This source file includes following definitions.
- vegam_smu_init
- vegam_start_smu_in_protection_mode
- vegam_start_smu_in_non_protection_mode
- vegam_start_smu
- vegam_process_firmware_header
- vegam_is_dpm_running
- vegam_get_mac_definition
- vegam_update_uvd_smc_table
- vegam_update_vce_smc_table
- vegam_update_bif_smc_table
- vegam_update_smc_table
- vegam_initialize_power_tune_defaults
- vegam_populate_smc_mvdd_table
- vegam_populate_smc_vddci_table
- vegam_populate_cac_table
- vegam_populate_smc_voltage_tables
- vegam_populate_ulv_level
- vegam_populate_ulv_state
- vegam_populate_smc_link_level
- vegam_get_dependency_volt_by_clk
- vegam_get_sclk_range_table
- vegam_calculate_sclk_params
- vegam_get_sleep_divider_id_from_clock
- vegam_populate_single_graphic_level
- vegam_populate_all_graphic_levels
- vegam_calculate_mclk_params
- vegam_populate_single_memory_level
- vegam_populate_all_memory_levels
- vegam_populate_mvdd_value
- vegam_populate_smc_acpi_level
- vegam_populate_smc_vce_level
- vegam_populate_memory_timing_parameters
- vegam_program_memory_timing_parameters
- vegam_populate_smc_uvd_level
- vegam_populate_smc_boot_level
- vegam_populate_smc_initial_state
- scale_fan_gain_settings
- vegam_populate_bapm_parameters_in_dpm_table
- vegam_populate_clock_stretcher_data_table
- vegam_is_hw_avfs_present
- vegam_populate_avfs_parameters
- vegam_populate_vr_config
- vegam_populate_svi_load_line
- vegam_populate_tdc_limit
- vegam_populate_dw8
- vegam_populate_temperature_scaler
- vegam_populate_fuzzy_fan
- vegam_populate_gnb_lpml
- vegam_populate_bapm_vddc_base_leakage_sidd
- vegam_populate_pm_fuses
- vegam_enable_reconfig_cus
- vegam_init_smc_table
- vegam_get_offsetof
- vegam_program_mem_timing_parameters
- vegam_update_sclk_threshold
- vegam_thermal_avfs_enable
- vegam_thermal_setup_fan_table
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 #include "pp_debug.h"
24 #include "smumgr.h"
25 #include "smu_ucode_xfer_vi.h"
26 #include "vegam_smumgr.h"
27 #include "smu/smu_7_1_3_d.h"
28 #include "smu/smu_7_1_3_sh_mask.h"
29 #include "gmc/gmc_8_1_d.h"
30 #include "gmc/gmc_8_1_sh_mask.h"
31 #include "oss/oss_3_0_d.h"
32 #include "gca/gfx_8_0_d.h"
33 #include "bif/bif_5_0_d.h"
34 #include "bif/bif_5_0_sh_mask.h"
35 #include "ppatomctrl.h"
36 #include "cgs_common.h"
37 #include "smu7_ppsmc.h"
38
39 #include "smu7_dyn_defaults.h"
40
41 #include "smu7_hwmgr.h"
42 #include "hardwaremanager.h"
43 #include "atombios.h"
44 #include "pppcielanes.h"
45
46 #include "dce/dce_11_2_d.h"
47 #include "dce/dce_11_2_sh_mask.h"
48
49 #define PPVEGAM_TARGETACTIVITY_DFLT 50
50
51 #define VOLTAGE_VID_OFFSET_SCALE1 625
52 #define VOLTAGE_VID_OFFSET_SCALE2 100
53 #define POWERTUNE_DEFAULT_SET_MAX 1
54 #define VDDC_VDDCI_DELTA 200
55 #define MC_CG_ARB_FREQ_F1 0x0b
56
57 #define STRAP_ASIC_RO_LSB 2168
58 #define STRAP_ASIC_RO_MSB 2175
59
60 #define PPSMC_MSG_ApplyAvfsCksOffVoltage ((uint16_t) 0x415)
61 #define PPSMC_MSG_EnableModeSwitchRLCNotification ((uint16_t) 0x305)
62
63 static const struct vegam_pt_defaults
64 vegam_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX] = {
65
66
67 { 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000,
68 { 0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8, 0xC9, 0xC9, 0x2F, 0x4D, 0x61},
69 { 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 } },
70 };
71
72 static const sclkFcwRange_t Range_Table[NUM_SCLK_RANGE] = {
73 {VCO_2_4, POSTDIV_DIV_BY_16, 75, 160, 112},
74 {VCO_3_6, POSTDIV_DIV_BY_16, 112, 224, 160},
75 {VCO_2_4, POSTDIV_DIV_BY_8, 75, 160, 112},
76 {VCO_3_6, POSTDIV_DIV_BY_8, 112, 224, 160},
77 {VCO_2_4, POSTDIV_DIV_BY_4, 75, 160, 112},
78 {VCO_3_6, POSTDIV_DIV_BY_4, 112, 216, 160},
79 {VCO_2_4, POSTDIV_DIV_BY_2, 75, 160, 108},
80 {VCO_3_6, POSTDIV_DIV_BY_2, 112, 216, 160} };
81
82 static int vegam_smu_init(struct pp_hwmgr *hwmgr)
83 {
84 struct vegam_smumgr *smu_data;
85
86 smu_data = kzalloc(sizeof(struct vegam_smumgr), GFP_KERNEL);
87 if (smu_data == NULL)
88 return -ENOMEM;
89
90 hwmgr->smu_backend = smu_data;
91
92 if (smu7_init(hwmgr)) {
93 kfree(smu_data);
94 return -EINVAL;
95 }
96
97 return 0;
98 }
99
100 static int vegam_start_smu_in_protection_mode(struct pp_hwmgr *hwmgr)
101 {
102 int result = 0;
103
104
105
106
107
108 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
109 SMC_SYSCON_RESET_CNTL, rst_reg, 1);
110
111 result = smu7_upload_smu_firmware_image(hwmgr);
112 if (result != 0)
113 return result;
114
115
116 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixSMU_STATUS, 0);
117
118 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
119 SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
120
121
122 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
123 SMC_SYSCON_RESET_CNTL, rst_reg, 0);
124
125
126 PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS, INTERRUPTS_ENABLED, 1);
127
128
129
130 smu7_send_msg_to_smc_offset(hwmgr);
131
132
133
134
135 PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, SMU_STATUS, SMU_DONE, 0);
136
137 if (1 != PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
138 SMU_STATUS, SMU_PASS))
139 PP_ASSERT_WITH_CODE(false, "SMU Firmware start failed!", return -1);
140
141 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixFIRMWARE_FLAGS, 0);
142
143 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
144 SMC_SYSCON_RESET_CNTL, rst_reg, 1);
145
146 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
147 SMC_SYSCON_RESET_CNTL, rst_reg, 0);
148
149
150 PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
151
152 return result;
153 }
154
155 static int vegam_start_smu_in_non_protection_mode(struct pp_hwmgr *hwmgr)
156 {
157 int result = 0;
158
159
160 PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, RCU_UC_EVENTS, boot_seq_done, 0);
161
162
163
164 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
165 ixFIRMWARE_FLAGS, 0);
166
167 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
168 SMC_SYSCON_RESET_CNTL,
169 rst_reg, 1);
170
171 result = smu7_upload_smu_firmware_image(hwmgr);
172 if (result != 0)
173 return result;
174
175
176 smu7_program_jump_on_start(hwmgr);
177
178 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
179 SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
180
181 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
182 SMC_SYSCON_RESET_CNTL, rst_reg, 0);
183
184
185
186 PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,
187 FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
188
189 return result;
190 }
191
192 static int vegam_start_smu(struct pp_hwmgr *hwmgr)
193 {
194 int result = 0;
195 struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
196
197
198 if (!smu7_is_smc_ram_running(hwmgr) && hwmgr->not_vf) {
