root/drivers/gpu/drm/i2c/tda998x_drv.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. cec_write
  2. cec_read
  3. cec_enamods
  4. tda998x_cec_set_calibration
  5. tda998x_cec_calibration
  6. tda998x_cec_hook_init
  7. tda998x_cec_hook_exit
  8. tda998x_cec_hook_open
  9. tda998x_cec_hook_release
  10. set_page
  11. reg_read_range
  12. reg_write_range
  13. reg_read
  14. reg_write
  15. reg_write16
  16. reg_set
  17. reg_clear
  18. tda998x_reset
  19. tda998x_edid_delay_done
  20. tda998x_edid_delay_start
  21. tda998x_edid_delay_wait
  22. tda998x_detect_work
  23. tda998x_irq_thread
  24. tda998x_write_if
  25. tda998x_write_aif
  26. tda998x_write_avi
  27. tda998x_write_vsi
  28. tda998x_derive_routing
  29. tda998x_get_adiv
  30. tda998x_derive_cts_n
  31. tda998x_audio_mute
  32. tda998x_configure_audio
  33. tda998x_audio_hw_params
  34. tda998x_audio_shutdown
  35. tda998x_audio_digital_mute
  36. tda998x_audio_get_eld
  37. tda998x_audio_codec_init
  38. tda998x_connector_detect
  39. tda998x_connector_destroy
  40. read_edid_block
  41. tda998x_connector_get_modes
  42. tda998x_connector_best_encoder
  43. tda998x_connector_init
  44. tda998x_bridge_attach
  45. tda998x_bridge_detach
  46. tda998x_bridge_mode_valid
  47. tda998x_bridge_enable
  48. tda998x_bridge_disable
  49. tda998x_bridge_mode_set
  50. tda998x_get_audio_ports
  51. tda998x_set_config
  52. tda998x_destroy
  53. tda998x_create
  54. tda998x_encoder_destroy
  55. tda998x_encoder_init
  56. tda998x_bind
  57. tda998x_unbind
  58. tda998x_probe
  59. tda998x_remove

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * Copyright (C) 2012 Texas Instruments
   4  * Author: Rob Clark <robdclark@gmail.com>
   5  */
   6 
   7 #include <linux/component.h>
   8 #include <linux/gpio/consumer.h>
   9 #include <linux/hdmi.h>
  10 #include <linux/module.h>
  11 #include <linux/platform_data/tda9950.h>
  12 #include <linux/irq.h>
  13 #include <sound/asoundef.h>
  14 #include <sound/hdmi-codec.h>
  15 
  16 #include <drm/drm_atomic_helper.h>
  17 #include <drm/drm_edid.h>
  18 #include <drm/drm_of.h>
  19 #include <drm/drm_print.h>
  20 #include <drm/drm_probe_helper.h>
  21 #include <drm/i2c/tda998x.h>
  22 
  23 #include <media/cec-notifier.h>
  24 
  25 #define DBG(fmt, ...) DRM_DEBUG(fmt"\n", ##__VA_ARGS__)
  26 
  27 enum {
  28         AUDIO_ROUTE_I2S,
  29         AUDIO_ROUTE_SPDIF,
  30         AUDIO_ROUTE_NUM
  31 };
  32 
  33 struct tda998x_audio_route {
  34         u8 ena_aclk;
  35         u8 mux_ap;
  36         u8 aip_clksel;
  37 };
  38 
  39 struct tda998x_audio_settings {
  40         const struct tda998x_audio_route *route;
  41         struct hdmi_audio_infoframe cea;
  42         unsigned int sample_rate;
  43         u8 status[5];
  44         u8 ena_ap;
  45         u8 i2s_format;
  46         u8 cts_n;
  47 };
  48 
  49 struct tda998x_priv {
  50         struct i2c_client *cec;
  51         struct i2c_client *hdmi;
  52         struct mutex mutex;
  53         u16 rev;
  54         u8 cec_addr;
  55         u8 current_page;
  56         bool is_on;
  57         bool supports_infoframes;
  58         bool sink_has_audio;
  59         enum hdmi_quantization_range rgb_quant_range;
  60         u8 vip_cntrl_0;
  61         u8 vip_cntrl_1;
  62         u8 vip_cntrl_2;
  63         unsigned long tmds_clock;
  64         struct tda998x_audio_settings audio;
  65 
  66         struct platform_device *audio_pdev;
  67         struct mutex audio_mutex;
  68 
  69         struct mutex edid_mutex;
  70         wait_queue_head_t wq_edid;
  71         volatile int wq_edid_wait;
  72 
  73         struct work_struct detect_work;
  74         struct timer_list edid_delay_timer;
  75         wait_queue_head_t edid_delay_waitq;
  76         bool edid_delay_active;
  77 
  78         struct drm_encoder encoder;
  79         struct drm_bridge bridge;
  80         struct drm_connector connector;
  81 
  82         u8 audio_port_enable[AUDIO_ROUTE_NUM];
  83         struct tda9950_glue cec_glue;
  84         struct gpio_desc *calib;
  85         struct cec_notifier *cec_notify;
  86 };
  87 
  88 #define conn_to_tda998x_priv(x) \
  89         container_of(x, struct tda998x_priv, connector)
  90 #define enc_to_tda998x_priv(x) \
  91         container_of(x, struct tda998x_priv, encoder)
  92 #define bridge_to_tda998x_priv(x) \
  93         container_of(x, struct tda998x_priv, bridge)
  94 
  95 /* The TDA9988 series of devices use a paged register scheme.. to simplify
  96  * things we encode the page # in upper bits of the register #.  To read/
  97  * write a given register, we need to make sure CURPAGE register is set
  98  * appropriately.  Which implies reads/writes are not atomic.  Fun!
  99  */
 100 
 101 #define REG(page, addr) (((page) << 8) | (addr))
 102 #define REG2ADDR(reg)   ((reg) & 0xff)
 103 #define REG2PAGE(reg)   (((reg) >> 8) & 0xff)
 104 
 105 #define REG_CURPAGE               0xff                /* write */
 106 
 107 
 108 /* Page 00h: General Control */
 109 #define REG_VERSION_LSB           REG(0x00, 0x00)     /* read */
 110 #define REG_MAIN_CNTRL0           REG(0x00, 0x01)     /* read/write */
 111 # define MAIN_CNTRL0_SR           (1 << 0)
 112 # define MAIN_CNTRL0_DECS         (1 << 1)
 113 # define MAIN_CNTRL0_DEHS         (1 << 2)
 114 # define MAIN_CNTRL0_CECS         (1 << 3)
 115 # define MAIN_CNTRL0_CEHS         (1 << 4)
 116 # define MAIN_CNTRL0_SCALER       (1 << 7)
 117 #define REG_VERSION_MSB           REG(0x00, 0x02)     /* read */
 118 #define REG_SOFTRESET             REG(0x00, 0x0a)     /* write */
 119 # define SOFTRESET_AUDIO          (1 << 0)
 120 # define SOFTRESET_I2C_MASTER     (1 << 1)
 121 #define REG_DDC_DISABLE           REG(0x00, 0x0b)     /* read/write */
 122 #define REG_CCLK_ON               REG(0x00, 0x0c)     /* read/write */
 123 #define REG_I2C_MASTER            REG(0x00, 0x0d)     /* read/write */
 124 # define I2C_MASTER_DIS_MM        (1 << 0)
 125 # define I2C_MASTER_DIS_FILT      (1 << 1)
 126 # define I2C_MASTER_APP_STRT_LAT  (1 << 2)
 127 #define REG_FEAT_POWERDOWN        REG(0x00, 0x0e)     /* read/write */
 128 # define FEAT_POWERDOWN_PREFILT   BIT(0)
 129 # define FEAT_POWERDOWN_CSC       BIT(1)
 130 # define FEAT_POWERDOWN_SPDIF     (1 << 3)
 131 #define REG_INT_FLAGS_0           REG(0x00, 0x0f)     /* read/write */
 132 #define REG_INT_FLAGS_1           REG(0x00, 0x10)     /* read/write */
 133 #define REG_INT_FLAGS_2           REG(0x00, 0x11)     /* read/write */
 134 # define INT_FLAGS_2_EDID_BLK_RD  (1 << 1)
 135 #define REG_ENA_ACLK              REG(0x00, 0x16)     /* read/write */
 136 #define REG_ENA_VP_0              REG(0x00, 0x18)     /* read/write */
 137 #define REG_ENA_VP_1              REG(0x00, 0x19)     /* read/write */
 138 #define REG_ENA_VP_2              REG(0x00, 0x1a)     /* read/write */
 139 #define REG_ENA_AP                REG(0x00, 0x1e)     /* read/write */
 140 #define REG_VIP_CNTRL_0           REG(0x00, 0x20)     /* write */
 141 # define VIP_CNTRL_0_MIRR_A       (1 << 7)
 142 # define VIP_CNTRL_0_SWAP_A(x)    (((x) & 7) << 4)
 143 # define VIP_CNTRL_0_MIRR_B       (1 << 3)
 144 # define VIP_CNTRL_0_SWAP_B(x)    (((x) & 7) << 0)
 145 #define REG_VIP_CNTRL_1           REG(0x00, 0x21)     /* write */
 146 # define VIP_CNTRL_1_MIRR_C       (1 << 7)
 147 # define VIP_CNTRL_1_SWAP_C(x)    (((x) & 7) << 4)
 148 # define VIP_CNTRL_1_MIRR_D       (1 << 3)
 149 # define VIP_CNTRL_1_SWAP_D(x)    (((x) & 7) << 0)
 150 #define REG_VIP_CNTRL_2           REG(0x00, 0x22)     /* write */
 151 # define VIP_CNTRL_2_MIRR_E       (1 << 7)
 152 # define VIP_CNTRL_2_SWAP_E(x)    (((x) & 7) << 4)
 153 # define VIP_CNTRL_2_MIRR_F       (1 << 3)
 154 # define VIP_CNTRL_2_SWAP_F(x)    (((x) & 7) << 0)
 155 #define REG_VIP_CNTRL_3           REG(0x00, 0x23)     /* write */
 156 # define VIP_CNTRL_3_X_TGL        (1 << 0)
 157 # define VIP_CNTRL_3_H_TGL        (1 << 1)
 158 # define VIP_CNTRL_3_V_TGL        (1 << 2)
 159 # define VIP_CNTRL_3_EMB          (1 << 3)
 160 # define VIP_CNTRL_3_SYNC_DE      (1 << 4)
 161 # define VIP_CNTRL_3_SYNC_HS      (1 << 5)
 162 # define VIP_CNTRL_3_DE_INT       (1 << 6)
 163 # define VIP_CNTRL_3_EDGE         (1 << 7)
 164 #define REG_VIP_CNTRL_4           REG(0x00, 0x24)     /* write */
 165 # define VIP_CNTRL_4_BLC(x)       (((x) & 3) << 0)
 166 # define VIP_CNTRL_4_BLANKIT(x)   (((x) & 3) << 2)
 167 # define VIP_CNTRL_4_CCIR656      (1 << 4)
 168 # define VIP_CNTRL_4_656_ALT      (1 << 5)
 169 # define VIP_CNTRL_4_TST_656      (1 << 6)
 170 # define VIP_CNTRL_4_TST_PAT      (1 << 7)
 171 #define REG_VIP_CNTRL_5           REG(0x00, 0x25)     /* write */
 172 # define VIP_CNTRL_5_CKCASE       (1 << 0)
 173 # define VIP_CNTRL_5_SP_CNT(x)    (((x) & 3) << 1)
 174 #define REG_MUX_AP                REG(0x00, 0x26)     /* read/write */
 175 # define MUX_AP_SELECT_I2S        0x64
 176 # define MUX_AP_SELECT_SPDIF      0x40
 177 #define REG_MUX_VP_VIP_OUT        REG(0x00, 0x27)     /* read/write */
 178 #define REG_MAT_CONTRL            REG(0x00, 0x80)     /* write */
 179 # define MAT_CONTRL_MAT_SC(x)     (((x) & 3) << 0)
 180 # define MAT_CONTRL_MAT_BP        (1 << 2)
 181 #define REG_VIDFORMAT             REG(0x00, 0xa0)     /* write */
 182 #define REG_REFPIX_MSB            REG(0x00, 0xa1)     /* write */
 183 #define REG_REFPIX_LSB            REG(0x00, 0xa2)     /* write */
 184 #define REG_REFLINE_MSB           REG(0x00, 0xa3)     /* write */
 185 #define REG_REFLINE_LSB           REG(0x00, 0xa4)     /* write */
 186 #define REG_NPIX_MSB              REG(0x00, 0xa5)     /* write */
 187 #define REG_NPIX_LSB              REG(0x00, 0xa6)     /* write */
 188 #define REG_NLINE_MSB             REG(0x00, 0xa7)     /* write */
 189 #define REG_NLINE_LSB             REG(0x00, 0xa8)     /* write */
 190 #define REG_VS_LINE_STRT_1_MSB    REG(0x00, 0xa9)     /* write */
 191 #define REG_VS_LINE_STRT_1_LSB    REG(0x00, 0xaa)     /* write */
