root/drivers/gpu/drm/radeon/radeon_fence.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. radeon_fence_write
  2. radeon_fence_read
  3. radeon_fence_schedule_check
  4. radeon_fence_emit
  5. radeon_fence_check_signaled
  6. radeon_fence_activity
  7. radeon_fence_check_lockup
  8. radeon_fence_process
  9. radeon_fence_seq_signaled
  10. radeon_fence_is_signaled
  11. radeon_fence_enable_signaling
  12. radeon_fence_signaled
  13. radeon_fence_any_seq_signaled
  14. radeon_fence_wait_seq_timeout
  15. radeon_fence_wait_timeout
  16. radeon_fence_wait
  17. radeon_fence_wait_any
  18. radeon_fence_wait_next
  19. radeon_fence_wait_empty
  20. radeon_fence_ref
  21. radeon_fence_unref
  22. radeon_fence_count_emitted
  23. radeon_fence_need_sync
  24. radeon_fence_note_sync
  25. radeon_fence_driver_start_ring
  26. radeon_fence_driver_init_ring
  27. radeon_fence_driver_init
  28. radeon_fence_driver_fini
  29. radeon_fence_driver_force_completion
  30. radeon_debugfs_fence_info
  31. radeon_debugfs_gpu_reset
  32. radeon_debugfs_fence_init
  33. radeon_fence_get_driver_name
  34. radeon_fence_get_timeline_name
  35. radeon_test_signaled
  36. radeon_fence_wait_cb
  37. radeon_fence_default_wait

   1 /*
   2  * Copyright 2009 Jerome Glisse.
   3  * All Rights Reserved.
   4  *
   5  * Permission is hereby granted, free of charge, to any person obtaining a
   6  * copy of this software and associated documentation files (the
   7  * "Software"), to deal in the Software without restriction, including
   8  * without limitation the rights to use, copy, modify, merge, publish,
   9  * distribute, sub license, and/or sell copies of the Software, and to
  10  * permit persons to whom the Software is furnished to do so, subject to
  11  * the following conditions:
  12  *
  13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
  20  *
  21  * The above copyright notice and this permission notice (including the
  22  * next paragraph) shall be included in all copies or substantial portions
  23  * of the Software.
  24  *
  25  */
  26 /*
  27  * Authors:
  28  *    Jerome Glisse <glisse@freedesktop.org>
  29  *    Dave Airlie
  30  */
  31 
  32 #include <linux/atomic.h>
  33 #include <linux/firmware.h>
  34 #include <linux/kref.h>
  35 #include <linux/sched/signal.h>
  36 #include <linux/seq_file.h>
  37 #include <linux/slab.h>
  38 #include <linux/wait.h>
  39 
  40 #include <drm/drm_debugfs.h>
  41 #include <drm/drm_device.h>
  42 #include <drm/drm_file.h>
  43 
  44 #include "radeon.h"
  45 #include "radeon_reg.h"
  46 #include "radeon_trace.h"
  47 
  48 /*
  49  * Fences
  50  * Fences mark an event in the GPUs pipeline and are used
  51  * for GPU/CPU synchronization.  When the fence is written,
  52  * it is expected that all buffers associated with that fence
  53  * are no longer in use by the associated ring on the GPU and
  54  * that the the relevant GPU caches have been flushed.  Whether
  55  * we use a scratch register or memory location depends on the asic
  56  * and whether writeback is enabled.
  57  */
  58 
  59 /**
  60  * radeon_fence_write - write a fence value
  61  *
  62  * @rdev: radeon_device pointer
  63  * @seq: sequence number to write
  64  * @ring: ring index the fence is associated with
  65  *
  66  * Writes a fence value to memory or a scratch register (all asics).
  67  */
  68 static void radeon_fence_write(struct radeon_device *rdev, u32 seq, int ring)
  69 {
  70         struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
  71         if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
  72                 if (drv->cpu_addr) {
  73                         *drv->cpu_addr = cpu_to_le32(seq);
  74                 }
  75         } else {
  76                 WREG32(drv->scratch_reg, seq);
  77         }
  78 }
  79 
  80 /**
  81  * radeon_fence_read - read a fence value
  82  *
  83  * @rdev: radeon_device pointer
  84  * @ring: ring index the fence is associated with
  85  *
  86  * Reads a fence value from memory or a scratch register (all asics).
  87  * Returns the value of the fence read from memory or register.
  88  */
  89 static u32 radeon_fence_read(struct radeon_device *rdev, int ring)
  90 {
  91         struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
  92         u32 seq = 0;
  93 
  94         if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
  95                 if (drv->cpu_addr) {
  96                         seq = le32_to_cpu(*drv->cpu_addr);
  97                 } else {
  98                         seq = lower_32_bits(atomic64_read(&drv->last_seq));
  99                 }
 100         } else {
 101                 seq = RREG32(drv->scratch_reg);
 102         }
 103         return seq;
 104 }
 105 
 106 /**
 107  * radeon_fence_schedule_check - schedule lockup check
 108  *
 109  * @rdev: radeon_device pointer
 110  * @ring: ring index we should work with
 111  *
 112  * Queues a delayed work item to check for lockups.
 113  */
 114 static void radeon_fence_schedule_check(struct radeon_device *rdev, int ring)
 115 {
 116         /*
 117          * Do not reset the timer here with mod_delayed_work,
 118          * this can livelock in an interaction with TTM delayed destroy.
