root/arch/arm64/include/asm/cpufeature.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. cpucap_default_scope
  2. cpucap_late_cpu_optional
  3. cpucap_late_cpu_permitted
  4. cpucap_multi_entry_cap_matches
  5. __cpus_have_const_cap
  6. cpus_have_cap
  7. cpus_have_const_cap
  8. cpus_set_cap
  9. cpuid_feature_extract_signed_field_width
  10. cpuid_feature_extract_signed_field
  11. cpuid_feature_extract_unsigned_field_width
  12. cpuid_feature_extract_unsigned_field
  13. arm64_ftr_mask
  14. arm64_ftr_reg_user_value
  15. cpuid_feature_extract_field_width
  16. cpuid_feature_extract_field
  17. arm64_ftr_value
  18. id_aa64mmfr0_mixed_endian_el0
  19. id_aa64pfr0_32bit_el0
  20. id_aa64pfr0_sve
  21. cpu_supports_mixed_endian_el0
  22. system_supports_32bit_el0
  23. system_supports_4kb_granule
  24. system_supports_64kb_granule
  25. system_supports_16kb_granule
  26. system_supports_mixed_endian_el0
  27. system_supports_mixed_endian
  28. system_supports_fpsimd
  29. system_uses_ttbr0_pan
  30. system_supports_sve
  31. system_supports_cnp
  32. system_supports_address_auth
  33. system_supports_generic_auth
  34. system_uses_irq_prio_masking
  35. system_has_prio_mask_debugging
  36. arm64_get_ssbd_state
  37. id_aa64mmfr0_parange_to_phys_shift

   1 /* SPDX-License-Identifier: GPL-2.0-only */
   2 /*
   3  * Copyright (C) 2014 Linaro Ltd. <ard.biesheuvel@linaro.org>
   4  */
   5 
   6 #ifndef __ASM_CPUFEATURE_H
   7 #define __ASM_CPUFEATURE_H
   8 
   9 #include <asm/cpucaps.h>
  10 #include <asm/cputype.h>
  11 #include <asm/hwcap.h>
  12 #include <asm/sysreg.h>
  13 
  14 #define MAX_CPU_FEATURES        64
  15 #define cpu_feature(x)          KERNEL_HWCAP_ ## x
  16 
  17 #ifndef __ASSEMBLY__
  18 
  19 #include <linux/bug.h>
  20 #include <linux/jump_label.h>
  21 #include <linux/kernel.h>
  22 
  23 /*
  24  * CPU feature register tracking
  25  *
  26  * The safe value of a CPUID feature field is dependent on the implications
  27  * of the values assigned to it by the architecture. Based on the relationship
  28  * between the values, the features are classified into 3 types - LOWER_SAFE,
  29  * HIGHER_SAFE and EXACT.
  30  *
  31  * The lowest value of all the CPUs is chosen for LOWER_SAFE and highest
  32  * for HIGHER_SAFE. It is expected that all CPUs have the same value for
  33  * a field when EXACT is specified, failing which, the safe value specified
  34  * in the table is chosen.
  35  */
  36 
  37 enum ftr_type {
  38         FTR_EXACT,                      /* Use a predefined safe value */
  39         FTR_LOWER_SAFE,                 /* Smaller value is safe */
  40         FTR_HIGHER_SAFE,                /* Bigger value is safe */
  41         FTR_HIGHER_OR_ZERO_SAFE,        /* Bigger value is safe, but 0 is biggest */
  42 };
  43 
  44 #define FTR_STRICT      true    /* SANITY check strict matching required */
  45 #define FTR_NONSTRICT   false   /* SANITY check ignored */
  46 
  47 #define FTR_SIGNED      true    /* Value should be treated as signed */
  48 #define FTR_UNSIGNED    false   /* Value should be treated as unsigned */
  49 
  50 #define FTR_VISIBLE     true    /* Feature visible to the user space */
  51 #define FTR_HIDDEN      false   /* Feature is hidden from the user */
  52 
  53 #define FTR_VISIBLE_IF_IS_ENABLED(config)               \
  54         (IS_ENABLED(config) ? FTR_VISIBLE : FTR_HIDDEN)
  55 
  56 struct arm64_ftr_bits {
  57         bool            sign;   /* Value is signed ? */
  58         bool            visible;
  59         bool            strict; /* CPU Sanity check: strict matching required ? */
  60         enum ftr_type   type;
  61         u8              shift;
  62         u8              width;
  63         s64             safe_val; /* safe value for FTR_EXACT features */
  64 };
  65 
  66 /*
  67  * @arm64_ftr_reg - Feature register
  68  * @strict_mask         Bits which should match across all CPUs for sanity.