199 smu_data->protected_mode = (uint8_t)(PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
200 CGS_IND_REG__SMC, SMU_FIRMWARE, SMU_MODE));
201 smu_data->smu7_data.security_hard_key = (uint8_t)(PHM_READ_VFPF_INDIRECT_FIELD(
202 hwmgr->device, CGS_IND_REG__SMC, SMU_FIRMWARE, SMU_SEL));
203
204
205 if (smu_data->protected_mode == 0)
206 result = vegam_start_smu_in_non_protection_mode(hwmgr);
207 else
208 result = vegam_start_smu_in_protection_mode(hwmgr);
209
210 if (result != 0)
211 PP_ASSERT_WITH_CODE(0, "Failed to load SMU ucode.", return result);
212 }
213
214
215 smu7_read_smc_sram_dword(hwmgr,
216 SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU75_Firmware_Header, SoftRegisters),
217 &(smu_data->smu7_data.soft_regs_start),
218 0x40000);
219
220 result = smu7_request_smu_load_fw(hwmgr);
221
222 return result;
223 }
224
225 static int vegam_process_firmware_header(struct pp_hwmgr *hwmgr)
226 {
227 struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
228 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
229 uint32_t tmp;
230 int result;
231 bool error = false;
232
233 result = smu7_read_smc_sram_dword(hwmgr,
234 SMU7_FIRMWARE_HEADER_LOCATION +
235 offsetof(SMU75_Firmware_Header, DpmTable),
236 &tmp, SMC_RAM_END);
237
238 if (0 == result)
239 smu_data->smu7_data.dpm_table_start = tmp;
240
241 error |= (0 != result);
242
243 result = smu7_read_smc_sram_dword(hwmgr,
244 SMU7_FIRMWARE_HEADER_LOCATION +
245 offsetof(SMU75_Firmware_Header, SoftRegisters),
246 &tmp, SMC_RAM_END);
247
248 if (!result) {
249 data->soft_regs_start = tmp;
250 smu_data->smu7_data.soft_regs_start = tmp;
251 }
252
253 error |= (0 != result);
254
255 result = smu7_read_smc_sram_dword(hwmgr,
256 SMU7_FIRMWARE_HEADER_LOCATION +
257 offsetof(SMU75_Firmware_Header, mcRegisterTable),
258 &tmp, SMC_RAM_END);
259
260 if (!result)
261 smu_data->smu7_data.mc_reg_table_start = tmp;
262
263 result = smu7_read_smc_sram_dword(hwmgr,
264 SMU7_FIRMWARE_HEADER_LOCATION +
265 offsetof(SMU75_Firmware_Header, FanTable),
266 &tmp, SMC_RAM_END);
267
268 if (!result)
269 smu_data->smu7_data.fan_table_start = tmp;
270
271 error |= (0 != result);
272
273 result = smu7_read_smc_sram_dword(hwmgr,
274 SMU7_FIRMWARE_HEADER_LOCATION +
275 offsetof(SMU75_Firmware_Header, mcArbDramTimingTable),
276 &tmp, SMC_RAM_END);
277
278 if (!result)
279 smu_data->smu7_data.arb_table_start = tmp;
280
281 error |= (0 != result);
282
283 result = smu7_read_smc_sram_dword(hwmgr,
284 SMU7_FIRMWARE_HEADER_LOCATION +
285 offsetof(SMU75_Firmware_Header, Version),
286 &tmp, SMC_RAM_END);
287
288 if (!result)
289 hwmgr->microcode_version_info.SMC = tmp;
290
291 error |= (0 != result);
292
293 return error ? -1 : 0;
294 }
295
296 static bool vegam_is_dpm_running(struct pp_hwmgr *hwmgr)
297 {
298 return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
299 CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
300 ? true : false;
301 }
302
303 static uint32_t vegam_get_mac_definition(uint32_t value)
304 {
305 switch (value) {
306 case SMU_MAX_LEVELS_GRAPHICS:
307 return SMU75_MAX_LEVELS_GRAPHICS;
308 case SMU_MAX_LEVELS_MEMORY:
309 return SMU75_MAX_LEVELS_MEMORY;
310 case SMU_MAX_LEVELS_LINK:
311 return SMU75_MAX_LEVELS_LINK;
312 case SMU_MAX_ENTRIES_SMIO:
313 return SMU75_MAX_ENTRIES_SMIO;
314 case SMU_MAX_LEVELS_VDDC:
315 return SMU75_MAX_LEVELS_VDDC;
316 case SMU_MAX_LEVELS_VDDGFX:
317 return SMU75_MAX_LEVELS_VDDGFX;
318 case SMU_MAX_LEVELS_VDDCI:
319 return SMU75_MAX_LEVELS_VDDCI;
320 case SMU_MAX_LEVELS_MVDD:
321 return SMU75_MAX_LEVELS_MVDD;
322 case SMU_UVD_MCLK_HANDSHAKE_DISABLE:
323 return SMU7_UVD_MCLK_HANDSHAKE_DISABLE |
324 SMU7_VCE_MCLK_HANDSHAKE_DISABLE;
325 }
326
327 pr_warn("can't get the mac of %x\n", value);
328 return 0;
329 }
330
331 static int vegam_update_uvd_smc_table(struct pp_hwmgr *hwmgr)
332 {
333 struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
334 uint32_t mm_boot_level_offset, mm_boot_level_value;
335 struct phm_ppt_v1_information *table_info =
336 (struct phm_ppt_v1_information *)(hwmgr->pptable);
337
338 smu_data->smc_state_table.UvdBootLevel = 0;
339 if (table_info->mm_dep_table->count > 0)
340 smu_data->smc_state_table.UvdBootLevel =
341 (uint8_t) (table_info->mm_dep_table->count - 1);
342 mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + offsetof(SMU75_Discrete_DpmTable,
343 UvdBootLevel);
344 mm_boot_level_offset /= 4;
345 mm_boot_level_offset *= 4;
346 mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
347 CGS_IND_REG__SMC, mm_boot_level_offset);
348 mm_boot_level_value &= 0x00FFFFFF;
349 mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24;
350 cgs_write_ind_register(hwmgr->device,
351 CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
352
353 if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
354 PHM_PlatformCaps_UVDDPM) ||
355 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
356 PHM_PlatformCaps_StablePState))
357 smum_send_msg_to_smc_with_parameter(hwmgr,
358 PPSMC_MSG_UVDDPM_SetEnabledMask,
359 (uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel));
360 return 0;
361 }
362
363 static int vegam_update_vce_smc_table(struct pp_hwmgr *hwmgr)
364 {
365 struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
366 uint32_t mm_boot_level_offset, mm_boot_level_value;
367 struct phm_ppt_v1_information *table_info =
368 (struct phm_ppt_v1_information *)(hwmgr->pptable);
369
370 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
371 PHM_PlatformCaps_StablePState))
372 smu_data->smc_state_table.VceBootLevel =
373 (uint8_t) (table_info->mm_dep_table->count - 1);
374 else
375 smu_data->smc_state_table.VceBootLevel = 0;
376
377 mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
378 offsetof(SMU75_Discrete_DpmTable, VceBootLevel);
379 mm_boot_level_offset /= 4;
380 mm_boot_level_offset *= 4;
381 mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
382 CGS_IND_REG__SMC, mm_boot_level_offset);
383 mm_boot_level_value &= 0xFF00FFFF;
384 mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16;
385 cgs_write_ind_register(hwmgr->device,
386 CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
387
388 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState))
389 smum_send_msg_to_smc_with_parameter(hwmgr,
390 PPSMC_MSG_VCEDPM_SetEnabledMask,
391 (uint32_t)1 << smu_data->smc_state_table.VceBootLevel);
392 return 0;
393 }
394
395 static int vegam_update_bif_smc_table(struct pp_hwmgr *hwmgr)
396 {
397 struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
398 struct phm_ppt_v1_information *table_info =
399 (struct phm_ppt_v1_information *)(hwmgr->pptable);
400 struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
401 int max_entry, i;
402
403 max_entry = (SMU75_MAX_LEVELS_LINK < pcie_table->count) ?