 119          */
 120         queue_delayed_work(system_power_efficient_wq,
 121                            &rdev->fence_drv[ring].lockup_work,
 122                            RADEON_FENCE_JIFFIES_TIMEOUT);
 123 }
 124 
 125 /**
 126  * radeon_fence_emit - emit a fence on the requested ring
 127  *
 128  * @rdev: radeon_device pointer
 129  * @fence: radeon fence object
 130  * @ring: ring index the fence is associated with
 131  *
 132  * Emits a fence command on the requested ring (all asics).
 133  * Returns 0 on success, -ENOMEM on failure.
 134  */
 135 int radeon_fence_emit(struct radeon_device *rdev,
 136                       struct radeon_fence **fence,
 137                       int ring)
 138 {
 139         u64 seq;
 140 
 141         /* we are protected by the ring emission mutex */
 142         *fence = kmalloc(sizeof(struct radeon_fence), GFP_KERNEL);
 143         if ((*fence) == NULL) {
 144                 return -ENOMEM;
 145         }
 146         (*fence)->rdev = rdev;
 147         (*fence)->seq = seq = ++rdev->fence_drv[ring].sync_seq[ring];
 148         (*fence)->ring = ring;
 149         (*fence)->is_vm_update = false;
 150         dma_fence_init(&(*fence)->base, &radeon_fence_ops,
 151                        &rdev->fence_queue.lock,
 152                        rdev->fence_context + ring,
 153                        seq);
 154         radeon_fence_ring_emit(rdev, ring, *fence);
 155         trace_radeon_fence_emit(rdev->ddev, ring, (*fence)->seq);
 156         radeon_fence_schedule_check(rdev, ring);
 157         return 0;
 158 }
 159 
 160 /**
 161  * radeon_fence_check_signaled - callback from fence_queue
 162  *
 163  * this function is called with fence_queue lock held, which is also used
 164  * for the fence locking itself, so unlocked variants are used for
 165  * fence_signal, and remove_wait_queue.
 166  */
 167 static int radeon_fence_check_signaled(wait_queue_entry_t *wait, unsigned mode, int flags, void *key)
 168 {
 169         struct radeon_fence *fence;
 170         u64 seq;
 171 
 172         fence = container_of(wait, struct radeon_fence, fence_wake);
 173 
 174         /*
 175          * We cannot use radeon_fence_process here because we're already
 176          * in the waitqueue, in a call from wake_up_all.
 177          */
 178         seq = atomic64_read(&fence->rdev->fence_drv[fence->ring].last_seq);
 179         if (seq >= fence->seq) {
 180                 int ret = dma_fence_signal_locked(&fence->base);
 181 
 182                 if (!ret)
 183                         DMA_FENCE_TRACE(&fence->base, "signaled from irq context\n");
 184                 else
 185                         DMA_FENCE_TRACE(&fence->base, "was already signaled\n");
 186 
 187                 radeon_irq_kms_sw_irq_put(fence->rdev, fence->ring);
 188                 __remove_wait_queue(&fence->rdev->fence_queue, &fence->fence_wake);
 189                 dma_fence_put(&fence->base);
 190         } else
 191                 DMA_FENCE_TRACE(&fence->base, "pending\n");
 192         return 0;
 193 }
 194 
 195 /**
 196  * radeon_fence_activity - check for fence activity
 197  *
 198  * @rdev: radeon_device pointer
 199  * @ring: ring index the fence is associated with
 200  *
 201  * Checks the current fence value and calculates the last
 202  * signalled fence value. Returns true if activity occured
 203  * on the ring, and the fence_queue should be waken up.
 204  */
 205 static bool radeon_fence_activity(struct radeon_device *rdev, int ring)
 206 {
 207         uint64_t seq, last_seq, last_emitted;
 208         unsigned count_loop = 0;
 209         bool wake = false;
 210 
 211         /* Note there is a scenario here for an infinite loop but it's
 212          * very unlikely to happen. For it to happen, the current polling
 213          * process need to be interrupted by another process and another
 214          * process needs to update the last_seq btw the atomic read and
 215          * xchg of the current process.
 216          *
 217          * More over for this to go in infinite loop there need to be
 218          * continuously new fence signaled ie radeon_fence_read needs
 219          * to return a different value each time for both the currently
 220          * polling process and the other process that xchg the last_seq
 221          * btw atomic read and xchg of the current process. And the
 222          * value the other process set as last seq must be higher than
 223          * the seq value we just read. Which means that current process
 224          * need to be interrupted after radeon_fence_read and before
 225          * atomic xchg.
 226          *
 227          * To be even more safe we count the number of time we loop and
 228          * we bail after 10 loop just accepting the fact that we might
 229          * have temporarly set the last_seq not to the true real last
 230          * seq but to an older one.
 231          */
 232         last_seq = atomic64_read(&rdev->fence_drv[ring].last_seq);
 233         do {
 234                 last_emitted = rdev->fence_drv[ring].sync_seq[ring];
 235                 seq = radeon_fence_read(rdev, ring);
 236                 seq |= last_seq & 0xffffffff00000000LL;
 237                 if (seq < last_seq) {
 238                         seq &= 0xffffffff;
 239                         seq |= last_emitted & 0xffffffff00000000LL;
 240                 }
 241 
 242                 if (seq <= last_seq || seq > last_emitted) {
 243                         break;
 244                 }
 245                 /* If we loop over we don't want to return without
 246                  * checking if a fence is signaled as it means that the
 247                  * seq we just read is different from the previous on.
 248                  */
 249                 wake = true;
 250                 last_seq = seq;
 251                 if ((count_loop++) > 10) {
 252                         /* We looped over too many time leave with the
 253                          * fact that we might have set an older fence
 254                          * seq then the current real last seq as signaled
 255                          * by the hw.
