This source file includes following definitions.
- aesbs_setkey
- __ecb_crypt
- ecb_encrypt
- ecb_decrypt
- aesbs_cbc_setkey
- cbc_encrypt
- cbc_decrypt
- aesbs_ctr_setkey_sync
- ctr_encrypt
- aesbs_xts_setkey
- ctr_encrypt_one
- ctr_encrypt_sync
- __xts_crypt
- xts_encrypt
- xts_decrypt
- aes_exit
- aes_init
1
2
3
4
5
6
7
8 #include <asm/neon.h>
9 #include <asm/simd.h>
10 #include <crypto/aes.h>
11 #include <crypto/ctr.h>
12 #include <crypto/internal/simd.h>
13 #include <crypto/internal/skcipher.h>
14 #include <crypto/scatterwalk.h>
15 #include <crypto/xts.h>
16 #include <linux/module.h>
17
18 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
19 MODULE_LICENSE("GPL v2");
20
21 MODULE_ALIAS_CRYPTO("ecb(aes)");
22 MODULE_ALIAS_CRYPTO("cbc(aes)");
23 MODULE_ALIAS_CRYPTO("ctr(aes)");
24 MODULE_ALIAS_CRYPTO("xts(aes)");
25
26 asmlinkage void aesbs_convert_key(u8 out[], u32 const rk[], int rounds);
27
28 asmlinkage void aesbs_ecb_encrypt(u8 out[], u8 const in[], u8 const rk[],
29 int rounds, int blocks);
30 asmlinkage void aesbs_ecb_decrypt(u8 out[], u8 const in[], u8 const rk[],
31 int rounds, int blocks);
32
33 asmlinkage void aesbs_cbc_decrypt(u8 out[], u8 const in[], u8 const rk[],
34 int rounds, int blocks, u8 iv[]);
35
36 asmlinkage void aesbs_ctr_encrypt(u8 out[], u8 const in[], u8 const rk[],
37 int rounds, int blocks, u8 iv[], u8 final[]);
38
39 asmlinkage void aesbs_xts_encrypt(u8 out[], u8 const in[], u8 const rk[],
40 int rounds, int blocks, u8 iv[]);
41 asmlinkage void aesbs_xts_decrypt(u8 out[], u8 const in[], u8 const rk[],
42 int rounds, int blocks, u8 iv[]);
43
44
45 asmlinkage void neon_aes_ecb_encrypt(u8 out[], u8 const in[], u32 const rk[],
46 int rounds, int blocks);
47 asmlinkage void neon_aes_cbc_encrypt(u8 out[], u8 const in[], u32 const rk[],
48 int rounds, int blocks, u8 iv[]);
49 asmlinkage void neon_aes_xts_encrypt(u8 out[], u8 const in[],
50 u32 const rk1[], int rounds, int bytes,
51 u32 const rk2[], u8 iv[], int first);
52 asmlinkage void neon_aes_xts_decrypt(u8 out[], u8 const in[],
53 u32 const rk1[], int rounds, int bytes,
54 u32 const rk2[], u8 iv[], int first);
55
56 struct aesbs_ctx {
57 u8 rk[13 * (8 * AES_BLOCK_SIZE) + 32];
58 int rounds;
59 } __aligned(AES_BLOCK_SIZE);
60
61 struct aesbs_cbc_ctx {
62 struct aesbs_ctx key;
63 u32 enc[AES_MAX_KEYLENGTH_U32];
64 };
65
66 struct aesbs_ctr_ctx {
67 struct aesbs_ctx key;
68 struct crypto_aes_ctx fallback;
69 };
70
71 struct aesbs_xts_ctx {
72 struct aesbs_ctx key;
73 u32 twkey[AES_MAX_KEYLENGTH_U32];
74 struct crypto_aes_ctx cts;
75 };
76
77 static int aesbs_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
78 unsigned int key_len)
79 {
80 struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm);
81 struct crypto_aes_ctx rk;
82 int err;
83
84 err = aes_expandkey(&rk, in_key, key_len);
85 if (err)
86 return err;
87
88 ctx->rounds = 6 + key_len / 4;
89
90 kernel_neon_begin();
91 aesbs_convert_key(ctx->rk, rk.key_enc, ctx->rounds);
92 kernel_neon_end();
93
94 return 0;
95 }
96
97 static int __ecb_crypt(struct skcipher_request *req,
98 void (*fn)(u8 out[], u8 const in[], u8 const rk[],
99 int rounds, int blocks))
100 {
