root/drivers/gpu/drm/amd/display/dc/dce110/dce110_timing_generator.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. dce110_timing_generator_apply_front_porch_workaround
  2. dce110_timing_generator_is_in_vertical_blank
  3. dce110_timing_generator_set_early_control
  4. dce110_timing_generator_enable_crtc
  5. dce110_timing_generator_program_blank_color
  6. disable_stereo
  7. dce110_timing_generator_disable_crtc
  8. program_horz_count_by_2
  9. dce110_timing_generator_program_timing_generator
  10. dce110_timing_generator_set_drr
  11. dce110_timing_generator_set_static_screen_control
  12. dce110_timing_generator_get_vblank_counter
  13. dce110_timing_generator_get_position
  14. dce110_timing_generator_get_crtc_scanoutpos
  15. dce110_timing_generator_program_blanking
  16. dce110_timing_generator_set_test_pattern
  17. dce110_timing_generator_validate_timing
  18. dce110_timing_generator_wait_for_vblank
  19. dce110_timing_generator_wait_for_vactive
  20. dce110_timing_generator_setup_global_swap_lock
  21. dce110_timing_generator_tear_down_global_swap_lock
  22. dce110_timing_generator_is_counter_moving
  23. dce110_timing_generator_enable_advanced_request
  24. dce110_timing_generator_set_lock_master
  25. dce110_timing_generator_enable_reset_trigger
  26. dce110_timing_generator_enable_crtc_reset
  27. dce110_timing_generator_disable_reset_trigger
  28. dce110_timing_generator_did_triggered_reset_occur
  29. dce110_timing_generator_disable_vga
  30. dce110_timing_generator_set_overscan_color_black
  31. dce110_tg_program_blank_color
  32. dce110_tg_set_overscan_color
  33. dce110_tg_program_timing
  34. dce110_tg_is_blanked
  35. dce110_tg_set_blank
  36. dce110_tg_validate_timing
  37. dce110_tg_wait_for_state
  38. dce110_tg_set_colors
  39. dce110_arm_vert_intr
  40. dce110_is_tg_enabled
  41. dce110_configure_crc
  42. dce110_get_crc
  43. dce110_timing_generator_construct

   1 /*
   2  * Copyright 2012-15 Advanced Micro Devices, Inc.
   3  *
   4  * Permission is hereby granted, free of charge, to any person obtaining a
   5  * copy of this software and associated documentation files (the "Software"),
   6  * to deal in the Software without restriction, including without limitation
   7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8  * and/or sell copies of the Software, and to permit persons to whom the
   9  * Software is furnished to do so, subject to the following conditions:
  10  *
  11  * The above copyright notice and this permission notice shall be included in
  12  * all copies or substantial portions of the Software.
  13  *
  14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20  * OTHER DEALINGS IN THE SOFTWARE.
  21  *
  22  * Authors: AMD
  23  *
  24  */
  25 
  26 #include "dm_services.h"
  27 
  28 /* include DCE11 register header files */
  29 #include "dce/dce_11_0_d.h"
  30 #include "dce/dce_11_0_sh_mask.h"
  31 
  32 #include "dc_types.h"
  33 #include "dc_bios_types.h"
  34 #include "dc.h"
  35 
  36 #include "include/grph_object_id.h"
  37 #include "include/logger_interface.h"
  38 #include "dce110_timing_generator.h"
  39 
  40 #include "timing_generator.h"
  41 
  42 
  43 #define NUMBER_OF_FRAME_TO_WAIT_ON_TRIGGERED_RESET 10
  44 
  45 #define MAX_H_TOTAL (CRTC_H_TOTAL__CRTC_H_TOTAL_MASK + 1)
  46 #define MAX_V_TOTAL (CRTC_V_TOTAL__CRTC_V_TOTAL_MASKhw + 1)
  47 
  48 #define CRTC_REG(reg) (reg + tg110->offsets.crtc)
  49 #define DCP_REG(reg) (reg + tg110->offsets.dcp)
  50 
  51 /* Flowing register offsets are same in files of
  52  * dce/dce_11_0_d.h
  53  * dce/vi_polaris10_p/vi_polaris10_d.h
  54  *
  55  * So we can create dce110 timing generator to use it.
  56  */
  57 
  58 
  59 /*
  60 * apply_front_porch_workaround
  61 *
  62 * This is a workaround for a bug that has existed since R5xx and has not been
  63 * fixed keep Front porch at minimum 2 for Interlaced mode or 1 for progressive.
  64 */
  65 static void dce110_timing_generator_apply_front_porch_workaround(
  66         struct timing_generator *tg,
  67         struct dc_crtc_timing *timing)
  68 {
  69         if (timing->flags.INTERLACE == 1) {
  70                 if (timing->v_front_porch < 2)
  71                         timing->v_front_porch = 2;
  72         } else {
  73                 if (timing->v_front_porch < 1)
  74                         timing->v_front_porch = 1;
  75         }
  76 }
  77 
  78 /**
  79  *****************************************************************************
  80  *  Function: is_in_vertical_blank
  81  *
  82  *  @brief
  83  *     check the current status of CRTC to check if we are in Vertical Blank
  84  *     regioneased" state
  85  *
  86  *  @return
  87  *     true if currently in blank region, false otherwise
  88  *
  89  *****************************************************************************
  90  */
  91 static bool dce110_timing_generator_is_in_vertical_blank(
  92                 struct timing_generator *tg)
  93 {
  94         uint32_t addr = 0;
  95         uint32_t value = 0;
  96         uint32_t field = 0;
  97         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
  98 
  99         addr = CRTC_REG(mmCRTC_STATUS);
 100         value = dm_read_reg(tg->ctx, addr);
 101         field = get_reg_field_value(value, CRTC_STATUS, CRTC_V_BLANK);
 102         return field == 1;
 103 }
 104 
 105 void dce110_timing_generator_set_early_control(
 106                 struct timing_generator *tg,
 107                 uint32_t early_cntl)
 108 {
 109         uint32_t regval;
 110         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
 111         uint32_t address = CRTC_REG(mmCRTC_CONTROL);
 112 
 113         regval = dm_read_reg(tg->ctx, address);
 114         set_reg_field_value(regval, early_cntl,
 115                         CRTC_CONTROL, CRTC_HBLANK_EARLY_CONTROL);
 116         dm_write_reg(tg->ctx, address, regval);
 117 }
 118 
 119 /**
 120  * Enable CRTC
 121  * Enable CRTC - call ASIC Control Object to enable Timing generator.
 122  */
 123 bool dce110_timing_generator_enable_crtc(struct timing_generator *tg)
 124 {
 125         enum bp_result result;
 126 
 127         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
 128         uint32_t value = 0;
 129 
 130         /*
 131          * 3 is used to make sure V_UPDATE occurs at the beginning of the first
 132          * line of vertical front porch
 133          */
 134         set_reg_field_value(
 135                 value,
 136                 0,
 137                 CRTC_MASTER_UPDATE_MODE,
 138                 MASTER_UPDATE_MODE);
 139 
 140         dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_MASTER_UPDATE_MODE), value);
 141 
 142         /* TODO: may want this on to catch underflow */
 143         value = 0;
 144         dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_MASTER_UPDATE_LOCK), value);
 145 
 146         result = tg->bp->funcs->enable_crtc(tg->bp, tg110->controller_id, true);
 147 
 148         return result == BP_RESULT_OK;
 149 }
 150 
 151 void dce110_timing_generator_program_blank_color(
 152                 struct timing_generator *tg,
 153                 const struct tg_color *black_color)
 154 {
 155         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
 156         uint32_t addr = CRTC_REG(mmCRTC_BLACK_COLOR);
 157         uint32_t value = dm_read_reg(tg->ctx, addr);
 158 
 159         set_reg_field_value(
 160                 value,
 161                 black_color->color_b_cb,
 162                 CRTC_BLACK_COLOR,
 163                 CRTC_BLACK_COLOR_B_CB);
 164         set_reg_field_value(
 165                 value,
 166                 black_color->color_g_y,
 167                 CRTC_BLACK_COLOR,
 168                 CRTC_BLACK_COLOR_G_Y);
 169         set_reg_field_value(
 170                 value,
 171                 black_color->color_r_cr,
 172                 CRTC_BLACK_COLOR,
 173                 CRTC_BLACK_COLOR_R_CR);
 174 
 175         dm_write_reg(tg->ctx, addr, value);
 176 }
 177 
 178 /**
 179  *****************************************************************************
 180  *  Function: disable_stereo
 181  *
 182  *  @brief
 183  *     Disables active stereo on controller
 184  *     Frame Packing need to be disabled in vBlank or when CRTC not running
 185  *****************************************************************************
 186  */
 187 #if 0
 188 @TODOSTEREO
 189 static void disable_stereo(struct timing_generator *tg)
 190 {
 191         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
 192         uint32_t addr = CRTC_REG(mmCRTC_3D_STRUCTURE_CONTROL);
 193         uint32_t value = 0;
 194         uint32_t test = 0;
 195         uint32_t field = 0;
 196         uint32_t struc_en = 0;
 197         uint32_t struc_stereo_sel_ovr = 0;
 198 
 199         value = dm_read_reg(tg->ctx, addr);
 200         struc_en = get_reg_field_value(
 201                         value,
 202                         CRTC_3D_STRUCTURE_CONTROL,
 203                         CRTC_3D_STRUCTURE_EN);
 204 
 205         struc_stereo_sel_ovr = get_reg_field_value(
 206                         value,
 207                         CRTC_3D_STRUCTURE_CONTROL,
 208                         CRTC_3D_STRUCTURE_STEREO_SEL_OVR);
 209 
 210         /*
 211          * When disabling Frame Packing in 2 step mode, we need to program both
 212          * registers at the same frame
 213          * Programming it in the beginning of VActive makes sure we are ok
 214          */
 215 
 216         if (struc_en != 0 && struc_stereo_sel_ovr == 0) {
 217                 tg->funcs->wait_for_vblank(tg);
 218                 tg->funcs->wait_for_vactive(tg);
 219         }
 220 
 221         value = 0;
 222         dm_write_reg(tg->ctx, addr, value);
 223 
 224         addr = tg->regs[IDX_CRTC_STEREO_CONTROL];
 225         dm_write_reg(tg->ctx, addr, value);
 226 }
 227 #endif
 228 
 229 /**
 230  * disable_crtc - call ASIC Control Object to disable Timing generator.
 231  */
 232 bool dce110_timing_generator_disable_crtc(struct timing_generator *tg)
 233 {
 234         enum bp_result result;
 235 
 236         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
 237 
 238         result = tg->bp->funcs->enable_crtc(tg->bp, tg110->controller_id, false);
 239 
 240         /* Need to make sure stereo is disabled according to the DCE5.0 spec */
 241 
 242         /*
 243          * @TODOSTEREO call this when adding stereo support
 244          * tg->funcs->disable_stereo(tg);
 245          */
 246 
 247         return result == BP_RESULT_OK;
 248 }
 249 
 250 /**
 251 * program_horz_count_by_2
 252 * Programs DxCRTC_HORZ_COUNT_BY2_EN - 1 for DVI 30bpp mode, 0 otherwise
 253 *
 254 */
 255 static void program_horz_count_by_2(
 256         struct timing_generator *tg,
 257         const struct dc_crtc_timing *timing)
 258 {
 259         uint32_t regval;
 260         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
 261 
 262         regval = dm_read_reg(tg->ctx,
 263                         CRTC_REG(mmCRTC_COUNT_CONTROL));
 264 
 265         set_reg_field_value(regval, 0, CRTC_COUNT_CONTROL,
 266                         CRTC_HORZ_COUNT_BY2_EN);
 267 
 268         if (timing->flags.HORZ_COUNT_BY_TWO)
 269                 set_reg_field_value(regval, 1, CRTC_COUNT_CONTROL,
 270                                         CRTC_HORZ_COUNT_BY2_EN);
 271 
 272         dm_write_reg(tg->ctx,
 273                         CRTC_REG(mmCRTC_COUNT_CONTROL), regval);
 274 }
 275 
 276 /**
 277  * program_timing_generator
 278  * Program CRTC Timing Registers - DxCRTC_H_*, DxCRTC_V_*, Pixel repetition.