 256                          */
 257                         break;
 258                 }
 259         } while (atomic64_xchg(&rdev->fence_drv[ring].last_seq, seq) > seq);
 260 
 261         if (seq < last_emitted)
 262                 radeon_fence_schedule_check(rdev, ring);
 263 
 264         return wake;
 265 }
 266 
 267 /**
 268  * radeon_fence_check_lockup - check for hardware lockup
 269  *
 270  * @work: delayed work item
 271  *
 272  * Checks for fence activity and if there is none probe
 273  * the hardware if a lockup occured.
 274  */
 275 static void radeon_fence_check_lockup(struct work_struct *work)
 276 {
 277         struct radeon_fence_driver *fence_drv;
 278         struct radeon_device *rdev;
 279         int ring;
 280 
 281         fence_drv = container_of(work, struct radeon_fence_driver,
 282                                  lockup_work.work);
 283         rdev = fence_drv->rdev;
 284         ring = fence_drv - &rdev->fence_drv[0];
 285 
 286         if (!down_read_trylock(&rdev->exclusive_lock)) {
 287                 /* just reschedule the check if a reset is going on */
 288                 radeon_fence_schedule_check(rdev, ring);
 289                 return;
 290         }
 291 
 292         if (fence_drv->delayed_irq && rdev->ddev->irq_enabled) {
 293                 unsigned long irqflags;
 294 
 295                 fence_drv->delayed_irq = false;
 296                 spin_lock_irqsave(&rdev->irq.lock, irqflags);
 297                 radeon_irq_set(rdev);
 298                 spin_unlock_irqrestore(&rdev->irq.lock, irqflags);
 299         }
 300 
 301         if (radeon_fence_activity(rdev, ring))
 302                 wake_up_all(&rdev->fence_queue);
 303 
 304         else if (radeon_ring_is_lockup(rdev, ring, &rdev->ring[ring])) {
 305 
 306                 /* good news we believe it's a lockup */
 307                 dev_warn(rdev->dev, "GPU lockup (current fence id "
 308                          "0x%016llx last fence id 0x%016llx on ring %d)\n",
 309                          (uint64_t)atomic64_read(&fence_drv->last_seq),
 310                          fence_drv->sync_seq[ring], ring);
 311 
 312                 /* remember that we need an reset */
 313                 rdev->needs_reset = true;
 314                 wake_up_all(&rdev->fence_queue);
 315         }
 316         up_read(&rdev->exclusive_lock);
 317 }
 318 
 319 /**
 320  * radeon_fence_process - process a fence
 321  *
 322  * @rdev: radeon_device pointer
 323  * @ring: ring index the fence is associated with
 324  *
 325  * Checks the current fence value and wakes the fence queue
 326  * if the sequence number has increased (all asics).
 327  */
 328 void radeon_fence_process(struct radeon_device *rdev, int ring)
 329 {
 330         if (radeon_fence_activity(rdev, ring))
 331                 wake_up_all(&rdev->fence_queue);
 332 }
 333 
 334 /**
 335  * radeon_fence_seq_signaled - check if a fence sequence number has signaled
 336  *
 337  * @rdev: radeon device pointer
 338  * @seq: sequence number
 339  * @ring: ring index the fence is associated with
 340  *
 341  * Check if the last signaled fence sequnce number is >= the requested
 342  * sequence number (all asics).
 343  * Returns true if the fence has signaled (current fence value
 344  * is >= requested value) or false if it has not (current fence
 345  * value is < the requested value.  Helper function for
 346  * radeon_fence_signaled().
 347  */
 348 static bool radeon_fence_seq_signaled(struct radeon_device *rdev,
 349                                       u64 seq, unsigned ring)
 350 {
 351         if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
 352                 return true;
 353         }
 354         /* poll new last sequence at least once */
 355         radeon_fence_process(rdev, ring);
 356         if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
 357                 return true;
 358         }
 359         return false;
 360 }
 361 
 362 static bool radeon_fence_is_signaled(struct dma_fence *f)
 363 {
 364         struct radeon_fence *fence = to_radeon_fence(f);
 365         struct radeon_device *rdev = fence->rdev;
 366         unsigned ring = fence->ring;
 367         u64 seq = fence->seq;
 368 
 369         if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
 370                 return true;
 371         }
 372 
 373         if (down_read_trylock(&rdev->exclusive_lock)) {
 374                 radeon_fence_process(rdev, ring);
 375                 up_read(&rdev->exclusive_lock);
 376 
 377                 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
 378                         return true;
 379                 }
 380         }
 381         return false;
 382 }
 383 
 384 /**
 385  * radeon_fence_enable_signaling - enable signalling on fence
 386  * @fence: fence
 387  *
 388  * This function is called with fence_queue lock held, and adds a callback
 389  * to fence_queue that checks if this fence is signaled, and if so it
 390  * signals the fence and removes itself.
