This source file includes following definitions.
- ghash_init
- ghash_do_update
- __ghash_update
- ghash_update_p8
- ghash_update_p64
- ghash_final_p8
- ghash_final_p64
- ghash_reflect
- __ghash_setkey
- ghash_setkey
- num_rounds
- gcm_setkey
- gcm_setauthsize
- gcm_update_mac
- gcm_calculate_auth_mac
- gcm_final
- gcm_encrypt
- gcm_decrypt
- ghash_ce_mod_init
- ghash_ce_mod_exit
1
2
3
4
5
6
7
8 #include <asm/neon.h>
9 #include <asm/simd.h>
10 #include <asm/unaligned.h>
11 #include <crypto/aes.h>
12 #include <crypto/algapi.h>
13 #include <crypto/b128ops.h>
14 #include <crypto/gf128mul.h>
15 #include <crypto/internal/aead.h>
16 #include <crypto/internal/hash.h>
17 #include <crypto/internal/simd.h>
18 #include <crypto/internal/skcipher.h>
19 #include <crypto/scatterwalk.h>
20 #include <linux/cpufeature.h>
21 #include <linux/crypto.h>
22 #include <linux/module.h>
23
24 MODULE_DESCRIPTION("GHASH and AES-GCM using ARMv8 Crypto Extensions");
25 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
26 MODULE_LICENSE("GPL v2");
27 MODULE_ALIAS_CRYPTO("ghash");
28
29 #define GHASH_BLOCK_SIZE 16
30 #define GHASH_DIGEST_SIZE 16
31 #define GCM_IV_SIZE 12
32
33 struct ghash_key {
34 u64 h[2];
35 u64 h2[2];
36 u64 h3[2];
37 u64 h4[2];
38
39 be128 k;
40 };
41
42 struct ghash_desc_ctx {
43 u64 digest[GHASH_DIGEST_SIZE/sizeof(u64)];
44 u8 buf[GHASH_BLOCK_SIZE];
45 u32 count;
46 };
47
48 struct gcm_aes_ctx {
49 struct crypto_aes_ctx aes_key;
50 struct ghash_key ghash_key;
51 };
52
53 asmlinkage void pmull_ghash_update_p64(int blocks, u64 dg[], const char *src,
54 struct ghash_key const *k,
55 const char *head);
56
57 asmlinkage void pmull_ghash_update_p8(int blocks, u64 dg[], const char *src,
58 struct ghash_key const *k,
59 const char *head);
60
61 asmlinkage void pmull_gcm_encrypt(int blocks, u64 dg[], u8 dst[],
62 const u8 src[], struct ghash_key const *k,
63 u8 ctr[], u32 const rk[], int rounds,
64 u8 ks[]);
65
66 asmlinkage void pmull_gcm_decrypt(int blocks, u64 dg[], u8 dst[],
67 const u8 src[], struct ghash_key const *k,
68 u8 ctr[], u32 const rk[], int rounds);
69
70 asmlinkage void pmull_gcm_encrypt_block(u8 dst[], u8 const src[],
71 u32 const rk[], int rounds);
72
73 static int ghash_init(struct shash_desc *desc)
74 {
75 struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
76
77 *ctx = (struct ghash_desc_ctx){};
78 return 0;
79 }
80
81 static void ghash_do_update(int blocks, u64 dg[], const char *src,
82 struct ghash_key *key, const char *head,
83 void (*simd_update)(int blocks, u64 dg[],
84 const char *src,
85 struct ghash_key const *k,
86 const char *head))
87 {
88 if (likely(crypto_simd_usable())) {
89 kernel_neon_begin();
90 simd_update(blocks, dg, src, key, head);
91 kernel_neon_end();
92 } else {