101 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
102 struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm);
103 struct skcipher_walk walk;
104 int err;
105
106 err = skcipher_walk_virt(&walk, req, false);
107
108 while (walk.nbytes >= AES_BLOCK_SIZE) {
109 unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
110
111 if (walk.nbytes < walk.total)
112 blocks = round_down(blocks,
113 walk.stride / AES_BLOCK_SIZE);
114
115 kernel_neon_begin();
116 fn(walk.dst.virt.addr, walk.src.virt.addr, ctx->rk,
117 ctx->rounds, blocks);
118 kernel_neon_end();
119 err = skcipher_walk_done(&walk,
120 walk.nbytes - blocks * AES_BLOCK_SIZE);
121 }
122
123 return err;
124 }
125
126 static int ecb_encrypt(struct skcipher_request *req)
127 {
128 return __ecb_crypt(req, aesbs_ecb_encrypt);
129 }
130
131 static int ecb_decrypt(struct skcipher_request *req)
132 {
133 return __ecb_crypt(req, aesbs_ecb_decrypt);
134 }
135
136 static int aesbs_cbc_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
137 unsigned int key_len)
138 {
139 struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
140 struct crypto_aes_ctx rk;
141 int err;
142
143 err = aes_expandkey(&rk, in_key, key_len);
144 if (err)
145 return err;
146
147 ctx->key.rounds = 6 + key_len / 4;
148
149 memcpy(ctx->enc, rk.key_enc, sizeof(ctx->enc));
150
151 kernel_neon_begin();
152 aesbs_convert_key(ctx->key.rk, rk.key_enc, ctx->key.rounds);
153 kernel_neon_end();
154
155 return 0;
156 }
157
158 static int cbc_encrypt(struct skcipher_request *req)
159 {
160 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
161 struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
162 struct skcipher_walk walk;
163 int err;
164
165 err = skcipher_walk_virt(&walk, req, false);
166
167 while (walk.nbytes >= AES_BLOCK_SIZE) {
168 unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
169
170
171 kernel_neon_begin();
172 neon_aes_cbc_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
173 ctx->enc, ctx->key.rounds, blocks,
174 walk.iv);
175 kernel_neon_end();
176 err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
177 }
178 return err;
179 }
180
181 static int cbc_decrypt(struct skcipher_request *req)
182 {
183 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
184 struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
185 struct skcipher_walk walk;
186 int err;
187
188 err = skcipher_walk_virt(&walk, req, false);
189
190 while (walk.nbytes >= AES_BLOCK_SIZE) {
191 unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
192
193 if (walk.nbytes < walk.total)
194 blocks = round_down(blocks,
195 walk.stride / AES_BLOCK_SIZE);
196
197 kernel_neon_begin();
198 aesbs_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
199 ctx->key.rk, ctx->key.rounds, blocks,
200 walk.iv);
201 kernel_neon_end();
202 err = skcipher_walk_done(&walk,
203 walk.nbytes - blocks * AES_BLOCK_SIZE);
204 }
205
206 return err;
207 }
208
209 static int aesbs_ctr_setkey_sync(struct crypto_skcipher *tfm, const u8 *in_key,
210 unsigned int key_len)
211 {
212 struct aesbs_ctr_ctx *ctx = crypto_skcipher_ctx(tfm);
213 int err;
214
215 err = aes_expandkey(&ctx->fallback, in_key, key_len);
216 if (err)
217 return err;
218