 391  */
 392 static bool radeon_fence_enable_signaling(struct dma_fence *f)
 393 {
 394         struct radeon_fence *fence = to_radeon_fence(f);
 395         struct radeon_device *rdev = fence->rdev;
 396 
 397         if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq)
 398                 return false;
 399 
 400         if (down_read_trylock(&rdev->exclusive_lock)) {
 401                 radeon_irq_kms_sw_irq_get(rdev, fence->ring);
 402 
 403                 if (radeon_fence_activity(rdev, fence->ring))
 404                         wake_up_all_locked(&rdev->fence_queue);
 405 
 406                 /* did fence get signaled after we enabled the sw irq? */
 407                 if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq) {
 408                         radeon_irq_kms_sw_irq_put(rdev, fence->ring);
 409                         up_read(&rdev->exclusive_lock);
 410                         return false;
 411                 }
 412 
 413                 up_read(&rdev->exclusive_lock);
 414         } else {
 415                 /* we're probably in a lockup, lets not fiddle too much */
 416                 if (radeon_irq_kms_sw_irq_get_delayed(rdev, fence->ring))
 417                         rdev->fence_drv[fence->ring].delayed_irq = true;
 418                 radeon_fence_schedule_check(rdev, fence->ring);
 419         }
 420 
 421         fence->fence_wake.flags = 0;
 422         fence->fence_wake.private = NULL;
 423         fence->fence_wake.func = radeon_fence_check_signaled;
 424         __add_wait_queue(&rdev->fence_queue, &fence->fence_wake);
 425         dma_fence_get(f);
 426 
 427         DMA_FENCE_TRACE(&fence->base, "armed on ring %i!\n", fence->ring);
 428         return true;
 429 }
 430 
 431 /**
 432  * radeon_fence_signaled - check if a fence has signaled
 433  *
 434  * @fence: radeon fence object
 435  *
 436  * Check if the requested fence has signaled (all asics).
 437  * Returns true if the fence has signaled or false if it has not.
 438  */
 439 bool radeon_fence_signaled(struct radeon_fence *fence)
 440 {
 441         if (!fence)
 442                 return true;
 443 
 444         if (radeon_fence_seq_signaled(fence->rdev, fence->seq, fence->ring)) {
 445                 int ret;
 446 
 447                 ret = dma_fence_signal(&fence->base);
 448                 if (!ret)
 449                         DMA_FENCE_TRACE(&fence->base, "signaled from radeon_fence_signaled\n");
 450                 return true;
 451         }
 452         return false;
 453 }
 454 
 455 /**
 456  * radeon_fence_any_seq_signaled - check if any sequence number is signaled
 457  *
 458  * @rdev: radeon device pointer
 459  * @seq: sequence numbers
 460  *
 461  * Check if the last signaled fence sequnce number is >= the requested
 462  * sequence number (all asics).
 463  * Returns true if any has signaled (current value is >= requested value)
 464  * or false if it has not. Helper function for radeon_fence_wait_seq.
 465  */
 466 static bool radeon_fence_any_seq_signaled(struct radeon_device *rdev, u64 *seq)
 467 {
 468         unsigned i;
 469 
 470         for (i = 0; i < RADEON_NUM_RINGS; ++i) {
 471                 if (seq[i] && radeon_fence_seq_signaled(rdev, seq[i], i))
 472                         return true;
 473         }
 474         return false;
 475 }
 476 
 477 /**
 478  * radeon_fence_wait_seq_timeout - wait for a specific sequence numbers
 479  *
 480  * @rdev: radeon device pointer
 481  * @target_seq: sequence number(s) we want to wait for
 482  * @intr: use interruptable sleep
 483  * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
 484  *
 485  * Wait for the requested sequence number(s) to be written by any ring
 486  * (all asics).  Sequnce number array is indexed by ring id.
 487  * @intr selects whether to use interruptable (true) or non-interruptable
 488  * (false) sleep when waiting for the sequence number.  Helper function
 489  * for radeon_fence_wait_*().
 490  * Returns remaining time if the sequence number has passed, 0 when
 491  * the wait timeout, or an error for all other cases.
 492  * -EDEADLK is returned when a GPU lockup has been detected.
 493  */
 494 static long radeon_fence_wait_seq_timeout(struct radeon_device *rdev,
 495                                           u64 *target_seq, bool intr,
 496                                           long timeout)
 497 {
 498         long r;
 499         int i;
 500 
 501         if (radeon_fence_any_seq_signaled(rdev, target_seq))
 502                 return timeout;
 503 
 504         /* enable IRQs and tracing */
 505         for (i = 0; i < RADEON_NUM_RINGS; ++i) {
 506                 if (!target_seq[i])
 507                         continue;
 508 
 509                 trace_radeon_fence_wait_begin(rdev->ddev, i, target_seq[i]);
 510                 radeon_irq_kms_sw_irq_get(rdev, i);
 511         }
 512 
 513         if (intr) {
 514                 r = wait_event_interruptible_timeout(rdev->fence_queue, (
 515                         radeon_fence_any_seq_signaled(rdev, target_seq)
 516                          || rdev->needs_reset), timeout);
 517         } else {
 518                 r = wait_event_timeout(rdev->fence_queue, (
 519                         radeon_fence_any_seq_signaled(rdev, target_seq)
 520                          || rdev->needs_reset), timeout);
 521         }
 522 
 523         if (rdev->needs_reset)
 524                 r = -EDEADLK;
 525 
 526         for (i = 0; i < RADEON_NUM_RINGS; ++i) {
 527                 if (!target_seq[i])
 528                         continue;
 529 
 530                 radeon_irq_kms_sw_irq_put(rdev, i);
 531                 trace_radeon_fence_wait_end(rdev->ddev, i, target_seq[i]);
 532         }
 533 
 534         return r;
 535 }
 536 
 537 /**
 538  * radeon_fence_wait_timeout - wait for a fence to signal with timeout
 539  *
 540  * @fence: radeon fence object
 541  * @intr: use interruptible sleep
 542  *
 543  * Wait for the requested fence to signal (all asics).
 544  * @intr selects whether to use interruptable (true) or non-interruptable
 545  * (false) sleep when waiting for the fence.