93 be128 dst = { cpu_to_be64(dg[1]), cpu_to_be64(dg[0]) };
94
95 do {
96 const u8 *in = src;
97
98 if (head) {
99 in = head;
100 blocks++;
101 head = NULL;
102 } else {
103 src += GHASH_BLOCK_SIZE;
104 }
105
106 crypto_xor((u8 *)&dst, in, GHASH_BLOCK_SIZE);
107 gf128mul_lle(&dst, &key->k);
108 } while (--blocks);
109
110 dg[0] = be64_to_cpu(dst.b);
111 dg[1] = be64_to_cpu(dst.a);
112 }
113 }
114
115
116 #define MAX_BLOCKS (SZ_64K / GHASH_BLOCK_SIZE)
117
118 static int __ghash_update(struct shash_desc *desc, const u8 *src,
119 unsigned int len,
120 void (*simd_update)(int blocks, u64 dg[],
121 const char *src,
122 struct ghash_key const *k,
123 const char *head))
124 {
125 struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
126 unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;
127
128 ctx->count += len;
129
130 if ((partial + len) >= GHASH_BLOCK_SIZE) {
131 struct ghash_key *key = crypto_shash_ctx(desc->tfm);
132 int blocks;
133
134 if (partial) {
135 int p = GHASH_BLOCK_SIZE - partial;
136
137 memcpy(ctx->buf + partial, src, p);
138 src += p;
139 len -= p;
140 }
141
142 blocks = len / GHASH_BLOCK_SIZE;
143 len %= GHASH_BLOCK_SIZE;
144
145 do {
146 int chunk = min(blocks, MAX_BLOCKS);
147
148 ghash_do_update(chunk, ctx->digest, src, key,
149 partial ? ctx->buf : NULL,
150 simd_update);
151
152 blocks -= chunk;
153 src += chunk * GHASH_BLOCK_SIZE;
154 partial = 0;
155 } while (unlikely(blocks > 0));
156 }
157 if (len)
158 memcpy(ctx->buf + partial, src, len);
159 return 0;
160 }
161
162 static int ghash_update_p8(struct shash_desc *desc, const u8 *src,
163 unsigned int len)
164 {
165 return __ghash_update(desc, src, len, pmull_ghash_update_p8);
166 }
167
168 static int ghash_update_p64(struct shash_desc *desc, const u8 *src,
169 unsigned int len)
170 {
171 return __ghash_update(desc, src, len, pmull_ghash_update_p64);
172 }
173
174 static int ghash_final_p8(struct shash_desc *desc, u8 *dst)
175 {
176 struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
177 unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;
178
179 if (partial) {
180 struct ghash_key *key = crypto_shash_ctx(desc->tfm);
181
182 memset(ctx->buf + partial, 0, GHASH_BLOCK_SIZE - partial);
183
184 ghash_do_update(1, ctx->digest, ctx->buf, key, NULL,
185 pmull_ghash_update_p8);
186 }
187 put_unaligned_be64(ctx->digest[1], dst);
188 put_unaligned_be64(ctx->digest[0], dst + 8);
189
190 *ctx = (struct ghash_desc_ctx){};
191 return 0;
192 }
193
194 static int ghash_final_p64(struct shash_desc *desc, u8 *dst)
195 {
196 struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
197 unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;
198
199 if (partial) {
200 struct ghash_key *key = crypto_shash_ctx(desc->tfm);
201