  69  * @sys_val             Safe value across the CPUs (system view)
  70  */
  71 struct arm64_ftr_reg {
  72         const char                      *name;
  73         u64                             strict_mask;
  74         u64                             user_mask;
  75         u64                             sys_val;
  76         u64                             user_val;
  77         const struct arm64_ftr_bits     *ftr_bits;
  78 };
  79 
  80 extern struct arm64_ftr_reg arm64_ftr_reg_ctrel0;
  81 
  82 /*
  83  * CPU capabilities:
  84  *
  85  * We use arm64_cpu_capabilities to represent system features, errata work
  86  * arounds (both used internally by kernel and tracked in cpu_hwcaps) and
  87  * ELF HWCAPs (which are exposed to user).
  88  *
  89  * To support systems with heterogeneous CPUs, we need to make sure that we
  90  * detect the capabilities correctly on the system and take appropriate
  91  * measures to ensure there are no incompatibilities.
  92  *
  93  * This comment tries to explain how we treat the capabilities.
  94  * Each capability has the following list of attributes :
  95  *
  96  * 1) Scope of Detection : The system detects a given capability by
  97  *    performing some checks at runtime. This could be, e.g, checking the
  98  *    value of a field in CPU ID feature register or checking the cpu
  99  *    model. The capability provides a call back ( @matches() ) to
 100  *    perform the check. Scope defines how the checks should be performed.
 101  *    There are three cases:
 102  *
 103  *     a) SCOPE_LOCAL_CPU: check all the CPUs and "detect" if at least one
 104  *        matches. This implies, we have to run the check on all the
 105  *        booting CPUs, until the system decides that state of the
 106  *        capability is finalised. (See section 2 below)
 107  *              Or
 108  *     b) SCOPE_SYSTEM: check all the CPUs and "detect" if all the CPUs
 109  *        matches. This implies, we run the check only once, when the
 110  *        system decides to finalise the state of the capability. If the
 111  *        capability relies on a field in one of the CPU ID feature
 112  *        registers, we use the sanitised value of the register from the
 113  *        CPU feature infrastructure to make the decision.
 114  *              Or
 115  *     c) SCOPE_BOOT_CPU: Check only on the primary boot CPU to detect the
 116  *        feature. This category is for features that are "finalised"
 117  *        (or used) by the kernel very early even before the SMP cpus
 118  *        are brought up.
 119  *
 120  *    The process of detection is usually denoted by "update" capability
 121  *    state in the code.
 122  *
 123  * 2) Finalise the state : The kernel should finalise the state of a
 124  *    capability at some point during its execution and take necessary
 125  *    actions if any. Usually, this is done, after all the boot-time
 126  *    enabled CPUs are brought up by the kernel, so that it can make
 127  *    better decision based on the available set of CPUs. However, there
 128  *    are some special cases, where the action is taken during the early
 129  *    boot by the primary boot CPU. (e.g, running the kernel at EL2 with
 130  *    Virtualisation Host Extensions). The kernel usually disallows any
 131  *    changes to the state of a capability once it finalises the capability
 132  *    and takes any action, as it may be impossible to execute the actions
 133  *    safely. A CPU brought up after a capability is "finalised" is
 134  *    referred to as "Late CPU" w.r.t the capability. e.g, all secondary
 135  *    CPUs are treated "late CPUs" for capabilities determined by the boot
 136  *    CPU.
 137  *
 138  *    At the moment there are two passes of finalising the capabilities.
 139  *      a) Boot CPU scope capabilities - Finalised by primary boot CPU via
 140  *         setup_boot_cpu_capabilities().
 141  *      b) Everything except (a) - Run via setup_system_capabilities().
 142  *
 143  * 3) Verification: When a CPU is brought online (e.g, by user or by the
 144  *    kernel), the kernel should make sure that it is safe to use the CPU,
 145  *    by verifying that the CPU is compliant with the state of the
 146  *    capabilities finalised already. This happens via :
 147  *
 148  *      secondary_start_kernel()-> check_local_cpu_capabilities()
 149  *
 150  *    As explained in (2) above, capabilities could be finalised at
 151  *    different points in the execution. Each newly booted CPU is verified
 152  *    against the capabilities that have been finalised by the time it
 153  *    boots.