 546  * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
 547  * Returns remaining time if the sequence number has passed, 0 when
 548  * the wait timeout, or an error for all other cases.
 549  */
 550 long radeon_fence_wait_timeout(struct radeon_fence *fence, bool intr, long timeout)
 551 {
 552         uint64_t seq[RADEON_NUM_RINGS] = {};
 553         long r;
 554         int r_sig;
 555 
 556         /*
 557          * This function should not be called on !radeon fences.
 558          * If this is the case, it would mean this function can
 559          * also be called on radeon fences belonging to another card.
 560          * exclusive_lock is not held in that case.
 561          */
 562         if (WARN_ON_ONCE(!to_radeon_fence(&fence->base)))
 563                 return dma_fence_wait(&fence->base, intr);
 564 
 565         seq[fence->ring] = fence->seq;
 566         r = radeon_fence_wait_seq_timeout(fence->rdev, seq, intr, timeout);
 567         if (r <= 0) {
 568                 return r;
 569         }
 570 
 571         r_sig = dma_fence_signal(&fence->base);
 572         if (!r_sig)
 573                 DMA_FENCE_TRACE(&fence->base, "signaled from fence_wait\n");
 574         return r;
 575 }
 576 
 577 /**
 578  * radeon_fence_wait - wait for a fence to signal
 579  *
 580  * @fence: radeon fence object
 581  * @intr: use interruptible sleep
 582  *
 583  * Wait for the requested fence to signal (all asics).
 584  * @intr selects whether to use interruptable (true) or non-interruptable
 585  * (false) sleep when waiting for the fence.
 586  * Returns 0 if the fence has passed, error for all other cases.
 587  */
 588 int radeon_fence_wait(struct radeon_fence *fence, bool intr)
 589 {
 590         long r = radeon_fence_wait_timeout(fence, intr, MAX_SCHEDULE_TIMEOUT);
 591         if (r > 0) {
 592                 return 0;
 593         } else {
 594                 return r;
 595         }
 596 }
 597 
 598 /**
 599  * radeon_fence_wait_any - wait for a fence to signal on any ring
 600  *
 601  * @rdev: radeon device pointer
 602  * @fences: radeon fence object(s)
 603  * @intr: use interruptable sleep
 604  *
 605  * Wait for any requested fence to signal (all asics).  Fence
 606  * array is indexed by ring id.  @intr selects whether to use
 607  * interruptable (true) or non-interruptable (false) sleep when
 608  * waiting for the fences. Used by the suballocator.
 609  * Returns 0 if any fence has passed, error for all other cases.
 610  */
 611 int radeon_fence_wait_any(struct radeon_device *rdev,
 612                           struct radeon_fence **fences,
 613                           bool intr)
 614 {
 615         uint64_t seq[RADEON_NUM_RINGS];
 616         unsigned i, num_rings = 0;
 617         long r;
 618 
 619         for (i = 0; i < RADEON_NUM_RINGS; ++i) {
 620                 seq[i] = 0;
 621 
 622                 if (!fences[i]) {
 623                         continue;
 624                 }
 625 
 626                 seq[i] = fences[i]->seq;
 627                 ++num_rings;
 628         }
 629 
 630         /* nothing to wait for ? */
 631         if (num_rings == 0)
 632                 return -ENOENT;
 633 
 634         r = radeon_fence_wait_seq_timeout(rdev, seq, intr, MAX_SCHEDULE_TIMEOUT);
 635         if (r < 0) {
 636                 return r;
 637         }
 638         return 0;
 639 }
 640 
 641 /**
 642  * radeon_fence_wait_next - wait for the next fence to signal
 643  *
 644  * @rdev: radeon device pointer
 645  * @ring: ring index the fence is associated with
 646  *
 647  * Wait for the next fence on the requested ring to signal (all asics).
 648  * Returns 0 if the next fence has passed, error for all other cases.
 649  * Caller must hold ring lock.
 650  */
 651 int radeon_fence_wait_next(struct radeon_device *rdev, int ring)
 652 {
 653         uint64_t seq[RADEON_NUM_RINGS] = {};
 654         long r;
 655 
 656         seq[ring] = atomic64_read(&rdev->fence_drv[ring].last_seq) + 1ULL;
 657         if (seq[ring] >= rdev->fence_drv[ring].sync_seq[ring]) {
 658                 /* nothing to wait for, last_seq is
 659                    already the last emited fence */
 660                 return -ENOENT;
 661         }
 662         r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
 663         if (r < 0)
 664                 return r;
 665         return 0;
 666 }
 667 
 668 /**
 669  * radeon_fence_wait_empty - wait for all fences to signal
 670  *
 671  * @rdev: radeon device pointer
 672  * @ring: ring index the fence is associated with
 673  *
 674  * Wait for all fences on the requested ring to signal (all asics).
 675  * Returns 0 if the fences have passed, error for all other cases.
 676  * Caller must hold ring lock.
 677  */
 678 int radeon_fence_wait_empty(struct radeon_device *rdev, int ring)
 679 {
 680         uint64_t seq[RADEON_NUM_RINGS] = {};
 681         long r;
 682 
 683         seq[ring] = rdev->fence_drv[ring].sync_seq[ring];
 684         if (!seq[ring])
 685                 return 0;
 686 
 687         r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
 688         if (r < 0) {
 689                 if (r == -EDEADLK)
 690                         return -EDEADLK;
 691 
 692                 dev_err(rdev->dev, "error waiting for ring[%d] to become idle (%ld)\n",
 693                         ring, r);
 694         }
 695         return 0;
 696 }
 697 
 698 /**
 699  * radeon_fence_ref - take a ref on a fence
 700  *
 701  * @fence: radeon fence object
 702  *
 703  * Take a reference on a fence (all asics).
