
1888         unsigned long flags;
1889 
1890         local_irq_save(flags);
1891         if (!cmc_polling_enabled)
1892                 ia64_mca_cmc_vector_enable(NULL);
1893         local_irq_restore(flags);
1894         return 0;
1895 }
1896 
1897 /*
1898  * ia64_mca_init
1899  *
1900  *  Do all the system level mca specific initialization.
1901  *
1902  *      1. Register spinloop and wakeup request interrupt vectors
1903  *
1904  *      2. Register OS_MCA handler entry point
1905  *
1906  *      3. Register OS_INIT handler entry point
1907  *
1908  *  4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1909  *
1910  *  Note that this initialization is done very early before some kernel
1911  *  services are available.
1912  *
1913  *  Inputs  :   None
1914  *
1915  *  Outputs :   None
1916  */
1917 void __init
1918 ia64_mca_init(void)
1919 {
1920         ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1921         ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1922         ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1923         int i;
1924         long rc;
1925         struct ia64_sal_retval isrv;
1926         unsigned long timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
1927         static struct notifier_block default_init_monarch_nb = {
1928                 .notifier_call = default_monarch_init_process,
1929                 .priority = 0/* we need to notified last */
1930         };
1931 
1932         IA64_MCA_DEBUG("%s: begin\n", __func__);
1933 
1934         /* Clear the Rendez checkin flag for all cpus */
1935         for(i = 0 ; i < NR_CPUS; i++)
1936                 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1937 
1938         /*
1939          * Register the rendezvous spinloop and wakeup mechanism with SAL
1940          */
1941 
1942         /* Register the rendezvous interrupt vector with SAL */
1943         while (1) {
1944                 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1945                                               SAL_MC_PARAM_MECHANISM_INT,
1946                                               IA64_MCA_RENDEZ_VECTOR,
1947                                               timeout,
1948                                               SAL_MC_PARAM_RZ_ALWAYS);
1949                 rc = isrv.status;
1950                 if (rc == 0)
1951                         break;
1952                 if (rc == -2) {
1953                         printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1954                                 "%ld to %ld milliseconds\n", timeout, isrv.v0);
1955                         timeout = isrv.v0;
1956                         NOTIFY_MCA(DIE_MCA_NEW_TIMEOUT, NULL, timeout, 0);
1957                         continue;
1958                 }
1959                 printk(KERN_ERR "Failed to register rendezvous interrupt "
1960                        "with SAL (status %ld)\n", rc);
1961                 return;
1962         }
1963 
1964         /* Register the wakeup interrupt vector with SAL */
1965         isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1966                                       SAL_MC_PARAM_MECHANISM_INT,
1967                                       IA64_MCA_WAKEUP_VECTOR,
1968                                       0, 0);
1969         rc = isrv.status;
1970         if (rc) {
1971                 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1972                        "(status %ld)\n", rc);
1973                 return;
1974         }
1975 
1976         IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __func__);
1977 
1978         ia64_mc_info.imi_mca_handler        = ia64_tpa(mca_hldlr_ptr->fp);
1979         /*
1980          * XXX - disable SAL checksum by setting size to 0; should be
1981          *      ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1982          */
1983         ia64_mc_info.imi_mca_handler_size       = 0;
1984 
1985         /* Register the os mca handler with SAL */
1986         if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1987                                        ia64_mc_info.imi_mca_handler,
1988                                        ia64_tpa(mca_hldlr_ptr->gp),
1989                                        ia64_mc_info.imi_mca_handler_size,
1990                                        0, 0, 0)))
1991         {
1992                 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1993                        "(status %ld)\n", rc);
1994                 return;
1995         }
1996 
1997         IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __func__,
1998                        ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
1999 
2000         /*
2001          * XXX - disable SAL checksum by setting size to 0, should be
2002          * size of the actual init handler in mca_asm.S.