202 memset(ctx->buf + partial, 0, GHASH_BLOCK_SIZE - partial);
203
204 ghash_do_update(1, ctx->digest, ctx->buf, key, NULL,
205 pmull_ghash_update_p64);
206 }
207 put_unaligned_be64(ctx->digest[1], dst);
208 put_unaligned_be64(ctx->digest[0], dst + 8);
209
210 *ctx = (struct ghash_desc_ctx){};
211 return 0;
212 }
213
214 static void ghash_reflect(u64 h[], const be128 *k)
215 {
216 u64 carry = be64_to_cpu(k->a) & BIT(63) ? 1 : 0;
217
218 h[0] = (be64_to_cpu(k->b) << 1) | carry;
219 h[1] = (be64_to_cpu(k->a) << 1) | (be64_to_cpu(k->b) >> 63);
220
221 if (carry)
222 h[1] ^= 0xc200000000000000UL;
223 }
224
225 static int __ghash_setkey(struct ghash_key *key,
226 const u8 *inkey, unsigned int keylen)
227 {
228 be128 h;
229
230
231 memcpy(&key->k, inkey, GHASH_BLOCK_SIZE);
232
233 ghash_reflect(key->h, &key->k);
234
235 h = key->k;
236 gf128mul_lle(&h, &key->k);
237 ghash_reflect(key->h2, &h);
238
239 gf128mul_lle(&h, &key->k);
240 ghash_reflect(key->h3, &h);
241
242 gf128mul_lle(&h, &key->k);
243 ghash_reflect(key->h4, &h);
244
245 return 0;
246 }
247
248 static int ghash_setkey(struct crypto_shash *tfm,
249 const u8 *inkey, unsigned int keylen)
250 {
251 struct ghash_key *key = crypto_shash_ctx(tfm);
252
253 if (keylen != GHASH_BLOCK_SIZE) {
254 crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
255 return -EINVAL;
256 }
257
258 return __ghash_setkey(key, inkey, keylen);
259 }
260
261 static struct shash_alg ghash_alg[] = {{
262 .base.cra_name = "ghash",
263 .base.cra_driver_name = "ghash-neon",
264 .base.cra_priority = 150,
265 .base.cra_blocksize = GHASH_BLOCK_SIZE,
266 .base.cra_ctxsize = sizeof(struct ghash_key),
267 .base.cra_module = THIS_MODULE,
268
269 .digestsize = GHASH_DIGEST_SIZE,
270 .init = ghash_init,
271 .update = ghash_update_p8,
272 .final = ghash_final_p8,
273 .setkey = ghash_setkey,
274 .descsize = sizeof(struct ghash_desc_ctx),
275 }, {
276 .base.cra_name = "ghash",
277 .base.cra_driver_name = "ghash-ce",
278 .base.cra_priority = 200,
279 .base.cra_blocksize = GHASH_BLOCK_SIZE,
280 .base.cra_ctxsize = sizeof(struct ghash_key),
281 .base.cra_module = THIS_MODULE,
282
283 .digestsize = GHASH_DIGEST_SIZE,
284 .init = ghash_init,
285 .update = ghash_update_p64,
286 .final = ghash_final_p64,
287 .setkey = ghash_setkey,
288 .descsize = sizeof(struct ghash_desc_ctx),
289 }};
290
291 static int num_rounds(struct crypto_aes_ctx *ctx)
292 {
293
294
295
296
297
298
299
300 return 6 + ctx->key_length / 4;
301 }
302
303 static int gcm_setkey(struct crypto_aead *tfm, const u8 *inkey,
304 unsigned int keylen)
305 {
306 struct gcm_aes_ctx *ctx = crypto_aead_ctx(tfm);
307 u8 key[GHASH_BLOCK_SIZE];
308 int ret;
309
310 ret = aes_expandkey(&ctx->aes_key, inkey, keylen);
311 if (ret) {