404 SMU75_MAX_LEVELS_LINK :
405 pcie_table->count;
406
407 for (i = 0; i < max_entry; i++)
408 smu_data->bif_sclk_table[i] = pcie_table->entries[i].pcie_sclk;
409 return 0;
410 }
411
412 static int vegam_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
413 {
414 switch (type) {
415 case SMU_UVD_TABLE:
416 vegam_update_uvd_smc_table(hwmgr);
417 break;
418 case SMU_VCE_TABLE:
419 vegam_update_vce_smc_table(hwmgr);
420 break;
421 case SMU_BIF_TABLE:
422 vegam_update_bif_smc_table(hwmgr);
423 break;
424 default:
425 break;
426 }
427 return 0;
428 }
429
430 static void vegam_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
431 {
432 struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
433 struct phm_ppt_v1_information *table_info =
434 (struct phm_ppt_v1_information *)(hwmgr->pptable);
435
436 if (table_info &&
437 table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX &&
438 table_info->cac_dtp_table->usPowerTuneDataSetID)
439 smu_data->power_tune_defaults =
440 &vegam_power_tune_data_set_array
441 [table_info->cac_dtp_table->usPowerTuneDataSetID - 1];
442 else
443 smu_data->power_tune_defaults = &vegam_power_tune_data_set_array[0];
444
445 }
446
447 static int vegam_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
448 SMU75_Discrete_DpmTable *table)
449 {
450 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
451 uint32_t count, level;
452
453 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
454 count = data->mvdd_voltage_table.count;
455 if (count > SMU_MAX_SMIO_LEVELS)
456 count = SMU_MAX_SMIO_LEVELS;
457 for (level = 0; level < count; level++) {
458 table->SmioTable2.Pattern[level].Voltage = PP_HOST_TO_SMC_US(
459 data->mvdd_voltage_table.entries[level].value * VOLTAGE_SCALE);
460
461 table->SmioTable2.Pattern[level].Smio =
462 (uint8_t) level;
463 table->Smio[level] |=
464 data->mvdd_voltage_table.entries[level].smio_low;
465 }
466 table->SmioMask2 = data->mvdd_voltage_table.mask_low;
467
468 table->MvddLevelCount = (uint32_t) PP_HOST_TO_SMC_UL(count);
469 }
470
471 return 0;
472 }
473
474 static int vegam_populate_smc_vddci_table(struct pp_hwmgr *hwmgr,
475 struct SMU75_Discrete_DpmTable *table)
476 {
477 uint32_t count, level;
478 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
479
480 count = data->vddci_voltage_table.count;
481
482 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
483 if (count > SMU_MAX_SMIO_LEVELS)
484 count = SMU_MAX_SMIO_LEVELS;
485 for (level = 0; level < count; ++level) {
486 table->SmioTable1.Pattern[level].Voltage = PP_HOST_TO_SMC_US(
487 data->vddci_voltage_table.entries[level].value * VOLTAGE_SCALE);
488 table->SmioTable1.Pattern[level].Smio = (uint8_t) level;
489
490 table->Smio[level] |= data->vddci_voltage_table.entries[level].smio_low;
491 }
492 }
493
494 table->SmioMask1 = data->vddci_voltage_table.mask_low;
495
496 return 0;
497 }
498
499 static int vegam_populate_cac_table(struct pp_hwmgr *hwmgr,
500 struct SMU75_Discrete_DpmTable *table)
501 {
502 uint32_t count;
503 uint8_t index;
504 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
505 struct phm_ppt_v1_information *table_info =
506 (struct phm_ppt_v1_information *)(hwmgr->pptable);
507 struct phm_ppt_v1_voltage_lookup_table *lookup_table =
508 table_info->vddc_lookup_table;
509
510
511
512
513
514 for (count = 0; count < lookup_table->count; count++) {
515 index = phm_get_voltage_index(lookup_table,
516 data->vddc_voltage_table.entries[count].value);
517 table->BapmVddcVidLoSidd[count] =
518 convert_to_vid(lookup_table->entries[index].us_cac_low);
519 table->BapmVddcVidHiSidd[count] =
520 convert_to_vid(lookup_table->entries[index].us_cac_mid);
521 table->BapmVddcVidHiSidd2[count] =
522 convert_to_vid(lookup_table->entries[index].us_cac_high);
523 }
524
525 return 0;
526 }
527
528 static int vegam_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
529 struct SMU75_Discrete_DpmTable *table)
530 {
531 vegam_populate_smc_vddci_table(hwmgr, table);
532 vegam_populate_smc_mvdd_table(hwmgr, table);
533 vegam_populate_cac_table(hwmgr, table);
534
535 return 0;
536 }
537
538 static int vegam_populate_ulv_level(struct pp_hwmgr *hwmgr,
539 struct SMU75_Discrete_Ulv *state)
540 {
541 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
542 struct phm_ppt_v1_information *table_info =
543 (struct phm_ppt_v1_information *)(hwmgr->pptable);
544
545 state->CcPwrDynRm = 0;
546 state->CcPwrDynRm1 = 0;
547
548 state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset;
549 state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset *
550 VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
551
552 state->VddcPhase = data->vddc_phase_shed_control ^ 0x3;
553
554 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
555 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
556 CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
557
558 return 0;
559 }
560
561 static int vegam_populate_ulv_state(struct pp_hwmgr *hwmgr,
562 struct SMU75_Discrete_DpmTable *table)
563 {
564 return vegam_populate_ulv_level(hwmgr, &table->Ulv);
565 }
566
567 static int vegam_populate_smc_link_level(struct pp_hwmgr *hwmgr,
568 struct SMU75_Discrete_DpmTable *table)
569 {
570 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
571 struct vegam_smumgr *smu_data =
572 (struct vegam_smumgr *)(hwmgr->smu_backend);
573 struct smu7_dpm_table *dpm_table = &data->dpm_table;
574 int i;
575
576
577
578 for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
579 table->LinkLevel[i].PcieGenSpeed =
580 (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
581 table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width(
582 dpm_table->pcie_speed_table.dpm_levels[i].param1);
583 table->LinkLevel[i].EnabledForActivity = 1;
584 table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff);
585 table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5);
586 table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30);
587 }
588
589 smu_data->smc_state_table.LinkLevelCount =
590 (uint8_t)dpm_table->pcie_speed_table.count;
591
592
593 data->dpm_level_enable_mask.pcie_dpm_enable_mask =
594 phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
595
596 return 0;
597 }
598
599 static int vegam_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
600 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table,
601 uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd)
602 {
603 uint32_t i;
604 uint16_t vddci;
605 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
606
607 *voltage = *mvdd = 0;
608
609
610 if (dep_table->count == 0)
611 return -EINVAL;
612
613 for (i = 0; i < dep_table->count; i++) {
614
615 if (dep_table->entries[i].clk >= clock) {
616 *voltage |= (dep_table->entries[i].vddc *
617 VOLTAGE_SCALE) << VDDC_SHIFT;
618 if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
619 *voltage |= (data->vbios_boot_state.vddci_bootup_value *
620 VOLTAGE_SCALE) << VDDCI_SHIFT;
621 else if (dep_table->entries[i].vddci)
622 *voltage |= (dep_table->entries[i].vddci *
623 VOLTAGE_SCALE) << VDDCI_SHIFT;
624 else {
625 vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
626 (dep_table->entries[i].vddc -
627 (uint16_t)VDDC_VDDCI_DELTA));
628 *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
629 }
630
631 if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
632 *mvdd = data->vbios_boot_state.mvdd_bootup_value *
633 VOLTAGE_SCALE;
634 else if (dep_table->entries[i].mvdd)
635 *mvdd = (uint32_t) dep_table->entries[i].mvdd *
636 VOLTAGE_SCALE;
637
638 *voltage |= 1 << PHASES_SHIFT;
639 return 0;
640 }
641 }
642
643
644 *voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
645 vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
646 (dep_table->entries[i - 1].vddc -
647 (uint16_t)VDDC_VDDCI_DELTA));
648
649 if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
650 *voltage |= (data->vbios_boot_state.vddci_bootup_value *
651 VOLTAGE_SCALE) << VDDCI_SHIFT;
652 else if (dep_table->entries[i - 1].vddci)
653 *voltage |= (dep_table->entries[i - 1].vddci *
654 VOLTAGE_SCALE) << VDDC_SHIFT;
655 else
656 *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
657
658 if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
659 *mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE;
660 else if (dep_table->entries[i].mvdd)
661 *mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE;
662
663 return 0;
664 }
665
666 static void vegam_get_sclk_range_table(struct pp_hwmgr *hwmgr,
667 SMU75_Discrete_DpmTable *table)
668 {
669 struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
670 uint32_t i, ref_clk;
671
672 struct pp_atom_ctrl_sclk_range_table range_table_from_vbios = { { {0} } };
673
674 ref_clk = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
675
676 if (0 == atomctrl_get_smc_sclk_range_table(hwmgr, &range_table_from_vbios)) {
677 for (i = 0; i < NUM_SCLK_RANGE; i++) {
678 table->SclkFcwRangeTable[i].vco_setting =
679 range_table_from_vbios.entry[i].ucVco_setting;
680 table->SclkFcwRangeTable[i].postdiv =
681 range_table_from_vbios.entry[i].ucPostdiv;
682 table->SclkFcwRangeTable[i].fcw_pcc =
683 range_table_from_vbios.entry[i].usFcw_pcc;
684
685 table->SclkFcwRangeTable[i].fcw_trans_upper =
686 range_table_from_vbios.entry[i].usFcw_trans_upper;
687 table->SclkFcwRangeTable[i].fcw_trans_lower =
688 range_table_from_vbios.entry[i].usRcw_trans_lower;
689
690 CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_pcc);
691 CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_upper);