 154  *
 155  *      a) SCOPE_BOOT_CPU : All CPUs are verified against the capability
 156  *      except for the primary boot CPU.
 157  *
 158  *      b) SCOPE_LOCAL_CPU, SCOPE_SYSTEM: All CPUs hotplugged on by the
 159  *      user after the kernel boot are verified against the capability.
 160  *
 161  *    If there is a conflict, the kernel takes an action, based on the
 162  *    severity (e.g, a CPU could be prevented from booting or cause a
 163  *    kernel panic). The CPU is allowed to "affect" the state of the
 164  *    capability, if it has not been finalised already. See section 5
 165  *    for more details on conflicts.
 166  *
 167  * 4) Action: As mentioned in (2), the kernel can take an action for each
 168  *    detected capability, on all CPUs on the system. Appropriate actions
 169  *    include, turning on an architectural feature, modifying the control
 170  *    registers (e.g, SCTLR, TCR etc.) or patching the kernel via
 171  *    alternatives. The kernel patching is batched and performed at later
 172  *    point. The actions are always initiated only after the capability
 173  *    is finalised. This is usally denoted by "enabling" the capability.
 174  *    The actions are initiated as follows :
 175  *      a) Action is triggered on all online CPUs, after the capability is
 176  *      finalised, invoked within the stop_machine() context from
 177  *      enable_cpu_capabilitie().
 178  *
 179  *      b) Any late CPU, brought up after (1), the action is triggered via:
 180  *
 181  *        check_local_cpu_capabilities() -> verify_local_cpu_capabilities()
 182  *
 183  * 5) Conflicts: Based on the state of the capability on a late CPU vs.
 184  *    the system state, we could have the following combinations :
 185  *
 186  *              x-----------------------------x
 187  *              | Type  | System   | Late CPU |
 188  *              |-----------------------------|
 189  *              |  a    |   y      |    n     |
 190  *              |-----------------------------|
 191  *              |  b    |   n      |    y     |
 192  *              x-----------------------------x
 193  *
 194  *     Two separate flag bits are defined to indicate whether each kind of
 195  *     conflict can be allowed:
 196  *              ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU - Case(a) is allowed
 197  *              ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU - Case(b) is allowed
 198  *
 199  *     Case (a) is not permitted for a capability that the system requires
 200  *     all CPUs to have in order for the capability to be enabled. This is
 201  *     typical for capabilities that represent enhanced functionality.
 202  *
 203  *     Case (b) is not permitted for a capability that must be enabled
 204  *     during boot if any CPU in the system requires it in order to run
 205  *     safely. This is typical for erratum work arounds that cannot be
 206  *     enabled after the corresponding capability is finalised.
 207  *
 208  *     In some non-typical cases either both (a) and (b), or neither,
 209  *     should be permitted. This can be described by including neither
 210  *     or both flags in the capability's type field.
 211  */
 212 
 213 
 214 /*
 215  * Decide how the capability is detected.
 216  * On any local CPU vs System wide vs the primary boot CPU
 217  */
 218 #define ARM64_CPUCAP_SCOPE_LOCAL_CPU            ((u16)BIT(0))
 219 #define ARM64_CPUCAP_SCOPE_SYSTEM               ((u16)BIT(1))
 220 /*
 221  * The capabilitiy is detected on the Boot CPU and is used by kernel
 222  * during early boot. i.e, the capability should be "detected" and
 223  * "enabled" as early as possibly on all booting CPUs.
 224  */
 225 #define ARM64_CPUCAP_SCOPE_BOOT_CPU             ((u16)BIT(2))
 226 #define ARM64_CPUCAP_SCOPE_MASK                 \
 227         (ARM64_CPUCAP_SCOPE_SYSTEM      |       \
 228          ARM64_CPUCAP_SCOPE_LOCAL_CPU   |       \
 229          ARM64_CPUCAP_SCOPE_BOOT_CPU)
 230 
 231 #define SCOPE_SYSTEM                            ARM64_CPUCAP_SCOPE_SYSTEM
 232 #define SCOPE_LOCAL_CPU                         ARM64_CPUCAP_SCOPE_LOCAL_CPU
 233 #define SCOPE_BOOT_CPU                          ARM64_CPUCAP_SCOPE_BOOT_CPU
 234 #define SCOPE_ALL                               ARM64_CPUCAP_SCOPE_MASK
 235 
 236 /*
 237  * Is it permitted for a late CPU to have this capability when system
 238  * hasn't already enabled it ?