 192 #define REG_VS_PIX_STRT_1_MSB     REG(0x00, 0xab)     /* write */
 193 #define REG_VS_PIX_STRT_1_LSB     REG(0x00, 0xac)     /* write */
 194 #define REG_VS_LINE_END_1_MSB     REG(0x00, 0xad)     /* write */
 195 #define REG_VS_LINE_END_1_LSB     REG(0x00, 0xae)     /* write */
 196 #define REG_VS_PIX_END_1_MSB      REG(0x00, 0xaf)     /* write */
 197 #define REG_VS_PIX_END_1_LSB      REG(0x00, 0xb0)     /* write */
 198 #define REG_VS_LINE_STRT_2_MSB    REG(0x00, 0xb1)     /* write */
 199 #define REG_VS_LINE_STRT_2_LSB    REG(0x00, 0xb2)     /* write */
 200 #define REG_VS_PIX_STRT_2_MSB     REG(0x00, 0xb3)     /* write */
 201 #define REG_VS_PIX_STRT_2_LSB     REG(0x00, 0xb4)     /* write */
 202 #define REG_VS_LINE_END_2_MSB     REG(0x00, 0xb5)     /* write */
 203 #define REG_VS_LINE_END_2_LSB     REG(0x00, 0xb6)     /* write */
 204 #define REG_VS_PIX_END_2_MSB      REG(0x00, 0xb7)     /* write */
 205 #define REG_VS_PIX_END_2_LSB      REG(0x00, 0xb8)     /* write */
 206 #define REG_HS_PIX_START_MSB      REG(0x00, 0xb9)     /* write */
 207 #define REG_HS_PIX_START_LSB      REG(0x00, 0xba)     /* write */
 208 #define REG_HS_PIX_STOP_MSB       REG(0x00, 0xbb)     /* write */
 209 #define REG_HS_PIX_STOP_LSB       REG(0x00, 0xbc)     /* write */
 210 #define REG_VWIN_START_1_MSB      REG(0x00, 0xbd)     /* write */
 211 #define REG_VWIN_START_1_LSB      REG(0x00, 0xbe)     /* write */
 212 #define REG_VWIN_END_1_MSB        REG(0x00, 0xbf)     /* write */
 213 #define REG_VWIN_END_1_LSB        REG(0x00, 0xc0)     /* write */
 214 #define REG_VWIN_START_2_MSB      REG(0x00, 0xc1)     /* write */
 215 #define REG_VWIN_START_2_LSB      REG(0x00, 0xc2)     /* write */
 216 #define REG_VWIN_END_2_MSB        REG(0x00, 0xc3)     /* write */
 217 #define REG_VWIN_END_2_LSB        REG(0x00, 0xc4)     /* write */
 218 #define REG_DE_START_MSB          REG(0x00, 0xc5)     /* write */
 219 #define REG_DE_START_LSB          REG(0x00, 0xc6)     /* write */
 220 #define REG_DE_STOP_MSB           REG(0x00, 0xc7)     /* write */
 221 #define REG_DE_STOP_LSB           REG(0x00, 0xc8)     /* write */
 222 #define REG_TBG_CNTRL_0           REG(0x00, 0xca)     /* write */
 223 # define TBG_CNTRL_0_TOP_TGL      (1 << 0)
 224 # define TBG_CNTRL_0_TOP_SEL      (1 << 1)
 225 # define TBG_CNTRL_0_DE_EXT       (1 << 2)
 226 # define TBG_CNTRL_0_TOP_EXT      (1 << 3)
 227 # define TBG_CNTRL_0_FRAME_DIS    (1 << 5)
 228 # define TBG_CNTRL_0_SYNC_MTHD    (1 << 6)
 229 # define TBG_CNTRL_0_SYNC_ONCE    (1 << 7)
 230 #define REG_TBG_CNTRL_1           REG(0x00, 0xcb)     /* write */
 231 # define TBG_CNTRL_1_H_TGL        (1 << 0)
 232 # define TBG_CNTRL_1_V_TGL        (1 << 1)
 233 # define TBG_CNTRL_1_TGL_EN       (1 << 2)
 234 # define TBG_CNTRL_1_X_EXT        (1 << 3)
 235 # define TBG_CNTRL_1_H_EXT        (1 << 4)
 236 # define TBG_CNTRL_1_V_EXT        (1 << 5)
 237 # define TBG_CNTRL_1_DWIN_DIS     (1 << 6)
 238 #define REG_ENABLE_SPACE          REG(0x00, 0xd6)     /* write */
 239 #define REG_HVF_CNTRL_0           REG(0x00, 0xe4)     /* write */
 240 # define HVF_CNTRL_0_SM           (1 << 7)
 241 # define HVF_CNTRL_0_RWB          (1 << 6)
 242 # define HVF_CNTRL_0_PREFIL(x)    (((x) & 3) << 2)
 243 # define HVF_CNTRL_0_INTPOL(x)    (((x) & 3) << 0)
 244 #define REG_HVF_CNTRL_1           REG(0x00, 0xe5)     /* write */
 245 # define HVF_CNTRL_1_FOR          (1 << 0)
 246 # define HVF_CNTRL_1_YUVBLK       (1 << 1)
 247 # define HVF_CNTRL_1_VQR(x)       (((x) & 3) << 2)
 248 # define HVF_CNTRL_1_PAD(x)       (((x) & 3) << 4)
 249 # define HVF_CNTRL_1_SEMI_PLANAR  (1 << 6)
 250 #define REG_RPT_CNTRL             REG(0x00, 0xf0)     /* write */
 251 # define RPT_CNTRL_REPEAT(x)      ((x) & 15)
 252 #define REG_I2S_FORMAT            REG(0x00, 0xfc)     /* read/write */
 253 # define I2S_FORMAT_PHILIPS       (0 << 0)
 254 # define I2S_FORMAT_LEFT_J        (2 << 0)
 255 # define I2S_FORMAT_RIGHT_J       (3 << 0)
 256 #define REG_AIP_CLKSEL            REG(0x00, 0xfd)     /* write */
 257 # define AIP_CLKSEL_AIP_SPDIF     (0 << 3)
 258 # define AIP_CLKSEL_AIP_I2S       (1 << 3)
 259 # define AIP_CLKSEL_FS_ACLK       (0 << 0)
 260 # define AIP_CLKSEL_FS_MCLK       (1 << 0)
 261 # define AIP_CLKSEL_FS_FS64SPDIF  (2 << 0)
 262 
 263 /* Page 02h: PLL settings */
 264 #define REG_PLL_SERIAL_1          REG(0x02, 0x00)     /* read/write */
 265 # define PLL_SERIAL_1_SRL_FDN     (1 << 0)
 266 # define PLL_SERIAL_1_SRL_IZ(x)   (((x) & 3) << 1)
 267 # define PLL_SERIAL_1_SRL_MAN_IZ  (1 << 6)
 268 #define REG_PLL_SERIAL_2          REG(0x02, 0x01)     /* read/write */
 269 # define PLL_SERIAL_2_SRL_NOSC(x) ((x) << 0)
 270 # define PLL_SERIAL_2_SRL_PR(x)   (((x) & 0xf) << 4)
 271 #define REG_PLL_SERIAL_3          REG(0x02, 0x02)     /* read/write */
 272 # define PLL_SERIAL_3_SRL_CCIR    (1 << 0)
 273 # define PLL_SERIAL_3_SRL_DE      (1 << 2)
 274 # define PLL_SERIAL_3_SRL_PXIN_SEL (1 << 4)
 275 #define REG_SERIALIZER            REG(0x02, 0x03)     /* read/write */
 276 #define REG_BUFFER_OUT            REG(0x02, 0x04)     /* read/write */
 277 #define REG_PLL_SCG1              REG(0x02, 0x05)     /* read/write */
 278 #define REG_PLL_SCG2              REG(0x02, 0x06)     /* read/write */
 279 #define REG_PLL_SCGN1             REG(0x02, 0x07)     /* read/write */
 280 #define REG_PLL_SCGN2             REG(0x02, 0x08)     /* read/write */
 281 #define REG_PLL_SCGR1             REG(0x02, 0x09)     /* read/write */
 282 #define REG_PLL_SCGR2             REG(0x02, 0x0a)     /* read/write */
 283 #define REG_AUDIO_DIV             REG(0x02, 0x0e)     /* read/write */
 284 # define AUDIO_DIV_SERCLK_1       0
 285 # define AUDIO_DIV_SERCLK_2       1
 286 # define AUDIO_DIV_SERCLK_4       2
 287 # define AUDIO_DIV_SERCLK_8       3
 288 # define AUDIO_DIV_SERCLK_16      4
 289 # define AUDIO_DIV_SERCLK_32      5
 290 #define REG_SEL_CLK               REG(0x02, 0x11)     /* read/write */
 291 # define SEL_CLK_SEL_CLK1         (1 << 0)
 292 # define SEL_CLK_SEL_VRF_CLK(x)   (((x) & 3) << 1)
 293 # define SEL_CLK_ENA_SC_CLK       (1 << 3)
 294 #define REG_ANA_GENERAL           REG(0x02, 0x12)     /* read/write */
 295 
 296 
 297 /* Page 09h: EDID Control */
 298 #define REG_EDID_DATA_0           REG(0x09, 0x00)     /* read */
 299 /* next 127 successive registers are the EDID block */
 300 #define REG_EDID_CTRL             REG(0x09, 0xfa)     /* read/write */
 301 #define REG_DDC_ADDR              REG(0x09, 0xfb)     /* read/write */
 302 #define REG_DDC_OFFS              REG(0x09, 0xfc)     /* read/write */
 303 #define REG_DDC_SEGM_ADDR         REG(0x09, 0xfd)     /* read/write */
 304 #define REG_DDC_SEGM              REG(0x09, 0xfe)     /* read/write */
 305 
 306 
 307 /* Page 10h: information frames and packets */
 308 #define REG_IF1_HB0               REG(0x10, 0x20)     /* read/write */
 309 #define REG_IF2_HB0               REG(0x10, 0x40)     /* read/write */
 310 #define REG_IF3_HB0               REG(0x10, 0x60)     /* read/write */
 311 #define REG_IF4_HB0               REG(0x10, 0x80)     /* read/write */
 312 #define REG_IF5_HB0               REG(0x10, 0xa0)     /* read/write */
 313 
 314 
 315 /* Page 11h: audio settings and content info packets */
 316 #define REG_AIP_CNTRL_0           REG(0x11, 0x00)     /* read/write */
 317 # define AIP_CNTRL_0_RST_FIFO     (1 << 0)
 318 # define AIP_CNTRL_0_SWAP         (1 << 1)
 319 # define AIP_CNTRL_0_LAYOUT       (1 << 2)
 320 # define AIP_CNTRL_0_ACR_MAN      (1 << 5)
 321 # define AIP_CNTRL_0_RST_CTS      (1 << 6)
 322 #define REG_CA_I2S                REG(0x11, 0x01)     /* read/write */
 323 # define CA_I2S_CA_I2S(x)         (((x) & 31) << 0)
 324 # define CA_I2S_HBR_CHSTAT        (1 << 6)
 325 #define REG_LATENCY_RD            REG(0x11, 0x04)     /* read/write */
 326 #define REG_ACR_CTS_0             REG(0x11, 0x05)     /* read/write */
 327 #define REG_ACR_CTS_1             REG(0x11, 0x06)     /* read/write */
 328 #define REG_ACR_CTS_2             REG(0x11, 0x07)     /* read/write */
 329 #define REG_ACR_N_0               REG(0x11, 0x08)     /* read/write */
 330 #define REG_ACR_N_1               REG(0x11, 0x09)     /* read/write */
 331 #define REG_ACR_N_2               REG(0x11, 0x0a)     /* read/write */
 332 #define REG_CTS_N                 REG(0x11, 0x0c)     /* read/write */
 333 # define CTS_N_K(x)               (((x) & 7) << 0)
 334 # define CTS_N_M(x)               (((x) & 3) << 4)
 335 #define REG_ENC_CNTRL             REG(0x11, 0x0d)     /* read/write */
 336 # define ENC_CNTRL_RST_ENC        (1 << 0)
 337 # define ENC_CNTRL_RST_SEL        (1 << 1)
 338 # define ENC_CNTRL_CTL_CODE(x)    (((x) & 3) << 2)
 339 #define REG_DIP_FLAGS             REG(0x11, 0x0e)     /* read/write */
 340 # define DIP_FLAGS_ACR            (1 << 0)
 341 # define DIP_FLAGS_GC             (1 << 1)
 342 #define REG_DIP_IF_FLAGS          REG(0x11, 0x0f)     /* read/write */
 343 # define DIP_IF_FLAGS_IF1         (1 << 1)
 344 # define DIP_IF_FLAGS_IF2         (1 << 2)
 345 # define DIP_IF_FLAGS_IF3         (1 << 3)
 346 # define DIP_IF_FLAGS_IF4         (1 << 4)
 347 # define DIP_IF_FLAGS_IF5         (1 << 5)
 348 #define REG_CH_STAT_B(x)          REG(0x11, 0x14 + (x)) /* read/write */
 349 
 350 
 351 /* Page 12h: HDCP and OTP */
 352 #define REG_TX3                   REG(0x12, 0x9a)     /* read/write */
 353 #define REG_TX4                   REG(0x12, 0x9b)     /* read/write */
 354 # define TX4_PD_RAM               (1 << 1)
 355 #define REG_TX33                  REG(0x12, 0xb8)     /* read/write */
 356 # define TX33_HDMI                (1 << 1)
 357 
 358 
 359 /* Page 13h: Gamut related metadata packets */
 360 
 361 
 362 
 363 /* CEC registers: (not paged)
 364  */
 365 #define REG_CEC_INTSTATUS         0xee                /* read */
 366 # define CEC_INTSTATUS_CEC        (1 << 0)
 367 # define CEC_INTSTATUS_HDMI       (1 << 1)