692 CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_lower);
693 }
694 return;
695 }
696
697 for (i = 0; i < NUM_SCLK_RANGE; i++) {
698 smu_data->range_table[i].trans_lower_frequency =
699 (ref_clk * Range_Table[i].fcw_trans_lower) >> Range_Table[i].postdiv;
700 smu_data->range_table[i].trans_upper_frequency =
701 (ref_clk * Range_Table[i].fcw_trans_upper) >> Range_Table[i].postdiv;
702
703 table->SclkFcwRangeTable[i].vco_setting = Range_Table[i].vco_setting;
704 table->SclkFcwRangeTable[i].postdiv = Range_Table[i].postdiv;
705 table->SclkFcwRangeTable[i].fcw_pcc = Range_Table[i].fcw_pcc;
706
707 table->SclkFcwRangeTable[i].fcw_trans_upper = Range_Table[i].fcw_trans_upper;
708 table->SclkFcwRangeTable[i].fcw_trans_lower = Range_Table[i].fcw_trans_lower;
709
710 CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_pcc);
711 CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_upper);
712 CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_lower);
713 }
714 }
715
716 static int vegam_calculate_sclk_params(struct pp_hwmgr *hwmgr,
717 uint32_t clock, SMU_SclkSetting *sclk_setting)
718 {
719 struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
720 const SMU75_Discrete_DpmTable *table = &(smu_data->smc_state_table);
721 struct pp_atomctrl_clock_dividers_ai dividers;
722 uint32_t ref_clock;
723 uint32_t pcc_target_percent, pcc_target_freq, ss_target_percent, ss_target_freq;
724 uint8_t i;
725 int result;
726 uint64_t temp;
727
728 sclk_setting->SclkFrequency = clock;
729
730 result = atomctrl_get_engine_pll_dividers_ai(hwmgr, clock, ÷rs);
731 if (result == 0) {
732 sclk_setting->Fcw_int = dividers.usSclk_fcw_int;
733 sclk_setting->Fcw_frac = dividers.usSclk_fcw_frac;
734 sclk_setting->Pcc_fcw_int = dividers.usPcc_fcw_int;
735 sclk_setting->PllRange = dividers.ucSclkPllRange;
736 sclk_setting->Sclk_slew_rate = 0x400;
737 sclk_setting->Pcc_up_slew_rate = dividers.usPcc_fcw_slew_frac;
738 sclk_setting->Pcc_down_slew_rate = 0xffff;
739 sclk_setting->SSc_En = dividers.ucSscEnable;
740 sclk_setting->Fcw1_int = dividers.usSsc_fcw1_int;
741 sclk_setting->Fcw1_frac = dividers.usSsc_fcw1_frac;
742 sclk_setting->Sclk_ss_slew_rate = dividers.usSsc_fcw_slew_frac;
743 return result;
744 }
745
746 ref_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
747
748 for (i = 0; i < NUM_SCLK_RANGE; i++) {
749 if (clock > smu_data->range_table[i].trans_lower_frequency
750 && clock <= smu_data->range_table[i].trans_upper_frequency) {
751 sclk_setting->PllRange = i;
752 break;
753 }
754 }
755
756 sclk_setting->Fcw_int = (uint16_t)
757 ((clock << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) /
758 ref_clock);
759 temp = clock << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv;
760 temp <<= 0x10;
761 do_div(temp, ref_clock);
762 sclk_setting->Fcw_frac = temp & 0xffff;
763
764 pcc_target_percent = 10;
765 pcc_target_freq = clock - (clock * pcc_target_percent / 100);
766 sclk_setting->Pcc_fcw_int = (uint16_t)
767 ((pcc_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) /
768 ref_clock);
769
770 ss_target_percent = 2;
771 sclk_setting->SSc_En = 0;
772 if (ss_target_percent) {
773 sclk_setting->SSc_En = 1;
774 ss_target_freq = clock - (clock * ss_target_percent / 100);
775 sclk_setting->Fcw1_int = (uint16_t)
776 ((ss_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) /
777 ref_clock);
778 temp = ss_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv;
779 temp <<= 0x10;
780 do_div(temp, ref_clock);
781 sclk_setting->Fcw1_frac = temp & 0xffff;
782 }
783
784 return 0;
785 }
786
787 static uint8_t vegam_get_sleep_divider_id_from_clock(uint32_t clock,
788 uint32_t clock_insr)
789 {
790 uint8_t i;
791 uint32_t temp;
792 uint32_t min = max(clock_insr, (uint32_t)SMU7_MINIMUM_ENGINE_CLOCK);
793
794 PP_ASSERT_WITH_CODE((clock >= min),
795 "Engine clock can't satisfy stutter requirement!",
796 return 0);
797 for (i = 31; ; i--) {
798 temp = clock / (i + 1);
799
800 if (temp >= min || i == 0)
801 break;
802 }
803 return i;
804 }
805
806 static int vegam_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
807 uint32_t clock, struct SMU75_Discrete_GraphicsLevel *level)
808 {
809 int result;
810
811 uint32_t mvdd;
812 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
813 struct phm_ppt_v1_information *table_info =
814 (struct phm_ppt_v1_information *)(hwmgr->pptable);
815 SMU_SclkSetting curr_sclk_setting = { 0 };
816
817 result = vegam_calculate_sclk_params(hwmgr, clock, &curr_sclk_setting);
818
819
820 result = vegam_get_dependency_volt_by_clk(hwmgr,
821 table_info->vdd_dep_on_sclk, clock,
822 &level->MinVoltage, &mvdd);
823
824 PP_ASSERT_WITH_CODE((0 == result),
825 "can not find VDDC voltage value for "
826 "VDDC engine clock dependency table",
827 return result);
828 level->ActivityLevel = (uint16_t)(SclkDPMTuning_VEGAM >> DPMTuning_Activity_Shift);
829
830 level->CcPwrDynRm = 0;
831 level->CcPwrDynRm1 = 0;
832 level->EnabledForActivity = 0;
833 level->EnabledForThrottle = 1;
834 level->VoltageDownHyst = 0;
835 level->PowerThrottle = 0;
836 data->display_timing.min_clock_in_sr = hwmgr->display_config->min_core_set_clock_in_sr;
837
838 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
839 level->DeepSleepDivId = vegam_get_sleep_divider_id_from_clock(clock,
840 hwmgr->display_config->min_core_set_clock_in_sr);
841
842 level->SclkSetting = curr_sclk_setting;
843
844 CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage);
845 CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
846 CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
847 CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
848 CONVERT_FROM_HOST_TO_SMC_UL(level->SclkSetting.SclkFrequency);
849 CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw_int);
850 CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw_frac);
851 CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_fcw_int);
852 CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Sclk_slew_rate);
853 CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_up_slew_rate);
854 CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_down_slew_rate);
855 CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw1_int);
856 CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw1_frac);
857 CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Sclk_ss_slew_rate);
858 return 0;
859 }
860
861 static int vegam_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
862 {
863 struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
864 struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
865 struct smu7_dpm_table *dpm_table = &hw_data->dpm_table;
866 struct phm_ppt_v1_information *table_info =
867 (struct phm_ppt_v1_information *)(hwmgr->pptable);
868 struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
869 uint8_t pcie_entry_cnt = (uint8_t) hw_data->dpm_table.pcie_speed_table.count;
870 int result = 0;
871 uint32_t array = smu_data->smu7_data.dpm_table_start +
872 offsetof(SMU75_Discrete_DpmTable, GraphicsLevel);
873 uint32_t array_size = sizeof(struct SMU75_Discrete_GraphicsLevel) *
874 SMU75_MAX_LEVELS_GRAPHICS;
875 struct SMU75_Discrete_GraphicsLevel *levels =
876 smu_data->smc_state_table.GraphicsLevel;
877 uint32_t i, max_entry;
878 uint8_t hightest_pcie_level_enabled = 0,
879 lowest_pcie_level_enabled = 0,
880 mid_pcie_level_enabled = 0,
881 count = 0;
882
883 vegam_get_sclk_range_table(hwmgr, &(smu_data->smc_state_table));
884
885 for (i = 0; i < dpm_table->sclk_table.count; i++) {
886
887 result = vegam_populate_single_graphic_level(hwmgr,
888 dpm_table->sclk_table.dpm_levels[i].value,
889 &(smu_data->smc_state_table.GraphicsLevel[i]));
890 if (result)
891 return result;
892
893 levels[i].UpHyst = (uint8_t)
894 (SclkDPMTuning_VEGAM >> DPMTuning_Uphyst_Shift);
895 levels[i].DownHyst = (uint8_t)
896 (SclkDPMTuning_VEGAM >> DPMTuning_Downhyst_Shift);
897
898 if (i > 1)
899 levels[i].DeepSleepDivId = 0;
900 }
901 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
902 PHM_PlatformCaps_SPLLShutdownSupport))
903 smu_data->smc_state_table.GraphicsLevel[0].SclkSetting.SSc_En = 0;
904
905 smu_data->smc_state_table.GraphicsDpmLevelCount =
906 (uint8_t)dpm_table->sclk_table.count;
907 hw_data->dpm_level_enable_mask.sclk_dpm_enable_mask =
908 phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
909
910 for (i = 0; i < dpm_table->sclk_table.count; i++)
911 levels[i].EnabledForActivity =
912 (hw_data->dpm_level_enable_mask.sclk_dpm_enable_mask >> i) & 0x1;
913
914 if (pcie_table != NULL) {
915 PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt),
916 "There must be 1 or more PCIE levels defined in PPTable.",
917 return -EINVAL);
918 max_entry = pcie_entry_cnt - 1;
919 for (i = 0; i < dpm_table->sclk_table.count; i++)
920 levels[i].pcieDpmLevel =
921 (uint8_t) ((i < max_entry) ? i : max_entry);
922 } else {
923 while (hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
924 ((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &
925 (1 << (hightest_pcie_level_enabled + 1))) != 0))
926 hightest_pcie_level_enabled++;
927
928 while (hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
929 ((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &
930 (1 << lowest_pcie_level_enabled)) == 0))
931 lowest_pcie_level_enabled++;
932
933 while ((count < hightest_pcie_level_enabled) &&
934 ((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &
935 (1 << (lowest_pcie_level_enabled + 1 + count))) == 0))
936 count++;
937
938 mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1 + count) <
939 hightest_pcie_level_enabled ?