 239  */
 240 #define ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU     ((u16)BIT(4))
 241 /* Is it safe for a late CPU to miss this capability when system has it */
 242 #define ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU      ((u16)BIT(5))
 243 
 244 /*
 245  * CPU errata workarounds that need to be enabled at boot time if one or
 246  * more CPUs in the system requires it. When one of these capabilities
 247  * has been enabled, it is safe to allow any CPU to boot that doesn't
 248  * require the workaround. However, it is not safe if a "late" CPU
 249  * requires a workaround and the system hasn't enabled it already.
 250  */
 251 #define ARM64_CPUCAP_LOCAL_CPU_ERRATUM          \
 252         (ARM64_CPUCAP_SCOPE_LOCAL_CPU | ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
 253 /*
 254  * CPU feature detected at boot time based on system-wide value of a
 255  * feature. It is safe for a late CPU to have this feature even though
 256  * the system hasn't enabled it, although the feature will not be used
 257  * by Linux in this case. If the system has enabled this feature already,
 258  * then every late CPU must have it.
 259  */
 260 #define ARM64_CPUCAP_SYSTEM_FEATURE     \
 261         (ARM64_CPUCAP_SCOPE_SYSTEM | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
 262 /*
 263  * CPU feature detected at boot time based on feature of one or more CPUs.
 264  * All possible conflicts for a late CPU are ignored.
 265  */
 266 #define ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE             \
 267         (ARM64_CPUCAP_SCOPE_LOCAL_CPU           |       \
 268          ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU     |       \
 269          ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
 270 
 271 /*
 272  * CPU feature detected at boot time, on one or more CPUs. A late CPU
 273  * is not allowed to have the capability when the system doesn't have it.
 274  * It is Ok for a late CPU to miss the feature.
 275  */
 276 #define ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE  \
 277         (ARM64_CPUCAP_SCOPE_LOCAL_CPU           |       \
 278          ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
 279 
 280 /*
 281  * CPU feature used early in the boot based on the boot CPU. All secondary
 282  * CPUs must match the state of the capability as detected by the boot CPU.
 283  */
 284 #define ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE ARM64_CPUCAP_SCOPE_BOOT_CPU
 285 
 286 struct arm64_cpu_capabilities {
 287         const char *desc;
 288         u16 capability;
 289         u16 type;
 290         bool (*matches)(const struct arm64_cpu_capabilities *caps, int scope);
 291         /*
 292          * Take the appropriate actions to configure this capability
 293          * for this CPU. If the capability is detected by the kernel
 294          * this will be called on all the CPUs in the system,
 295          * including the hotplugged CPUs, regardless of whether the
 296          * capability is available on that specific CPU. This is
 297          * useful for some capabilities (e.g, working around CPU
 298          * errata), where all the CPUs must take some action (e.g,
 299          * changing system control/configuration). Thus, if an action
 300          * is required only if the CPU has the capability, then the
 301          * routine must check it before taking any action.
 302          */
 303         void (*cpu_enable)(const struct arm64_cpu_capabilities *cap);
 304         union {
 305                 struct {        /* To be used for erratum handling only */
 306                         struct midr_range midr_range;
 307                         const struct arm64_midr_revidr {
 308                                 u32 midr_rv;            /* revision/variant */
 309                                 u32 revidr_mask;
 310                         } * const fixed_revs;
 311                 };
 312 
 313                 const struct midr_range *midr_range_list;
 314                 struct {        /* Feature register checking */
 315                         u32 sys_reg;
 316                         u8 field_pos;
 317                         u8 min_field_value;
 318                         u8 hwcap_type;
 319                         bool sign;
 320                         unsigned long hwcap;
 321                 };
 322         };
 323 
 324         /*
 325          * An optional list of "matches/cpu_enable" pair for the same
 326          * "capability" of the same "type" as described by the parent.