312 tfm->base.crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
313 return -EINVAL;
314 }
315
316 aes_encrypt(&ctx->aes_key, key, (u8[AES_BLOCK_SIZE]){});
317
318 return __ghash_setkey(&ctx->ghash_key, key, sizeof(be128));
319 }
320
321 static int gcm_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
322 {
323 switch (authsize) {
324 case 4:
325 case 8:
326 case 12 ... 16:
327 break;
328 default:
329 return -EINVAL;
330 }
331 return 0;
332 }
333
334 static void gcm_update_mac(u64 dg[], const u8 *src, int count, u8 buf[],
335 int *buf_count, struct gcm_aes_ctx *ctx)
336 {
337 if (*buf_count > 0) {
338 int buf_added = min(count, GHASH_BLOCK_SIZE - *buf_count);
339
340 memcpy(&buf[*buf_count], src, buf_added);
341
342 *buf_count += buf_added;
343 src += buf_added;
344 count -= buf_added;
345 }
346
347 if (count >= GHASH_BLOCK_SIZE || *buf_count == GHASH_BLOCK_SIZE) {
348 int blocks = count / GHASH_BLOCK_SIZE;
349
350 ghash_do_update(blocks, dg, src, &ctx->ghash_key,
351 *buf_count ? buf : NULL,
352 pmull_ghash_update_p64);
353
354 src += blocks * GHASH_BLOCK_SIZE;
355 count %= GHASH_BLOCK_SIZE;
356 *buf_count = 0;
357 }
358
359 if (count > 0) {
360 memcpy(buf, src, count);
361 *buf_count = count;
362 }
363 }
364
365 static void gcm_calculate_auth_mac(struct aead_request *req, u64 dg[])
366 {
367 struct crypto_aead *aead = crypto_aead_reqtfm(req);
368 struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
369 u8 buf[GHASH_BLOCK_SIZE];
370 struct scatter_walk walk;
371 u32 len = req->assoclen;
372 int buf_count = 0;
373
374 scatterwalk_start(&walk, req->src);
375
376 do {
377 u32 n = scatterwalk_clamp(&walk, len);
378 u8 *p;
379
380 if (!n) {
381 scatterwalk_start(&walk, sg_next(walk.sg));
382 n = scatterwalk_clamp(&walk, len);
383 }
384 p = scatterwalk_map(&walk);
385
386 gcm_update_mac(dg, p, n, buf, &buf_count, ctx);
387 len -= n;
388
389 scatterwalk_unmap(p);
390 scatterwalk_advance(&walk, n);
391 scatterwalk_done(&walk, 0, len);
392 } while (len);
393
394 if (buf_count) {
395 memset(&buf[buf_count], 0, GHASH_BLOCK_SIZE - buf_count);
396 ghash_do_update(1, dg, buf, &ctx->ghash_key, NULL,
397 pmull_ghash_update_p64);
398 }
399 }
400
401 static void gcm_final(struct aead_request *req, struct gcm_aes_ctx *ctx,
402 u64 dg[], u8 tag[], int cryptlen)
403 {
404 u8 mac[AES_BLOCK_SIZE];
405 u128 lengths;
406
407 lengths.a = cpu_to_be64(req->assoclen * 8);
408 lengths.b = cpu_to_be64(cryptlen * 8);
409
410 ghash_do_update(1, dg, (void *)&lengths, &ctx->ghash_key, NULL,
411 pmull_ghash_update_p64);
412
413 put_unaligned_be64(dg[1], mac);
414 put_unaligned_be64(dg[0], mac + 8);
415
416 crypto_xor(tag, mac, AES_BLOCK_SIZE);
417 }
418
419 static int gcm_encrypt(struct aead_request *req)
420 {
421 struct crypto_aead *aead = crypto_aead_reqtfm(req);