 279  * Call ASIC Control Object to program Timings.
 280  */
 281 bool dce110_timing_generator_program_timing_generator(
 282         struct timing_generator *tg,
 283         const struct dc_crtc_timing *dc_crtc_timing)
 284 {
 285         enum bp_result result;
 286         struct bp_hw_crtc_timing_parameters bp_params;
 287         struct dc_crtc_timing patched_crtc_timing;
 288         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
 289 
 290         uint32_t vsync_offset = dc_crtc_timing->v_border_bottom +
 291                         dc_crtc_timing->v_front_porch;
 292         uint32_t v_sync_start =dc_crtc_timing->v_addressable + vsync_offset;
 293 
 294         uint32_t hsync_offset = dc_crtc_timing->h_border_right +
 295                         dc_crtc_timing->h_front_porch;
 296         uint32_t h_sync_start = dc_crtc_timing->h_addressable + hsync_offset;
 297 
 298         memset(&bp_params, 0, sizeof(struct bp_hw_crtc_timing_parameters));
 299 
 300         /* Due to an asic bug we need to apply the Front Porch workaround prior
 301          * to programming the timing.
 302          */
 303 
 304         patched_crtc_timing = *dc_crtc_timing;
 305 
 306         dce110_timing_generator_apply_front_porch_workaround(tg, &patched_crtc_timing);
 307 
 308         bp_params.controller_id = tg110->controller_id;
 309 
 310         bp_params.h_total = patched_crtc_timing.h_total;
 311         bp_params.h_addressable =
 312                 patched_crtc_timing.h_addressable;
 313         bp_params.v_total = patched_crtc_timing.v_total;
 314         bp_params.v_addressable = patched_crtc_timing.v_addressable;
 315 
 316         bp_params.h_sync_start = h_sync_start;
 317         bp_params.h_sync_width = patched_crtc_timing.h_sync_width;
 318         bp_params.v_sync_start = v_sync_start;
 319         bp_params.v_sync_width = patched_crtc_timing.v_sync_width;
 320 
 321         /* Set overscan */
 322         bp_params.h_overscan_left =
 323                 patched_crtc_timing.h_border_left;
 324         bp_params.h_overscan_right =
 325                 patched_crtc_timing.h_border_right;
 326         bp_params.v_overscan_top = patched_crtc_timing.v_border_top;
 327         bp_params.v_overscan_bottom =
 328                 patched_crtc_timing.v_border_bottom;
 329 
 330         /* Set flags */
 331         if (patched_crtc_timing.flags.HSYNC_POSITIVE_POLARITY == 1)
 332                 bp_params.flags.HSYNC_POSITIVE_POLARITY = 1;
 333 
 334         if (patched_crtc_timing.flags.VSYNC_POSITIVE_POLARITY == 1)
 335                 bp_params.flags.VSYNC_POSITIVE_POLARITY = 1;
 336 
 337         if (patched_crtc_timing.flags.INTERLACE == 1)
 338                 bp_params.flags.INTERLACE = 1;
 339 
 340         if (patched_crtc_timing.flags.HORZ_COUNT_BY_TWO == 1)
 341                 bp_params.flags.HORZ_COUNT_BY_TWO = 1;
 342 
 343         result = tg->bp->funcs->program_crtc_timing(tg->bp, &bp_params);
 344 
 345         program_horz_count_by_2(tg, &patched_crtc_timing);
 346 
 347         tg110->base.funcs->enable_advanced_request(tg, true, &patched_crtc_timing);
 348 
 349         /* Enable stereo - only when we need to pack 3D frame. Other types
 350          * of stereo handled in explicit call */
 351 
 352         return result == BP_RESULT_OK;
 353 }
 354 
 355 /**
 356  *****************************************************************************
 357  *  Function: set_drr
 358  *
 359  *  @brief
 360  *     Program dynamic refresh rate registers m_DxCRTC_V_TOTAL_*.
 361  *
 362  *  @param [in] pHwCrtcTiming: point to H
 363  *  wCrtcTiming struct
 364  *****************************************************************************
 365  */
 366 void dce110_timing_generator_set_drr(
 367         struct timing_generator *tg,
 368         const struct drr_params *params)
 369 {
 370         /* register values */
 371         uint32_t v_total_min = 0;
 372         uint32_t v_total_max = 0;
 373         uint32_t v_total_cntl = 0;
 374         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
 375 
 376         uint32_t addr = 0;
 377 
 378         addr = CRTC_REG(mmCRTC_V_TOTAL_MIN);
 379         v_total_min = dm_read_reg(tg->ctx, addr);
 380 
 381         addr = CRTC_REG(mmCRTC_V_TOTAL_MAX);
 382         v_total_max = dm_read_reg(tg->ctx, addr);
 383 
 384         addr = CRTC_REG(mmCRTC_V_TOTAL_CONTROL);
 385         v_total_cntl = dm_read_reg(tg->ctx, addr);
 386 
 387         if (params != NULL &&
 388                 params->vertical_total_max > 0 &&
 389                 params->vertical_total_min > 0) {
 390 
 391                 set_reg_field_value(v_total_max,
 392                                 params->vertical_total_max - 1,
 393                                 CRTC_V_TOTAL_MAX,
 394                                 CRTC_V_TOTAL_MAX);
 395 
 396                 set_reg_field_value(v_total_min,
 397                                 params->vertical_total_min - 1,
 398                                 CRTC_V_TOTAL_MIN,
 399                                 CRTC_V_TOTAL_MIN);
 400 
 401                 set_reg_field_value(v_total_cntl,
 402                                 1,
 403                                 CRTC_V_TOTAL_CONTROL,
 404                                 CRTC_V_TOTAL_MIN_SEL);
 405 
 406                 set_reg_field_value(v_total_cntl,
 407                                 1,
 408                                 CRTC_V_TOTAL_CONTROL,
 409                                 CRTC_V_TOTAL_MAX_SEL);
 410 
 411                 set_reg_field_value(v_total_cntl,
 412                                 0,
 413                                 CRTC_V_TOTAL_CONTROL,
 414                                 CRTC_FORCE_LOCK_ON_EVENT);
 415                 set_reg_field_value(v_total_cntl,
 416                                 0,
 417                                 CRTC_V_TOTAL_CONTROL,
 418                                 CRTC_FORCE_LOCK_TO_MASTER_VSYNC);
 419 
 420                 set_reg_field_value(v_total_cntl,
 421                                 0,
 422                                 CRTC_V_TOTAL_CONTROL,
 423                                 CRTC_SET_V_TOTAL_MIN_MASK_EN);
 424 
 425                 set_reg_field_value(v_total_cntl,
 426                                 0,
 427                                 CRTC_V_TOTAL_CONTROL,
 428                                 CRTC_SET_V_TOTAL_MIN_MASK);
 429         } else {
 430                 set_reg_field_value(v_total_cntl,
 431                         0,
 432                         CRTC_V_TOTAL_CONTROL,
 433                         CRTC_SET_V_TOTAL_MIN_MASK);
 434                 set_reg_field_value(v_total_cntl,
 435                                 0,
 436                                 CRTC_V_TOTAL_CONTROL,
 437                                 CRTC_V_TOTAL_MIN_SEL);
 438                 set_reg_field_value(v_total_cntl,
 439                                 0,
 440                                 CRTC_V_TOTAL_CONTROL,
 441                                 CRTC_V_TOTAL_MAX_SEL);
 442                 set_reg_field_value(v_total_min,
 443                                 0,
 444                                 CRTC_V_TOTAL_MIN,
 445                                 CRTC_V_TOTAL_MIN);
 446                 set_reg_field_value(v_total_max,
 447                                 0,
 448                                 CRTC_V_TOTAL_MAX,
 449                                 CRTC_V_TOTAL_MAX);
 450                 set_reg_field_value(v_total_cntl,
 451                                 0,
 452                                 CRTC_V_TOTAL_CONTROL,
 453                                 CRTC_FORCE_LOCK_ON_EVENT);
 454                 set_reg_field_value(v_total_cntl,
 455                                 0,
 456                                 CRTC_V_TOTAL_CONTROL,
 457                                 CRTC_FORCE_LOCK_TO_MASTER_VSYNC);
 458         }
 459 
 460         addr = CRTC_REG(mmCRTC_V_TOTAL_MIN);
 461         dm_write_reg(tg->ctx, addr, v_total_min);
 462 
 463         addr = CRTC_REG(mmCRTC_V_TOTAL_MAX);
 464         dm_write_reg(tg->ctx, addr, v_total_max);
 465 
 466         addr = CRTC_REG(mmCRTC_V_TOTAL_CONTROL);
 467         dm_write_reg(tg->ctx, addr, v_total_cntl);
 468 }
 469 
 470 void dce110_timing_generator_set_static_screen_control(
 471         struct timing_generator *tg,
 472         uint32_t value)
 473 {
 474         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
 475         uint32_t static_screen_cntl = 0;
 476         uint32_t addr = 0;
 477 
 478         addr = CRTC_REG(mmCRTC_STATIC_SCREEN_CONTROL);
 479         static_screen_cntl = dm_read_reg(tg->ctx, addr);
 480 
 481         set_reg_field_value(static_screen_cntl,
 482                                 value,
 483                                 CRTC_STATIC_SCREEN_CONTROL,
 484                                 CRTC_STATIC_SCREEN_EVENT_MASK);
 485 
 486         set_reg_field_value(static_screen_cntl,
 487                                 2,
 488                                 CRTC_STATIC_SCREEN_CONTROL,
 489                                 CRTC_STATIC_SCREEN_FRAME_COUNT);
 490 
 491         dm_write_reg(tg->ctx, addr, static_screen_cntl);
 492 }
 493 
 494 /*
 495  * get_vblank_counter
 496  *
 497  * @brief
 498  * Get counter for vertical blanks. use register CRTC_STATUS_FRAME_COUNT which
 499  * holds the counter of frames.
 500  *
 501  * @param
 502  * struct timing_generator *tg - [in] timing generator which controls the
 503  * desired CRTC
 504  *
 505  * @return
 506  * Counter of frames, which should equal to number of vblanks.