940 (lowest_pcie_level_enabled + 1 + count) :
941 hightest_pcie_level_enabled;
942
943
944 for (i = 2; i < dpm_table->sclk_table.count; i++)
945 levels[i].pcieDpmLevel = hightest_pcie_level_enabled;
946
947
948 levels[0].pcieDpmLevel = lowest_pcie_level_enabled;
949
950
951 levels[1].pcieDpmLevel = mid_pcie_level_enabled;
952 }
953
954 result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
955 (uint32_t)array_size, SMC_RAM_END);
956
957 return result;
958 }
959
960 static int vegam_calculate_mclk_params(struct pp_hwmgr *hwmgr,
961 uint32_t clock, struct SMU75_Discrete_MemoryLevel *mem_level)
962 {
963 struct pp_atomctrl_memory_clock_param_ai mpll_param;
964
965 PP_ASSERT_WITH_CODE(!atomctrl_get_memory_pll_dividers_ai(hwmgr,
966 clock, &mpll_param),
967 "Failed to retrieve memory pll parameter.",
968 return -EINVAL);
969
970 mem_level->MclkFrequency = (uint32_t)mpll_param.ulClock;
971 mem_level->Fcw_int = (uint16_t)mpll_param.ulMclk_fcw_int;
972 mem_level->Fcw_frac = (uint16_t)mpll_param.ulMclk_fcw_frac;
973 mem_level->Postdiv = (uint8_t)mpll_param.ulPostDiv;
974
975 return 0;
976 }
977
978 static int vegam_populate_single_memory_level(struct pp_hwmgr *hwmgr,
979 uint32_t clock, struct SMU75_Discrete_MemoryLevel *mem_level)
980 {
981 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
982 struct phm_ppt_v1_information *table_info =
983 (struct phm_ppt_v1_information *)(hwmgr->pptable);
984 int result = 0;
985 uint32_t mclk_stutter_mode_threshold = 60000;
986
987
988 if (table_info->vdd_dep_on_mclk) {
989 result = vegam_get_dependency_volt_by_clk(hwmgr,
990 table_info->vdd_dep_on_mclk, clock,
991 &mem_level->MinVoltage, &mem_level->MinMvdd);
992 PP_ASSERT_WITH_CODE(!result,
993 "can not find MinVddc voltage value from memory "
994 "VDDC voltage dependency table", return result);
995 }
996
997 result = vegam_calculate_mclk_params(hwmgr, clock, mem_level);
998 PP_ASSERT_WITH_CODE(!result,
999 "Failed to calculate mclk params.",
1000 return -EINVAL);
1001
1002 mem_level->EnabledForThrottle = 1;
1003 mem_level->EnabledForActivity = 0;
1004 mem_level->VoltageDownHyst = 0;
1005 mem_level->ActivityLevel = (uint16_t)
1006 (MemoryDPMTuning_VEGAM >> DPMTuning_Activity_Shift);
1007 mem_level->StutterEnable = false;
1008 mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1009
1010 data->display_timing.num_existing_displays = hwmgr->display_config->num_display;
1011 data->display_timing.vrefresh = hwmgr->display_config->vrefresh;
1012
1013 if (mclk_stutter_mode_threshold &&
1014 (clock <= mclk_stutter_mode_threshold) &&
1015 (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL,
1016 STUTTER_ENABLE) & 0x1))
1017 mem_level->StutterEnable = true;
1018
1019 if (!result) {
1020 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd);
1021 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency);
1022 CONVERT_FROM_HOST_TO_SMC_US(mem_level->Fcw_int);
1023 CONVERT_FROM_HOST_TO_SMC_US(mem_level->Fcw_frac);
1024 CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel);
1025 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage);
1026 }
1027
1028 return result;
1029 }
1030
1031 static int vegam_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1032 {
1033 struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
1034 struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1035 struct smu7_dpm_table *dpm_table = &hw_data->dpm_table;
1036 int result;
1037
1038 uint32_t array = smu_data->smu7_data.dpm_table_start +
1039 offsetof(SMU75_Discrete_DpmTable, MemoryLevel);
1040 uint32_t array_size = sizeof(SMU75_Discrete_MemoryLevel) *
1041 SMU75_MAX_LEVELS_MEMORY;
1042 struct SMU75_Discrete_MemoryLevel *levels =
1043 smu_data->smc_state_table.MemoryLevel;
1044 uint32_t i;
1045
1046 for (i = 0; i < dpm_table->mclk_table.count; i++) {
1047 PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
1048 "can not populate memory level as memory clock is zero",
1049 return -EINVAL);
1050 result = vegam_populate_single_memory_level(hwmgr,
1051 dpm_table->mclk_table.dpm_levels[i].value,
1052 &levels[i]);
1053
1054 if (result)
1055 return result;
1056
1057 levels[i].UpHyst = (uint8_t)
1058 (MemoryDPMTuning_VEGAM >> DPMTuning_Uphyst_Shift);
1059 levels[i].DownHyst = (uint8_t)
1060 (MemoryDPMTuning_VEGAM >> DPMTuning_Downhyst_Shift);
1061 }
1062
1063 smu_data->smc_state_table.MemoryDpmLevelCount =
1064 (uint8_t)dpm_table->mclk_table.count;
1065 hw_data->dpm_level_enable_mask.mclk_dpm_enable_mask =
1066 phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
1067
1068 for (i = 0; i < dpm_table->mclk_table.count; i++)
1069 levels[i].EnabledForActivity =
1070 (hw_data->dpm_level_enable_mask.mclk_dpm_enable_mask >> i) & 0x1;
1071
1072 levels[dpm_table->mclk_table.count - 1].DisplayWatermark =
1073 PPSMC_DISPLAY_WATERMARK_HIGH;
1074
1075
1076 result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
1077 (uint32_t)array_size, SMC_RAM_END);
1078
1079 return result;
1080 }
1081
1082 static int vegam_populate_mvdd_value(struct pp_hwmgr *hwmgr,
1083 uint32_t mclk, SMIO_Pattern *smio_pat)
1084 {
1085 const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1086 struct phm_ppt_v1_information *table_info =
1087 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1088 uint32_t i = 0;
1089
1090 if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
1091
1092 for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) {
1093 if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) {
1094 smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value;
1095 break;
1096 }
1097 }
1098 PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,
1099 "MVDD Voltage is outside the supported range.",
1100 return -EINVAL);
1101 } else
1102 return -EINVAL;
1103
1104 return 0;
1105 }
1106
1107 static int vegam_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
1108 SMU75_Discrete_DpmTable *table)
1109 {
1110 int result = 0;
1111 uint32_t sclk_frequency;
1112 const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1113 struct phm_ppt_v1_information *table_info =
1114 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1115 SMIO_Pattern vol_level;
1116 uint32_t mvdd;
1117 uint16_t us_mvdd;
1118
1119 table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
1120
1121
1122
1123 sclk_frequency = data->vbios_boot_state.sclk_bootup_value;
1124 result = vegam_get_dependency_volt_by_clk(hwmgr,
1125 table_info->vdd_dep_on_sclk,
1126 sclk_frequency,
1127 &table->ACPILevel.MinVoltage, &mvdd);
1128 PP_ASSERT_WITH_CODE(!result,
1129 "Cannot find ACPI VDDC voltage value "
1130 "in Clock Dependency Table",
1131 );
1132
1133 result = vegam_calculate_sclk_params(hwmgr, sclk_frequency,
1134 &(table->ACPILevel.SclkSetting));
1135 PP_ASSERT_WITH_CODE(!result,
1136 "Error retrieving Engine Clock dividers from VBIOS.",
1137 return result);
1138
1139 table->ACPILevel.DeepSleepDivId = 0;
1140 table->ACPILevel.CcPwrDynRm = 0;
1141 table->ACPILevel.CcPwrDynRm1 = 0;
1142
1143 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
1144 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage);
1145 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
1146 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
1147
1148 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkSetting.SclkFrequency);
1149 CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw_int);
1150 CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw_frac);
1151 CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_fcw_int);
1152 CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Sclk_slew_rate);
1153 CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_up_slew_rate);
1154 CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_down_slew_rate);
1155 CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw1_int);
1156 CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw1_frac);
1157 CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Sclk_ss_slew_rate);
1158
1159
1160
1161 table->MemoryACPILevel.MclkFrequency = data->vbios_boot_state.mclk_bootup_value;
1162 result = vegam_get_dependency_volt_by_clk(hwmgr,
1163 table_info->vdd_dep_on_mclk,
1164 table->MemoryACPILevel.MclkFrequency,
1165 &table->MemoryACPILevel.MinVoltage, &mvdd);
1166 PP_ASSERT_WITH_CODE((0 == result),
1167 "Cannot find ACPI VDDCI voltage value "
1168 "in Clock Dependency Table",
1169 );
1170
1171 us_mvdd = 0;
1172 if ((SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control) ||
1173 (data->mclk_dpm_key_disabled))
1174 us_mvdd = data->vbios_boot_state.mvdd_bootup_value;
1175 else {
1176 if (!vegam_populate_mvdd_value(hwmgr,
1177 data->dpm_table.mclk_table.dpm_levels[0].value,
1178 &vol_level))
1179 us_mvdd = vol_level.Voltage;
1180 }