 704  * Returns the fence.
 705  */
 706 struct radeon_fence *radeon_fence_ref(struct radeon_fence *fence)
 707 {
 708         dma_fence_get(&fence->base);
 709         return fence;
 710 }
 711 
 712 /**
 713  * radeon_fence_unref - remove a ref on a fence
 714  *
 715  * @fence: radeon fence object
 716  *
 717  * Remove a reference on a fence (all asics).
 718  */
 719 void radeon_fence_unref(struct radeon_fence **fence)
 720 {
 721         struct radeon_fence *tmp = *fence;
 722 
 723         *fence = NULL;
 724         if (tmp) {
 725                 dma_fence_put(&tmp->base);
 726         }
 727 }
 728 
 729 /**
 730  * radeon_fence_count_emitted - get the count of emitted fences
 731  *
 732  * @rdev: radeon device pointer
 733  * @ring: ring index the fence is associated with
 734  *
 735  * Get the number of fences emitted on the requested ring (all asics).
 736  * Returns the number of emitted fences on the ring.  Used by the
 737  * dynpm code to ring track activity.
 738  */
 739 unsigned radeon_fence_count_emitted(struct radeon_device *rdev, int ring)
 740 {
 741         uint64_t emitted;
 742 
 743         /* We are not protected by ring lock when reading the last sequence
 744          * but it's ok to report slightly wrong fence count here.
 745          */
 746         radeon_fence_process(rdev, ring);
 747         emitted = rdev->fence_drv[ring].sync_seq[ring]
 748                 - atomic64_read(&rdev->fence_drv[ring].last_seq);
 749         /* to avoid 32bits warp around */
 750         if (emitted > 0x10000000) {
 751                 emitted = 0x10000000;
 752         }
 753         return (unsigned)emitted;
 754 }
 755 
 756 /**
 757  * radeon_fence_need_sync - do we need a semaphore
 758  *
 759  * @fence: radeon fence object
 760  * @dst_ring: which ring to check against
 761  *
 762  * Check if the fence needs to be synced against another ring
 763  * (all asics).  If so, we need to emit a semaphore.
 764  * Returns true if we need to sync with another ring, false if
 765  * not.
 766  */
 767 bool radeon_fence_need_sync(struct radeon_fence *fence, int dst_ring)
 768 {
 769         struct radeon_fence_driver *fdrv;
 770 
 771         if (!fence) {
 772                 return false;
 773         }
 774 
 775         if (fence->ring == dst_ring) {
 776                 return false;
 777         }
 778 
 779         /* we are protected by the ring mutex */
 780         fdrv = &fence->rdev->fence_drv[dst_ring];
 781         if (fence->seq <= fdrv->sync_seq[fence->ring]) {
 782                 return false;
 783         }
 784 
 785         return true;
 786 }
 787 
 788 /**
 789  * radeon_fence_note_sync - record the sync point
 790  *
 791  * @fence: radeon fence object
 792  * @dst_ring: which ring to check against
 793  *
 794  * Note the sequence number at which point the fence will
 795  * be synced with the requested ring (all asics).
 796  */
 797 void radeon_fence_note_sync(struct radeon_fence *fence, int dst_ring)
 798 {
 799         struct radeon_fence_driver *dst, *src;
 800         unsigned i;
 801 
 802         if (!fence) {
 803                 return;
 804         }
 805 
 806         if (fence->ring == dst_ring) {
 807                 return;
 808         }
 809 
 810         /* we are protected by the ring mutex */
 811         src = &fence->rdev->fence_drv[fence->ring];
 812         dst = &fence->rdev->fence_drv[dst_ring];
 813         for (i = 0; i < RADEON_NUM_RINGS; ++i) {
 814                 if (i == dst_ring) {
 815                         continue;
 816                 }
 817                 dst->sync_seq[i] = max(dst->sync_seq[i], src->sync_seq[i]);
 818         }
 819 }
 820 
 821 /**
 822  * radeon_fence_driver_start_ring - make the fence driver
 823  * ready for use on the requested ring.
 824  *
 825  * @rdev: radeon device pointer
 826  * @ring: ring index to start the fence driver on
 827  *
 828  * Make the fence driver ready for processing (all asics).
 829  * Not all asics have all rings, so each asic will only
 830  * start the fence driver on the rings it has.
 831  * Returns 0 for success, errors for failure.