 507  */
 508 uint32_t dce110_timing_generator_get_vblank_counter(struct timing_generator *tg)
 509 {
 510         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
 511         uint32_t addr = CRTC_REG(mmCRTC_STATUS_FRAME_COUNT);
 512         uint32_t value = dm_read_reg(tg->ctx, addr);
 513         uint32_t field = get_reg_field_value(
 514                         value, CRTC_STATUS_FRAME_COUNT, CRTC_FRAME_COUNT);
 515 
 516         return field;
 517 }
 518 
 519 /**
 520  *****************************************************************************
 521  *  Function: dce110_timing_generator_get_position
 522  *
 523  *  @brief
 524  *     Returns CRTC vertical/horizontal counters
 525  *
 526  *  @param [out] position
 527  *****************************************************************************
 528  */
 529 void dce110_timing_generator_get_position(struct timing_generator *tg,
 530         struct crtc_position *position)
 531 {
 532         uint32_t value;
 533         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
 534 
 535         value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_STATUS_POSITION));
 536 
 537         position->horizontal_count = get_reg_field_value(
 538                         value,
 539                         CRTC_STATUS_POSITION,
 540                         CRTC_HORZ_COUNT);
 541 
 542         position->vertical_count = get_reg_field_value(
 543                         value,
 544                         CRTC_STATUS_POSITION,
 545                         CRTC_VERT_COUNT);
 546 
 547         value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_NOM_VERT_POSITION));
 548 
 549         position->nominal_vcount = get_reg_field_value(
 550                         value,
 551                         CRTC_NOM_VERT_POSITION,
 552                         CRTC_VERT_COUNT_NOM);
 553 }
 554 
 555 /**
 556  *****************************************************************************
 557  *  Function: get_crtc_scanoutpos
 558  *
 559  *  @brief
 560  *     Returns CRTC vertical/horizontal counters
 561  *
 562  *  @param [out] vpos, hpos
 563  *****************************************************************************
 564  */
 565 void dce110_timing_generator_get_crtc_scanoutpos(
 566         struct timing_generator *tg,
 567         uint32_t *v_blank_start,
 568         uint32_t *v_blank_end,
 569         uint32_t *h_position,
 570         uint32_t *v_position)
 571 {
 572         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
 573         struct crtc_position position;
 574 
 575         uint32_t value  = dm_read_reg(tg->ctx,
 576                         CRTC_REG(mmCRTC_V_BLANK_START_END));
 577 
 578         *v_blank_start = get_reg_field_value(value,
 579                                              CRTC_V_BLANK_START_END,
 580                                              CRTC_V_BLANK_START);
 581         *v_blank_end = get_reg_field_value(value,
 582                                            CRTC_V_BLANK_START_END,
 583                                            CRTC_V_BLANK_END);
 584 
 585         dce110_timing_generator_get_position(
 586                         tg, &position);
 587 
 588         *h_position = position.horizontal_count;
 589         *v_position = position.vertical_count;
 590 }
 591 
 592 /* TODO: is it safe to assume that mask/shift of Primary and Underlay
 593  * are the same?
 594  * For example: today CRTC_H_TOTAL == CRTCV_H_TOTAL but is it always
 595  * guaranteed? */
 596 void dce110_timing_generator_program_blanking(
 597         struct timing_generator *tg,
 598         const struct dc_crtc_timing *timing)
 599 {
 600         uint32_t vsync_offset = timing->v_border_bottom +
 601                         timing->v_front_porch;
 602         uint32_t v_sync_start =timing->v_addressable + vsync_offset;
 603 
 604         uint32_t hsync_offset = timing->h_border_right +
 605                         timing->h_front_porch;
 606         uint32_t h_sync_start = timing->h_addressable + hsync_offset;
 607         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
 608 
 609         struct dc_context *ctx = tg->ctx;
 610         uint32_t value = 0;
 611         uint32_t addr = 0;
 612         uint32_t tmp = 0;
 613 
 614         addr = CRTC_REG(mmCRTC_H_TOTAL);
 615         value = dm_read_reg(ctx, addr);
 616         set_reg_field_value(
 617                 value,
 618                 timing->h_total - 1,
 619                 CRTC_H_TOTAL,
 620                 CRTC_H_TOTAL);
 621         dm_write_reg(ctx, addr, value);
 622 
 623         addr = CRTC_REG(mmCRTC_V_TOTAL);
 624         value = dm_read_reg(ctx, addr);
 625         set_reg_field_value(
 626                 value,
 627                 timing->v_total - 1,
 628                 CRTC_V_TOTAL,
 629                 CRTC_V_TOTAL);
 630         dm_write_reg(ctx, addr, value);
 631 
 632         /* In case of V_TOTAL_CONTROL is on, make sure V_TOTAL_MAX and
 633          * V_TOTAL_MIN are equal to V_TOTAL.
 634          */
 635         addr = CRTC_REG(mmCRTC_V_TOTAL_MAX);
 636         value = dm_read_reg(ctx, addr);
 637         set_reg_field_value(
 638                 value,
 639                 timing->v_total - 1,
 640                 CRTC_V_TOTAL_MAX,
 641                 CRTC_V_TOTAL_MAX);
 642         dm_write_reg(ctx, addr, value);
 643 
 644         addr = CRTC_REG(mmCRTC_V_TOTAL_MIN);
 645         value = dm_read_reg(ctx, addr);
 646         set_reg_field_value(
 647                 value,
 648                 timing->v_total - 1,
 649                 CRTC_V_TOTAL_MIN,
 650                 CRTC_V_TOTAL_MIN);
 651         dm_write_reg(ctx, addr, value);
 652 
 653         addr = CRTC_REG(mmCRTC_H_BLANK_START_END);
 654         value = dm_read_reg(ctx, addr);
 655 
 656         tmp = timing->h_total -
 657                 (h_sync_start + timing->h_border_left);
 658 
 659         set_reg_field_value(
 660                 value,
 661                 tmp,
 662                 CRTC_H_BLANK_START_END,
 663                 CRTC_H_BLANK_END);
 664 
 665         tmp = tmp + timing->h_addressable +
 666                 timing->h_border_left + timing->h_border_right;
 667 
 668         set_reg_field_value(
 669                 value,
 670                 tmp,
 671                 CRTC_H_BLANK_START_END,
 672                 CRTC_H_BLANK_START);
 673 
 674         dm_write_reg(ctx, addr, value);
 675 
 676         addr = CRTC_REG(mmCRTC_V_BLANK_START_END);
 677         value = dm_read_reg(ctx, addr);
 678 
 679         tmp = timing->v_total - (v_sync_start + timing->v_border_top);
 680 
 681         set_reg_field_value(
 682                 value,
 683                 tmp,
 684                 CRTC_V_BLANK_START_END,
 685                 CRTC_V_BLANK_END);
 686 
 687         tmp = tmp + timing->v_addressable + timing->v_border_top +
 688                 timing->v_border_bottom;
 689 
 690         set_reg_field_value(
 691                 value,
 692                 tmp,
 693                 CRTC_V_BLANK_START_END,
 694                 CRTC_V_BLANK_START);
 695 
 696         dm_write_reg(ctx, addr, value);
 697 }
 698 
 699 void dce110_timing_generator_set_test_pattern(
 700         struct timing_generator *tg,
 701         /* TODO: replace 'controller_dp_test_pattern' by 'test_pattern_mode'
 702          * because this is not DP-specific (which is probably somewhere in DP
 703          * encoder) */
 704         enum controller_dp_test_pattern test_pattern,
 705         enum dc_color_depth color_depth)
 706 {
 707         struct dc_context *ctx = tg->ctx;
 708         uint32_t value;
 709         uint32_t addr;
 710         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
 711         enum test_pattern_color_format bit_depth;
 712         enum test_pattern_dyn_range dyn_range;
 713         enum test_pattern_mode mode;
 714         /* color ramp generator mixes 16-bits color */
 715         uint32_t src_bpc = 16;
 716         /* requested bpc */
 717         uint32_t dst_bpc;
 718         uint32_t index;
 719         /* RGB values of the color bars.
 720          * Produce two RGB colors: RGB0 - white (all Fs)
 721          * and RGB1 - black (all 0s)
 722          * (three RGB components for two colors)
 723          */
 724         uint16_t src_color[6] = {0xFFFF, 0xFFFF, 0xFFFF, 0x0000,
 725                                                 0x0000, 0x0000};
 726         /* dest color (converted to the specified color format) */
 727         uint16_t dst_color[6];
 728         uint32_t inc_base;
 729 
 730         /* translate to bit depth */
 731         switch (color_depth) {
 732         case COLOR_DEPTH_666:
 733                 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_6;
 734         break;
 735         case COLOR_DEPTH_888:
 736                 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
 737         break;
 738         case COLOR_DEPTH_101010:
 739                 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_10;
 740         break;
 741         case COLOR_DEPTH_121212:
 742                 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_12;
 743         break;
 744         default:
 745                 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
 746         break;
 747         }
 748 
 749         switch (test_pattern) {
 750         case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES:
 751         case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA:
 752         {
 753                 dyn_range = (test_pattern ==
 754                                 CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA ?
 755                                 TEST_PATTERN_DYN_RANGE_CEA :
 756                                 TEST_PATTERN_DYN_RANGE_VESA);
 757                 mode = TEST_PATTERN_MODE_COLORSQUARES_RGB;
 758                 value = 0;
 759                 addr = CRTC_REG(mmCRTC_TEST_PATTERN_PARAMETERS);
 760 
 761                 set_reg_field_value(
 762                         value,
 763                         6,
 764                         CRTC_TEST_PATTERN_PARAMETERS,
 765                         CRTC_TEST_PATTERN_VRES);
 766                 set_reg_field_value(
 767                         value,
 768                         6,
 769                         CRTC_TEST_PATTERN_PARAMETERS,
 770                         CRTC_TEST_PATTERN_HRES);
 771 
 772                 dm_write_reg(ctx, addr, value);
 773 
 774                 addr = CRTC_REG(mmCRTC_TEST_PATTERN_CONTROL);
 775                 value = 0;
 776 
 777                 set_reg_field_value(
 778                         value,
 779                         1,
 780                         CRTC_TEST_PATTERN_CONTROL,
 781                         CRTC_TEST_PATTERN_EN);
 782 
 783                 set_reg_field_value(
 784                         value,
 785                         mode,
 786                         CRTC_TEST_PATTERN_CONTROL,
 787                         CRTC_TEST_PATTERN_MODE);
 788 
 789                 set_reg_field_value(
 790                         value,
 791                         dyn_range,
 792                         CRTC_TEST_PATTERN_CONTROL,
 793                         CRTC_TEST_PATTERN_DYNAMIC_RANGE);
 794                 set_reg_field_value(
 795                         value,
 796                         bit_depth,
 797                         CRTC_TEST_PATTERN_CONTROL,
 798                         CRTC_TEST_PATTERN_COLOR_FORMAT);
 799                 dm_write_reg(ctx, addr, value);
 800         }
 801         break;
 802 
 803         case CONTROLLER_DP_TEST_PATTERN_VERTICALBARS:
 804         case CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS:
 805         {
 806                 mode = (test_pattern ==
 807                         CONTROLLER_DP_TEST_PATTERN_VERTICALBARS ?
 808                         TEST_PATTERN_MODE_VERTICALBARS :
 809                         TEST_PATTERN_MODE_HORIZONTALBARS);
 810 
 811                 switch (bit_depth) {
 812                 case TEST_PATTERN_COLOR_FORMAT_BPC_6:
 813                         dst_bpc = 6;
 814                 break;
 815                 case TEST_PATTERN_COLOR_FORMAT_BPC_8:
 816                         dst_bpc = 8;
 817                 break;
 818                 case TEST_PATTERN_COLOR_FORMAT_BPC_10:
 819                         dst_bpc = 10;
 820                 break;
 821                 default:
 822                         dst_bpc = 8;
 823                 break;
 824                 }
 825 
 826                 /* adjust color to the required colorFormat */
 827                 for (index = 0; index < 6; index++) {
 828                         /* dst = 2^dstBpc * src / 2^srcBpc = src >>
 829                          * (srcBpc - dstBpc);
 830                          */
 831                         dst_color[index] =
 832                                 src_color[index] >> (src_bpc - dst_bpc);
 833                 /* CRTC_TEST_PATTERN_DATA has 16 bits,
 834                  * lowest 6 are hardwired to ZERO
 835                  * color bits should be left aligned aligned to MSB
 836                  * XXXXXXXXXX000000 for 10 bit,
 837                  * XXXXXXXX00000000 for 8 bit and XXXXXX0000000000 for 6
 838                  */
 839                         dst_color[index] <<= (16 - dst_bpc);
 840                 }
 841 
 842                 value = 0;
 843                 addr = CRTC_REG(mmCRTC_TEST_PATTERN_PARAMETERS);
 844                 dm_write_reg(ctx, addr, value);
 845 
 846                 /* We have to write the mask before data, similar to pipeline.