219 ctx->key.rounds = 6 + key_len / 4;
220
221 kernel_neon_begin();
222 aesbs_convert_key(ctx->key.rk, ctx->fallback.key_enc, ctx->key.rounds);
223 kernel_neon_end();
224
225 return 0;
226 }
227
228 static int ctr_encrypt(struct skcipher_request *req)
229 {
230 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
231 struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm);
232 struct skcipher_walk walk;
233 u8 buf[AES_BLOCK_SIZE];
234 int err;
235
236 err = skcipher_walk_virt(&walk, req, false);
237
238 while (walk.nbytes > 0) {
239 unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
240 u8 *final = (walk.total % AES_BLOCK_SIZE) ? buf : NULL;
241
242 if (walk.nbytes < walk.total) {
243 blocks = round_down(blocks,
244 walk.stride / AES_BLOCK_SIZE);
245 final = NULL;
246 }
247
248 kernel_neon_begin();
249 aesbs_ctr_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
250 ctx->rk, ctx->rounds, blocks, walk.iv, final);
251 kernel_neon_end();
252
253 if (final) {
254 u8 *dst = walk.dst.virt.addr + blocks * AES_BLOCK_SIZE;
255 u8 *src = walk.src.virt.addr + blocks * AES_BLOCK_SIZE;
256
257 crypto_xor_cpy(dst, src, final,
258 walk.total % AES_BLOCK_SIZE);
259
260 err = skcipher_walk_done(&walk, 0);
261 break;
262 }
263 err = skcipher_walk_done(&walk,
264 walk.nbytes - blocks * AES_BLOCK_SIZE);
265 }
266 return err;
267 }
268
269 static int aesbs_xts_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
270 unsigned int key_len)
271 {
272 struct aesbs_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
273 struct crypto_aes_ctx rk;
274 int err;
275
276 err = xts_verify_key(tfm, in_key, key_len);
277 if (err)
278 return err;
279
280 key_len /= 2;
281 err = aes_expandkey(&ctx->cts, in_key, key_len);
282 if (err)
283 return err;
284
285 err = aes_expandkey(&rk, in_key + key_len, key_len);
286 if (err)
287 return err;
288
289 memcpy(ctx->twkey, rk.key_enc, sizeof(ctx->twkey));
290
291 return aesbs_setkey(tfm, in_key, key_len);
292 }
293
294 static void ctr_encrypt_one(struct crypto_skcipher *tfm, const u8 *src, u8 *dst)
295 {
296 struct aesbs_ctr_ctx *ctx = crypto_skcipher_ctx(tfm);
297 unsigned long flags;
298
299
300
301
302
303
304 local_irq_save(flags);
305 aes_encrypt(&ctx->fallback, dst, src);
306 local_irq_restore(flags);
307 }
308
309 static int ctr_encrypt_sync(struct skcipher_request *req)
310 {
311 if (!crypto_simd_usable())
312 return crypto_ctr_encrypt_walk(req, ctr_encrypt_one);
313
314 return ctr_encrypt(req);
315 }
316
317 static int __xts_crypt(struct skcipher_request *req, bool encrypt,
318 void (*fn)(u8 out[], u8 const in[], u8 const rk[],
319 int rounds, int blocks, u8 iv[]))
320 {
321 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
322 struct aesbs_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
323 int tail = req->cryptlen % (8 * AES_BLOCK_SIZE);
324 struct scatterlist sg_src[2], sg_dst[2];
325 struct skcipher_request subreq;
326 struct scatterlist *src, *dst;
327 struct skcipher_walk walk;
328 int nbytes, err;
329 int first = 1;
330 u8 *out, *in;
331
332 if (req->cryptlen < AES_BLOCK_SIZE)
333 return -EINVAL;
334
335
336 if (unlikely(tail > 0 && tail < AES_BLOCK_SIZE)) {