 368 #define REG_CEC_CAL_XOSC_CTRL1    0xf2
 369 # define CEC_CAL_XOSC_CTRL1_ENA_CAL     BIT(0)
 370 #define REG_CEC_DES_FREQ2         0xf5
 371 # define CEC_DES_FREQ2_DIS_AUTOCAL BIT(7)
 372 #define REG_CEC_CLK               0xf6
 373 # define CEC_CLK_FRO              0x11
 374 #define REG_CEC_FRO_IM_CLK_CTRL   0xfb                /* read/write */
 375 # define CEC_FRO_IM_CLK_CTRL_GHOST_DIS (1 << 7)
 376 # define CEC_FRO_IM_CLK_CTRL_ENA_OTP   (1 << 6)
 377 # define CEC_FRO_IM_CLK_CTRL_IMCLK_SEL (1 << 1)
 378 # define CEC_FRO_IM_CLK_CTRL_FRO_DIV   (1 << 0)
 379 #define REG_CEC_RXSHPDINTENA      0xfc                /* read/write */
 380 #define REG_CEC_RXSHPDINT         0xfd                /* read */
 381 # define CEC_RXSHPDINT_RXSENS     BIT(0)
 382 # define CEC_RXSHPDINT_HPD        BIT(1)
 383 #define REG_CEC_RXSHPDLEV         0xfe                /* read */
 384 # define CEC_RXSHPDLEV_RXSENS     (1 << 0)
 385 # define CEC_RXSHPDLEV_HPD        (1 << 1)
 386 
 387 #define REG_CEC_ENAMODS           0xff                /* read/write */
 388 # define CEC_ENAMODS_EN_CEC_CLK   (1 << 7)
 389 # define CEC_ENAMODS_DIS_FRO      (1 << 6)
 390 # define CEC_ENAMODS_DIS_CCLK     (1 << 5)
 391 # define CEC_ENAMODS_EN_RXSENS    (1 << 2)
 392 # define CEC_ENAMODS_EN_HDMI      (1 << 1)
 393 # define CEC_ENAMODS_EN_CEC       (1 << 0)
 394 
 395 
 396 /* Device versions: */
 397 #define TDA9989N2                 0x0101
 398 #define TDA19989                  0x0201
 399 #define TDA19989N2                0x0202
 400 #define TDA19988                  0x0301
 401 
 402 static void
 403 cec_write(struct tda998x_priv *priv, u16 addr, u8 val)
 404 {
 405         u8 buf[] = {addr, val};
 406         struct i2c_msg msg = {
 407                 .addr = priv->cec_addr,
 408                 .len = 2,
 409                 .buf = buf,
 410         };
 411         int ret;
 412 
 413         ret = i2c_transfer(priv->hdmi->adapter, &msg, 1);
 414         if (ret < 0)
 415                 dev_err(&priv->hdmi->dev, "Error %d writing to cec:0x%x\n",
 416                         ret, addr);
 417 }
 418 
 419 static u8
 420 cec_read(struct tda998x_priv *priv, u8 addr)
 421 {
 422         u8 val;
 423         struct i2c_msg msg[2] = {
 424                 {
 425                         .addr = priv->cec_addr,
 426                         .len = 1,
 427                         .buf = &addr,
 428                 }, {
 429                         .addr = priv->cec_addr,
 430                         .flags = I2C_M_RD,
 431                         .len = 1,
 432                         .buf = &val,
 433                 },
 434         };
 435         int ret;
 436 
 437         ret = i2c_transfer(priv->hdmi->adapter, msg, ARRAY_SIZE(msg));
 438         if (ret < 0) {
 439                 dev_err(&priv->hdmi->dev, "Error %d reading from cec:0x%x\n",
 440                         ret, addr);
 441                 val = 0;
 442         }
 443 
 444         return val;
 445 }
 446 
 447 static void cec_enamods(struct tda998x_priv *priv, u8 mods, bool enable)
 448 {
 449         int val = cec_read(priv, REG_CEC_ENAMODS);
 450 
 451         if (val < 0)
 452                 return;
 453 
 454         if (enable)
 455                 val |= mods;
 456         else
 457                 val &= ~mods;
 458 
 459         cec_write(priv, REG_CEC_ENAMODS, val);
 460 }
 461 
 462 static void tda998x_cec_set_calibration(struct tda998x_priv *priv, bool enable)
 463 {
 464         if (enable) {
 465                 u8 val;
 466 
 467                 cec_write(priv, 0xf3, 0xc0);
 468                 cec_write(priv, 0xf4, 0xd4);
 469 
 470                 /* Enable automatic calibration mode */
 471                 val = cec_read(priv, REG_CEC_DES_FREQ2);
 472                 val &= ~CEC_DES_FREQ2_DIS_AUTOCAL;
 473                 cec_write(priv, REG_CEC_DES_FREQ2, val);
 474 
 475                 /* Enable free running oscillator */
 476                 cec_write(priv, REG_CEC_CLK, CEC_CLK_FRO);
 477                 cec_enamods(priv, CEC_ENAMODS_DIS_FRO, false);
 478 
 479                 cec_write(priv, REG_CEC_CAL_XOSC_CTRL1,
 480                           CEC_CAL_XOSC_CTRL1_ENA_CAL);
 481         } else {
 482                 cec_write(priv, REG_CEC_CAL_XOSC_CTRL1, 0);
 483         }
 484 }
 485 
 486 /*
 487  * Calibration for the internal oscillator: we need to set calibration mode,
 488  * and then pulse the IRQ line low for a 10ms ± 1% period.
 489  */
 490 static void tda998x_cec_calibration(struct tda998x_priv *priv)
 491 {
 492         struct gpio_desc *calib = priv->calib;
 493 
 494         mutex_lock(&priv->edid_mutex);
 495         if (priv->hdmi->irq > 0)
 496                 disable_irq(priv->hdmi->irq);
 497         gpiod_direction_output(calib, 1);
 498         tda998x_cec_set_calibration(priv, true);
 499 
 500         local_irq_disable();
 501         gpiod_set_value(calib, 0);
 502         mdelay(10);
 503         gpiod_set_value(calib, 1);
 504         local_irq_enable();
 505 
 506         tda998x_cec_set_calibration(priv, false);
 507         gpiod_direction_input(calib);
 508         if (priv->hdmi->irq > 0)
 509                 enable_irq(priv->hdmi->irq);
 510         mutex_unlock(&priv->edid_mutex);
 511 }
 512 
 513 static int tda998x_cec_hook_init(void *data)
 514 {
 515         struct tda998x_priv *priv = data;
 516         struct gpio_desc *calib;
 517 
 518         calib = gpiod_get(&priv->hdmi->dev, "nxp,calib", GPIOD_ASIS);
 519         if (IS_ERR(calib)) {
 520                 dev_warn(&priv->hdmi->dev, "failed to get calibration gpio: %ld\n",
 521                          PTR_ERR(calib));
 522                 return PTR_ERR(calib);
 523         }
 524 
 525         priv->calib = calib;
 526 
 527         return 0;
 528 }
 529 
 530 static void tda998x_cec_hook_exit(void *data)
 531 {
 532         struct tda998x_priv *priv = data;
 533 
 534         gpiod_put(priv->calib);
 535         priv->calib = NULL;
 536 }
 537 
 538 static int tda998x_cec_hook_open(void *data)
 539 {
 540         struct tda998x_priv *priv = data;
 541 
 542         cec_enamods(priv, CEC_ENAMODS_EN_CEC_CLK | CEC_ENAMODS_EN_CEC, true);
 543         tda998x_cec_calibration(priv);
 544 
 545         return 0;
 546 }
 547 
 548 static void tda998x_cec_hook_release(void *data)
 549 {
 550         struct tda998x_priv *priv = data;
 551 
 552         cec_enamods(priv, CEC_ENAMODS_EN_CEC_CLK | CEC_ENAMODS_EN_CEC, false);
 553 }
 554 
 555 static int
 556 set_page(struct tda998x_priv *priv, u16 reg)
 557 {
 558         if (REG2PAGE(reg) != priv->current_page) {
 559                 struct i2c_client *client = priv->hdmi;
 560                 u8 buf[] = {
 561                                 REG_CURPAGE, REG2PAGE(reg)
 562                 };
 563                 int ret = i2c_master_send(client, buf, sizeof(buf));
 564                 if (ret < 0) {
 565                         dev_err(&client->dev, "%s %04x err %d\n", __func__,
 566                                         reg, ret);
 567                         return ret;
 568                 }
 569 
 570                 priv->current_page = REG2PAGE(reg);
 571         }
 572         return 0;
 573 }
 574 
 575 static int
 576 reg_read_range(struct tda998x_priv *priv, u16 reg, char *buf, int cnt)
 577 {
 578         struct i2c_client *client = priv->hdmi;
 579         u8 addr = REG2ADDR(reg);
 580         int ret;
 581 
 582         mutex_lock(&priv->mutex);
 583         ret = set_page(priv, reg);
 584         if (ret < 0)
 585                 goto out;
 586 
 587         ret = i2c_master_send(client, &addr, sizeof(addr));
 588         if (ret < 0)
 589                 goto fail;
 590 
 591         ret = i2c_master_recv(client, buf, cnt);
 592         if (ret < 0)
 593                 goto fail;
 594 
 595         goto out;
 596 
 597 fail:
 598         dev_err(&client->dev, "Error %d reading from 0x%x\n", ret, reg);
 599 out:
 600         mutex_unlock(&priv->mutex);
 601         return ret;
 602 }
 603 
 604 #define MAX_WRITE_RANGE_BUF 32
 605 
 606 static void
 607 reg_write_range(struct tda998x_priv *priv, u16 reg, u8 *p, int cnt)
 608 {
 609         struct i2c_client *client = priv->hdmi;
 610         /* This is the maximum size of the buffer passed in */
 611         u8 buf[MAX_WRITE_RANGE_BUF + 1];
 612         int ret;
 613 
 614         if (cnt > MAX_WRITE_RANGE_BUF) {
 615                 dev_err(&client->dev, "Fixed write buffer too small (%d)\n",
 616                                 MAX_WRITE_RANGE_BUF);
 617                 return;
 618         }
 619 
 620         buf[0] = REG2ADDR(reg);
 621         memcpy(&buf[1], p, cnt);
 622 
 623         mutex_lock(&priv->mutex);
 624         ret = set_page(priv, reg);
 625         if (ret < 0)
 626                 goto out;
 627 
 628         ret = i2c_master_send(client, buf, cnt + 1);
 629         if (ret < 0)
 630                 dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
 631 out:
 632         mutex_unlock(&priv->mutex);
 633 }
 634 
 635 static int
 636 reg_read(struct tda998x_priv *priv, u16 reg)
 637 {
 638         u8 val = 0;
 639         int ret;
 640 
 641         ret = reg_read_range(priv, reg, &val, sizeof(val));
 642         if (ret < 0)
 643                 return ret;
 644         return val;
 645 }
 646 
 647 static void
 648 reg_write(struct tda998x_priv *priv, u16 reg, u8 val)
 649 {
 650         struct i2c_client *client = priv->hdmi;
 651         u8 buf[] = {REG2ADDR(reg), val};
 652         int ret;
 653 
 654         mutex_lock(&priv->mutex);
 655         ret = set_page(priv, reg);
 656         if (ret < 0)
 657                 goto out;
 658 
 659         ret = i2c_master_send(client, buf, sizeof(buf));
 660         if (ret < 0)
 661                 dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
 662 out:
 663         mutex_unlock(&priv->mutex);
 664 }
 665 
 666 static void
 667 reg_write16(struct tda998x_priv *priv, u16 reg, u16 val)