 327          * Only matches(), cpu_enable() and fields relevant to these
 328          * methods are significant in the list. The cpu_enable is
 329          * invoked only if the corresponding entry "matches()".
 330          * However, if a cpu_enable() method is associated
 331          * with multiple matches(), care should be taken that either
 332          * the match criteria are mutually exclusive, or that the
 333          * method is robust against being called multiple times.
 334          */
 335         const struct arm64_cpu_capabilities *match_list;
 336 };
 337 
 338 static inline int cpucap_default_scope(const struct arm64_cpu_capabilities *cap)
 339 {
 340         return cap->type & ARM64_CPUCAP_SCOPE_MASK;
 341 }
 342 
 343 static inline bool
 344 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
 345 {
 346         return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
 347 }
 348 
 349 static inline bool
 350 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
 351 {
 352         return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
 353 }
 354 
 355 /*
 356  * Generic helper for handling capabilties with multiple (match,enable) pairs
 357  * of call backs, sharing the same capability bit.
 358  * Iterate over each entry to see if at least one matches.
 359  */
 360 static inline bool
 361 cpucap_multi_entry_cap_matches(const struct arm64_cpu_capabilities *entry,
 362                                int scope)
 363 {
 364         const struct arm64_cpu_capabilities *caps;
 365 
 366         for (caps = entry->match_list; caps->matches; caps++)
 367                 if (caps->matches(caps, scope))
 368                         return true;
 369 
 370         return false;
 371 }
 372 
 373 extern DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
 374 extern struct static_key_false cpu_hwcap_keys[ARM64_NCAPS];
 375 extern struct static_key_false arm64_const_caps_ready;
 376 
 377 /* ARM64 CAPS + alternative_cb */
 378 #define ARM64_NPATCHABLE (ARM64_NCAPS + 1)
 379 extern DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE);
 380 
 381 #define for_each_available_cap(cap)             \
 382         for_each_set_bit(cap, cpu_hwcaps, ARM64_NCAPS)
 383 
 384 bool this_cpu_has_cap(unsigned int cap);
 385 void cpu_set_feature(unsigned int num);
 386 bool cpu_have_feature(unsigned int num);
 387 unsigned long cpu_get_elf_hwcap(void);
 388 unsigned long cpu_get_elf_hwcap2(void);
 389 
 390 #define cpu_set_named_feature(name) cpu_set_feature(cpu_feature(name))
 391 #define cpu_have_named_feature(name) cpu_have_feature(cpu_feature(name))
 392 
 393 /* System capability check for constant caps */
 394 static __always_inline bool __cpus_have_const_cap(int num)
 395 {
 396         if (num >= ARM64_NCAPS)
 397                 return false;
 398         return static_branch_unlikely(&cpu_hwcap_keys[num]);
 399 }
 400 
 401 static inline bool cpus_have_cap(unsigned int num)
 402 {
 403         if (num >= ARM64_NCAPS)
 404                 return false;
 405         return test_bit(num, cpu_hwcaps);
 406 }
 407 
 408 static __always_inline bool cpus_have_const_cap(int num)
 409 {
 410         if (static_branch_likely(&arm64_const_caps_ready))
 411                 return __cpus_have_const_cap(num);
 412         else
 413                 return cpus_have_cap(num);
 414 }
 415 
 416 static inline void cpus_set_cap(unsigned int num)
 417 {
 418         if (num >= ARM64_NCAPS) {
 419                 pr_warn("Attempt to set an illegal CPU capability (%d >= %d)\n",
 420                         num, ARM64_NCAPS);
 421         } else {
 422                 __set_bit(num, cpu_hwcaps);
 423         }
 424 }
 425 
 426 static inline int __attribute_const__
 427 cpuid_feature_extract_signed_field_width(u64 features, int field, int width)
 428 {
 429         return (s64)(features << (64 - width - field)) >> (64 - width);
 430 }
 431 
 432 static inline int __attribute_const__
 433 cpuid_feature_extract_signed_field(u64 features, int field)
 434 {
 435         return cpuid_feature_extract_signed_field_width(features, field, 4);
 436 }
 437 
 438 static inline unsigned int __attribute_const__
 439 cpuid_feature_extract_unsigned_field_width(u64 features, int field, int width)
 440 {
 441         return (u64)(features << (64 - width - field)) >> (64 - width);
 442 }
 443 
 444 static inline unsigned int __attribute_const__
 445 cpuid_feature_extract_unsigned_field(u64 features, int field)
 446 {
 447         return cpuid_feature_extract_unsigned_field_width(features, field, 4);
 448 }
 449 
 450 static inline u64 arm64_ftr_mask(const struct arm64_ftr_bits *ftrp)
 451 {
 452         return (u64)GENMASK(ftrp->shift + ftrp->width - 1, ftrp->shift);
 453 }
 454 
 455 static inline u64 arm64_ftr_reg_user_value(const struct arm64_ftr_reg *reg)
 456 {
 457         return (reg->user_val | (reg->sys_val & reg->user_mask));
 458 }
 459 
 460 static inline int __attribute_const__
 461 cpuid_feature_extract_field_width(u64 features, int field, int width, bool sign)
 462 {
 463         return (sign) ?