337 int xts_blocks = DIV_ROUND_UP(req->cryptlen,
338 AES_BLOCK_SIZE) - 2;
339
340 skcipher_request_set_tfm(&subreq, tfm);
341 skcipher_request_set_callback(&subreq,
342 skcipher_request_flags(req),
343 NULL, NULL);
344 skcipher_request_set_crypt(&subreq, req->src, req->dst,
345 xts_blocks * AES_BLOCK_SIZE,
346 req->iv);
347 req = &subreq;
348 } else {
349 tail = 0;
350 }
351
352 err = skcipher_walk_virt(&walk, req, false);
353 if (err)
354 return err;
355
356 while (walk.nbytes >= AES_BLOCK_SIZE) {
357 unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
358
359 if (walk.nbytes < walk.total || walk.nbytes % AES_BLOCK_SIZE)
360 blocks = round_down(blocks,
361 walk.stride / AES_BLOCK_SIZE);
362
363 out = walk.dst.virt.addr;
364 in = walk.src.virt.addr;
365 nbytes = walk.nbytes;
366
367 kernel_neon_begin();
368 if (likely(blocks > 6)) {
369 if (first)
370 neon_aes_ecb_encrypt(walk.iv, walk.iv,
371 ctx->twkey,
372 ctx->key.rounds, 1);
373 first = 0;
374
375 fn(out, in, ctx->key.rk, ctx->key.rounds, blocks,
376 walk.iv);
377
378 out += blocks * AES_BLOCK_SIZE;
379 in += blocks * AES_BLOCK_SIZE;
380 nbytes -= blocks * AES_BLOCK_SIZE;
381 }
382
383 if (walk.nbytes == walk.total && nbytes > 0)
384 goto xts_tail;
385
386 kernel_neon_end();
387 err = skcipher_walk_done(&walk, nbytes);
388 }
389
390 if (err || likely(!tail))
391 return err;
392
393
394 dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen);
395 if (req->dst != req->src)
396 dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen);
397
398 skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail,
399 req->iv);
400
401 err = skcipher_walk_virt(&walk, req, false);
402 if (err)
403 return err;
404
405 out = walk.dst.virt.addr;
406 in = walk.src.virt.addr;
407 nbytes = walk.nbytes;
408
409 kernel_neon_begin();
410 xts_tail:
411 if (encrypt)
412 neon_aes_xts_encrypt(out, in, ctx->cts.key_enc, ctx->key.rounds,
413 nbytes, ctx->twkey, walk.iv, first ?: 2);
414 else
415 neon_aes_xts_decrypt(out, in, ctx->cts.key_dec, ctx->key.rounds,
416 nbytes, ctx->twkey, walk.iv, first ?: 2);
417 kernel_neon_end();
418
419 return skcipher_walk_done(&walk, 0);
420 }
421
422 static int xts_encrypt(struct skcipher_request *req)
423 {
424 return __xts_crypt(req, true, aesbs_xts_encrypt);
425 }
426
427 static int xts_decrypt(struct skcipher_request *req)
428 {
429 return __xts_crypt(req, false, aesbs_xts_decrypt);
430 }
431
432 static struct skcipher_alg aes_algs[] = { {
433 .base.cra_name = "__ecb(aes)",
434 .base.cra_driver_name = "__ecb-aes-neonbs",
435 .base.cra_priority = 250,
436 .base.cra_blocksize = AES_BLOCK_SIZE,
437 .base.cra_ctxsize = sizeof(struct aesbs_ctx),
438 .base.cra_module = THIS_MODULE,
439 .base.cra_flags = CRYPTO_ALG_INTERNAL,
440
441 .min_keysize = AES_MIN_KEY_SIZE,
442 .max_keysize = AES_MAX_KEY_SIZE,
443 .walksize = 8 * AES_BLOCK_SIZE,
444 .setkey = aesbs_setkey,
445 .encrypt = ecb_encrypt,
446 .decrypt = ecb_decrypt,
447 }, {
448 .base.cra_name = "__cbc(aes)",
449 .base.cra_driver_name = "__cbc-aes-neonbs",
450 .base.cra_priority = 250,
451 .base.cra_blocksize = AES_BLOCK_SIZE,
452 .base.cra_ctxsize = sizeof(struct aesbs_cbc_ctx),
453 .base.cra_module = THIS_MODULE,