 668 {
 669         struct i2c_client *client = priv->hdmi;
 670         u8 buf[] = {REG2ADDR(reg), val >> 8, val};
 671         int ret;
 672 
 673         mutex_lock(&priv->mutex);
 674         ret = set_page(priv, reg);
 675         if (ret < 0)
 676                 goto out;
 677 
 678         ret = i2c_master_send(client, buf, sizeof(buf));
 679         if (ret < 0)
 680                 dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
 681 out:
 682         mutex_unlock(&priv->mutex);
 683 }
 684 
 685 static void
 686 reg_set(struct tda998x_priv *priv, u16 reg, u8 val)
 687 {
 688         int old_val;
 689 
 690         old_val = reg_read(priv, reg);
 691         if (old_val >= 0)
 692                 reg_write(priv, reg, old_val | val);
 693 }
 694 
 695 static void
 696 reg_clear(struct tda998x_priv *priv, u16 reg, u8 val)
 697 {
 698         int old_val;
 699 
 700         old_val = reg_read(priv, reg);
 701         if (old_val >= 0)
 702                 reg_write(priv, reg, old_val & ~val);
 703 }
 704 
 705 static void
 706 tda998x_reset(struct tda998x_priv *priv)
 707 {
 708         /* reset audio and i2c master: */
 709         reg_write(priv, REG_SOFTRESET, SOFTRESET_AUDIO | SOFTRESET_I2C_MASTER);
 710         msleep(50);
 711         reg_write(priv, REG_SOFTRESET, 0);
 712         msleep(50);
 713 
 714         /* reset transmitter: */
 715         reg_set(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR);
 716         reg_clear(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR);
 717 
 718         /* PLL registers common configuration */
 719         reg_write(priv, REG_PLL_SERIAL_1, 0x00);
 720         reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(1));
 721         reg_write(priv, REG_PLL_SERIAL_3, 0x00);
 722         reg_write(priv, REG_SERIALIZER,   0x00);
 723         reg_write(priv, REG_BUFFER_OUT,   0x00);
 724         reg_write(priv, REG_PLL_SCG1,     0x00);
 725         reg_write(priv, REG_AUDIO_DIV,    AUDIO_DIV_SERCLK_8);
 726         reg_write(priv, REG_SEL_CLK,      SEL_CLK_SEL_CLK1 | SEL_CLK_ENA_SC_CLK);
 727         reg_write(priv, REG_PLL_SCGN1,    0xfa);
 728         reg_write(priv, REG_PLL_SCGN2,    0x00);
 729         reg_write(priv, REG_PLL_SCGR1,    0x5b);
 730         reg_write(priv, REG_PLL_SCGR2,    0x00);
 731         reg_write(priv, REG_PLL_SCG2,     0x10);
 732 
 733         /* Write the default value MUX register */
 734         reg_write(priv, REG_MUX_VP_VIP_OUT, 0x24);
 735 }
 736 
 737 /*
 738  * The TDA998x has a problem when trying to read the EDID close to a
 739  * HPD assertion: it needs a delay of 100ms to avoid timing out while
 740  * trying to read EDID data.
 741  *
 742  * However, tda998x_connector_get_modes() may be called at any moment
 743  * after tda998x_connector_detect() indicates that we are connected, so
 744  * we need to delay probing modes in tda998x_connector_get_modes() after
 745  * we have seen a HPD inactive->active transition.  This code implements
 746  * that delay.
 747  */
 748 static void tda998x_edid_delay_done(struct timer_list *t)
 749 {
 750         struct tda998x_priv *priv = from_timer(priv, t, edid_delay_timer);
 751 
 752         priv->edid_delay_active = false;
 753         wake_up(&priv->edid_delay_waitq);
 754         schedule_work(&priv->detect_work);
 755 }
 756 
 757 static void tda998x_edid_delay_start(struct tda998x_priv *priv)
 758 {
 759         priv->edid_delay_active = true;
 760         mod_timer(&priv->edid_delay_timer, jiffies + HZ/10);
 761 }
 762 
 763 static int tda998x_edid_delay_wait(struct tda998x_priv *priv)
 764 {
 765         return wait_event_killable(priv->edid_delay_waitq, !priv->edid_delay_active);
 766 }
 767 
 768 /*
 769  * We need to run the KMS hotplug event helper outside of our threaded
 770  * interrupt routine as this can call back into our get_modes method,
 771  * which will want to make use of interrupts.
 772  */
 773 static void tda998x_detect_work(struct work_struct *work)
 774 {
 775         struct tda998x_priv *priv =
 776                 container_of(work, struct tda998x_priv, detect_work);
 777         struct drm_device *dev = priv->connector.dev;
 778 
 779         if (dev)
 780                 drm_kms_helper_hotplug_event(dev);
 781 }
 782 
 783 /*
 784  * only 2 interrupts may occur: screen plug/unplug and EDID read
 785  */
 786 static irqreturn_t tda998x_irq_thread(int irq, void *data)
 787 {
 788         struct tda998x_priv *priv = data;
 789         u8 sta, cec, lvl, flag0, flag1, flag2;
 790         bool handled = false;
 791 
 792         sta = cec_read(priv, REG_CEC_INTSTATUS);
 793         if (sta & CEC_INTSTATUS_HDMI) {
 794                 cec = cec_read(priv, REG_CEC_RXSHPDINT);
 795                 lvl = cec_read(priv, REG_CEC_RXSHPDLEV);
 796                 flag0 = reg_read(priv, REG_INT_FLAGS_0);
 797                 flag1 = reg_read(priv, REG_INT_FLAGS_1);
 798                 flag2 = reg_read(priv, REG_INT_FLAGS_2);
 799                 DRM_DEBUG_DRIVER(
 800                         "tda irq sta %02x cec %02x lvl %02x f0 %02x f1 %02x f2 %02x\n",
 801                         sta, cec, lvl, flag0, flag1, flag2);
 802 
 803                 if (cec & CEC_RXSHPDINT_HPD) {
 804                         if (lvl & CEC_RXSHPDLEV_HPD) {
 805                                 tda998x_edid_delay_start(priv);
 806                         } else {
 807                                 schedule_work(&priv->detect_work);
 808                                 cec_notifier_set_phys_addr(priv->cec_notify,
 809                                                    CEC_PHYS_ADDR_INVALID);
 810                         }
 811 
 812                         handled = true;
 813                 }
 814 
 815                 if ((flag2 & INT_FLAGS_2_EDID_BLK_RD) && priv->wq_edid_wait) {
 816                         priv->wq_edid_wait = 0;
 817                         wake_up(&priv->wq_edid);
 818                         handled = true;
 819                 }
 820         }
 821 
 822         return IRQ_RETVAL(handled);
 823 }
 824 
 825 static void
 826 tda998x_write_if(struct tda998x_priv *priv, u8 bit, u16 addr,
 827                  union hdmi_infoframe *frame)
 828 {
 829         u8 buf[MAX_WRITE_RANGE_BUF];
 830         ssize_t len;
 831 
 832         len = hdmi_infoframe_pack(frame, buf, sizeof(buf));
 833         if (len < 0) {
 834                 dev_err(&priv->hdmi->dev,
 835                         "hdmi_infoframe_pack() type=0x%02x failed: %zd\n",
 836                         frame->any.type, len);
 837                 return;
 838         }
 839 
 840         reg_clear(priv, REG_DIP_IF_FLAGS, bit);
 841         reg_write_range(priv, addr, buf, len);
 842         reg_set(priv, REG_DIP_IF_FLAGS, bit);
 843 }
 844 
 845 static void tda998x_write_aif(struct tda998x_priv *priv,
 846                               const struct hdmi_audio_infoframe *cea)
 847 {
 848         union hdmi_infoframe frame;
 849 
 850         frame.audio = *cea;
 851 
 852         tda998x_write_if(priv, DIP_IF_FLAGS_IF4, REG_IF4_HB0, &frame);
 853 }
 854 
 855 static void
 856 tda998x_write_avi(struct tda998x_priv *priv, const struct drm_display_mode *mode)
 857 {
 858         union hdmi_infoframe frame;
 859 
 860         drm_hdmi_avi_infoframe_from_display_mode(&frame.avi,
 861                                                  &priv->connector, mode);
 862         frame.avi.quantization_range = HDMI_QUANTIZATION_RANGE_FULL;
 863         drm_hdmi_avi_infoframe_quant_range(&frame.avi, &priv->connector, mode,
 864                                            priv->rgb_quant_range);
 865 
 866         tda998x_write_if(priv, DIP_IF_FLAGS_IF2, REG_IF2_HB0, &frame);
 867 }
 868 
 869 static void tda998x_write_vsi(struct tda998x_priv *priv,
 870                               const struct drm_display_mode *mode)
 871 {
 872         union hdmi_infoframe frame;
 873 
 874         if (drm_hdmi_vendor_infoframe_from_display_mode(&frame.vendor.hdmi,
 875                                                         &priv->connector,
 876                                                         mode))
 877                 reg_clear(priv, REG_DIP_IF_FLAGS, DIP_IF_FLAGS_IF1);
 878         else
 879                 tda998x_write_if(priv, DIP_IF_FLAGS_IF1, REG_IF1_HB0, &frame);
 880 }
 881 
 882 /* Audio support */
 883 
 884 static const struct tda998x_audio_route tda998x_audio_route[AUDIO_ROUTE_NUM] = {
 885         [AUDIO_ROUTE_I2S] = {
 886                 .ena_aclk = 1,
 887                 .mux_ap = MUX_AP_SELECT_I2S,
 888                 .aip_clksel = AIP_CLKSEL_AIP_I2S | AIP_CLKSEL_FS_ACLK,
 889         },
 890         [AUDIO_ROUTE_SPDIF] = {
 891                 .ena_aclk = 0,
 892                 .mux_ap = MUX_AP_SELECT_SPDIF,
 893                 .aip_clksel = AIP_CLKSEL_AIP_SPDIF | AIP_CLKSEL_FS_FS64SPDIF,
 894         },
 895 };
 896 
 897 /* Configure the TDA998x audio data and clock routing. */
 898 static int tda998x_derive_routing(struct tda998x_priv *priv,
 899                                   struct tda998x_audio_settings *s,
 900                                   unsigned int route)
 901 {
 902         s->route = &tda998x_audio_route[route];
 903         s->ena_ap = priv->audio_port_enable[route];
 904         if (s->ena_ap == 0) {
 905                 dev_err(&priv->hdmi->dev, "no audio configuration found\n");
 906                 return -EINVAL;
 907         }
 908 
 909         return 0;
 910 }
 911 
 912 /*
 913  * The audio clock divisor register controls a divider producing Audio_Clk_Out
 914  * from SERclk by dividing it by 2^n where 0 <= n <= 5.  We don't know what
 915  * Audio_Clk_Out or SERclk are. We guess SERclk is the same as TMDS clock.
 916  *
 917  * It seems that Audio_Clk_Out must be the smallest value that is greater
 918  * than 128*fs, otherwise audio does not function. There is some suggestion
 919  * that 126*fs is a better value.