1181
1182 if (!vegam_populate_mvdd_value(hwmgr, 0, &vol_level))
1183 table->MemoryACPILevel.MinMvdd = PP_HOST_TO_SMC_UL(vol_level.Voltage);
1184 else
1185 table->MemoryACPILevel.MinMvdd = 0;
1186
1187 table->MemoryACPILevel.StutterEnable = false;
1188
1189 table->MemoryACPILevel.EnabledForThrottle = 0;
1190 table->MemoryACPILevel.EnabledForActivity = 0;
1191 table->MemoryACPILevel.UpHyst = 0;
1192 table->MemoryACPILevel.DownHyst = 100;
1193 table->MemoryACPILevel.VoltageDownHyst = 0;
1194 table->MemoryACPILevel.ActivityLevel =
1195 PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity);
1196
1197 CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency);
1198 CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);
1199
1200 return result;
1201 }
1202
1203 static int vegam_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1204 SMU75_Discrete_DpmTable *table)
1205 {
1206 int result = -EINVAL;
1207 uint8_t count;
1208 struct pp_atomctrl_clock_dividers_vi dividers;
1209 struct phm_ppt_v1_information *table_info =
1210 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1211 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1212 table_info->mm_dep_table;
1213 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1214 uint32_t vddci;
1215
1216 table->VceLevelCount = (uint8_t)(mm_table->count);
1217 table->VceBootLevel = 0;
1218
1219 for (count = 0; count < table->VceLevelCount; count++) {
1220 table->VceLevel[count].Frequency = mm_table->entries[count].eclk;
1221 table->VceLevel[count].MinVoltage = 0;
1222 table->VceLevel[count].MinVoltage |=
1223 (mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
1224
1225 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control)
1226 vddci = (uint32_t)phm_find_closest_vddci(&(data->vddci_voltage_table),
1227 mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
1228 else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control)
1229 vddci = mm_table->entries[count].vddc - VDDC_VDDCI_DELTA;
1230 else
1231 vddci = (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE) << VDDCI_SHIFT;
1232
1233
1234 table->VceLevel[count].MinVoltage |=
1235 (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
1236 table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1237
1238
1239 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1240 table->VceLevel[count].Frequency, ÷rs);
1241 PP_ASSERT_WITH_CODE((0 == result),
1242 "can not find divide id for VCE engine clock",
1243 return result);
1244
1245 table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1246
1247 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
1248 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage);
1249 }
1250 return result;
1251 }
1252
1253 static int vegam_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr,
1254 int32_t eng_clock, int32_t mem_clock,
1255 SMU75_Discrete_MCArbDramTimingTableEntry *arb_regs)
1256 {
1257 uint32_t dram_timing;
1258 uint32_t dram_timing2;
1259 uint32_t burst_time;
1260 uint32_t rfsh_rate;
1261 uint32_t misc3;
1262
1263 int result;
1264
1265 result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1266 eng_clock, mem_clock);
1267 PP_ASSERT_WITH_CODE(result == 0,
1268 "Error calling VBIOS to set DRAM_TIMING.",
1269 return result);
1270
1271 dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1272 dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1273 burst_time = cgs_read_register(hwmgr->device, mmMC_ARB_BURST_TIME);
1274 rfsh_rate = cgs_read_register(hwmgr->device, mmMC_ARB_RFSH_RATE);
1275 misc3 = cgs_read_register(hwmgr->device, mmMC_ARB_MISC3);
1276
1277 arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dram_timing);
1278 arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2);
1279 arb_regs->McArbBurstTime = PP_HOST_TO_SMC_UL(burst_time);
1280 arb_regs->McArbRfshRate = PP_HOST_TO_SMC_UL(rfsh_rate);
1281 arb_regs->McArbMisc3 = PP_HOST_TO_SMC_UL(misc3);
1282
1283 return 0;
1284 }
1285
1286 static int vegam_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1287 {
1288 struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
1289 struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1290 struct SMU75_Discrete_MCArbDramTimingTable arb_regs;
1291 uint32_t i, j;
1292 int result = 0;
1293
1294 memset(&arb_regs, 0, sizeof(SMU75_Discrete_MCArbDramTimingTable));
1295
1296 for (i = 0; i < hw_data->dpm_table.sclk_table.count; i++) {
1297 for (j = 0; j < hw_data->dpm_table.mclk_table.count; j++) {
1298 result = vegam_populate_memory_timing_parameters(hwmgr,
1299 hw_data->dpm_table.sclk_table.dpm_levels[i].value,
1300 hw_data->dpm_table.mclk_table.dpm_levels[j].value,
1301 &arb_regs.entries[i][j]);
1302 if (result)
1303 return result;
1304 }
1305 }
1306
1307 result = smu7_copy_bytes_to_smc(
1308 hwmgr,
1309 smu_data->smu7_data.arb_table_start,
1310 (uint8_t *)&arb_regs,
1311 sizeof(SMU75_Discrete_MCArbDramTimingTable),
1312 SMC_RAM_END);
1313 return result;
1314 }
1315
1316 static int vegam_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1317 struct SMU75_Discrete_DpmTable *table)
1318 {
1319 int result = -EINVAL;
1320 uint8_t count;
1321 struct pp_atomctrl_clock_dividers_vi dividers;
1322 struct phm_ppt_v1_information *table_info =
1323 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1324 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1325 table_info->mm_dep_table;
1326 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1327 uint32_t vddci;
1328
1329 table->UvdLevelCount = (uint8_t)(mm_table->count);
1330 table->UvdBootLevel = 0;
1331
1332 for (count = 0; count < table->UvdLevelCount; count++) {
1333 table->UvdLevel[count].MinVoltage = 0;
1334 table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
1335 table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
1336 table->UvdLevel[count].MinVoltage |=
1337 (mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
1338
1339 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control)
1340 vddci = (uint32_t)phm_find_closest_vddci(&(data->vddci_voltage_table),
1341 mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
1342 else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control)
1343 vddci = mm_table->entries[count].vddc - VDDC_VDDCI_DELTA;
1344 else
1345 vddci = (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE) << VDDCI_SHIFT;
1346
1347 table->UvdLevel[count].MinVoltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
1348 table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1349
1350
1351 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1352 table->UvdLevel[count].VclkFrequency, ÷rs);
1353 PP_ASSERT_WITH_CODE((0 == result),
1354 "can not find divide id for Vclk clock", return result);
1355
1356 table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
1357
1358 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1359 table->UvdLevel[count].DclkFrequency, ÷rs);
1360 PP_ASSERT_WITH_CODE((0 == result),
1361 "can not find divide id for Dclk clock", return result);
1362
1363 table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
1364
1365 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
1366 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
1367 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage);
1368 }
1369
1370 return result;
1371 }
1372
1373 static int vegam_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
1374 struct SMU75_Discrete_DpmTable *table)
1375 {
1376 int result = 0;
1377 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1378
1379 table->GraphicsBootLevel = 0;
1380 table->MemoryBootLevel = 0;
1381
1382
1383 result = phm_find_boot_level(&(data->dpm_table.sclk_table),
1384 data->vbios_boot_state.sclk_bootup_value,
1385 (uint32_t *)&(table->GraphicsBootLevel));
1386
1387 result = phm_find_boot_level(&(data->dpm_table.mclk_table),
1388 data->vbios_boot_state.mclk_bootup_value,
1389 (uint32_t *)&(table->MemoryBootLevel));
1390
1391 table->BootVddc = data->vbios_boot_state.vddc_bootup_value *
1392 VOLTAGE_SCALE;
1393 table->BootVddci = data->vbios_boot_state.vddci_bootup_value *
1394 VOLTAGE_SCALE;
1395 table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value *
1396 VOLTAGE_SCALE;
1397
1398 CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc);
1399 CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci);
1400 CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
1401
1402 return 0;
1403 }
1404
1405 static int vegam_populate_smc_initial_state(struct pp_hwmgr *hwmgr)
1406 {
1407 struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
1408 struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1409 struct phm_ppt_v1_information *table_info =
1410 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1411 uint8_t count, level;