454 .base.cra_flags = CRYPTO_ALG_INTERNAL,
455
456 .min_keysize = AES_MIN_KEY_SIZE,
457 .max_keysize = AES_MAX_KEY_SIZE,
458 .walksize = 8 * AES_BLOCK_SIZE,
459 .ivsize = AES_BLOCK_SIZE,
460 .setkey = aesbs_cbc_setkey,
461 .encrypt = cbc_encrypt,
462 .decrypt = cbc_decrypt,
463 }, {
464 .base.cra_name = "__ctr(aes)",
465 .base.cra_driver_name = "__ctr-aes-neonbs",
466 .base.cra_priority = 250,
467 .base.cra_blocksize = 1,
468 .base.cra_ctxsize = sizeof(struct aesbs_ctx),
469 .base.cra_module = THIS_MODULE,
470 .base.cra_flags = CRYPTO_ALG_INTERNAL,
471
472 .min_keysize = AES_MIN_KEY_SIZE,
473 .max_keysize = AES_MAX_KEY_SIZE,
474 .chunksize = AES_BLOCK_SIZE,
475 .walksize = 8 * AES_BLOCK_SIZE,
476 .ivsize = AES_BLOCK_SIZE,
477 .setkey = aesbs_setkey,
478 .encrypt = ctr_encrypt,
479 .decrypt = ctr_encrypt,
480 }, {
481 .base.cra_name = "ctr(aes)",
482 .base.cra_driver_name = "ctr-aes-neonbs",
483 .base.cra_priority = 250 - 1,
484 .base.cra_blocksize = 1,
485 .base.cra_ctxsize = sizeof(struct aesbs_ctr_ctx),
486 .base.cra_module = THIS_MODULE,
487
488 .min_keysize = AES_MIN_KEY_SIZE,
489 .max_keysize = AES_MAX_KEY_SIZE,
490 .chunksize = AES_BLOCK_SIZE,
491 .walksize = 8 * AES_BLOCK_SIZE,
492 .ivsize = AES_BLOCK_SIZE,
493 .setkey = aesbs_ctr_setkey_sync,
494 .encrypt = ctr_encrypt_sync,
495 .decrypt = ctr_encrypt_sync,
496 }, {
497 .base.cra_name = "__xts(aes)",
498 .base.cra_driver_name = "__xts-aes-neonbs",
499 .base.cra_priority = 250,
500 .base.cra_blocksize = AES_BLOCK_SIZE,
501 .base.cra_ctxsize = sizeof(struct aesbs_xts_ctx),
502 .base.cra_module = THIS_MODULE,
503 .base.cra_flags = CRYPTO_ALG_INTERNAL,
504
505 .min_keysize = 2 * AES_MIN_KEY_SIZE,
506 .max_keysize = 2 * AES_MAX_KEY_SIZE,
507 .walksize = 8 * AES_BLOCK_SIZE,
508 .ivsize = AES_BLOCK_SIZE,
509 .setkey = aesbs_xts_setkey,
510 .encrypt = xts_encrypt,
511 .decrypt = xts_decrypt,
512 } };
513
514 static struct simd_skcipher_alg *aes_simd_algs[ARRAY_SIZE(aes_algs)];
515
516 static void aes_exit(void)
517 {
518 int i;
519
520 for (i = 0; i < ARRAY_SIZE(aes_simd_algs); i++)
521 if (aes_simd_algs[i])
522 simd_skcipher_free(aes_simd_algs[i]);
523
524 crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
525 }
526
527 static int __init aes_init(void)
528 {
529 struct simd_skcipher_alg *simd;
530 const char *basename;
531 const char *algname;
532 const char *drvname;
533 int err;
534 int i;
535
536 if (!cpu_have_named_feature(ASIMD))
537 return -ENODEV;
538
539 err = crypto_register_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
540 if (err)
541 return err;
542
543 for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
544 if (!(aes_algs[i].base.cra_flags & CRYPTO_ALG_INTERNAL))
545 continue;
546
547 algname = aes_algs[i].base.cra_name + 2;
548 drvname = aes_algs[i].base.cra_driver_name + 2;
549 basename = aes_algs[i].base.cra_driver_name;
550 simd = simd_skcipher_create_compat(algname, drvname, basename);
551 err = PTR_ERR(simd);
552 if (IS_ERR(simd))
553 goto unregister_simds;
554
555 aes_simd_algs[i] = simd;
556 }
557 return 0;
558
559 unregister_simds:
560 aes_exit();
561 return err;
562 }
563
564 module_init(aes_init);
565 module_exit(aes_exit);