 920  */
 921 static u8 tda998x_get_adiv(struct tda998x_priv *priv, unsigned int fs)
 922 {
 923         unsigned long min_audio_clk = fs * 128;
 924         unsigned long ser_clk = priv->tmds_clock * 1000;
 925         u8 adiv;
 926 
 927         for (adiv = AUDIO_DIV_SERCLK_32; adiv != AUDIO_DIV_SERCLK_1; adiv--)
 928                 if (ser_clk > min_audio_clk << adiv)
 929                         break;
 930 
 931         dev_dbg(&priv->hdmi->dev,
 932                 "ser_clk=%luHz fs=%uHz min_aclk=%luHz adiv=%d\n",
 933                 ser_clk, fs, min_audio_clk, adiv);
 934 
 935         return adiv;
 936 }
 937 
 938 /*
 939  * In auto-CTS mode, the TDA998x uses a "measured time stamp" counter to
 940  * generate the CTS value.  It appears that the "measured time stamp" is
 941  * the number of TDMS clock cycles within a number of audio input clock
 942  * cycles defined by the k and N parameters defined below, in a similar
 943  * way to that which is set out in the CTS generation in the HDMI spec.
 944  *
 945  *  tmdsclk ----> mts -> /m ---> CTS
 946  *                 ^
 947  *  sclk -> /k -> /N
 948  *
 949  * CTS = mts / m, where m is 2^M.
 950  * /k is a divider based on the K value below, K+1 for K < 4, or 8 for K >= 4
 951  * /N is a divider based on the HDMI specified N value.
 952  *
 953  * This produces the following equation:
 954  *  CTS = tmds_clock * k * N / (sclk * m)
 955  *
 956  * When combined with the sink-side equation, and realising that sclk is
 957  * bclk_ratio * fs, we end up with:
 958  *  k = m * bclk_ratio / 128.
 959  *
 960  * Note: S/PDIF always uses a bclk_ratio of 64.
 961  */
 962 static int tda998x_derive_cts_n(struct tda998x_priv *priv,
 963                                 struct tda998x_audio_settings *settings,
 964                                 unsigned int ratio)
 965 {
 966         switch (ratio) {
 967         case 16:
 968                 settings->cts_n = CTS_N_M(3) | CTS_N_K(0);
 969                 break;
 970         case 32:
 971                 settings->cts_n = CTS_N_M(3) | CTS_N_K(1);
 972                 break;
 973         case 48:
 974                 settings->cts_n = CTS_N_M(3) | CTS_N_K(2);
 975                 break;
 976         case 64:
 977                 settings->cts_n = CTS_N_M(3) | CTS_N_K(3);
 978                 break;
 979         case 128:
 980                 settings->cts_n = CTS_N_M(0) | CTS_N_K(0);
 981                 break;
 982         default:
 983                 dev_err(&priv->hdmi->dev, "unsupported bclk ratio %ufs\n",
 984                         ratio);
 985                 return -EINVAL;
 986         }
 987         return 0;
 988 }
 989 
 990 static void tda998x_audio_mute(struct tda998x_priv *priv, bool on)
 991 {
 992         if (on) {
 993                 reg_set(priv, REG_SOFTRESET, SOFTRESET_AUDIO);
 994                 reg_clear(priv, REG_SOFTRESET, SOFTRESET_AUDIO);
 995                 reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
 996         } else {
 997                 reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
 998         }
 999 }
1000 
1001 static void tda998x_configure_audio(struct tda998x_priv *priv)
1002 {
1003         const struct tda998x_audio_settings *settings = &priv->audio;
1004         u8 buf[6], adiv;
1005         u32 n;
1006 
1007         /* If audio is not configured, there is nothing to do. */
1008         if (settings->ena_ap == 0)
1009                 return;
1010 
1011         adiv = tda998x_get_adiv(priv, settings->sample_rate);
1012 
1013         /* Enable audio ports */
1014         reg_write(priv, REG_ENA_AP, settings->ena_ap);
1015         reg_write(priv, REG_ENA_ACLK, settings->route->ena_aclk);
1016         reg_write(priv, REG_MUX_AP, settings->route->mux_ap);
1017         reg_write(priv, REG_I2S_FORMAT, settings->i2s_format);
1018         reg_write(priv, REG_AIP_CLKSEL, settings->route->aip_clksel);
1019         reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_LAYOUT |
1020                                         AIP_CNTRL_0_ACR_MAN);   /* auto CTS */
1021         reg_write(priv, REG_CTS_N, settings->cts_n);
1022         reg_write(priv, REG_AUDIO_DIV, adiv);
1023 
1024         /*
1025          * This is the approximate value of N, which happens to be
1026          * the recommended values for non-coherent clocks.
1027          */
1028         n = 128 * settings->sample_rate / 1000;
1029 
1030         /* Write the CTS and N values */
1031         buf[0] = 0x44;
1032         buf[1] = 0x42;
1033         buf[2] = 0x01;
1034         buf[3] = n;
1035         buf[4] = n >> 8;
1036         buf[5] = n >> 16;
1037         reg_write_range(priv, REG_ACR_CTS_0, buf, 6);
1038 
1039         /* Reset CTS generator */
1040         reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS);
1041         reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS);
1042 
1043         /* Write the channel status
1044          * The REG_CH_STAT_B-registers skip IEC958 AES2 byte, because
1045          * there is a separate register for each I2S wire.
1046          */
1047         buf[0] = settings->status[0];
1048         buf[1] = settings->status[1];
1049         buf[2] = settings->status[3];
1050         buf[3] = settings->status[4];
1051         reg_write_range(priv, REG_CH_STAT_B(0), buf, 4);
1052 
1053         tda998x_audio_mute(priv, true);
1054         msleep(20);
1055         tda998x_audio_mute(priv, false);
1056 
1057         tda998x_write_aif(priv, &settings->cea);
1058 }
1059 
1060 static int tda998x_audio_hw_params(struct device *dev, void *data,
1061                                    struct hdmi_codec_daifmt *daifmt,
1062                                    struct hdmi_codec_params *params)
1063 {
1064         struct tda998x_priv *priv = dev_get_drvdata(dev);
1065         unsigned int bclk_ratio;
1066         bool spdif = daifmt->fmt == HDMI_SPDIF;
1067         int ret;
1068         struct tda998x_audio_settings audio = {
1069                 .sample_rate = params->sample_rate,
1070                 .cea = params->cea,
1071         };
1072 
1073         memcpy(audio.status, params->iec.status,
1074                min(sizeof(audio.status), sizeof(params->iec.status)));
1075 
1076         switch (daifmt->fmt) {
1077         case HDMI_I2S:
1078                 audio.i2s_format = I2S_FORMAT_PHILIPS;
1079                 break;
1080         case HDMI_LEFT_J:
1081                 audio.i2s_format = I2S_FORMAT_LEFT_J;
1082                 break;
1083         case HDMI_RIGHT_J:
1084                 audio.i2s_format = I2S_FORMAT_RIGHT_J;
1085                 break;
1086         case HDMI_SPDIF:
1087                 audio.i2s_format = 0;
1088                 break;
1089         default:
1090                 dev_err(dev, "%s: Invalid format %d\n", __func__, daifmt->fmt);
1091                 return -EINVAL;
1092         }
1093 
1094         if (!spdif &&
1095             (daifmt->bit_clk_inv || daifmt->frame_clk_inv ||
1096              daifmt->bit_clk_master || daifmt->frame_clk_master)) {
1097                 dev_err(dev, "%s: Bad flags %d %d %d %d\n", __func__,
1098                         daifmt->bit_clk_inv, daifmt->frame_clk_inv,
1099                         daifmt->bit_clk_master,
1100                         daifmt->frame_clk_master);
1101                 return -EINVAL;
1102         }
1103 
1104         ret = tda998x_derive_routing(priv, &audio, AUDIO_ROUTE_I2S + spdif);
1105         if (ret < 0)
1106                 return ret;
1107 
1108         bclk_ratio = spdif ? 64 : params->sample_width * 2;
1109         ret = tda998x_derive_cts_n(priv, &audio, bclk_ratio);
1110         if (ret < 0)
1111                 return ret;
1112 
1113         mutex_lock(&priv->audio_mutex);
1114         priv->audio = audio;
1115         if (priv->supports_infoframes && priv->sink_has_audio)
1116                 tda998x_configure_audio(priv);
1117         mutex_unlock(&priv->audio_mutex);
1118 
1119         return 0;
1120 }
1121 
1122 static void tda998x_audio_shutdown(struct device *dev, void *data)
1123 {
1124         struct tda998x_priv *priv = dev_get_drvdata(dev);
1125 
1126         mutex_lock(&priv->audio_mutex);
1127 
1128         reg_write(priv, REG_ENA_AP, 0);
1129         priv->audio.ena_ap = 0;
1130 
1131         mutex_unlock(&priv->audio_mutex);
1132 }
1133 
1134 int tda998x_audio_digital_mute(struct device *dev, void *data, bool enable)
1135 {
1136         struct tda998x_priv *priv = dev_get_drvdata(dev);
1137 
1138         mutex_lock(&priv->audio_mutex);
1139 
1140         tda998x_audio_mute(priv, enable);
1141 
1142         mutex_unlock(&priv->audio_mutex);
1143         return 0;
1144 }
1145 
1146 static int tda998x_audio_get_eld(struct device *dev, void *data,
1147                                  uint8_t *buf, size_t len)
1148 {
1149         struct tda998x_priv *priv = dev_get_drvdata(dev);
1150 
1151         mutex_lock(&priv->audio_mutex);
1152         memcpy(buf, priv->connector.eld,
1153                min(sizeof(priv->connector.eld), len));
1154         mutex_unlock(&priv->audio_mutex);
1155 
1156         return 0;
1157 }
1158 
1159 static const struct hdmi_codec_ops audio_codec_ops = {
1160         .hw_params = tda998x_audio_hw_params,
1161         .audio_shutdown = tda998x_audio_shutdown,
1162         .digital_mute = tda998x_audio_digital_mute,
1163         .get_eld = tda998x_audio_get_eld,
1164 };
1165 
1166 static int tda998x_audio_codec_init(struct tda998x_priv *priv,
1167                                     struct device *dev)
1168 {
1169         struct hdmi_codec_pdata codec_data = {
1170                 .ops = &audio_codec_ops,
1171                 .max_i2s_channels = 2,
1172         };
1173 
1174         if (priv->audio_port_enable[AUDIO_ROUTE_I2S])
1175                 codec_data.i2s = 1;
1176         if (priv->audio_port_enable[AUDIO_ROUTE_SPDIF])
1177                 codec_data.spdif = 1;
1178 
1179         priv->audio_pdev = platform_device_register_data(
1180                 dev, HDMI_CODEC_DRV_NAME, PLATFORM_DEVID_AUTO,
1181                 &codec_data, sizeof(codec_data));
1182 
1183         return PTR_ERR_OR_ZERO(priv->audio_pdev);
1184 }
1185 
1186 /* DRM connector functions */
1187 
1188 static enum drm_connector_status
1189 tda998x_connector_detect(struct drm_connector *connector, bool force)
1190 {
1191         struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1192         u8 val = cec_read(priv, REG_CEC_RXSHPDLEV);
1193 
1194         return (val & CEC_RXSHPDLEV_HPD) ? connector_status_connected :
1195                         connector_status_disconnected;
1196 }
1197 
1198 static void tda998x_connector_destroy(struct drm_connector *connector)
1199 {
1200         drm_connector_cleanup(connector);
1201 }
1202 
1203 static const struct drm_connector_funcs tda998x_connector_funcs = {
1204         .reset = drm_atomic_helper_connector_reset,
1205         .fill_modes = drm_helper_probe_single_connector_modes,
1206         .detect = tda998x_connector_detect,
1207         .destroy = tda998x_connector_destroy,
1208         .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
1209         .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
1210 };
1211 
1212 static int read_edid_block(void *data, u8 *buf, unsigned int blk, size_t length)
1213 {
1214         struct tda998x_priv *priv = data;
1215         u8 offset, segptr;
1216         int ret, i;
1217 
1218         offset = (blk & 1) ? 128 : 0;
1219         segptr = blk / 2;
1220 
1221         mutex_lock(&priv->edid_mutex);
1222 
1223         reg_write(priv, REG_DDC_ADDR, 0xa0);
1224         reg_write(priv, REG_DDC_OFFS, offset);
1225         reg_write(priv, REG_DDC_SEGM_ADDR, 0x60);
1226         reg_write(priv, REG_DDC_SEGM, segptr);
1227 
1228         /* enable reading EDID: */
1229         priv->wq_edid_wait = 1;
1230         reg_write(priv, REG_EDID_CTRL, 0x1);
1231 
1232         /* flag must be cleared by sw: */
1233         reg_write(priv, REG_EDID_CTRL, 0x0);
1234 
1235         /* wait for block read to complete: */
1236         if (priv->hdmi->irq) {
1237                 i = wait_event_timeout(priv->wq_edid,
1238                                         !priv->wq_edid_wait,
1239                                         msecs_to_jiffies(100));
1240                 if (i < 0) {
1241                         dev_err(&priv->hdmi->dev, "read edid wait err %d\n", i);
1242                         ret = i;
1243                         goto failed;
1244                 }
1245         } else {
1246                 for (i = 100; i > 0; i--) {
1247                         msleep(1);
1248                         ret = reg_read(priv, REG_INT_FLAGS_2);
1249                         if (ret < 0)
1250                                 goto failed;
1251                         if (ret & INT_FLAGS_2_EDID_BLK_RD)
1252                                 break;
1253                 }
1254         }
1255 
1256         if (i == 0) {
1257                 dev_err(&priv->hdmi->dev, "read edid timeout\n");
1258                 ret = -ETIMEDOUT;
1259                 goto failed;
1260         }
1261 
1262         ret = reg_read_range(priv, REG_EDID_DATA_0, buf, length);
1263         if (ret != length) {
1264                 dev_err(&priv->hdmi->dev, "failed to read edid block %d: %d\n",
1265                         blk, ret);
1266                 goto failed;
1267         }
1268 
1269         ret = 0;
1270 
1271  failed:
1272         mutex_unlock(&priv->edid_mutex);
1273         return ret;
1274 }
1275 
1276 static int tda998x_connector_get_modes(struct drm_connector *connector)
1277 {
1278         struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1279         struct edid *edid;
1280         int n;
1281 
1282         /*
1283          * If we get killed while waiting for the HPD timeout, return
1284          * no modes found: we are not in a restartable path, so we
1285          * can't handle signals gracefully.