 464                 cpuid_feature_extract_signed_field_width(features, field, width) :
 465                 cpuid_feature_extract_unsigned_field_width(features, field, width);
 466 }
 467 
 468 static inline int __attribute_const__
 469 cpuid_feature_extract_field(u64 features, int field, bool sign)
 470 {
 471         return cpuid_feature_extract_field_width(features, field, 4, sign);
 472 }
 473 
 474 static inline s64 arm64_ftr_value(const struct arm64_ftr_bits *ftrp, u64 val)
 475 {
 476         return (s64)cpuid_feature_extract_field_width(val, ftrp->shift, ftrp->width, ftrp->sign);
 477 }
 478 
 479 static inline bool id_aa64mmfr0_mixed_endian_el0(u64 mmfr0)
 480 {
 481         return cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL_SHIFT) == 0x1 ||
 482                 cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL0_SHIFT) == 0x1;
 483 }
 484 
 485 static inline bool id_aa64pfr0_32bit_el0(u64 pfr0)
 486 {
 487         u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL0_SHIFT);
 488 
 489         return val == ID_AA64PFR0_EL0_32BIT_64BIT;
 490 }
 491 
 492 static inline bool id_aa64pfr0_sve(u64 pfr0)
 493 {
 494         u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_SVE_SHIFT);
 495 
 496         return val > 0;
 497 }
 498 
 499 void __init setup_cpu_features(void);
 500 void check_local_cpu_capabilities(void);
 501 
 502 u64 read_sanitised_ftr_reg(u32 id);
 503 
 504 static inline bool cpu_supports_mixed_endian_el0(void)
 505 {
 506         return id_aa64mmfr0_mixed_endian_el0(read_cpuid(ID_AA64MMFR0_EL1));
 507 }
 508 
 509 static inline bool system_supports_32bit_el0(void)
 510 {
 511         return cpus_have_const_cap(ARM64_HAS_32BIT_EL0);
 512 }
 513 
 514 static inline bool system_supports_4kb_granule(void)
 515 {
 516         u64 mmfr0;
 517         u32 val;
 518 
 519         mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
 520         val = cpuid_feature_extract_unsigned_field(mmfr0,
 521                                                 ID_AA64MMFR0_TGRAN4_SHIFT);
 522 
 523         return val == ID_AA64MMFR0_TGRAN4_SUPPORTED;
 524 }
 525 
 526 static inline bool system_supports_64kb_granule(void)
 527 {
 528         u64 mmfr0;
 529         u32 val;
 530 
 531         mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
 532         val = cpuid_feature_extract_unsigned_field(mmfr0,
 533                                                 ID_AA64MMFR0_TGRAN64_SHIFT);
 534 
 535         return val == ID_AA64MMFR0_TGRAN64_SUPPORTED;
 536 }
 537 
 538 static inline bool system_supports_16kb_granule(void)
 539 {
 540         u64 mmfr0;
 541         u32 val;
 542 
 543         mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
 544         val = cpuid_feature_extract_unsigned_field(mmfr0,
 545                                                 ID_AA64MMFR0_TGRAN16_SHIFT);
 546 
 547         return val == ID_AA64MMFR0_TGRAN16_SUPPORTED;
 548 }
 549 
 550 static inline bool system_supports_mixed_endian_el0(void)
 551 {
 552         return id_aa64mmfr0_mixed_endian_el0(read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1));
 553 }
 554 
 555 static inline bool system_supports_mixed_endian(void)
 556 {
 557         u64 mmfr0;
 558         u32 val;
 559 
 560         mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
 561         val = cpuid_feature_extract_unsigned_field(mmfr0,
 562                                                 ID_AA64MMFR0_BIGENDEL_SHIFT);