 832  */
 833 int radeon_fence_driver_start_ring(struct radeon_device *rdev, int ring)
 834 {
 835         uint64_t index;
 836         int r;
 837 
 838         radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
 839         if (rdev->wb.use_event || !radeon_ring_supports_scratch_reg(rdev, &rdev->ring[ring])) {
 840                 rdev->fence_drv[ring].scratch_reg = 0;
 841                 if (ring != R600_RING_TYPE_UVD_INDEX) {
 842                         index = R600_WB_EVENT_OFFSET + ring * 4;
 843                         rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
 844                         rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr +
 845                                                          index;
 846 
 847                 } else {
 848                         /* put fence directly behind firmware */
 849                         index = ALIGN(rdev->uvd_fw->size, 8);
 850                         rdev->fence_drv[ring].cpu_addr = rdev->uvd.cpu_addr + index;
 851                         rdev->fence_drv[ring].gpu_addr = rdev->uvd.gpu_addr + index;
 852                 }
 853 
 854         } else {
 855                 r = radeon_scratch_get(rdev, &rdev->fence_drv[ring].scratch_reg);
 856                 if (r) {
 857                         dev_err(rdev->dev, "fence failed to get scratch register\n");
 858                         return r;
 859                 }
 860                 index = RADEON_WB_SCRATCH_OFFSET +
 861                         rdev->fence_drv[ring].scratch_reg -
 862                         rdev->scratch.reg_base;
 863                 rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
 864                 rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + index;
 865         }
 866         radeon_fence_write(rdev, atomic64_read(&rdev->fence_drv[ring].last_seq), ring);
 867         rdev->fence_drv[ring].initialized = true;
 868         dev_info(rdev->dev, "fence driver on ring %d use gpu addr 0x%016llx and cpu addr 0x%p\n",
 869                  ring, rdev->fence_drv[ring].gpu_addr, rdev->fence_drv[ring].cpu_addr);
 870         return 0;
 871 }
 872 
 873 /**
 874  * radeon_fence_driver_init_ring - init the fence driver
 875  * for the requested ring.
 876  *
 877  * @rdev: radeon device pointer
 878  * @ring: ring index to start the fence driver on
 879  *
 880  * Init the fence driver for the requested ring (all asics).
 881  * Helper function for radeon_fence_driver_init().
 882  */
 883 static void radeon_fence_driver_init_ring(struct radeon_device *rdev, int ring)
 884 {
 885         int i;
 886 
 887         rdev->fence_drv[ring].scratch_reg = -1;
 888         rdev->fence_drv[ring].cpu_addr = NULL;
 889         rdev->fence_drv[ring].gpu_addr = 0;
 890         for (i = 0; i < RADEON_NUM_RINGS; ++i)
 891                 rdev->fence_drv[ring].sync_seq[i] = 0;
 892         atomic64_set(&rdev->fence_drv[ring].last_seq, 0);
 893         rdev->fence_drv[ring].initialized = false;
 894         INIT_DELAYED_WORK(&rdev->fence_drv[ring].lockup_work,
 895                           radeon_fence_check_lockup);
 896         rdev->fence_drv[ring].rdev = rdev;
 897 }
 898 
 899 /**
 900  * radeon_fence_driver_init - init the fence driver
 901  * for all possible rings.
 902  *
 903  * @rdev: radeon device pointer
 904  *
 905  * Init the fence driver for all possible rings (all asics).
 906  * Not all asics have all rings, so each asic will only
 907  * start the fence driver on the rings it has using
 908  * radeon_fence_driver_start_ring().
 909  * Returns 0 for success.
 910  */
 911 int radeon_fence_driver_init(struct radeon_device *rdev)
 912 {
 913         int ring;
 914 
 915         init_waitqueue_head(&rdev->fence_queue);
 916         for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
 917                 radeon_fence_driver_init_ring(rdev, ring);
 918         }
 919         if (radeon_debugfs_fence_init(rdev)) {
 920                 dev_err(rdev->dev, "fence debugfs file creation failed\n");
 921         }
 922         return 0;
 923 }
 924 
 925 /**
 926  * radeon_fence_driver_fini - tear down the fence driver
 927  * for all possible rings.
 928  *
 929  * @rdev: radeon device pointer
 930  *
 931  * Tear down the fence driver for all possible rings (all asics).
 932  */
 933 void radeon_fence_driver_fini(struct radeon_device *rdev)
 934 {
 935         int ring, r;
 936 
 937         mutex_lock(&rdev->ring_lock);
 938         for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
 939                 if (!rdev->fence_drv[ring].initialized)
 940                         continue;
 941                 r = radeon_fence_wait_empty(rdev, ring);
 942                 if (r) {
 943                         /* no need to trigger GPU reset as we are unloading */
 944                         radeon_fence_driver_force_completion(rdev, ring);
 945                 }
 946                 cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
 947                 wake_up_all(&rdev->fence_queue);
 948                 radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
 949                 rdev->fence_drv[ring].initialized = false;
 950         }
 951         mutex_unlock(&rdev->ring_lock);
 952 }
 953 
 954 /**
 955  * radeon_fence_driver_force_completion - force all fence waiter to complete
 956  *
 957  * @rdev: radeon device pointer
 958  * @ring: the ring to complete
 959  *
 960  * In case of GPU reset failure make sure no process keep waiting on fence
 961  * that will never complete.
 962  */
 963 void radeon_fence_driver_force_completion(struct radeon_device *rdev, int ring)
 964 {
 965         if (rdev->fence_drv[ring].initialized) {
 966                 radeon_fence_write(rdev, rdev->fence_drv[ring].sync_seq[ring], ring);
 967                 cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
 968         }
 969 }
 970 
 971 
 972 /*
 973  * Fence debugfs
 974  */
 975 #if defined(CONFIG_DEBUG_FS)
 976 static int radeon_debugfs_fence_info(struct seq_file *m, void *data)
 977 {
 978         struct drm_info_node *node = (struct drm_info_node *)m->private;
 979         struct drm_device *dev = node->minor->dev;
 980         struct radeon_device *rdev = dev->dev_private;
 981         int i, j;
 982 
 983         for (i = 0; i < RADEON_NUM_RINGS; ++i) {
 984                 if (!rdev->fence_drv[i].initialized)
 985                         continue;
 986 
 987                 radeon_fence_process(rdev, i);
 988 
 989                 seq_printf(m, "--- ring %d ---\n", i);
 990                 seq_printf(m, "Last signaled fence 0x%016llx\n",
 991                            (unsigned long long)atomic64_read(&rdev->fence_drv[i].last_seq));
 992                 seq_printf(m, "Last emitted        0x%016llx\n",
 993                            rdev->fence_drv[i].sync_seq[i]);
 994 
 995                 for (j = 0; j < RADEON_NUM_RINGS; ++j) {
 996                         if (i != j && rdev->fence_drv[j].initialized)
 997                                 seq_printf(m, "Last sync to ring %d 0x%016llx\n",
 998                                            j, rdev->fence_drv[i].sync_seq[j]);
 999                 }
1000         }
1001         return 0;
1002 }
1003 
1004 /**
1005  * radeon_debugfs_gpu_reset - manually trigger a gpu reset
1006  *
1007  * Manually trigger a gpu reset at the next fence wait.