1286          */
1287         if (tda998x_edid_delay_wait(priv))
1288                 return 0;
1289 
1290         if (priv->rev == TDA19988)
1291                 reg_clear(priv, REG_TX4, TX4_PD_RAM);
1292 
1293         edid = drm_do_get_edid(connector, read_edid_block, priv);
1294 
1295         if (priv->rev == TDA19988)
1296                 reg_set(priv, REG_TX4, TX4_PD_RAM);
1297 
1298         if (!edid) {
1299                 dev_warn(&priv->hdmi->dev, "failed to read EDID\n");
1300                 return 0;
1301         }
1302 
1303         drm_connector_update_edid_property(connector, edid);
1304         cec_notifier_set_phys_addr_from_edid(priv->cec_notify, edid);
1305 
1306         mutex_lock(&priv->audio_mutex);
1307         n = drm_add_edid_modes(connector, edid);
1308         priv->sink_has_audio = drm_detect_monitor_audio(edid);
1309         mutex_unlock(&priv->audio_mutex);
1310 
1311         kfree(edid);
1312 
1313         return n;
1314 }
1315 
1316 static struct drm_encoder *
1317 tda998x_connector_best_encoder(struct drm_connector *connector)
1318 {
1319         struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1320 
1321         return priv->bridge.encoder;
1322 }
1323 
1324 static
1325 const struct drm_connector_helper_funcs tda998x_connector_helper_funcs = {
1326         .get_modes = tda998x_connector_get_modes,
1327         .best_encoder = tda998x_connector_best_encoder,
1328 };
1329 
1330 static int tda998x_connector_init(struct tda998x_priv *priv,
1331                                   struct drm_device *drm)
1332 {
1333         struct drm_connector *connector = &priv->connector;
1334         int ret;
1335 
1336         connector->interlace_allowed = 1;
1337 
1338         if (priv->hdmi->irq)
1339                 connector->polled = DRM_CONNECTOR_POLL_HPD;
1340         else
1341                 connector->polled = DRM_CONNECTOR_POLL_CONNECT |
1342                         DRM_CONNECTOR_POLL_DISCONNECT;
1343 
1344         drm_connector_helper_add(connector, &tda998x_connector_helper_funcs);
1345         ret = drm_connector_init(drm, connector, &tda998x_connector_funcs,
1346                                  DRM_MODE_CONNECTOR_HDMIA);
1347         if (ret)
1348                 return ret;
1349 
1350         drm_connector_attach_encoder(&priv->connector,
1351                                      priv->bridge.encoder);
1352 
1353         return 0;
1354 }
1355 
1356 /* DRM bridge functions */
1357 
1358 static int tda998x_bridge_attach(struct drm_bridge *bridge)
1359 {
1360         struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1361 
1362         return tda998x_connector_init(priv, bridge->dev);
1363 }
1364 
1365 static void tda998x_bridge_detach(struct drm_bridge *bridge)
1366 {
1367         struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1368 
1369         drm_connector_cleanup(&priv->connector);
1370 }
1371 
1372 static enum drm_mode_status tda998x_bridge_mode_valid(struct drm_bridge *bridge,
1373                                      const struct drm_display_mode *mode)
1374 {
1375         /* TDA19988 dotclock can go up to 165MHz */
1376         struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1377 
1378         if (mode->clock > ((priv->rev == TDA19988) ? 165000 : 150000))
1379                 return MODE_CLOCK_HIGH;
1380         if (mode->htotal >= BIT(13))
1381                 return MODE_BAD_HVALUE;
1382         if (mode->vtotal >= BIT(11))
1383                 return MODE_BAD_VVALUE;
1384         return MODE_OK;
1385 }
1386 
1387 static void tda998x_bridge_enable(struct drm_bridge *bridge)
1388 {
1389         struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1390 
1391         if (!priv->is_on) {
1392                 /* enable video ports, audio will be enabled later */
1393                 reg_write(priv, REG_ENA_VP_0, 0xff);
1394                 reg_write(priv, REG_ENA_VP_1, 0xff);
1395                 reg_write(priv, REG_ENA_VP_2, 0xff);
1396                 /* set muxing after enabling ports: */
1397                 reg_write(priv, REG_VIP_CNTRL_0, priv->vip_cntrl_0);
1398                 reg_write(priv, REG_VIP_CNTRL_1, priv->vip_cntrl_1);
1399                 reg_write(priv, REG_VIP_CNTRL_2, priv->vip_cntrl_2);
1400 
1401                 priv->is_on = true;
1402         }
1403 }
1404 
1405 static void tda998x_bridge_disable(struct drm_bridge *bridge)
1406 {
1407         struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1408 
1409         if (priv->is_on) {
1410                 /* disable video ports */
1411                 reg_write(priv, REG_ENA_VP_0, 0x00);
1412                 reg_write(priv, REG_ENA_VP_1, 0x00);
1413                 reg_write(priv, REG_ENA_VP_2, 0x00);
1414 
1415                 priv->is_on = false;
1416         }
1417 }
1418 
1419 static void tda998x_bridge_mode_set(struct drm_bridge *bridge,
1420                                     const struct drm_display_mode *mode,
1421                                     const struct drm_display_mode *adjusted_mode)
1422 {
1423         struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1424         unsigned long tmds_clock;
1425         u16 ref_pix, ref_line, n_pix, n_line;
1426         u16 hs_pix_s, hs_pix_e;
1427         u16 vs1_pix_s, vs1_pix_e, vs1_line_s, vs1_line_e;
1428         u16 vs2_pix_s, vs2_pix_e, vs2_line_s, vs2_line_e;
1429         u16 vwin1_line_s, vwin1_line_e;
1430         u16 vwin2_line_s, vwin2_line_e;
1431         u16 de_pix_s, de_pix_e;
1432         u8 reg, div, rep, sel_clk;
1433 
1434         /*
1435          * Since we are "computer" like, our source invariably produces
1436          * full-range RGB.  If the monitor supports full-range, then use
1437          * it, otherwise reduce to limited-range.
1438          */
1439         priv->rgb_quant_range =
1440                 priv->connector.display_info.rgb_quant_range_selectable ?
1441                 HDMI_QUANTIZATION_RANGE_FULL :
1442                 drm_default_rgb_quant_range(adjusted_mode);
1443 
1444         /*
1445          * Internally TDA998x is using ITU-R BT.656 style sync but
1446          * we get VESA style sync. TDA998x is using a reference pixel
1447          * relative to ITU to sync to the input frame and for output
1448          * sync generation. Currently, we are using reference detection
1449          * from HS/VS, i.e. REFPIX/REFLINE denote frame start sync point
1450          * which is position of rising VS with coincident rising HS.
1451          *
1452          * Now there is some issues to take care of:
1453          * - HDMI data islands require sync-before-active
1454          * - TDA998x register values must be > 0 to be enabled
1455          * - REFLINE needs an additional offset of +1
1456          * - REFPIX needs an addtional offset of +1 for UYUV and +3 for RGB
1457          *
1458          * So we add +1 to all horizontal and vertical register values,
1459          * plus an additional +3 for REFPIX as we are using RGB input only.
1460          */
1461         n_pix        = mode->htotal;
1462         n_line       = mode->vtotal;
1463 
1464         hs_pix_e     = mode->hsync_end - mode->hdisplay;
1465         hs_pix_s     = mode->hsync_start - mode->hdisplay;
1466         de_pix_e     = mode->htotal;
1467         de_pix_s     = mode->htotal - mode->hdisplay;
1468         ref_pix      = 3 + hs_pix_s;
1469 
1470         /*
1471          * Attached LCD controllers may generate broken sync. Allow
1472          * those to adjust the position of the rising VS edge by adding
1473          * HSKEW to ref_pix.
1474          */
1475         if (adjusted_mode->flags & DRM_MODE_FLAG_HSKEW)
1476                 ref_pix += adjusted_mode->hskew;
1477 
1478         if ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0) {
1479                 ref_line     = 1 + mode->vsync_start - mode->vdisplay;
1480                 vwin1_line_s = mode->vtotal - mode->vdisplay - 1;
1481                 vwin1_line_e = vwin1_line_s + mode->vdisplay;
1482                 vs1_pix_s    = vs1_pix_e = hs_pix_s;
1483                 vs1_line_s   = mode->vsync_start - mode->vdisplay;
1484                 vs1_line_e   = vs1_line_s +
1485                                mode->vsync_end - mode->vsync_start;
1486                 vwin2_line_s = vwin2_line_e = 0;
1487                 vs2_pix_s    = vs2_pix_e  = 0;
1488                 vs2_line_s   = vs2_line_e = 0;
1489         } else {
1490                 ref_line     = 1 + (mode->vsync_start - mode->vdisplay)/2;
1491                 vwin1_line_s = (mode->vtotal - mode->vdisplay)/2;
1492                 vwin1_line_e = vwin1_line_s + mode->vdisplay/2;
1493                 vs1_pix_s    = vs1_pix_e = hs_pix_s;
1494                 vs1_line_s   = (mode->vsync_start - mode->vdisplay)/2;
1495                 vs1_line_e   = vs1_line_s +
1496                                (mode->vsync_end - mode->vsync_start)/2;
1497                 vwin2_line_s = vwin1_line_s + mode->vtotal/2;
1498                 vwin2_line_e = vwin2_line_s + mode->vdisplay/2;
1499                 vs2_pix_s    = vs2_pix_e = hs_pix_s + mode->htotal/2;
1500                 vs2_line_s   = vs1_line_s + mode->vtotal/2 ;
1501                 vs2_line_e   = vs2_line_s +
1502                                (mode->vsync_end - mode->vsync_start)/2;
1503         }
1504 
1505         /*
1506          * Select pixel repeat depending on the double-clock flag
1507          * (which means we have to repeat each pixel once.)