 563 
 564         return val == 0x1;
 565 }
 566 
 567 static inline bool system_supports_fpsimd(void)
 568 {
 569         return !cpus_have_const_cap(ARM64_HAS_NO_FPSIMD);
 570 }
 571 
 572 static inline bool system_uses_ttbr0_pan(void)
 573 {
 574         return IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN) &&
 575                 !cpus_have_const_cap(ARM64_HAS_PAN);
 576 }
 577 
 578 static inline bool system_supports_sve(void)
 579 {
 580         return IS_ENABLED(CONFIG_ARM64_SVE) &&
 581                 cpus_have_const_cap(ARM64_SVE);
 582 }
 583 
 584 static inline bool system_supports_cnp(void)
 585 {
 586         return IS_ENABLED(CONFIG_ARM64_CNP) &&
 587                 cpus_have_const_cap(ARM64_HAS_CNP);
 588 }
 589 
 590 static inline bool system_supports_address_auth(void)
 591 {
 592         return IS_ENABLED(CONFIG_ARM64_PTR_AUTH) &&
 593                 (cpus_have_const_cap(ARM64_HAS_ADDRESS_AUTH_ARCH) ||
 594                  cpus_have_const_cap(ARM64_HAS_ADDRESS_AUTH_IMP_DEF));
 595 }
 596 
 597 static inline bool system_supports_generic_auth(void)
 598 {
 599         return IS_ENABLED(CONFIG_ARM64_PTR_AUTH) &&
 600                 (cpus_have_const_cap(ARM64_HAS_GENERIC_AUTH_ARCH) ||
 601                  cpus_have_const_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF));
 602 }
 603 
 604 static inline bool system_uses_irq_prio_masking(void)
 605 {
 606         return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
 607                cpus_have_const_cap(ARM64_HAS_IRQ_PRIO_MASKING);
 608 }
 609 
 610 static inline bool system_has_prio_mask_debugging(void)
 611 {
 612         return IS_ENABLED(CONFIG_ARM64_DEBUG_PRIORITY_MASKING) &&
 613                system_uses_irq_prio_masking();
 614 }
 615 
 616 #define ARM64_BP_HARDEN_UNKNOWN         -1
 617 #define ARM64_BP_HARDEN_WA_NEEDED       0
 618 #define ARM64_BP_HARDEN_NOT_REQUIRED    1
 619 
 620 int get_spectre_v2_workaround_state(void);
 621 
 622 #define ARM64_SSBD_UNKNOWN              -1
 623 #define ARM64_SSBD_FORCE_DISABLE        0
 624 #define ARM64_SSBD_KERNEL               1
 625 #define ARM64_SSBD_FORCE_ENABLE         2
 626 #define ARM64_SSBD_MITIGATED            3
 627 
 628 static inline int arm64_get_ssbd_state(void)
 629 {
 630 #ifdef CONFIG_ARM64_SSBD
 631         extern int ssbd_state;
 632         return ssbd_state;
 633 #else
 634         return ARM64_SSBD_UNKNOWN;
 635 #endif
 636 }
 637 
 638 void arm64_set_ssbd_mitigation(bool state);
 639 
 640 extern int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt);
 641 
 642 static inline u32 id_aa64mmfr0_parange_to_phys_shift(int parange)
 643 {
 644         switch (parange) {
 645         case 0: return 32;
 646         case 1: return 36;
 647         case 2: return 40;
 648         case 3: return 42;
 649         case 4: return 44;
 650         case 5: return 48;
 651         case 6: return 52;
 652         /*
 653          * A future PE could use a value unknown to the kernel.
 654          * However, by the "D10.1.4 Principles of the ID scheme
 655          * for fields in ID registers", ARM DDI 0487C.a, any new
 656          * value is guaranteed to be higher than what we know already.
 657          * As a safe limit, we return the limit supported by the kernel.
 658          */
 659         default: return CONFIG_ARM64_PA_BITS;
 660         }
 661 }
 662 #endif /* __ASSEMBLY__ */
 663 
 664 #endif

/* [<][>][^][v][top][bottom][index][help] */