 847                  * For example, for 8 bpc, if we want RGB0 to be magenta,
 848                  * and RGB1 to be cyan,
 849                  * we need to make 7 writes:
 850                  * MASK   DATA
 851                  * 000001 00000000 00000000                     set mask to R0
 852                  * 000010 11111111 00000000     R0 255, 0xFF00, set mask to G0
 853                  * 000100 00000000 00000000     G0 0,   0x0000, set mask to B0
 854                  * 001000 11111111 00000000     B0 255, 0xFF00, set mask to R1
 855                  * 010000 00000000 00000000     R1 0,   0x0000, set mask to G1
 856                  * 100000 11111111 00000000     G1 255, 0xFF00, set mask to B1
 857                  * 100000 11111111 00000000     B1 255, 0xFF00
 858                  *
 859                  * we will make a loop of 6 in which we prepare the mask,
 860                  * then write, then prepare the color for next write.
 861                  * first iteration will write mask only,
 862                  * but each next iteration color prepared in
 863                  * previous iteration will be written within new mask,
 864                  * the last component will written separately,
 865                  * mask is not changing between 6th and 7th write
 866                  * and color will be prepared by last iteration
 867                  */
 868 
 869                 /* write color, color values mask in CRTC_TEST_PATTERN_MASK
 870                  * is B1, G1, R1, B0, G0, R0
 871                  */
 872                 value = 0;
 873                 addr = CRTC_REG(mmCRTC_TEST_PATTERN_COLOR);
 874                 for (index = 0; index < 6; index++) {
 875                         /* prepare color mask, first write PATTERN_DATA
 876                          * will have all zeros
 877                          */
 878                         set_reg_field_value(
 879                                 value,
 880                                 (1 << index),
 881                                 CRTC_TEST_PATTERN_COLOR,
 882                                 CRTC_TEST_PATTERN_MASK);
 883                         /* write color component */
 884                         dm_write_reg(ctx, addr, value);
 885                         /* prepare next color component,
 886                          * will be written in the next iteration
 887                          */
 888                         set_reg_field_value(
 889                                 value,
 890                                 dst_color[index],
 891                                 CRTC_TEST_PATTERN_COLOR,
 892                                 CRTC_TEST_PATTERN_DATA);
 893                 }
 894                 /* write last color component,
 895                  * it's been already prepared in the loop
 896                  */
 897                 dm_write_reg(ctx, addr, value);
 898 
 899                 /* enable test pattern */
 900                 addr = CRTC_REG(mmCRTC_TEST_PATTERN_CONTROL);
 901                 value = 0;
 902 
 903                 set_reg_field_value(
 904                         value,
 905                         1,
 906                         CRTC_TEST_PATTERN_CONTROL,
 907                         CRTC_TEST_PATTERN_EN);
 908 
 909                 set_reg_field_value(
 910                         value,
 911                         mode,
 912                         CRTC_TEST_PATTERN_CONTROL,
 913                         CRTC_TEST_PATTERN_MODE);
 914 
 915                 set_reg_field_value(
 916                         value,
 917                         0,
 918                         CRTC_TEST_PATTERN_CONTROL,
 919                         CRTC_TEST_PATTERN_DYNAMIC_RANGE);
 920 
 921                 set_reg_field_value(
 922                         value,
 923                         bit_depth,
 924                         CRTC_TEST_PATTERN_CONTROL,
 925                         CRTC_TEST_PATTERN_COLOR_FORMAT);
 926 
 927                 dm_write_reg(ctx, addr, value);
 928         }
 929         break;
 930 
 931         case CONTROLLER_DP_TEST_PATTERN_COLORRAMP:
 932         {
 933                 mode = (bit_depth ==
 934                         TEST_PATTERN_COLOR_FORMAT_BPC_10 ?
 935                         TEST_PATTERN_MODE_DUALRAMP_RGB :
 936                         TEST_PATTERN_MODE_SINGLERAMP_RGB);
 937 
 938                 switch (bit_depth) {
 939                 case TEST_PATTERN_COLOR_FORMAT_BPC_6:
 940                         dst_bpc = 6;
 941                 break;
 942                 case TEST_PATTERN_COLOR_FORMAT_BPC_8:
 943                         dst_bpc = 8;
 944                 break;
 945                 case TEST_PATTERN_COLOR_FORMAT_BPC_10:
 946                         dst_bpc = 10;
 947                 break;
 948                 default:
 949                         dst_bpc = 8;
 950                 break;
 951                 }
 952 
 953                 /* increment for the first ramp for one color gradation
 954                  * 1 gradation for 6-bit color is 2^10
 955                  * gradations in 16-bit color
 956                  */
 957                 inc_base = (src_bpc - dst_bpc);
 958 
 959                 value = 0;
 960                 addr = CRTC_REG(mmCRTC_TEST_PATTERN_PARAMETERS);
 961 
 962                 switch (bit_depth) {
 963                 case TEST_PATTERN_COLOR_FORMAT_BPC_6:
 964                 {
 965                         set_reg_field_value(
 966                                 value,
 967                                 inc_base,
 968                                 CRTC_TEST_PATTERN_PARAMETERS,
 969                                 CRTC_TEST_PATTERN_INC0);
 970                         set_reg_field_value(
 971                                 value,
 972                                 0,
 973                                 CRTC_TEST_PATTERN_PARAMETERS,
 974                                 CRTC_TEST_PATTERN_INC1);
 975                         set_reg_field_value(
 976                                 value,
 977                                 6,
 978                                 CRTC_TEST_PATTERN_PARAMETERS,
 979                                 CRTC_TEST_PATTERN_HRES);
 980                         set_reg_field_value(
 981                                 value,
 982                                 6,
 983                                 CRTC_TEST_PATTERN_PARAMETERS,
 984                                 CRTC_TEST_PATTERN_VRES);
 985                         set_reg_field_value(
 986                                 value,
 987                                 0,
 988                                 CRTC_TEST_PATTERN_PARAMETERS,
 989                                 CRTC_TEST_PATTERN_RAMP0_OFFSET);
 990                 }
 991                 break;
 992                 case TEST_PATTERN_COLOR_FORMAT_BPC_8:
 993                 {
 994                         set_reg_field_value(
 995                                 value,
 996                                 inc_base,
 997                                 CRTC_TEST_PATTERN_PARAMETERS,
 998                                 CRTC_TEST_PATTERN_INC0);
 999                         set_reg_field_value(
1000                                 value,
1001                                 0,
1002                                 CRTC_TEST_PATTERN_PARAMETERS,
1003                                 CRTC_TEST_PATTERN_INC1);
1004                         set_reg_field_value(
1005                                 value,
1006                                 8,
1007                                 CRTC_TEST_PATTERN_PARAMETERS,
1008                                 CRTC_TEST_PATTERN_HRES);
1009                         set_reg_field_value(
1010                                 value,
1011                                 6,
1012                                 CRTC_TEST_PATTERN_PARAMETERS,
1013                                 CRTC_TEST_PATTERN_VRES);
1014                         set_reg_field_value(
1015                                 value,
1016                                 0,
1017                                 CRTC_TEST_PATTERN_PARAMETERS,
1018                                 CRTC_TEST_PATTERN_RAMP0_OFFSET);
1019                 }
1020                 break;
1021                 case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1022                 {
1023                         set_reg_field_value(
1024                                 value,
1025                                 inc_base,
1026                                 CRTC_TEST_PATTERN_PARAMETERS,
1027                                 CRTC_TEST_PATTERN_INC0);
1028                         set_reg_field_value(
1029                                 value,
1030                                 inc_base + 2,
1031                                 CRTC_TEST_PATTERN_PARAMETERS,
1032                                 CRTC_TEST_PATTERN_INC1);
1033                         set_reg_field_value(
1034                                 value,
1035                                 8,
1036                                 CRTC_TEST_PATTERN_PARAMETERS,
1037                                 CRTC_TEST_PATTERN_HRES);
1038                         set_reg_field_value(
1039                                 value,
1040                                 5,
1041                                 CRTC_TEST_PATTERN_PARAMETERS,
1042                                 CRTC_TEST_PATTERN_VRES);
1043                         set_reg_field_value(
1044                                 value,
1045                                 384 << 6,
1046                                 CRTC_TEST_PATTERN_PARAMETERS,
1047                                 CRTC_TEST_PATTERN_RAMP0_OFFSET);
1048                 }
1049                 break;
1050                 default:
1051                 break;
1052                 }
1053                 dm_write_reg(ctx, addr, value);
1054 
1055                 value = 0;
1056                 addr = CRTC_REG(mmCRTC_TEST_PATTERN_COLOR);
1057                 dm_write_reg(ctx, addr, value);
1058 
1059                 /* enable test pattern */
1060                 addr = CRTC_REG(mmCRTC_TEST_PATTERN_CONTROL);
1061                 value = 0;
1062 
1063                 set_reg_field_value(
1064                         value,
1065                         1,
1066                         CRTC_TEST_PATTERN_CONTROL,
1067                         CRTC_TEST_PATTERN_EN);
1068 
1069                 set_reg_field_value(
1070                         value,
1071                         mode,
1072                         CRTC_TEST_PATTERN_CONTROL,
1073                         CRTC_TEST_PATTERN_MODE);
1074 
1075                 set_reg_field_value(
1076                         value,
1077                         0,
1078                         CRTC_TEST_PATTERN_CONTROL,
1079                         CRTC_TEST_PATTERN_DYNAMIC_RANGE);
1080                 /* add color depth translation here */
1081                 set_reg_field_value(
1082                         value,
1083                         bit_depth,
1084                         CRTC_TEST_PATTERN_CONTROL,
1085                         CRTC_TEST_PATTERN_COLOR_FORMAT);
1086 
1087                 dm_write_reg(ctx, addr, value);
1088         }
1089         break;
1090         case CONTROLLER_DP_TEST_PATTERN_VIDEOMODE:
1091         {
1092                 value = 0;
1093                 dm_write_reg(ctx, CRTC_REG(mmCRTC_TEST_PATTERN_CONTROL), value);
1094                 dm_write_reg(ctx, CRTC_REG(mmCRTC_TEST_PATTERN_COLOR), value);
1095                 dm_write_reg(ctx, CRTC_REG(mmCRTC_TEST_PATTERN_PARAMETERS),
1096                                 value);
1097         }
1098         break;
1099         default:
1100         break;
1101         }
1102 }
1103 
1104 /**
1105 * dce110_timing_generator_validate_timing
1106 * The timing generators support a maximum display size of is 8192 x 8192 pixels,
1107 * including both active display and blanking periods. Check H Total and V Total.