1412
1413 count = (uint8_t)(table_info->vdd_dep_on_sclk->count);
1414
1415 for (level = 0; level < count; level++) {
1416 if (table_info->vdd_dep_on_sclk->entries[level].clk >=
1417 hw_data->vbios_boot_state.sclk_bootup_value) {
1418 smu_data->smc_state_table.GraphicsBootLevel = level;
1419 break;
1420 }
1421 }
1422
1423 count = (uint8_t)(table_info->vdd_dep_on_mclk->count);
1424 for (level = 0; level < count; level++) {
1425 if (table_info->vdd_dep_on_mclk->entries[level].clk >=
1426 hw_data->vbios_boot_state.mclk_bootup_value) {
1427 smu_data->smc_state_table.MemoryBootLevel = level;
1428 break;
1429 }
1430 }
1431
1432 return 0;
1433 }
1434
1435 static uint16_t scale_fan_gain_settings(uint16_t raw_setting)
1436 {
1437 uint32_t tmp;
1438 tmp = raw_setting * 4096 / 100;
1439 return (uint16_t)tmp;
1440 }
1441
1442 static int vegam_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
1443 {
1444 struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1445
1446 const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults;
1447 SMU75_Discrete_DpmTable *table = &(smu_data->smc_state_table);
1448 struct phm_ppt_v1_information *table_info =
1449 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1450 struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table;
1451 struct pp_advance_fan_control_parameters *fan_table =
1452 &hwmgr->thermal_controller.advanceFanControlParameters;
1453 int i, j, k;
1454 const uint16_t *pdef1;
1455 const uint16_t *pdef2;
1456
1457 table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 128));
1458 table->TargetTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 128));
1459
1460 PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255,
1461 "Target Operating Temp is out of Range!",
1462 );
1463
1464 table->TemperatureLimitEdge = PP_HOST_TO_SMC_US(
1465 cac_dtp_table->usTargetOperatingTemp * 256);
1466 table->TemperatureLimitHotspot = PP_HOST_TO_SMC_US(
1467 cac_dtp_table->usTemperatureLimitHotspot * 256);
1468 table->FanGainEdge = PP_HOST_TO_SMC_US(
1469 scale_fan_gain_settings(fan_table->usFanGainEdge));
1470 table->FanGainHotspot = PP_HOST_TO_SMC_US(
1471 scale_fan_gain_settings(fan_table->usFanGainHotspot));
1472
1473 pdef1 = defaults->BAPMTI_R;
1474 pdef2 = defaults->BAPMTI_RC;
1475
1476 for (i = 0; i < SMU75_DTE_ITERATIONS; i++) {
1477 for (j = 0; j < SMU75_DTE_SOURCES; j++) {
1478 for (k = 0; k < SMU75_DTE_SINKS; k++) {
1479 table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*pdef1);
1480 table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*pdef2);
1481 pdef1++;
1482 pdef2++;
1483 }
1484 }
1485 }
1486
1487 return 0;
1488 }
1489
1490 static int vegam_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
1491 {
1492 uint32_t ro, efuse, volt_without_cks, volt_with_cks, value, max, min;
1493 struct vegam_smumgr *smu_data =
1494 (struct vegam_smumgr *)(hwmgr->smu_backend);
1495
1496 uint8_t i, stretch_amount, stretch_amount2, volt_offset = 0;
1497 struct phm_ppt_v1_information *table_info =
1498 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1499 struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
1500 table_info->vdd_dep_on_sclk;
1501 uint32_t mask = (1 << ((STRAP_ASIC_RO_MSB - STRAP_ASIC_RO_LSB) + 1)) - 1;
1502
1503 stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount;
1504
1505 atomctrl_read_efuse(hwmgr, STRAP_ASIC_RO_LSB, STRAP_ASIC_RO_MSB,
1506 mask, &efuse);
1507
1508 min = 1200;
1509 max = 2500;
1510
1511 ro = efuse * (max - min) / 255 + min;
1512
1513
1514 for (i = 0; i < sclk_table->count; i++) {
1515 smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |=
1516 sclk_table->entries[i].cks_enable << i;
1517 volt_without_cks = (uint32_t)((2753594000U + (sclk_table->entries[i].clk/100) *
1518 136418 - (ro - 70) * 1000000) /
1519 (2424180 - (sclk_table->entries[i].clk/100) * 1132925/1000));
1520 volt_with_cks = (uint32_t)((2797202000U + sclk_table->entries[i].clk/100 *
1521 3232 - (ro - 65) * 1000000) /
1522 (2522480 - sclk_table->entries[i].clk/100 * 115764/100));
1523
1524 if (volt_without_cks >= volt_with_cks)
1525 volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks +
1526 sclk_table->entries[i].cks_voffset) * 100 + 624) / 625);
1527
1528 smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
1529 }
1530
1531 smu_data->smc_state_table.LdoRefSel =
1532 (table_info->cac_dtp_table->ucCKS_LDO_REFSEL != 0) ?
1533 table_info->cac_dtp_table->ucCKS_LDO_REFSEL : 5;
1534
1535 if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5)
1536 stretch_amount2 = 0;
1537 else if (stretch_amount == 3 || stretch_amount == 4)
1538 stretch_amount2 = 1;
1539 else {
1540 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1541 PHM_PlatformCaps_ClockStretcher);
1542 PP_ASSERT_WITH_CODE(false,
1543 "Stretch Amount in PPTable not supported\n",
1544 return -EINVAL);
1545 }
1546
1547 value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL);
1548 value &= 0xFFFFFFFE;
1549 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value);
1550
1551 return 0;
1552 }
1553
1554 static bool vegam_is_hw_avfs_present(struct pp_hwmgr *hwmgr)
1555 {
1556 uint32_t efuse;
1557
1558 efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1559 ixSMU_EFUSE_0 + (49 * 4));
1560 efuse &= 0x00000001;
1561
1562 if (efuse)
1563 return true;
1564
1565 return false;
1566 }
1567
1568 static int vegam_populate_avfs_parameters(struct pp_hwmgr *hwmgr)
1569 {
1570 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1571 struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1572
1573 SMU75_Discrete_DpmTable *table = &(smu_data->smc_state_table);
1574 int result = 0;
1575 struct pp_atom_ctrl__avfs_parameters avfs_params = {0};
1576 AVFS_meanNsigma_t AVFS_meanNsigma = { {0} };
1577 AVFS_Sclk_Offset_t AVFS_SclkOffset = { {0} };
1578 uint32_t tmp, i;
1579
1580 struct phm_ppt_v1_information *table_info =
1581 (struct phm_ppt_v1_information *)hwmgr->pptable;
1582 struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
1583 table_info->vdd_dep_on_sclk;
1584
1585 if (!hwmgr->avfs_supported)
1586 return 0;
1587
1588 result = atomctrl_get_avfs_information(hwmgr, &avfs_params);
1589
1590 if (0 == result) {
1591 table->BTCGB_VDROOP_TABLE[0].a0 =
1592 PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a0);
1593 table->BTCGB_VDROOP_TABLE[0].a1 =
1594 PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a1);
1595 table->BTCGB_VDROOP_TABLE[0].a2 =
1596 PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a2);
1597 table->BTCGB_VDROOP_TABLE[1].a0 =
1598 PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a0);
1599 table->BTCGB_VDROOP_TABLE[1].a1 =
1600 PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a1);
1601 table->BTCGB_VDROOP_TABLE[1].a2 =
1602 PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a2);
1603 table->AVFSGB_FUSE_TABLE[0].m1 =
1604 PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_m1);
1605 table->AVFSGB_FUSE_TABLE[0].m2 =
1606 PP_HOST_TO_SMC_US(avfs_params.usAVFSGB_FUSE_TABLE_CKSON_m2);
1607 table->AVFSGB_FUSE_TABLE[0].b =
1608 PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_b);
1609 table->AVFSGB_FUSE_TABLE[0].m1_shift = 24;
1610 table->AVFSGB_FUSE_TABLE[0].m2_shift = 12;
1611 table->AVFSGB_FUSE_TABLE[1].m1 =
1612 PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_m1);
1613 table->AVFSGB_FUSE_TABLE[1].m2 =
1614 PP_HOST_TO_SMC_US(avfs_params.usAVFSGB_FUSE_TABLE_CKSOFF_m2);
1615 table->AVFSGB_FUSE_TABLE[1].b =
1616 PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_b);
1617 table->AVFSGB_FUSE_TABLE[1].m1_shift = 24;
1618 table->AVFSGB_FUSE_TABLE[1].m2_shift = 12;
1619 table->MaxVoltage = PP_HOST_TO_SMC_US(avfs_params.usMaxVoltage_0_25mv);
1620 AVFS_meanNsigma.Aconstant[0] =
1621 PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant0);
1622 AVFS_meanNsigma.Aconstant[1] =
1623 PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant1);
1624 AVFS_meanNsigma.Aconstant[2] =
1625 PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant2);
1626 AVFS_meanNsigma.DC_tol_sigma =
1627 PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_DC_tol_sigma);
1628 AVFS_meanNsigma.Platform_mean =
1629 PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_Platform_mean);
1630 AVFS_meanNsigma.PSM_Age_CompFactor =
1631 PP_HOST_TO_SMC_US(avfs_params.usPSM_Age_ComFactor);
1632 AVFS_meanNsigma.Platform_sigma =
1633 PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_Platform_sigma);
1634
1635 for (i = 0; i < sclk_table->count; i++) {
1636 AVFS_meanNsigma.Static_Voltage_Offset[i] =
1637 (uint8_t)(sclk_table->entries[i].cks_voffset * 100 / 625);
1638 AVFS_SclkOffset.Sclk_Offset[i] =
1639 PP_HOST_TO_SMC_US((uint16_t)