1508          */
1509         rep = mode->flags & DRM_MODE_FLAG_DBLCLK ? 1 : 0;
1510         sel_clk = SEL_CLK_ENA_SC_CLK | SEL_CLK_SEL_CLK1 |
1511                   SEL_CLK_SEL_VRF_CLK(rep ? 2 : 0);
1512 
1513         /* the TMDS clock is scaled up by the pixel repeat */
1514         tmds_clock = mode->clock * (1 + rep);
1515 
1516         /*
1517          * The divisor is power-of-2. The TDA9983B datasheet gives
1518          * this as ranges of Msample/s, which is 10x the TMDS clock:
1519          *   0 - 800 to 1500 Msample/s
1520          *   1 - 400 to 800 Msample/s
1521          *   2 - 200 to 400 Msample/s
1522          *   3 - as 2 above
1523          */
1524         for (div = 0; div < 3; div++)
1525                 if (80000 >> div <= tmds_clock)
1526                         break;
1527 
1528         mutex_lock(&priv->audio_mutex);
1529 
1530         priv->tmds_clock = tmds_clock;
1531 
1532         /* mute the audio FIFO: */
1533         reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
1534 
1535         /* set HDMI HDCP mode off: */
1536         reg_write(priv, REG_TBG_CNTRL_1, TBG_CNTRL_1_DWIN_DIS);
1537         reg_clear(priv, REG_TX33, TX33_HDMI);
1538         reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(0));
1539 
1540         /* no pre-filter or interpolator: */
1541         reg_write(priv, REG_HVF_CNTRL_0, HVF_CNTRL_0_PREFIL(0) |
1542                         HVF_CNTRL_0_INTPOL(0));
1543         reg_set(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_PREFILT);
1544         reg_write(priv, REG_VIP_CNTRL_5, VIP_CNTRL_5_SP_CNT(0));
1545         reg_write(priv, REG_VIP_CNTRL_4, VIP_CNTRL_4_BLANKIT(0) |
1546                         VIP_CNTRL_4_BLC(0));
1547 
1548         reg_clear(priv, REG_PLL_SERIAL_1, PLL_SERIAL_1_SRL_MAN_IZ);
1549         reg_clear(priv, REG_PLL_SERIAL_3, PLL_SERIAL_3_SRL_CCIR |
1550                                           PLL_SERIAL_3_SRL_DE);
1551         reg_write(priv, REG_SERIALIZER, 0);
1552         reg_write(priv, REG_HVF_CNTRL_1, HVF_CNTRL_1_VQR(0));
1553 
1554         reg_write(priv, REG_RPT_CNTRL, RPT_CNTRL_REPEAT(rep));
1555         reg_write(priv, REG_SEL_CLK, sel_clk);
1556         reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(div) |
1557                         PLL_SERIAL_2_SRL_PR(rep));
1558 
1559         /* set color matrix according to output rgb quant range */
1560         if (priv->rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED) {
1561                 static u8 tda998x_full_to_limited_range[] = {
1562                         MAT_CONTRL_MAT_SC(2),
1563                         0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
1564                         0x03, 0x6f, 0x00, 0x00, 0x00, 0x00,
1565                         0x00, 0x00, 0x03, 0x6f, 0x00, 0x00,
1566                         0x00, 0x00, 0x00, 0x00, 0x03, 0x6f,
1567                         0x00, 0x40, 0x00, 0x40, 0x00, 0x40
1568                 };
1569                 reg_clear(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_CSC);
1570                 reg_write_range(priv, REG_MAT_CONTRL,
1571                                 tda998x_full_to_limited_range,
1572                                 sizeof(tda998x_full_to_limited_range));
1573         } else {
1574                 reg_write(priv, REG_MAT_CONTRL, MAT_CONTRL_MAT_BP |
1575                                         MAT_CONTRL_MAT_SC(1));
1576                 reg_set(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_CSC);
1577         }
1578 
1579         /* set BIAS tmds value: */
1580         reg_write(priv, REG_ANA_GENERAL, 0x09);
1581 
1582         /*
1583          * Sync on rising HSYNC/VSYNC
1584          */
1585         reg = VIP_CNTRL_3_SYNC_HS;
1586 
1587         /*
1588          * TDA19988 requires high-active sync at input stage,
1589          * so invert low-active sync provided by master encoder here
1590          */
1591         if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1592                 reg |= VIP_CNTRL_3_H_TGL;
1593         if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1594                 reg |= VIP_CNTRL_3_V_TGL;
1595         reg_write(priv, REG_VIP_CNTRL_3, reg);
1596 
1597         reg_write(priv, REG_VIDFORMAT, 0x00);
1598         reg_write16(priv, REG_REFPIX_MSB, ref_pix);
1599         reg_write16(priv, REG_REFLINE_MSB, ref_line);
1600         reg_write16(priv, REG_NPIX_MSB, n_pix);
1601         reg_write16(priv, REG_NLINE_MSB, n_line);
1602         reg_write16(priv, REG_VS_LINE_STRT_1_MSB, vs1_line_s);
1603         reg_write16(priv, REG_VS_PIX_STRT_1_MSB, vs1_pix_s);
1604         reg_write16(priv, REG_VS_LINE_END_1_MSB, vs1_line_e);
1605         reg_write16(priv, REG_VS_PIX_END_1_MSB, vs1_pix_e);
1606         reg_write16(priv, REG_VS_LINE_STRT_2_MSB, vs2_line_s);
1607         reg_write16(priv, REG_VS_PIX_STRT_2_MSB, vs2_pix_s);
1608         reg_write16(priv, REG_VS_LINE_END_2_MSB, vs2_line_e);
1609         reg_write16(priv, REG_VS_PIX_END_2_MSB, vs2_pix_e);
1610         reg_write16(priv, REG_HS_PIX_START_MSB, hs_pix_s);
1611         reg_write16(priv, REG_HS_PIX_STOP_MSB, hs_pix_e);
1612         reg_write16(priv, REG_VWIN_START_1_MSB, vwin1_line_s);
1613         reg_write16(priv, REG_VWIN_END_1_MSB, vwin1_line_e);
1614         reg_write16(priv, REG_VWIN_START_2_MSB, vwin2_line_s);
1615         reg_write16(priv, REG_VWIN_END_2_MSB, vwin2_line_e);
1616         reg_write16(priv, REG_DE_START_MSB, de_pix_s);
1617         reg_write16(priv, REG_DE_STOP_MSB, de_pix_e);
1618 
1619         if (priv->rev == TDA19988) {
1620                 /* let incoming pixels fill the active space (if any) */
1621                 reg_write(priv, REG_ENABLE_SPACE, 0x00);
1622         }
1623 
1624         /*
1625          * Always generate sync polarity relative to input sync and
1626          * revert input stage toggled sync at output stage
1627          */
1628         reg = TBG_CNTRL_1_DWIN_DIS | TBG_CNTRL_1_TGL_EN;
1629         if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1630                 reg |= TBG_CNTRL_1_H_TGL;
1631         if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1632                 reg |= TBG_CNTRL_1_V_TGL;
1633         reg_write(priv, REG_TBG_CNTRL_1, reg);
1634 
1635         /* must be last register set: */
1636         reg_write(priv, REG_TBG_CNTRL_0, 0);
1637 
1638         /* CEA-861B section 6 says that:
1639          * CEA version 1 (CEA-861) has no support for infoframes.
1640          * CEA version 2 (CEA-861A) supports version 1 AVI infoframes,
1641          * and optional basic audio.
1642          * CEA version 3 (CEA-861B) supports version 1 and 2 AVI infoframes,
1643          * and optional digital audio, with audio infoframes.
1644          *
1645          * Since we only support generation of version 2 AVI infoframes,
1646          * ignore CEA version 2 and below (iow, behave as if we're a
1647          * CEA-861 source.)
1648          */
1649         priv->supports_infoframes = priv->connector.display_info.cea_rev >= 3;
1650 
1651         if (priv->supports_infoframes) {
1652                 /* We need to turn HDMI HDCP stuff on to get audio through */
1653                 reg &= ~TBG_CNTRL_1_DWIN_DIS;
1654                 reg_write(priv, REG_TBG_CNTRL_1, reg);
1655                 reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(1));
1656                 reg_set(priv, REG_TX33, TX33_HDMI);
1657 
1658                 tda998x_write_avi(priv, adjusted_mode);
1659                 tda998x_write_vsi(priv, adjusted_mode);
1660 
1661                 if (priv->sink_has_audio)
1662                         tda998x_configure_audio(priv);
1663         }
1664 
1665         mutex_unlock(&priv->audio_mutex);
1666 }
1667 
1668 static const struct drm_bridge_funcs tda998x_bridge_funcs = {
1669         .attach = tda998x_bridge_attach,
1670         .detach = tda998x_bridge_detach,
1671         .mode_valid = tda998x_bridge_mode_valid,
1672         .disable = tda998x_bridge_disable,
1673         .mode_set = tda998x_bridge_mode_set,
1674         .enable = tda998x_bridge_enable,
1675 };
1676 
1677 /* I2C driver functions */
1678 
1679 static int tda998x_get_audio_ports(struct tda998x_priv *priv,
1680                                    struct device_node *np)
1681 {
1682         const u32 *port_data;
1683         u32 size;
1684         int i;
1685 
1686         port_data = of_get_property(np, "audio-ports", &size);
1687         if (!port_data)
1688                 return 0;
1689 
1690         size /= sizeof(u32);
1691         if (size > 2 * ARRAY_SIZE(priv->audio_port_enable) || size % 2 != 0) {
1692                 dev_err(&priv->hdmi->dev,
1693                         "Bad number of elements in audio-ports dt-property\n");
1694                 return -EINVAL;
1695         }
1696 
1697         size /= 2;
1698 
1699         for (i = 0; i < size; i++) {
1700                 unsigned int route;
1701                 u8 afmt = be32_to_cpup(&port_data[2*i]);
1702                 u8 ena_ap = be32_to_cpup(&port_data[2*i+1]);
1703 
1704                 switch (afmt) {
1705                 case AFMT_I2S:
1706                         route = AUDIO_ROUTE_I2S;
1707                         break;
1708                 case AFMT_SPDIF:
1709                         route = AUDIO_ROUTE_SPDIF;
1710                         break;
1711                 default:
1712                         dev_err(&priv->hdmi->dev,
1713                                 "Bad audio format %u\n", afmt);
1714                         return -EINVAL;
1715                 }
1716 
1717                 if (!ena_ap) {
1718                         dev_err(&priv->hdmi->dev, "invalid zero port config\n");
1719                         continue;
1720                 }
1721 
1722                 if (priv->audio_port_enable[route]) {
1723                         dev_err(&priv->hdmi->dev,
1724                                 "%s format already configured\n",
1725                                 route == AUDIO_ROUTE_SPDIF ? "SPDIF" : "I2S");
1726                         return -EINVAL;
1727                 }
1728 
1729                 priv->audio_port_enable[route] = ena_ap;
1730         }
1731         return 0;
1732 }
1733 
1734 static int tda998x_set_config(struct tda998x_priv *priv,
1735                               const struct tda998x_encoder_params *p)
1736 {
1737         priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(p->swap_a) |
1738                             (p->mirr_a ? VIP_CNTRL_0_MIRR_A : 0) |
1739                             VIP_CNTRL_0_SWAP_B(p->swap_b) |
1740                             (p->mirr_b ? VIP_CNTRL_0_MIRR_B : 0);
1741         priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(p->swap_c) |
1742                             (p->mirr_c ? VIP_CNTRL_1_MIRR_C : 0) |
1743                             VIP_CNTRL_1_SWAP_D(p->swap_d) |
1744                             (p->mirr_d ? VIP_CNTRL_1_MIRR_D : 0);
1745         priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(p->swap_e) |
1746                             (p->mirr_e ? VIP_CNTRL_2_MIRR_E : 0) |
1747                             VIP_CNTRL_2_SWAP_F(p->swap_f) |
1748                             (p->mirr_f ? VIP_CNTRL_2_MIRR_F : 0);
1749 
1750         if (p->audio_params.format != AFMT_UNUSED) {
1751                 unsigned int ratio, route;
1752                 bool spdif = p->audio_params.format == AFMT_SPDIF;
1753 
1754                 route = AUDIO_ROUTE_I2S + spdif;
1755 
1756                 priv->audio.route = &tda998x_audio_route[route];
1757                 priv->audio.cea = p->audio_params.cea;
1758                 priv->audio.sample_rate = p->audio_params.sample_rate;
1759                 memcpy(priv->audio.status, p->audio_params.status,
1760                        min(sizeof(priv->audio.status),
1761                            sizeof(p->audio_params.status)));
1762                 priv->audio.ena_ap = p->audio_params.config;
1763                 priv->audio.i2s_format = I2S_FORMAT_PHILIPS;
1764 
1765                 ratio = spdif ? 64 : p->audio_params.sample_width * 2;
1766                 return tda998x_derive_cts_n(priv, &priv->audio, ratio);
1767         }
1768 
1769         return 0;
1770 }
1771 
1772 static void tda998x_destroy(struct device *dev)
1773 {