1108 */
1109 bool dce110_timing_generator_validate_timing(
1110         struct timing_generator *tg,
1111         const struct dc_crtc_timing *timing,
1112         enum signal_type signal)
1113 {
1114         uint32_t h_blank;
1115         uint32_t h_back_porch, hsync_offset, h_sync_start;
1116 
1117         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1118 
1119         ASSERT(timing != NULL);
1120 
1121         if (!timing)
1122                 return false;
1123 
1124         hsync_offset = timing->h_border_right + timing->h_front_porch;
1125         h_sync_start = timing->h_addressable + hsync_offset;
1126 
1127         /* Currently we don't support 3D, so block all 3D timings */
1128         if (timing->timing_3d_format != TIMING_3D_FORMAT_NONE)
1129                 return false;
1130 
1131         /* Temporarily blocking interlacing mode until it's supported */
1132         if (timing->flags.INTERLACE == 1)
1133                 return false;
1134 
1135         /* Check maximum number of pixels supported by Timing Generator
1136          * (Currently will never fail, in order to fail needs display which
1137          * needs more than 8192 horizontal and
1138          * more than 8192 vertical total pixels)
1139          */
1140         if (timing->h_total > tg110->max_h_total ||
1141                 timing->v_total > tg110->max_v_total)
1142                 return false;
1143 
1144         h_blank = (timing->h_total - timing->h_addressable -
1145                 timing->h_border_right -
1146                 timing->h_border_left);
1147 
1148         if (h_blank < tg110->min_h_blank)
1149                 return false;
1150 
1151         if (timing->h_front_porch < tg110->min_h_front_porch)
1152                 return false;
1153 
1154         h_back_porch = h_blank - (h_sync_start -
1155                 timing->h_addressable -
1156                 timing->h_border_right -
1157                 timing->h_sync_width);
1158 
1159         if (h_back_porch < tg110->min_h_back_porch)
1160                 return false;
1161 
1162         return true;
1163 }
1164 
1165 /**
1166 * Wait till we are at the beginning of VBlank.
1167 */
1168 void dce110_timing_generator_wait_for_vblank(struct timing_generator *tg)
1169 {
1170         /* We want to catch beginning of VBlank here, so if the first try are
1171          * in VBlank, we might be very close to Active, in this case wait for
1172          * another frame
1173          */
1174         while (dce110_timing_generator_is_in_vertical_blank(tg)) {
1175                 if (!dce110_timing_generator_is_counter_moving(tg)) {
1176                         /* error - no point to wait if counter is not moving */
1177                         break;
1178                 }
1179         }
1180 
1181         while (!dce110_timing_generator_is_in_vertical_blank(tg)) {
1182                 if (!dce110_timing_generator_is_counter_moving(tg)) {
1183                         /* error - no point to wait if counter is not moving */
1184                         break;
1185                 }
1186         }
1187 }
1188 
1189 /**
1190 * Wait till we are in VActive (anywhere in VActive)
1191 */
1192 void dce110_timing_generator_wait_for_vactive(struct timing_generator *tg)
1193 {
1194         while (dce110_timing_generator_is_in_vertical_blank(tg)) {
1195                 if (!dce110_timing_generator_is_counter_moving(tg)) {
1196                         /* error - no point to wait if counter is not moving */
1197                         break;
1198                 }
1199         }
1200 }
1201 
1202 /**
1203  *****************************************************************************
1204  *  Function: dce110_timing_generator_setup_global_swap_lock
1205  *
1206  *  @brief
1207  *     Setups Global Swap Lock group for current pipe
1208  *     Pipe can join or leave GSL group, become a TimingServer or TimingClient
1209  *
1210  *  @param [in] gsl_params: setup data
1211  *****************************************************************************
1212  */
1213 
1214 void dce110_timing_generator_setup_global_swap_lock(
1215         struct timing_generator *tg,
1216         const struct dcp_gsl_params *gsl_params)
1217 {
1218         uint32_t value;
1219         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1220         uint32_t address = DCP_REG(mmDCP_GSL_CONTROL);
1221         uint32_t check_point = FLIP_READY_BACK_LOOKUP;
1222 
1223         value = dm_read_reg(tg->ctx, address);
1224 
1225         /* This pipe will belong to GSL Group zero. */
1226         set_reg_field_value(value,
1227                             1,
1228                             DCP_GSL_CONTROL,
1229                             DCP_GSL0_EN);
1230 
1231         set_reg_field_value(value,
1232                             gsl_params->gsl_master == tg->inst,
1233                             DCP_GSL_CONTROL,
1234                             DCP_GSL_MASTER_EN);
1235 
1236         set_reg_field_value(value,
1237                             HFLIP_READY_DELAY,
1238                             DCP_GSL_CONTROL,
1239                             DCP_GSL_HSYNC_FLIP_FORCE_DELAY);
1240 
1241         /* Keep signal low (pending high) during 6 lines.
1242          * Also defines minimum interval before re-checking signal. */
1243         set_reg_field_value(value,
1244                             HFLIP_CHECK_DELAY,
1245                             DCP_GSL_CONTROL,
1246                             DCP_GSL_HSYNC_FLIP_CHECK_DELAY);
1247 
1248         dm_write_reg(tg->ctx, CRTC_REG(mmDCP_GSL_CONTROL), value);
1249         value = 0;
1250 
1251         set_reg_field_value(value,
1252                             gsl_params->gsl_master,
1253                             DCIO_GSL0_CNTL,
1254                             DCIO_GSL0_VSYNC_SEL);
1255 
1256         set_reg_field_value(value,
1257                             0,
1258                             DCIO_GSL0_CNTL,
1259                             DCIO_GSL0_TIMING_SYNC_SEL);
1260 
1261         set_reg_field_value(value,
1262                             0,
1263                             DCIO_GSL0_CNTL,
1264                             DCIO_GSL0_GLOBAL_UNLOCK_SEL);
1265 
1266         dm_write_reg(tg->ctx, CRTC_REG(mmDCIO_GSL0_CNTL), value);
1267 
1268 
1269         {
1270                 uint32_t value_crtc_vtotal;
1271 
1272                 value_crtc_vtotal = dm_read_reg(tg->ctx,
1273                                 CRTC_REG(mmCRTC_V_TOTAL));
1274 
1275                 set_reg_field_value(value,
1276                                     0,/* DCP_GSL_PURPOSE_SURFACE_FLIP */
1277                                     DCP_GSL_CONTROL,
1278                                     DCP_GSL_SYNC_SOURCE);
1279 
1280                 /* Checkpoint relative to end of frame */
1281                 check_point = get_reg_field_value(value_crtc_vtotal,
1282                                                   CRTC_V_TOTAL,
1283                                                   CRTC_V_TOTAL);
1284 
1285                 dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_GSL_WINDOW), 0);
1286         }
1287 
1288         set_reg_field_value(value,
1289                             1,
1290                             DCP_GSL_CONTROL,
1291                             DCP_GSL_DELAY_SURFACE_UPDATE_PENDING);
1292 
1293         dm_write_reg(tg->ctx, address, value);
1294 
1295         /********************************************************************/
1296         address = CRTC_REG(mmCRTC_GSL_CONTROL);
1297 
1298         value = dm_read_reg(tg->ctx, address);
1299         set_reg_field_value(value,
1300                             check_point - FLIP_READY_BACK_LOOKUP,
1301                             CRTC_GSL_CONTROL,
1302                             CRTC_GSL_CHECK_LINE_NUM);
1303 
1304         set_reg_field_value(value,
1305                             VFLIP_READY_DELAY,
1306                             CRTC_GSL_CONTROL,
1307                             CRTC_GSL_FORCE_DELAY);
1308 
1309         dm_write_reg(tg->ctx, address, value);
1310 }
1311 
1312 void dce110_timing_generator_tear_down_global_swap_lock(
1313         struct timing_generator *tg)
1314 {
1315         /* Clear all the register writes done by
1316          * dce110_timing_generator_setup_global_swap_lock
1317          */
1318 
1319         uint32_t value;
1320         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1321         uint32_t address = DCP_REG(mmDCP_GSL_CONTROL);
1322 
1323         value = 0;
1324 
1325         /* This pipe will belong to GSL Group zero. */
1326         /* Settig HW default values from reg specs */
1327         set_reg_field_value(value,
1328                         0,
1329                         DCP_GSL_CONTROL,
1330                         DCP_GSL0_EN);
1331 
1332         set_reg_field_value(value,
1333                         0,
1334                         DCP_GSL_CONTROL,
1335                         DCP_GSL_MASTER_EN);
1336 
1337         set_reg_field_value(value,
1338                         0x2,
1339                         DCP_GSL_CONTROL,
1340                         DCP_GSL_HSYNC_FLIP_FORCE_DELAY);
1341 
1342         set_reg_field_value(value,
1343                         0x6,
1344                         DCP_GSL_CONTROL,
1345                         DCP_GSL_HSYNC_FLIP_CHECK_DELAY);
1346 
1347         /* Restore DCP_GSL_PURPOSE_SURFACE_FLIP */
1348         {
1349                 uint32_t value_crtc_vtotal;
1350 
1351                 value_crtc_vtotal = dm_read_reg(tg->ctx,
1352                                 CRTC_REG(mmCRTC_V_TOTAL));
1353 
1354                 set_reg_field_value(value,
1355                                 0,
1356                                 DCP_GSL_CONTROL,
1357                                 DCP_GSL_SYNC_SOURCE);
1358         }
1359 
1360         set_reg_field_value(value,
1361                         0,
1362                         DCP_GSL_CONTROL,
1363                         DCP_GSL_DELAY_SURFACE_UPDATE_PENDING);
1364 
1365         dm_write_reg(tg->ctx, address, value);
1366 
1367         /********************************************************************/
1368         address = CRTC_REG(mmCRTC_GSL_CONTROL);
1369 
1370         value = 0;
1371         set_reg_field_value(value,
1372                         0,
1373                         CRTC_GSL_CONTROL,
1374                         CRTC_GSL_CHECK_LINE_NUM);
1375 
1376         set_reg_field_value(value,
1377                         0x2,
1378                         CRTC_GSL_CONTROL,
1379                         CRTC_GSL_FORCE_DELAY);
1380 
1381         dm_write_reg(tg->ctx, address, value);
1382 }
1383 /**
1384  *****************************************************************************
1385  *  Function: is_counter_moving
1386  *
1387  *  @brief
1388  *     check if the timing generator is currently going
1389  *
1390  *  @return
1391  *     true if currently going, false if currently paused or stopped.