1008  */
1009 static int radeon_debugfs_gpu_reset(struct seq_file *m, void *data)
1010 {
1011         struct drm_info_node *node = (struct drm_info_node *) m->private;
1012         struct drm_device *dev = node->minor->dev;
1013         struct radeon_device *rdev = dev->dev_private;
1014 
1015         down_read(&rdev->exclusive_lock);
1016         seq_printf(m, "%d\n", rdev->needs_reset);
1017         rdev->needs_reset = true;
1018         wake_up_all(&rdev->fence_queue);
1019         up_read(&rdev->exclusive_lock);
1020 
1021         return 0;
1022 }
1023 
1024 static struct drm_info_list radeon_debugfs_fence_list[] = {
1025         {"radeon_fence_info", &radeon_debugfs_fence_info, 0, NULL},
1026         {"radeon_gpu_reset", &radeon_debugfs_gpu_reset, 0, NULL}
1027 };
1028 #endif
1029 
1030 int radeon_debugfs_fence_init(struct radeon_device *rdev)
1031 {
1032 #if defined(CONFIG_DEBUG_FS)
1033         return radeon_debugfs_add_files(rdev, radeon_debugfs_fence_list, 2);
1034 #else
1035         return 0;
1036 #endif
1037 }
1038 
1039 static const char *radeon_fence_get_driver_name(struct dma_fence *fence)
1040 {
1041         return "radeon";
1042 }
1043 
1044 static const char *radeon_fence_get_timeline_name(struct dma_fence *f)
1045 {
1046         struct radeon_fence *fence = to_radeon_fence(f);
1047         switch (fence->ring) {
1048         case RADEON_RING_TYPE_GFX_INDEX: return "radeon.gfx";
1049         case CAYMAN_RING_TYPE_CP1_INDEX: return "radeon.cp1";
1050         case CAYMAN_RING_TYPE_CP2_INDEX: return "radeon.cp2";
1051         case R600_RING_TYPE_DMA_INDEX: return "radeon.dma";
1052         case CAYMAN_RING_TYPE_DMA1_INDEX: return "radeon.dma1";
1053         case R600_RING_TYPE_UVD_INDEX: return "radeon.uvd";
1054         case TN_RING_TYPE_VCE1_INDEX: return "radeon.vce1";
1055         case TN_RING_TYPE_VCE2_INDEX: return "radeon.vce2";
1056         default: WARN_ON_ONCE(1); return "radeon.unk";
1057         }
1058 }
1059 
1060 static inline bool radeon_test_signaled(struct radeon_fence *fence)
1061 {
1062         return test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->base.flags);
1063 }
1064 
1065 struct radeon_wait_cb {
1066         struct dma_fence_cb base;
1067         struct task_struct *task;
1068 };
1069 
1070 static void
1071 radeon_fence_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
1072 {
1073         struct radeon_wait_cb *wait =
1074                 container_of(cb, struct radeon_wait_cb, base);
1075 
1076         wake_up_process(wait->task);
1077 }
1078 
1079 static signed long radeon_fence_default_wait(struct dma_fence *f, bool intr,
1080                                              signed long t)
1081 {
1082         struct radeon_fence *fence = to_radeon_fence(f);
1083         struct radeon_device *rdev = fence->rdev;
1084         struct radeon_wait_cb cb;
1085 
1086         cb.task = current;
1087 
1088         if (dma_fence_add_callback(f, &cb.base, radeon_fence_wait_cb))
1089                 return t;
1090 
1091         while (t > 0) {
1092                 if (intr)
1093                         set_current_state(TASK_INTERRUPTIBLE);
1094                 else
1095                         set_current_state(TASK_UNINTERRUPTIBLE);
1096 
1097                 /*
1098                  * radeon_test_signaled must be called after
1099                  * set_current_state to prevent a race with wake_up_process
1100                  */
1101                 if (radeon_test_signaled(fence))
1102                         break;
1103 
1104                 if (rdev->needs_reset) {
1105                         t = -EDEADLK;
1106                         break;
1107                 }
1108 
1109                 t = schedule_timeout(t);
1110 
1111                 if (t > 0 && intr && signal_pending(current))
1112                         t = -ERESTARTSYS;
1113         }
1114 
1115         __set_current_state(TASK_RUNNING);
1116         dma_fence_remove_callback(f, &cb.base);
1117 
1118         return t;
1119 }
1120 
1121 const struct dma_fence_ops radeon_fence_ops = {
1122         .get_driver_name = radeon_fence_get_driver_name,
1123         .get_timeline_name = radeon_fence_get_timeline_name,
1124         .enable_signaling = radeon_fence_enable_signaling,
1125         .signaled = radeon_fence_is_signaled,
1126         .wait = radeon_fence_default_wait,
1127         .release = NULL,
1128 };

/* [<][>][^][v][top][bottom][index][help] */