1774         struct tda998x_priv *priv = dev_get_drvdata(dev);
1775 
1776         drm_bridge_remove(&priv->bridge);
1777 
1778         /* disable all IRQs and free the IRQ handler */
1779         cec_write(priv, REG_CEC_RXSHPDINTENA, 0);
1780         reg_clear(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD);
1781 
1782         if (priv->audio_pdev)
1783                 platform_device_unregister(priv->audio_pdev);
1784 
1785         if (priv->hdmi->irq)
1786                 free_irq(priv->hdmi->irq, priv);
1787 
1788         del_timer_sync(&priv->edid_delay_timer);
1789         cancel_work_sync(&priv->detect_work);
1790 
1791         i2c_unregister_device(priv->cec);
1792 
1793         if (priv->cec_notify)
1794                 cec_notifier_put(priv->cec_notify);
1795 }
1796 
1797 static int tda998x_create(struct device *dev)
1798 {
1799         struct i2c_client *client = to_i2c_client(dev);
1800         struct device_node *np = client->dev.of_node;
1801         struct i2c_board_info cec_info;
1802         struct tda998x_priv *priv;
1803         u32 video;
1804         int rev_lo, rev_hi, ret;
1805 
1806         priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
1807         if (!priv)
1808                 return -ENOMEM;
1809 
1810         dev_set_drvdata(dev, priv);
1811 
1812         mutex_init(&priv->mutex);       /* protect the page access */
1813         mutex_init(&priv->audio_mutex); /* protect access from audio thread */
1814         mutex_init(&priv->edid_mutex);
1815         INIT_LIST_HEAD(&priv->bridge.list);
1816         init_waitqueue_head(&priv->edid_delay_waitq);
1817         timer_setup(&priv->edid_delay_timer, tda998x_edid_delay_done, 0);
1818         INIT_WORK(&priv->detect_work, tda998x_detect_work);
1819 
1820         priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(2) | VIP_CNTRL_0_SWAP_B(3);
1821         priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(0) | VIP_CNTRL_1_SWAP_D(1);
1822         priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(4) | VIP_CNTRL_2_SWAP_F(5);
1823 
1824         /* CEC I2C address bound to TDA998x I2C addr by configuration pins */
1825         priv->cec_addr = 0x34 + (client->addr & 0x03);
1826         priv->current_page = 0xff;
1827         priv->hdmi = client;
1828 
1829         /* wake up the device: */
1830         cec_write(priv, REG_CEC_ENAMODS,
1831                         CEC_ENAMODS_EN_RXSENS | CEC_ENAMODS_EN_HDMI);
1832 
1833         tda998x_reset(priv);
1834 
1835         /* read version: */
1836         rev_lo = reg_read(priv, REG_VERSION_LSB);
1837         if (rev_lo < 0) {
1838                 dev_err(dev, "failed to read version: %d\n", rev_lo);
1839                 return rev_lo;
1840         }
1841 
1842         rev_hi = reg_read(priv, REG_VERSION_MSB);
1843         if (rev_hi < 0) {
1844                 dev_err(dev, "failed to read version: %d\n", rev_hi);
1845                 return rev_hi;
1846         }
1847 
1848         priv->rev = rev_lo | rev_hi << 8;
1849 
1850         /* mask off feature bits: */
1851         priv->rev &= ~0x30; /* not-hdcp and not-scalar bit */
1852 
1853         switch (priv->rev) {
1854         case TDA9989N2:
1855                 dev_info(dev, "found TDA9989 n2");
1856                 break;
1857         case TDA19989:
1858                 dev_info(dev, "found TDA19989");
1859                 break;
1860         case TDA19989N2:
1861                 dev_info(dev, "found TDA19989 n2");
1862                 break;
1863         case TDA19988:
1864                 dev_info(dev, "found TDA19988");
1865                 break;
1866         default:
1867                 dev_err(dev, "found unsupported device: %04x\n", priv->rev);
1868                 return -ENXIO;
1869         }
1870 
1871         /* after reset, enable DDC: */
1872         reg_write(priv, REG_DDC_DISABLE, 0x00);
1873 
1874         /* set clock on DDC channel: */
1875         reg_write(priv, REG_TX3, 39);
1876 
1877         /* if necessary, disable multi-master: */
1878         if (priv->rev == TDA19989)
1879                 reg_set(priv, REG_I2C_MASTER, I2C_MASTER_DIS_MM);
1880 
1881         cec_write(priv, REG_CEC_FRO_IM_CLK_CTRL,
1882                         CEC_FRO_IM_CLK_CTRL_GHOST_DIS | CEC_FRO_IM_CLK_CTRL_IMCLK_SEL);
1883 
1884         /* ensure interrupts are disabled */
1885         cec_write(priv, REG_CEC_RXSHPDINTENA, 0);
1886 
1887         /* clear pending interrupts */
1888         cec_read(priv, REG_CEC_RXSHPDINT);
1889         reg_read(priv, REG_INT_FLAGS_0);
1890         reg_read(priv, REG_INT_FLAGS_1);
1891         reg_read(priv, REG_INT_FLAGS_2);
1892 
1893         /* initialize the optional IRQ */
1894         if (client->irq) {
1895                 unsigned long irq_flags;
1896 
1897                 /* init read EDID waitqueue and HDP work */
1898                 init_waitqueue_head(&priv->wq_edid);
1899 
1900                 irq_flags =
1901                         irqd_get_trigger_type(irq_get_irq_data(client->irq));
1902 
1903                 priv->cec_glue.irq_flags = irq_flags;
1904 
1905                 irq_flags |= IRQF_SHARED | IRQF_ONESHOT;
1906                 ret = request_threaded_irq(client->irq, NULL,
1907                                            tda998x_irq_thread, irq_flags,
1908                                            "tda998x", priv);
1909                 if (ret) {
1910                         dev_err(dev, "failed to request IRQ#%u: %d\n",
1911                                 client->irq, ret);
1912                         goto err_irq;
1913                 }
1914 
1915                 /* enable HPD irq */
1916                 cec_write(priv, REG_CEC_RXSHPDINTENA, CEC_RXSHPDLEV_HPD);
1917         }
1918 
1919         priv->cec_notify = cec_notifier_get(dev);
1920         if (!priv->cec_notify) {
1921                 ret = -ENOMEM;
1922                 goto fail;
1923         }
1924 
1925         priv->cec_glue.parent = dev;
1926         priv->cec_glue.data = priv;
1927         priv->cec_glue.init = tda998x_cec_hook_init;
1928         priv->cec_glue.exit = tda998x_cec_hook_exit;
1929         priv->cec_glue.open = tda998x_cec_hook_open;
1930         priv->cec_glue.release = tda998x_cec_hook_release;
1931 
1932         /*
1933          * Some TDA998x are actually two I2C devices merged onto one piece
1934          * of silicon: TDA9989 and TDA19989 combine the HDMI transmitter
1935          * with a slightly modified TDA9950 CEC device.  The CEC device
1936          * is at the TDA9950 address, with the address pins strapped across
1937          * to the TDA998x address pins.  Hence, it always has the same
1938          * offset.
1939          */
1940         memset(&cec_info, 0, sizeof(cec_info));
1941         strlcpy(cec_info.type, "tda9950", sizeof(cec_info.type));
1942         cec_info.addr = priv->cec_addr;
1943         cec_info.platform_data = &priv->cec_glue;
1944         cec_info.irq = client->irq;
1945 
1946         priv->cec = i2c_new_device(client->adapter, &cec_info);
1947         if (!priv->cec) {
1948                 ret = -ENODEV;
1949                 goto fail;
1950         }
1951 
1952         /* enable EDID read irq: */
1953         reg_set(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD);
1954 
1955         if (np) {
1956                 /* get the device tree parameters */
1957                 ret = of_property_read_u32(np, "video-ports", &video);
1958                 if (ret == 0) {
1959                         priv->vip_cntrl_0 = video >> 16;
1960                         priv->vip_cntrl_1 = video >> 8;
1961                         priv->vip_cntrl_2 = video;
1962                 }
1963 
1964                 ret = tda998x_get_audio_ports(priv, np);
1965                 if (ret)
1966                         goto fail;
1967 
1968                 if (priv->audio_port_enable[AUDIO_ROUTE_I2S] ||
1969                     priv->audio_port_enable[AUDIO_ROUTE_SPDIF])
1970                         tda998x_audio_codec_init(priv, &client->dev);
1971         } else if (dev->platform_data) {
1972                 ret = tda998x_set_config(priv, dev->platform_data);
1973                 if (ret)
1974                         goto fail;
1975         }
1976 
1977         priv->bridge.funcs = &tda998x_bridge_funcs;
1978 #ifdef CONFIG_OF
1979         priv->bridge.of_node = dev->of_node;
1980 #endif
1981 
1982         drm_bridge_add(&priv->bridge);
1983 
1984         return 0;
1985 
1986 fail:
1987         tda998x_destroy(dev);
1988 err_irq:
1989         return ret;
1990 }
1991 
1992 /* DRM encoder functions */
1993 
1994 static void tda998x_encoder_destroy(struct drm_encoder *encoder)
1995 {
1996         drm_encoder_cleanup(encoder);
1997 }
1998 
1999 static const struct drm_encoder_funcs tda998x_encoder_funcs = {
2000         .destroy = tda998x_encoder_destroy,
2001 };
2002 
2003 static int tda998x_encoder_init(struct device *dev, struct drm_device *drm)
2004 {
2005         struct tda998x_priv *priv = dev_get_drvdata(dev);
2006         u32 crtcs = 0;
2007         int ret;
2008 
2009         if (dev->of_node)
2010                 crtcs = drm_of_find_possible_crtcs(drm, dev->of_node);
2011 
2012         /* If no CRTCs were found, fall back to our old behaviour */
2013         if (crtcs == 0) {
2014                 dev_warn(dev, "Falling back to first CRTC\n");
2015                 crtcs = 1 << 0;
2016         }
2017 
2018         priv->encoder.possible_crtcs = crtcs;
2019 
2020         ret = drm_encoder_init(drm, &priv->encoder, &tda998x_encoder_funcs,
2021                                DRM_MODE_ENCODER_TMDS, NULL);
2022         if (ret)
2023                 goto err_encoder;
2024 
2025         ret = drm_bridge_attach(&priv->encoder, &priv->bridge, NULL);
2026         if (ret)
2027                 goto err_bridge;
2028 
2029         return 0;
2030 
2031 err_bridge:
2032         drm_encoder_cleanup(&priv->encoder);
2033 err_encoder:
2034         return ret;
2035 }
2036 
2037 static int tda998x_bind(struct device *dev, struct device *master, void *data)
2038 {
2039         struct drm_device *drm = data;
2040 
2041         return tda998x_encoder_init(dev, drm);
2042 }
2043 
2044 static void tda998x_unbind(struct device *dev, struct device *master,
2045                            void *data)
2046 {
2047         struct tda998x_priv *priv = dev_get_drvdata(dev);
2048 
2049         drm_encoder_cleanup(&priv->encoder);
2050 }
2051 
2052 static const struct component_ops tda998x_ops = {
2053         .bind = tda998x_bind,
2054         .unbind = tda998x_unbind,
2055 };
2056 
2057 static int
2058 tda998x_probe(struct i2c_client *client, const struct i2c_device_id *id)
2059 {
2060         int ret;
2061 
2062         if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
2063                 dev_warn(&client->dev, "adapter does not support I2C\n");
2064                 return -EIO;
2065         }
2066 
2067         ret = tda998x_create(&client->dev);
2068         if (ret)
2069                 return ret;
2070 
2071         ret = component_add(&client->dev, &tda998x_ops);
2072         if (ret)
2073                 tda998x_destroy(&client->dev);
2074         return ret;
2075 }
2076 
2077 static int tda998x_remove(struct i2c_client *client)
2078 {
2079         component_del(&client->dev, &tda998x_ops);
2080         tda998x_destroy(&client->dev);
2081         return 0;
2082 }
2083 
2084 #ifdef CONFIG_OF
2085 static const struct of_device_id tda998x_dt_ids[] = {
2086         { .compatible = "nxp,tda998x", },
2087         { }
2088 };
2089 MODULE_DEVICE_TABLE(of, tda998x_dt_ids);
2090 #endif
2091 
2092 static const struct i2c_device_id tda998x_ids[] = {
2093         { "tda998x", 0 },
2094         { }
2095 };
2096 MODULE_DEVICE_TABLE(i2c, tda998x_ids);
2097 
2098 static struct i2c_driver tda998x_driver = {
2099         .probe = tda998x_probe,
2100         .remove = tda998x_remove,
2101         .driver = {
2102                 .name = "tda998x",
2103                 .of_match_table = of_match_ptr(tda998x_dt_ids),
2104         },
2105         .id_table = tda998x_ids,
2106 };
2107 
2108 module_i2c_driver(tda998x_driver);
2109 
2110 MODULE_AUTHOR("Rob Clark <robdclark@gmail.com");
2111 MODULE_DESCRIPTION("NXP Semiconductors TDA998X HDMI Encoder");
2112 MODULE_LICENSE("GPL");

/* [<][>][^][v][top][bottom][index][help] */