1392  *
1393  *****************************************************************************
1394  */
1395 bool dce110_timing_generator_is_counter_moving(struct timing_generator *tg)
1396 {
1397         struct crtc_position position1, position2;
1398 
1399         tg->funcs->get_position(tg, &position1);
1400         tg->funcs->get_position(tg, &position2);
1401 
1402         if (position1.horizontal_count == position2.horizontal_count &&
1403                 position1.vertical_count == position2.vertical_count)
1404                 return false;
1405         else
1406                 return true;
1407 }
1408 
1409 void dce110_timing_generator_enable_advanced_request(
1410         struct timing_generator *tg,
1411         bool enable,
1412         const struct dc_crtc_timing *timing)
1413 {
1414         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1415         uint32_t addr = CRTC_REG(mmCRTC_START_LINE_CONTROL);
1416         uint32_t value = dm_read_reg(tg->ctx, addr);
1417 
1418         if (enable) {
1419                 set_reg_field_value(
1420                         value,
1421                         0,
1422                         CRTC_START_LINE_CONTROL,
1423                         CRTC_LEGACY_REQUESTOR_EN);
1424         } else {
1425                 set_reg_field_value(
1426                         value,
1427                         1,
1428                         CRTC_START_LINE_CONTROL,
1429                         CRTC_LEGACY_REQUESTOR_EN);
1430         }
1431 
1432         if ((timing->v_sync_width + timing->v_front_porch) <= 3) {
1433                 set_reg_field_value(
1434                         value,
1435                         3,
1436                         CRTC_START_LINE_CONTROL,
1437                         CRTC_ADVANCED_START_LINE_POSITION);
1438                 set_reg_field_value(
1439                         value,
1440                         0,
1441                         CRTC_START_LINE_CONTROL,
1442                         CRTC_PREFETCH_EN);
1443         } else {
1444                 set_reg_field_value(
1445                         value,
1446                         4,
1447                         CRTC_START_LINE_CONTROL,
1448                         CRTC_ADVANCED_START_LINE_POSITION);
1449                 set_reg_field_value(
1450                         value,
1451                         1,
1452                         CRTC_START_LINE_CONTROL,
1453                         CRTC_PREFETCH_EN);
1454         }
1455 
1456         set_reg_field_value(
1457                 value,
1458                 1,
1459                 CRTC_START_LINE_CONTROL,
1460                 CRTC_PROGRESSIVE_START_LINE_EARLY);
1461 
1462         set_reg_field_value(
1463                 value,
1464                 1,
1465                 CRTC_START_LINE_CONTROL,
1466                 CRTC_INTERLACE_START_LINE_EARLY);
1467 
1468         dm_write_reg(tg->ctx, addr, value);
1469 }
1470 
1471 /*TODO: Figure out if we need this function. */
1472 void dce110_timing_generator_set_lock_master(struct timing_generator *tg,
1473                 bool lock)
1474 {
1475         struct dc_context *ctx = tg->ctx;
1476         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1477         uint32_t addr = CRTC_REG(mmCRTC_MASTER_UPDATE_LOCK);
1478         uint32_t value = dm_read_reg(ctx, addr);
1479 
1480         set_reg_field_value(
1481                 value,
1482                 lock ? 1 : 0,
1483                 CRTC_MASTER_UPDATE_LOCK,
1484                 MASTER_UPDATE_LOCK);
1485 
1486         dm_write_reg(ctx, addr, value);
1487 }
1488 
1489 void dce110_timing_generator_enable_reset_trigger(
1490         struct timing_generator *tg,
1491         int source_tg_inst)
1492 {
1493         uint32_t value;
1494         uint32_t rising_edge = 0;
1495         uint32_t falling_edge = 0;
1496         enum trigger_source_select trig_src_select = TRIGGER_SOURCE_SELECT_LOGIC_ZERO;
1497         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1498 
1499         /* Setup trigger edge */
1500         {
1501                 uint32_t pol_value = dm_read_reg(tg->ctx,
1502                                 CRTC_REG(mmCRTC_V_SYNC_A_CNTL));
1503 
1504                 /* Register spec has reversed definition:
1505                  *      0 for positive, 1 for negative */
1506                 if (get_reg_field_value(pol_value,
1507                                 CRTC_V_SYNC_A_CNTL,
1508                                 CRTC_V_SYNC_A_POL) == 0) {
1509                         rising_edge = 1;
1510                 } else {
1511                         falling_edge = 1;
1512                 }
1513         }
1514 
1515         value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL));
1516 
1517         trig_src_select = TRIGGER_SOURCE_SELECT_GSL_GROUP0;
1518 
1519         set_reg_field_value(value,
1520                         trig_src_select,
1521                         CRTC_TRIGB_CNTL,
1522                         CRTC_TRIGB_SOURCE_SELECT);
1523 
1524         set_reg_field_value(value,
1525                         TRIGGER_POLARITY_SELECT_LOGIC_ZERO,
1526                         CRTC_TRIGB_CNTL,
1527                         CRTC_TRIGB_POLARITY_SELECT);
1528 
1529         set_reg_field_value(value,
1530                         rising_edge,
1531                         CRTC_TRIGB_CNTL,
1532                         CRTC_TRIGB_RISING_EDGE_DETECT_CNTL);
1533 
1534         set_reg_field_value(value,
1535                         falling_edge,
1536                         CRTC_TRIGB_CNTL,
1537                         CRTC_TRIGB_FALLING_EDGE_DETECT_CNTL);
1538 
1539         set_reg_field_value(value,
1540                         0, /* send every signal */
1541                         CRTC_TRIGB_CNTL,
1542                         CRTC_TRIGB_FREQUENCY_SELECT);
1543 
1544         set_reg_field_value(value,
1545                         0, /* no delay */
1546                         CRTC_TRIGB_CNTL,
1547                         CRTC_TRIGB_DELAY);
1548 
1549         set_reg_field_value(value,
1550                         1, /* clear trigger status */
1551                         CRTC_TRIGB_CNTL,
1552                         CRTC_TRIGB_CLEAR);
1553 
1554         dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL), value);
1555 
1556         /**************************************************************/
1557 
1558         value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL));
1559 
1560         set_reg_field_value(value,
1561                         2, /* force H count to H_TOTAL and V count to V_TOTAL */
1562                         CRTC_FORCE_COUNT_NOW_CNTL,
1563                         CRTC_FORCE_COUNT_NOW_MODE);
1564 
1565         set_reg_field_value(value,
1566                         1, /* TriggerB - we never use TriggerA */
1567                         CRTC_FORCE_COUNT_NOW_CNTL,
1568                         CRTC_FORCE_COUNT_NOW_TRIG_SEL);
1569 
1570         set_reg_field_value(value,
1571                         1, /* clear trigger status */
1572                         CRTC_FORCE_COUNT_NOW_CNTL,
1573                         CRTC_FORCE_COUNT_NOW_CLEAR);
1574 
1575         dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL), value);
1576 }
1577 
1578 void dce110_timing_generator_enable_crtc_reset(
1579                 struct timing_generator *tg,
1580                 int source_tg_inst,
1581                 struct crtc_trigger_info *crtc_tp)
1582 {
1583         uint32_t value = 0;
1584         uint32_t rising_edge = 0;
1585         uint32_t falling_edge = 0;
1586         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1587 
1588         /* Setup trigger edge */
1589         switch (crtc_tp->event) {
1590         case CRTC_EVENT_VSYNC_RISING:
1591                         rising_edge = 1;
1592                         break;
1593 
1594         case CRTC_EVENT_VSYNC_FALLING:
1595                 falling_edge = 1;
1596                 break;
1597         }
1598 
1599         value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL));
1600 
1601         set_reg_field_value(value,
1602                             source_tg_inst,
1603                             CRTC_TRIGB_CNTL,
1604                             CRTC_TRIGB_SOURCE_SELECT);
1605 
1606         set_reg_field_value(value,
1607                             TRIGGER_POLARITY_SELECT_LOGIC_ZERO,
1608                             CRTC_TRIGB_CNTL,
1609                             CRTC_TRIGB_POLARITY_SELECT);
1610 
1611         set_reg_field_value(value,
1612                             rising_edge,
1613                             CRTC_TRIGB_CNTL,
1614                             CRTC_TRIGB_RISING_EDGE_DETECT_CNTL);
1615 
1616         set_reg_field_value(value,
1617                             falling_edge,
1618                             CRTC_TRIGB_CNTL,
1619                             CRTC_TRIGB_FALLING_EDGE_DETECT_CNTL);
1620 
1621         set_reg_field_value(value,
1622                             1, /* clear trigger status */
1623                             CRTC_TRIGB_CNTL,
1624                             CRTC_TRIGB_CLEAR);
1625 
1626         dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL), value);
1627 
1628         /**************************************************************/
1629 
1630         switch (crtc_tp->delay) {
1631         case TRIGGER_DELAY_NEXT_LINE:
1632                 value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL));
1633 
1634                 set_reg_field_value(value,
1635                                     0, /* force H count to H_TOTAL and V count to V_TOTAL */
1636                                     CRTC_FORCE_COUNT_NOW_CNTL,
1637                                     CRTC_FORCE_COUNT_NOW_MODE);
1638 
1639                 set_reg_field_value(value,
1640                                     0, /* TriggerB - we never use TriggerA */
1641                                     CRTC_FORCE_COUNT_NOW_CNTL,
1642                                     CRTC_FORCE_COUNT_NOW_TRIG_SEL);
1643 
1644                 set_reg_field_value(value,
1645                                     1, /* clear trigger status */
1646                                     CRTC_FORCE_COUNT_NOW_CNTL,
1647                                     CRTC_FORCE_COUNT_NOW_CLEAR);
1648 
1649                 dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL), value);
1650 
1651                 value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_VERT_SYNC_CONTROL));
1652 
1653                 set_reg_field_value(value,
1654                                     1,
1655                                     CRTC_VERT_SYNC_CONTROL,
1656                                     CRTC_FORCE_VSYNC_NEXT_LINE_CLEAR);
1657 
1658                 set_reg_field_value(value,
1659                                     2,
1660                                     CRTC_VERT_SYNC_CONTROL,
1661                                     CRTC_AUTO_FORCE_VSYNC_MODE);
1662 
1663                 break;
1664 
1665         case TRIGGER_DELAY_NEXT_PIXEL:
1666                 value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_VERT_SYNC_CONTROL));
1667 
1668                 set_reg_field_value(value,
1669                                     1,
1670                                     CRTC_VERT_SYNC_CONTROL,
1671                                     CRTC_FORCE_VSYNC_NEXT_LINE_CLEAR);
1672 
1673                 set_reg_field_value(value,
1674                                     0,
1675                                     CRTC_VERT_SYNC_CONTROL,
1676                                     CRTC_AUTO_FORCE_VSYNC_MODE);
1677 
1678                 dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_VERT_SYNC_CONTROL), value);
1679 
1680                 value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL));
1681 
1682                 set_reg_field_value(value,
1683                                     2, /* force H count to H_TOTAL and V count to V_TOTAL */
1684                                     CRTC_FORCE_COUNT_NOW_CNTL,
1685                                     CRTC_FORCE_COUNT_NOW_MODE);