422 struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
423 struct skcipher_walk walk;
424 u8 iv[AES_BLOCK_SIZE];
425 u8 ks[2 * AES_BLOCK_SIZE];
426 u8 tag[AES_BLOCK_SIZE];
427 u64 dg[2] = {};
428 int nrounds = num_rounds(&ctx->aes_key);
429 int err;
430
431 if (req->assoclen)
432 gcm_calculate_auth_mac(req, dg);
433
434 memcpy(iv, req->iv, GCM_IV_SIZE);
435 put_unaligned_be32(1, iv + GCM_IV_SIZE);
436
437 err = skcipher_walk_aead_encrypt(&walk, req, false);
438
439 if (likely(crypto_simd_usable() && walk.total >= 2 * AES_BLOCK_SIZE)) {
440 u32 const *rk = NULL;
441
442 kernel_neon_begin();
443 pmull_gcm_encrypt_block(tag, iv, ctx->aes_key.key_enc, nrounds);
444 put_unaligned_be32(2, iv + GCM_IV_SIZE);
445 pmull_gcm_encrypt_block(ks, iv, NULL, nrounds);
446 put_unaligned_be32(3, iv + GCM_IV_SIZE);
447 pmull_gcm_encrypt_block(ks + AES_BLOCK_SIZE, iv, NULL, nrounds);
448 put_unaligned_be32(4, iv + GCM_IV_SIZE);
449
450 do {
451 int blocks = walk.nbytes / (2 * AES_BLOCK_SIZE) * 2;
452
453 if (rk)
454 kernel_neon_begin();
455
456 pmull_gcm_encrypt(blocks, dg, walk.dst.virt.addr,
457 walk.src.virt.addr, &ctx->ghash_key,
458 iv, rk, nrounds, ks);
459 kernel_neon_end();
460
461 err = skcipher_walk_done(&walk,
462 walk.nbytes % (2 * AES_BLOCK_SIZE));
463
464 rk = ctx->aes_key.key_enc;
465 } while (walk.nbytes >= 2 * AES_BLOCK_SIZE);
466 } else {
467 aes_encrypt(&ctx->aes_key, tag, iv);
468 put_unaligned_be32(2, iv + GCM_IV_SIZE);
469
470 while (walk.nbytes >= (2 * AES_BLOCK_SIZE)) {
471 const int blocks =
472 walk.nbytes / (2 * AES_BLOCK_SIZE) * 2;
473 u8 *dst = walk.dst.virt.addr;
474 u8 *src = walk.src.virt.addr;
475 int remaining = blocks;
476
477 do {
478 aes_encrypt(&ctx->aes_key, ks, iv);
479 crypto_xor_cpy(dst, src, ks, AES_BLOCK_SIZE);
480 crypto_inc(iv, AES_BLOCK_SIZE);
481
482 dst += AES_BLOCK_SIZE;
483 src += AES_BLOCK_SIZE;
484 } while (--remaining > 0);
485
486 ghash_do_update(blocks, dg,
487 walk.dst.virt.addr, &ctx->ghash_key,
488 NULL, pmull_ghash_update_p64);
489
490 err = skcipher_walk_done(&walk,
491 walk.nbytes % (2 * AES_BLOCK_SIZE));
492 }
493 if (walk.nbytes) {
494 aes_encrypt(&ctx->aes_key, ks, iv);
495 if (walk.nbytes > AES_BLOCK_SIZE) {
496 crypto_inc(iv, AES_BLOCK_SIZE);
497 aes_encrypt(&ctx->aes_key, ks + AES_BLOCK_SIZE, iv);
498 }
499 }
500 }
501
502
503 if (walk.nbytes) {
504 u8 buf[GHASH_BLOCK_SIZE];
505 unsigned int nbytes = walk.nbytes;
506 u8 *dst = walk.dst.virt.addr;
507 u8 *head = NULL;
508
509 crypto_xor_cpy(walk.dst.virt.addr, walk.src.virt.addr, ks,
510 walk.nbytes);
511
512 if (walk.nbytes > GHASH_BLOCK_SIZE) {
513 head = dst;
514 dst += GHASH_BLOCK_SIZE;
515 nbytes %= GHASH_BLOCK_SIZE;
516 }
517
518 memcpy(buf, dst, nbytes);
519 memset(buf + nbytes, 0, GHASH_BLOCK_SIZE - nbytes);