2003          */
2004         ia64_mc_info.imi_monarch_init_handler           = ia64_tpa(init_hldlr_ptr_monarch->fp);
2005         ia64_mc_info.imi_monarch_init_handler_size      = 0;
2006         ia64_mc_info.imi_slave_init_handler             = ia64_tpa(init_hldlr_ptr_slave->fp);
2007         ia64_mc_info.imi_slave_init_handler_size        = 0;
2008 
2009         IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __func__,
2010                        ia64_mc_info.imi_monarch_init_handler);
2011 
2012         /* Register the os init handler with SAL */
2013         if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
2014                                        ia64_mc_info.imi_monarch_init_handler,
2015                                        ia64_tpa(ia64_getreg(_IA64_REG_GP)),
2016                                        ia64_mc_info.imi_monarch_init_handler_size,
2017                                        ia64_mc_info.imi_slave_init_handler,
2018                                        ia64_tpa(ia64_getreg(_IA64_REG_GP)),
2019                                        ia64_mc_info.imi_slave_init_handler_size)))
2020         {
2021                 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
2022                        "(status %ld)\n", rc);
2023                 return;
2024         }
2025         if (register_die_notifier(&default_init_monarch_nb)) {
2026                 printk(KERN_ERR "Failed to register default monarch INIT process\n");
2027                 return;
2028         }
2029 
2030         IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __func__);
2031 
2032         /* Initialize the areas set aside by the OS to buffer the
2033          * platform/processor error states for MCA/INIT/CMC
2034          * handling.
2035          */
2036         ia64_log_init(SAL_INFO_TYPE_MCA);
2037         ia64_log_init(SAL_INFO_TYPE_INIT);
2038         ia64_log_init(SAL_INFO_TYPE_CMC);
2039         ia64_log_init(SAL_INFO_TYPE_CPE);
2040 
2041         mca_init = 1;
2042         printk(KERN_INFO "MCA related initialization done\n");
2043 }
2044 
2045 
2046 /*
2047  * These pieces cannot be done in ia64_mca_init() because it is called before
2048  * early_irq_init() which would wipe out our percpu irq registrations. But we
2049  * cannot leave them until ia64_mca_late_init() because by then all the other
2050  * processors have been brought online and have set their own CMC vectors to
2051  * point at a non-existant action. Called from arch_early_irq_init().
2052  */
2053 void __init ia64_mca_irq_init(void)
2054 {
2055         /*
2056          *  Configure the CMCI/P vector and handler. Interrupts for CMC are
2057          *  per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
2058          */
2059         register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
2060         register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
2061         ia64_mca_cmc_vector_setup();       /* Setup vector on BSP */
2062 
2063         /* Setup the MCA rendezvous interrupt vector */
2064         register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
2065 
2066         /* Setup the MCA wakeup interrupt vector */
2067         register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
2068 
2069         /* Setup the CPEI/P handler */
2070         register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
2071 }
2072 
2073 /*
2074  * ia64_mca_late_init
2075  *
2076  *      Opportunity to setup things that require initialization later
2077  *      than ia64_mca_init.  Setup a timer to poll for CPEs if the
2078  *      platform doesn't support an interrupt driven mechanism.
2079  *
2080  *  Inputs  :   None
2081  *  Outputs :   Status
2082  */
2083 static int __init
2084 ia64_mca_late_init(void)
2085 {
2086         if (!mca_init)
2087                 return 0;
2088 
2089         /* Setup the CMCI/P vector and handler */
2090         timer_setup(&cmc_poll_timer, ia64_mca_cmc_poll, 0);
2091 
2092         /* Unmask/enable the vector */
2093         cmc_polling_enabled = 0;
2094         cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "ia64/mca:online",
2095                           ia64_mca_cpu_online, NULL);
2096         IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __func__);
2097 
2098         /* Setup the CPEI/P vector and handler */
2099         cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
2100         timer_setup(&cpe_poll_timer, ia64_mca_cpe_poll, 0);
2101 
2102         {
2103                 unsigned int irq;
2104 
2105                 if (cpe_vector >= 0) {
2106                         /* If platform supports CPEI, enable the irq. */
2107                         irq = local_vector_to_irq(cpe_vector);
2108                         if (irq > 0) {
2109                                 cpe_poll_enabled = 0;
2110                                 irq_set_status_flags(irq, IRQ_PER_CPU);
2111                                 setup_irq(irq, &mca_cpe_irqaction);
2112                                 ia64_cpe_irq = irq;
2113                                 ia64_mca_register_cpev(cpe_vector);
2114                                 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n",
2115                                         __func__);
2116                                 return 0;
2117                         }
2118                         printk(KERN_ERR "%s: Failed to find irq for CPE "
2119                                         "interrupt handler, vector %d\n",
2120                                         __func__, cpe_vector);
2121                 }
2122                 /* If platform doesn't support CPEI, get the timer going. */
2123                 if (cpe_poll_enabled) {
2124                         ia64_mca_cpe_poll(0UL);
2125                         IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __func__);
2126                 }
2127         }
2128 
2129         return 0;
2130 }
2131 
2132 device_initcall(ia64_mca_late_init);

/* [<][>][^][v][top][bottom][index][help] */