1686 
1687                 set_reg_field_value(value,
1688                                     1, /* TriggerB - we never use TriggerA */
1689                                     CRTC_FORCE_COUNT_NOW_CNTL,
1690                                     CRTC_FORCE_COUNT_NOW_TRIG_SEL);
1691 
1692                 set_reg_field_value(value,
1693                                     1, /* clear trigger status */
1694                                     CRTC_FORCE_COUNT_NOW_CNTL,
1695                                     CRTC_FORCE_COUNT_NOW_CLEAR);
1696 
1697                 dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL), value);
1698                 break;
1699         }
1700 
1701         value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_MASTER_UPDATE_MODE));
1702 
1703         set_reg_field_value(value,
1704                             2,
1705                             CRTC_MASTER_UPDATE_MODE,
1706                             MASTER_UPDATE_MODE);
1707 
1708         dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_MASTER_UPDATE_MODE), value);
1709 }
1710 void dce110_timing_generator_disable_reset_trigger(
1711         struct timing_generator *tg)
1712 {
1713         uint32_t value;
1714         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1715 
1716         value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL));
1717 
1718         set_reg_field_value(value,
1719                             0, /* force counter now mode is disabled */
1720                             CRTC_FORCE_COUNT_NOW_CNTL,
1721                             CRTC_FORCE_COUNT_NOW_MODE);
1722 
1723         set_reg_field_value(value,
1724                             1, /* clear trigger status */
1725                             CRTC_FORCE_COUNT_NOW_CNTL,
1726                             CRTC_FORCE_COUNT_NOW_CLEAR);
1727 
1728         dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL), value);
1729 
1730         value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_VERT_SYNC_CONTROL));
1731 
1732         set_reg_field_value(value,
1733                             1,
1734                             CRTC_VERT_SYNC_CONTROL,
1735                             CRTC_FORCE_VSYNC_NEXT_LINE_CLEAR);
1736 
1737         set_reg_field_value(value,
1738                             0,
1739                             CRTC_VERT_SYNC_CONTROL,
1740                             CRTC_AUTO_FORCE_VSYNC_MODE);
1741 
1742         dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_VERT_SYNC_CONTROL), value);
1743 
1744         /********************************************************************/
1745         value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL));
1746 
1747         set_reg_field_value(value,
1748                             TRIGGER_SOURCE_SELECT_LOGIC_ZERO,
1749                             CRTC_TRIGB_CNTL,
1750                             CRTC_TRIGB_SOURCE_SELECT);
1751 
1752         set_reg_field_value(value,
1753                             TRIGGER_POLARITY_SELECT_LOGIC_ZERO,
1754                             CRTC_TRIGB_CNTL,
1755                             CRTC_TRIGB_POLARITY_SELECT);
1756 
1757         set_reg_field_value(value,
1758                             1, /* clear trigger status */
1759                             CRTC_TRIGB_CNTL,
1760                             CRTC_TRIGB_CLEAR);
1761 
1762         dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL), value);
1763 }
1764 
1765 /**
1766  *****************************************************************************
1767  *  @brief
1768  *     Checks whether CRTC triggered reset occurred
1769  *
1770  *  @return
1771  *     true if triggered reset occurred, false otherwise
1772  *****************************************************************************
1773  */
1774 bool dce110_timing_generator_did_triggered_reset_occur(
1775         struct timing_generator *tg)
1776 {
1777         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1778         uint32_t value = dm_read_reg(tg->ctx,
1779                         CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL));
1780         uint32_t value1 = dm_read_reg(tg->ctx,
1781                         CRTC_REG(mmCRTC_VERT_SYNC_CONTROL));
1782         bool force = get_reg_field_value(value,
1783                                          CRTC_FORCE_COUNT_NOW_CNTL,
1784                                          CRTC_FORCE_COUNT_NOW_OCCURRED) != 0;
1785         bool vert_sync = get_reg_field_value(value1,
1786                                              CRTC_VERT_SYNC_CONTROL,
1787                                              CRTC_FORCE_VSYNC_NEXT_LINE_OCCURRED) != 0;
1788 
1789         return (force || vert_sync);
1790 }
1791 
1792 /**
1793  * dce110_timing_generator_disable_vga
1794  * Turn OFF VGA Mode and Timing  - DxVGA_CONTROL
1795  * VGA Mode and VGA Timing is used by VBIOS on CRT Monitors;
1796  */
1797 void dce110_timing_generator_disable_vga(
1798         struct timing_generator *tg)
1799 {
1800         uint32_t addr = 0;
1801         uint32_t value = 0;
1802 
1803         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1804 
1805         switch (tg110->controller_id) {
1806         case CONTROLLER_ID_D0:
1807                 addr = mmD1VGA_CONTROL;
1808                 break;
1809         case CONTROLLER_ID_D1:
1810                 addr = mmD2VGA_CONTROL;
1811                 break;
1812         case CONTROLLER_ID_D2:
1813                 addr = mmD3VGA_CONTROL;
1814                 break;
1815         case CONTROLLER_ID_D3:
1816                 addr = mmD4VGA_CONTROL;
1817                 break;
1818         case CONTROLLER_ID_D4:
1819                 addr = mmD5VGA_CONTROL;
1820                 break;
1821         case CONTROLLER_ID_D5:
1822                 addr = mmD6VGA_CONTROL;
1823                 break;
1824         default:
1825                 break;
1826         }
1827         value = dm_read_reg(tg->ctx, addr);
1828 
1829         set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_MODE_ENABLE);
1830         set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_TIMING_SELECT);
1831         set_reg_field_value(
1832                         value, 0, D1VGA_CONTROL, D1VGA_SYNC_POLARITY_SELECT);
1833         set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_OVERSCAN_COLOR_EN);
1834 
1835         dm_write_reg(tg->ctx, addr, value);
1836 }
1837 
1838 /**
1839 * set_overscan_color_black
1840 *
1841 * @param :black_color is one of the color space
1842 *    :this routine will set overscan black color according to the color space.
1843 * @return none
1844 */
1845 
1846 void dce110_timing_generator_set_overscan_color_black(
1847         struct timing_generator *tg,
1848         const struct tg_color *color)
1849 {
1850         struct dc_context *ctx = tg->ctx;
1851         uint32_t addr;
1852         uint32_t value = 0;
1853         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1854 
1855         set_reg_field_value(
1856                         value,
1857                         color->color_b_cb,
1858                         CRTC_OVERSCAN_COLOR,
1859                         CRTC_OVERSCAN_COLOR_BLUE);
1860 
1861         set_reg_field_value(
1862                         value,
1863                         color->color_r_cr,
1864                         CRTC_OVERSCAN_COLOR,
1865                         CRTC_OVERSCAN_COLOR_RED);
1866 
1867         set_reg_field_value(
1868                         value,
1869                         color->color_g_y,
1870                         CRTC_OVERSCAN_COLOR,
1871                         CRTC_OVERSCAN_COLOR_GREEN);
1872 
1873         addr = CRTC_REG(mmCRTC_OVERSCAN_COLOR);
1874         dm_write_reg(ctx, addr, value);
1875         addr = CRTC_REG(mmCRTC_BLACK_COLOR);
1876         dm_write_reg(ctx, addr, value);
1877         /* This is desirable to have a constant DAC output voltage during the
1878          * blank time that is higher than the 0 volt reference level that the
1879          * DAC outputs when the NBLANK signal
1880          * is asserted low, such as for output to an analog TV. */
1881         addr = CRTC_REG(mmCRTC_BLANK_DATA_COLOR);
1882         dm_write_reg(ctx, addr, value);
1883 
1884         /* TO DO we have to program EXT registers and we need to know LB DATA
1885          * format because it is used when more 10 , i.e. 12 bits per color
1886          *
1887          * m_mmDxCRTC_OVERSCAN_COLOR_EXT
1888          * m_mmDxCRTC_BLACK_COLOR_EXT
1889          * m_mmDxCRTC_BLANK_DATA_COLOR_EXT
1890          */
1891 
1892 }
1893 
1894 void dce110_tg_program_blank_color(struct timing_generator *tg,
1895                 const struct tg_color *black_color)
1896 {
1897         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1898         uint32_t addr = CRTC_REG(mmCRTC_BLACK_COLOR);
1899         uint32_t value = dm_read_reg(tg->ctx, addr);
1900 
1901         set_reg_field_value(
1902                 value,
1903                 black_color->color_b_cb,
1904                 CRTC_BLACK_COLOR,
1905                 CRTC_BLACK_COLOR_B_CB);
1906         set_reg_field_value(
1907                 value,
1908                 black_color->color_g_y,
1909                 CRTC_BLACK_COLOR,
1910                 CRTC_BLACK_COLOR_G_Y);
1911         set_reg_field_value(
1912                 value,
1913                 black_color->color_r_cr,
1914                 CRTC_BLACK_COLOR,
1915                 CRTC_BLACK_COLOR_R_CR);
1916 
1917         dm_write_reg(tg->ctx, addr, value);
1918 
1919         addr = CRTC_REG(mmCRTC_BLANK_DATA_COLOR);
1920         dm_write_reg(tg->ctx, addr, value);
1921 }
1922 
1923 void dce110_tg_set_overscan_color(struct timing_generator *tg,
1924         const struct tg_color *overscan_color)
1925 {
1926         struct dc_context *ctx = tg->ctx;
1927         uint32_t value = 0;
1928         uint32_t addr;
1929         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1930 
1931         set_reg_field_value(
1932                 value,
1933                 overscan_color->color_b_cb,
1934                 CRTC_OVERSCAN_COLOR,
1935                 CRTC_OVERSCAN_COLOR_BLUE);
1936 
1937         set_reg_field_value(
1938                 value,
1939                 overscan_color->color_g_y,
1940                 CRTC_OVERSCAN_COLOR,
1941                 CRTC_OVERSCAN_COLOR_GREEN);
1942 
1943         set_reg_field_value(
1944                 value,
1945                 overscan_color->color_r_cr,
1946                 CRTC_OVERSCAN_COLOR,
1947                 CRTC_OVERSCAN_COLOR_RED);
1948 
1949         addr = CRTC_REG(mmCRTC_OVERSCAN_COLOR);
1950         dm_write_reg(ctx, addr, value);
1951 }
1952 
1953 void dce110_tg_program_timing(struct timing_generator *tg,
1954         const struct dc_crtc_timing *timing,
1955         int vready_offset,
1956         int vstartup_start,
1957         int vupdate_offset,
1958         int vupdate_width,
1959         const enum signal_type signal,
1960         bool use_vbios)
1961 {
1962         if (use_vbios)
1963                 dce110_timing_generator_program_timing_generator(tg, timing);
1964         else
1965                 dce110_timing_generator_program_blanking(tg, timing);
1966 }
1967 
1968 bool dce110_tg_is_blanked(struct timing_generator *tg)
1969 {
1970         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1971         uint32_t value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_BLANK_CONTROL));
1972 
1973         if (get_reg_field_value(
1974                         value,
1975                         CRTC_BLANK_CONTROL,
1976                         CRTC_BLANK_DATA_EN) == 1 &&
1977                 get_reg_field_value(
1978                         value,
1979                         CRTC_BLANK_CONTROL,
1980                         CRTC_CURRENT_BLANK_STATE) == 1)
1981                 return true;
1982         return false;
1983 }
1984 
1985 void dce110_tg_set_blank(struct timing_generator *tg,
1986                 bool enable_blanking)
1987 {
1988         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1989         uint32_t value = 0;