520 ghash_do_update(!!nbytes, dg, buf, &ctx->ghash_key, head,
521 pmull_ghash_update_p64);
522
523 err = skcipher_walk_done(&walk, 0);
524 }
525
526 if (err)
527 return err;
528
529 gcm_final(req, ctx, dg, tag, req->cryptlen);
530
531
532 scatterwalk_map_and_copy(tag, req->dst, req->assoclen + req->cryptlen,
533 crypto_aead_authsize(aead), 1);
534
535 return 0;
536 }
537
538 static int gcm_decrypt(struct aead_request *req)
539 {
540 struct crypto_aead *aead = crypto_aead_reqtfm(req);
541 struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
542 unsigned int authsize = crypto_aead_authsize(aead);
543 struct skcipher_walk walk;
544 u8 iv[2 * AES_BLOCK_SIZE];
545 u8 tag[AES_BLOCK_SIZE];
546 u8 buf[2 * GHASH_BLOCK_SIZE];
547 u64 dg[2] = {};
548 int nrounds = num_rounds(&ctx->aes_key);
549 int err;
550
551 if (req->assoclen)
552 gcm_calculate_auth_mac(req, dg);
553
554 memcpy(iv, req->iv, GCM_IV_SIZE);
555 put_unaligned_be32(1, iv + GCM_IV_SIZE);
556
557 err = skcipher_walk_aead_decrypt(&walk, req, false);
558
559 if (likely(crypto_simd_usable() && walk.total >= 2 * AES_BLOCK_SIZE)) {
560 u32 const *rk = NULL;
561
562 kernel_neon_begin();
563 pmull_gcm_encrypt_block(tag, iv, ctx->aes_key.key_enc, nrounds);
564 put_unaligned_be32(2, iv + GCM_IV_SIZE);
565
566 do {
567 int blocks = walk.nbytes / (2 * AES_BLOCK_SIZE) * 2;
568 int rem = walk.total - blocks * AES_BLOCK_SIZE;
569
570 if (rk)
571 kernel_neon_begin();
572
573 pmull_gcm_decrypt(blocks, dg, walk.dst.virt.addr,
574 walk.src.virt.addr, &ctx->ghash_key,
575 iv, rk, nrounds);
576
577
578 if (rem < (2 * AES_BLOCK_SIZE)) {
579 u8 *iv2 = iv + AES_BLOCK_SIZE;
580
581 if (rem > AES_BLOCK_SIZE) {
582 memcpy(iv2, iv, AES_BLOCK_SIZE);
583 crypto_inc(iv2, AES_BLOCK_SIZE);
584 }
585
586 pmull_gcm_encrypt_block(iv, iv, NULL, nrounds);
587
588 if (rem > AES_BLOCK_SIZE)
589 pmull_gcm_encrypt_block(iv2, iv2, NULL,
590 nrounds);
591 }
592
593 kernel_neon_end();
594
595 err = skcipher_walk_done(&walk,
596 walk.nbytes % (2 * AES_BLOCK_SIZE));
597
598 rk = ctx->aes_key.key_enc;
599 } while (walk.nbytes >= 2 * AES_BLOCK_SIZE);
600 } else {
601 aes_encrypt(&ctx->aes_key, tag, iv);
602 put_unaligned_be32(2, iv + GCM_IV_SIZE);
603
604 while (walk.nbytes >= (2 * AES_BLOCK_SIZE)) {
605 int blocks = walk.nbytes / (2 * AES_BLOCK_SIZE) * 2;
606 u8 *dst = walk.dst.virt.addr;
607 u8 *src = walk.src.virt.addr;
608
609 ghash_do_update(blocks, dg, walk.src.virt.addr,
610 &ctx->ghash_key, NULL,
611 pmull_ghash_update_p64);
612
613 do {
614 aes_encrypt(&ctx->aes_key, buf, iv);
615 crypto_xor_cpy(dst, src, buf, AES_BLOCK_SIZE);
616 crypto_inc(iv, AES_BLOCK_SIZE);
617
618 dst += AES_BLOCK_SIZE;
619 src += AES_BLOCK_SIZE;
620 } while (--blocks > 0);
621
622 err = skcipher_walk_done(&walk,
623 walk.nbytes % (2 * AES_BLOCK_SIZE));
624 }
625 if (walk.nbytes) {
626 if (walk.nbytes > AES_BLOCK_SIZE) {
627 u8 *iv2 = iv + AES_BLOCK_SIZE;
628
629 memcpy(iv2, iv, AES_BLOCK_SIZE);
630 crypto_inc(iv2, AES_BLOCK_SIZE);
631
632 aes_encrypt(&ctx->aes_key, iv2, iv2);
633 }
634 aes_encrypt(&ctx->aes_key, iv, iv);
635 }
636 }
637
638
639 if (walk.nbytes) {
640 const u8 *src = walk.src.virt.addr;
641 const u8 *head = NULL;
642 unsigned int nbytes = walk.nbytes;
643
644 if (walk.nbytes > GHASH_BLOCK_SIZE) {
645 head = src;
646 src += GHASH_BLOCK_SIZE;
647 nbytes %= GHASH_BLOCK_SIZE;
648 }
649
650 memcpy(buf, src, nbytes);
651 memset(buf + nbytes, 0, GHASH_BLOCK_SIZE - nbytes);
652 ghash_do_update(!!nbytes, dg, buf, &ctx->ghash_key, head,
653 pmull_ghash_update_p64);
654
655 crypto_xor_cpy(walk.dst.virt.addr, walk.src.virt.addr, iv,
656 walk.nbytes);
657
658 err = skcipher_walk_done(&walk, 0);
659 }
660
661 if (err)
662 return err;
663
664 gcm_final(req, ctx, dg, tag, req->cryptlen - authsize);
665
666
667 scatterwalk_map_and_copy(buf, req->src,
668 req->assoclen + req->cryptlen - authsize,
669 authsize, 0);
670
671 if (crypto_memneq(tag, buf, authsize))
672 return -EBADMSG;
673 return 0;
674 }
675
676 static struct aead_alg gcm_aes_alg = {
677 .ivsize = GCM_IV_SIZE,
678 .chunksize = 2 * AES_BLOCK_SIZE,
679 .maxauthsize = AES_BLOCK_SIZE,
680 .setkey = gcm_setkey,
681 .setauthsize = gcm_setauthsize,
682 .encrypt = gcm_encrypt,
683 .decrypt = gcm_decrypt,
684
685 .base.cra_name = "gcm(aes)",
686 .base.cra_driver_name = "gcm-aes-ce",
687 .base.cra_priority = 300,
688 .base.cra_blocksize = 1,
689 .base.cra_ctxsize = sizeof(struct gcm_aes_ctx),
690 .base.cra_module = THIS_MODULE,
691 };
692
693 static int __init ghash_ce_mod_init(void)
694 {
695 int ret;
696
697 if (!cpu_have_named_feature(ASIMD))
698 return -ENODEV;
699
700 if (cpu_have_named_feature(PMULL))
701 ret = crypto_register_shashes(ghash_alg,
702 ARRAY_SIZE(ghash_alg));
703 else
704
705 ret = crypto_register_shash(ghash_alg);
706
707 if (ret)
708 return ret;
709
710 if (cpu_have_named_feature(PMULL)) {
711 ret = crypto_register_aead(&gcm_aes_alg);
712 if (ret)
713 crypto_unregister_shashes(ghash_alg,
714 ARRAY_SIZE(ghash_alg));
715 }
716 return ret;
717 }
718
719 static void __exit ghash_ce_mod_exit(void)
720 {
721 if (cpu_have_named_feature(PMULL))
722 crypto_unregister_shashes(ghash_alg, ARRAY_SIZE(ghash_alg));
723 else
724 crypto_unregister_shash(ghash_alg);
725 crypto_unregister_aead(&gcm_aes_alg);
726 }
727
728 static const struct cpu_feature ghash_cpu_feature[] = {
729 { cpu_feature(PMULL) }, { }
730 };
731 MODULE_DEVICE_TABLE(cpu, ghash_cpu_feature);
732
733 module_init(ghash_ce_mod_init);
734 module_exit(ghash_ce_mod_exit);