1990 
1991         set_reg_field_value(
1992                 value,
1993                 1,
1994                 CRTC_DOUBLE_BUFFER_CONTROL,
1995                 CRTC_BLANK_DATA_DOUBLE_BUFFER_EN);
1996 
1997         dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_DOUBLE_BUFFER_CONTROL), value);
1998         value = 0;
1999 
2000         if (enable_blanking) {
2001                 set_reg_field_value(
2002                         value,
2003                         1,
2004                         CRTC_BLANK_CONTROL,
2005                         CRTC_BLANK_DATA_EN);
2006 
2007                 dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_BLANK_CONTROL), value);
2008 
2009         } else
2010                 dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_BLANK_CONTROL), 0);
2011 }
2012 
2013 bool dce110_tg_validate_timing(struct timing_generator *tg,
2014         const struct dc_crtc_timing *timing)
2015 {
2016         return dce110_timing_generator_validate_timing(tg, timing, SIGNAL_TYPE_NONE);
2017 }
2018 
2019 void dce110_tg_wait_for_state(struct timing_generator *tg,
2020         enum crtc_state state)
2021 {
2022         switch (state) {
2023         case CRTC_STATE_VBLANK:
2024                 dce110_timing_generator_wait_for_vblank(tg);
2025                 break;
2026 
2027         case CRTC_STATE_VACTIVE:
2028                 dce110_timing_generator_wait_for_vactive(tg);
2029                 break;
2030 
2031         default:
2032                 break;
2033         }
2034 }
2035 
2036 void dce110_tg_set_colors(struct timing_generator *tg,
2037         const struct tg_color *blank_color,
2038         const struct tg_color *overscan_color)
2039 {
2040         if (blank_color != NULL)
2041                 dce110_tg_program_blank_color(tg, blank_color);
2042         if (overscan_color != NULL)
2043                 dce110_tg_set_overscan_color(tg, overscan_color);
2044 }
2045 
2046 /* Gets first line of blank region of the display timing for CRTC
2047  * and programms is as a trigger to fire vertical interrupt
2048  */
2049 bool dce110_arm_vert_intr(struct timing_generator *tg, uint8_t width)
2050 {
2051         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
2052         uint32_t v_blank_start = 0;
2053         uint32_t v_blank_end = 0;
2054         uint32_t val = 0;
2055         uint32_t h_position, v_position;
2056 
2057         tg->funcs->get_scanoutpos(
2058                         tg,
2059                         &v_blank_start,
2060                         &v_blank_end,
2061                         &h_position,
2062                         &v_position);
2063 
2064         if (v_blank_start == 0 || v_blank_end == 0)
2065                 return false;
2066 
2067         set_reg_field_value(
2068                 val,
2069                 v_blank_start,
2070                 CRTC_VERTICAL_INTERRUPT0_POSITION,
2071                 CRTC_VERTICAL_INTERRUPT0_LINE_START);
2072 
2073         /* Set interval width for interrupt to fire to 1 scanline */
2074         set_reg_field_value(
2075                 val,
2076                 v_blank_start + width,
2077                 CRTC_VERTICAL_INTERRUPT0_POSITION,
2078                 CRTC_VERTICAL_INTERRUPT0_LINE_END);
2079 
2080         dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_VERTICAL_INTERRUPT0_POSITION), val);
2081 
2082         return true;
2083 }
2084 
2085 static bool dce110_is_tg_enabled(struct timing_generator *tg)
2086 {
2087         uint32_t addr = 0;
2088         uint32_t value = 0;
2089         uint32_t field = 0;
2090         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
2091 
2092         addr = CRTC_REG(mmCRTC_CONTROL);
2093         value = dm_read_reg(tg->ctx, addr);
2094         field = get_reg_field_value(value, CRTC_CONTROL,
2095                                     CRTC_CURRENT_MASTER_EN_STATE);
2096         return field == 1;
2097 }
2098 
2099 bool dce110_configure_crc(struct timing_generator *tg,
2100                           const struct crc_params *params)
2101 {
2102         uint32_t cntl_addr = 0;
2103         uint32_t addr = 0;
2104         uint32_t value;
2105         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
2106 
2107         /* Cannot configure crc on a CRTC that is disabled */
2108         if (!dce110_is_tg_enabled(tg))
2109                 return false;
2110 
2111         cntl_addr = CRTC_REG(mmCRTC_CRC_CNTL);
2112 
2113         /* First, disable CRC before we configure it. */
2114         dm_write_reg(tg->ctx, cntl_addr, 0);
2115 
2116         if (!params->enable)
2117                 return true;
2118 
2119         /* Program frame boundaries */
2120         /* Window A x axis start and end. */
2121         value = 0;
2122         addr = CRTC_REG(mmCRTC_CRC0_WINDOWA_X_CONTROL);
2123         set_reg_field_value(value, params->windowa_x_start,
2124                             CRTC_CRC0_WINDOWA_X_CONTROL,
2125                             CRTC_CRC0_WINDOWA_X_START);
2126         set_reg_field_value(value, params->windowa_x_end,
2127                             CRTC_CRC0_WINDOWA_X_CONTROL,
2128                             CRTC_CRC0_WINDOWA_X_END);
2129         dm_write_reg(tg->ctx, addr, value);
2130 
2131         /* Window A y axis start and end. */
2132         value = 0;
2133         addr = CRTC_REG(mmCRTC_CRC0_WINDOWA_Y_CONTROL);
2134         set_reg_field_value(value, params->windowa_y_start,
2135                             CRTC_CRC0_WINDOWA_Y_CONTROL,
2136                             CRTC_CRC0_WINDOWA_Y_START);
2137         set_reg_field_value(value, params->windowa_y_end,
2138                             CRTC_CRC0_WINDOWA_Y_CONTROL,
2139                             CRTC_CRC0_WINDOWA_Y_END);
2140         dm_write_reg(tg->ctx, addr, value);
2141 
2142         /* Window B x axis start and end. */
2143         value = 0;
2144         addr = CRTC_REG(mmCRTC_CRC0_WINDOWB_X_CONTROL);
2145         set_reg_field_value(value, params->windowb_x_start,
2146                             CRTC_CRC0_WINDOWB_X_CONTROL,
2147                             CRTC_CRC0_WINDOWB_X_START);
2148         set_reg_field_value(value, params->windowb_x_end,
2149                             CRTC_CRC0_WINDOWB_X_CONTROL,
2150                             CRTC_CRC0_WINDOWB_X_END);
2151         dm_write_reg(tg->ctx, addr, value);
2152 
2153         /* Window B y axis start and end. */
2154         value = 0;
2155         addr = CRTC_REG(mmCRTC_CRC0_WINDOWB_Y_CONTROL);
2156         set_reg_field_value(value, params->windowb_y_start,
2157                             CRTC_CRC0_WINDOWB_Y_CONTROL,
2158                             CRTC_CRC0_WINDOWB_Y_START);
2159         set_reg_field_value(value, params->windowb_y_end,
2160                             CRTC_CRC0_WINDOWB_Y_CONTROL,
2161                             CRTC_CRC0_WINDOWB_Y_END);
2162         dm_write_reg(tg->ctx, addr, value);
2163 
2164         /* Set crc mode and selection, and enable. Only using CRC0*/
2165         value = 0;
2166         set_reg_field_value(value, params->continuous_mode ? 1 : 0,
2167                             CRTC_CRC_CNTL, CRTC_CRC_CONT_EN);
2168         set_reg_field_value(value, params->selection,
2169                             CRTC_CRC_CNTL, CRTC_CRC0_SELECT);
2170         set_reg_field_value(value, 1, CRTC_CRC_CNTL, CRTC_CRC_EN);
2171         dm_write_reg(tg->ctx, cntl_addr, value);
2172 
2173         return true;
2174 }
2175 
2176 bool dce110_get_crc(struct timing_generator *tg,
2177                     uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
2178 {
2179         uint32_t addr = 0;
2180         uint32_t value = 0;
2181         uint32_t field = 0;
2182         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
2183 
2184         addr = CRTC_REG(mmCRTC_CRC_CNTL);
2185         value = dm_read_reg(tg->ctx, addr);
2186         field = get_reg_field_value(value, CRTC_CRC_CNTL, CRTC_CRC_EN);
2187 
2188         /* Early return if CRC is not enabled for this CRTC */
2189         if (!field)
2190                 return false;
2191 
2192         addr = CRTC_REG(mmCRTC_CRC0_DATA_RG);
2193         value = dm_read_reg(tg->ctx, addr);
2194         *r_cr = get_reg_field_value(value, CRTC_CRC0_DATA_RG, CRC0_R_CR);
2195         *g_y = get_reg_field_value(value, CRTC_CRC0_DATA_RG, CRC0_G_Y);
2196 
2197         addr = CRTC_REG(mmCRTC_CRC0_DATA_B);
2198         value = dm_read_reg(tg->ctx, addr);
2199         *b_cb = get_reg_field_value(value, CRTC_CRC0_DATA_B, CRC0_B_CB);
2200 
2201         return true;
2202 }
2203 
2204 static const struct timing_generator_funcs dce110_tg_funcs = {
2205                 .validate_timing = dce110_tg_validate_timing,
2206                 .program_timing = dce110_tg_program_timing,
2207                 .enable_crtc = dce110_timing_generator_enable_crtc,
2208                 .disable_crtc = dce110_timing_generator_disable_crtc,
2209                 .is_counter_moving = dce110_timing_generator_is_counter_moving,
2210                 .get_position = dce110_timing_generator_get_position,
2211                 .get_frame_count = dce110_timing_generator_get_vblank_counter,
2212                 .get_scanoutpos = dce110_timing_generator_get_crtc_scanoutpos,
2213                 .set_early_control = dce110_timing_generator_set_early_control,
2214                 .wait_for_state = dce110_tg_wait_for_state,
2215                 .set_blank = dce110_tg_set_blank,
2216                 .is_blanked = dce110_tg_is_blanked,
2217                 .set_colors = dce110_tg_set_colors,
2218                 .set_overscan_blank_color =
2219                                 dce110_timing_generator_set_overscan_color_black,
2220                 .set_blank_color = dce110_timing_generator_program_blank_color,
2221                 .disable_vga = dce110_timing_generator_disable_vga,
2222                 .did_triggered_reset_occur =
2223                                 dce110_timing_generator_did_triggered_reset_occur,
2224                 .setup_global_swap_lock =
2225                                 dce110_timing_generator_setup_global_swap_lock,
2226                 .enable_reset_trigger = dce110_timing_generator_enable_reset_trigger,
2227                 .enable_crtc_reset = dce110_timing_generator_enable_crtc_reset,
2228                 .disable_reset_trigger = dce110_timing_generator_disable_reset_trigger,
2229                 .tear_down_global_swap_lock =
2230                                 dce110_timing_generator_tear_down_global_swap_lock,
2231                 .enable_advanced_request =
2232                                 dce110_timing_generator_enable_advanced_request,
2233                 .set_drr =
2234                                 dce110_timing_generator_set_drr,
2235                 .set_static_screen_control =
2236                         dce110_timing_generator_set_static_screen_control,
2237                 .set_test_pattern = dce110_timing_generator_set_test_pattern,
2238                 .arm_vert_intr = dce110_arm_vert_intr,
2239                 .is_tg_enabled = dce110_is_tg_enabled,
2240                 .configure_crc = dce110_configure_crc,
2241                 .get_crc = dce110_get_crc,
2242 };
2243 
2244 void dce110_timing_generator_construct(
2245         struct dce110_timing_generator *tg110,
2246         struct dc_context *ctx,
2247         uint32_t instance,
2248         const struct dce110_timing_generator_offsets *offsets)
2249 {
2250         tg110->controller_id = CONTROLLER_ID_D0 + instance;
2251         tg110->base.inst = instance;
2252 
2253         tg110->offsets = *offsets;
2254 
2255         tg110->base.funcs = &dce110_tg_funcs;
2256 
2257         tg110->base.ctx = ctx;
2258         tg110->base.bp = ctx->dc_bios;
2259 
2260         tg110->max_h_total = CRTC_H_TOTAL__CRTC_H_TOTAL_MASK + 1;
2261         tg110->max_v_total = CRTC_V_TOTAL__CRTC_V_TOTAL_MASK + 1;
2262 
2263         tg110->min_h_blank = 56;
2264         tg110->min_h_front_porch = 4;
2265         tg110->min_h_back_porch = 4;
2266 }

/* [<][>][^][v][top][bottom][index][help] */