1640 (sclk_table->entries[i].sclk_offset) / 100);
1641 }
1642
1643 result = smu7_read_smc_sram_dword(hwmgr,
1644 SMU7_FIRMWARE_HEADER_LOCATION +
1645 offsetof(SMU75_Firmware_Header, AvfsMeanNSigma),
1646 &tmp, SMC_RAM_END);
1647 smu7_copy_bytes_to_smc(hwmgr,
1648 tmp,
1649 (uint8_t *)&AVFS_meanNsigma,
1650 sizeof(AVFS_meanNsigma_t),
1651 SMC_RAM_END);
1652
1653 result = smu7_read_smc_sram_dword(hwmgr,
1654 SMU7_FIRMWARE_HEADER_LOCATION +
1655 offsetof(SMU75_Firmware_Header, AvfsSclkOffsetTable),
1656 &tmp, SMC_RAM_END);
1657 smu7_copy_bytes_to_smc(hwmgr,
1658 tmp,
1659 (uint8_t *)&AVFS_SclkOffset,
1660 sizeof(AVFS_Sclk_Offset_t),
1661 SMC_RAM_END);
1662
1663 data->avfs_vdroop_override_setting =
1664 (avfs_params.ucEnableGB_VDROOP_TABLE_CKSON << BTCGB0_Vdroop_Enable_SHIFT) |
1665 (avfs_params.ucEnableGB_VDROOP_TABLE_CKSOFF << BTCGB1_Vdroop_Enable_SHIFT) |
1666 (avfs_params.ucEnableGB_FUSE_TABLE_CKSON << AVFSGB0_Vdroop_Enable_SHIFT) |
1667 (avfs_params.ucEnableGB_FUSE_TABLE_CKSOFF << AVFSGB1_Vdroop_Enable_SHIFT);
1668 data->apply_avfs_cks_off_voltage =
1669 (avfs_params.ucEnableApplyAVFS_CKS_OFF_Voltage == 1) ? true : false;
1670 }
1671 return result;
1672 }
1673
1674 static int vegam_populate_vr_config(struct pp_hwmgr *hwmgr,
1675 struct SMU75_Discrete_DpmTable *table)
1676 {
1677 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1678 struct vegam_smumgr *smu_data =
1679 (struct vegam_smumgr *)(hwmgr->smu_backend);
1680 uint16_t config;
1681
1682 config = VR_MERGED_WITH_VDDC;
1683 table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT);
1684
1685
1686 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1687 config = VR_SVI2_PLANE_1;
1688 table->VRConfig |= config;
1689 } else {
1690 PP_ASSERT_WITH_CODE(false,
1691 "VDDC should be on SVI2 control in merged mode!",
1692 );
1693 }
1694
1695 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
1696 config = VR_SVI2_PLANE_2;
1697 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1698 } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
1699 config = VR_SMIO_PATTERN_1;
1700 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1701 } else {
1702 config = VR_STATIC_VOLTAGE;
1703 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1704 }
1705
1706 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
1707 if (config != VR_SVI2_PLANE_2) {
1708 config = VR_SVI2_PLANE_2;
1709 table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1710 cgs_write_ind_register(hwmgr->device,
1711 CGS_IND_REG__SMC,
1712 smu_data->smu7_data.soft_regs_start +
1713 offsetof(SMU75_SoftRegisters, AllowMvddSwitch),
1714 0x1);
1715 } else {
1716 PP_ASSERT_WITH_CODE(false,
1717 "SVI2 Plane 2 is already taken, set MVDD as Static",);
1718 config = VR_STATIC_VOLTAGE;
1719 table->VRConfig = (config << VRCONF_MVDD_SHIFT);
1720 }
1721 } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1722 config = VR_SMIO_PATTERN_2;
1723 table->VRConfig = (config << VRCONF_MVDD_SHIFT);
1724 cgs_write_ind_register(hwmgr->device,
1725 CGS_IND_REG__SMC,
1726 smu_data->smu7_data.soft_regs_start +
1727 offsetof(SMU75_SoftRegisters, AllowMvddSwitch),
1728 0x1);
1729 } else {
1730 config = VR_STATIC_VOLTAGE;
1731 table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1732 }
1733
1734 return 0;
1735 }
1736
1737 static int vegam_populate_svi_load_line(struct pp_hwmgr *hwmgr)
1738 {
1739 struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1740 const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults;
1741
1742 smu_data->power_tune_table.SviLoadLineEn = defaults->SviLoadLineEn;
1743 smu_data->power_tune_table.SviLoadLineVddC = defaults->SviLoadLineVddC;
1744 smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
1745 smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
1746
1747 return 0;
1748 }
1749
1750 static int vegam_populate_tdc_limit(struct pp_hwmgr *hwmgr)
1751 {
1752 uint16_t tdc_limit;
1753 struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1754 struct phm_ppt_v1_information *table_info =
1755 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1756 const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults;
1757
1758 tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 128);
1759 smu_data->power_tune_table.TDC_VDDC_PkgLimit =
1760 CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
1761 smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
1762 defaults->TDC_VDDC_ThrottleReleaseLimitPerc;
1763 smu_data->power_tune_table.TDC_MAWt = defaults->TDC_MAWt;
1764
1765 return 0;
1766 }
1767
1768 static int vegam_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
1769 {
1770 struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1771 const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults;
1772 uint32_t temp;
1773
1774 if (smu7_read_smc_sram_dword(hwmgr,
1775 fuse_table_offset +
1776 offsetof(SMU75_Discrete_PmFuses, TdcWaterfallCtl),
1777 (uint32_t *)&temp, SMC_RAM_END))
1778 PP_ASSERT_WITH_CODE(false,
1779 "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
1780 return -EINVAL);
1781 else {
1782 smu_data->power_tune_table.TdcWaterfallCtl = defaults->TdcWaterfallCtl;
1783 smu_data->power_tune_table.LPMLTemperatureMin =
1784 (uint8_t)((temp >> 16) & 0xff);
1785 smu_data->power_tune_table.LPMLTemperatureMax =
1786 (uint8_t)((temp >> 8) & 0xff);
1787 smu_data->power_tune_table.Reserved = (uint8_t)(temp & 0xff);
1788 }
1789 return 0;
1790 }
1791
1792 static int vegam_populate_temperature_scaler(struct pp_hwmgr *hwmgr)
1793 {
1794 int i;
1795 struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1796
1797
1798 for (i = 0; i < 16; i++)
1799 smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0;
1800
1801 return 0;
1802 }
1803
1804 static int vegam_populate_fuzzy_fan(struct pp_hwmgr *hwmgr)
1805 {
1806 struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1807
1808
1809 if ((hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity & (1 << 15))
1810 || 0 == hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity)
1811 hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity =
1812 hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity;
1813
1814 smu_data->power_tune_table.FuzzyFan_PwmSetDelta = PP_HOST_TO_SMC_US(
1815 hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity);
1816 return 0;
1817 }
1818
1819 static int vegam_populate_gnb_lpml(struct pp_hwmgr *hwmgr)
1820 {
1821 int i;
1822 struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1823
1824
1825 for (i = 0; i < 16; i++)
1826 smu_data->power_tune_table.GnbLPML[i] = 0;
1827
1828 return 0;
1829 }
1830
1831 static int vegam_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
1832 {
1833 struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1834 struct phm_ppt_v1_information *table_info =
1835 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1836 uint16_t hi_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
1837 uint16_t lo_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
1838 struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table;
1839
1840 hi_sidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
1841 lo_sidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
1842
1843 smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
1844 CONVERT_FROM_HOST_TO_SMC_US(hi_sidd);
1845 smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
1846 CONVERT_FROM_HOST_TO_SMC_US(lo_sidd);
1847
1848 return 0;
1849 }
1850
1851 static int vegam_populate_pm_fuses(struct pp_hwmgr *hwmgr)
1852 {
1853 struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1854 uint32_t pm_fuse_table_offset;
1855
1856 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1857 PHM_PlatformCaps_PowerContainment)) {
1858 if (smu7_read_smc_sram_dword(hwmgr,
1859 SMU7_FIRMWARE_HEADER_LOCATION +
1860 offsetof(SMU75_Firmware_Header, PmFuseTable),
1861 &pm_fuse_table_offset, SMC_RAM_END))
1862 PP_ASSERT_WITH_CODE(false,
1863 "Attempt to get pm_fuse_table_offset Failed!",
1864 return -EINVAL);
1865
1866 if (vegam_populate_svi_load_line(hwmgr))
1867 PP_ASSERT_WITH_CODE(false,
1868 "Attempt to populate SviLoadLine Failed!",
1869 return -EINVAL);
1870
1871 if (vegam_populate_tdc_limit(hwmgr))
1872 PP_ASSERT_WITH_CODE(false,
1873 "Attempt to populate TDCLimit Failed!", return -EINVAL);
1874
1875 if (vegam_populate_dw8(hwmgr, pm_fuse_table_offset))
1876 PP_ASSERT_WITH_CODE(false,
1877 "Attempt to populate TdcWaterfallCtl, "
1878 "LPMLTemperature Min and Max Failed!",
1879 return -EINVAL);
1880
1881 if (0 != vegam_populate_temperature_scaler(hwmgr))
1882 PP_ASSERT_WITH_CODE(false,
1883 "Attempt to populate LPMLTemperatureScaler Failed!",
1884 return -EINVAL);
1885
1886 if (vegam_populate_fuzzy_fan(hwmgr))
1887 PP_ASSERT_WITH_CODE(false,
1888 "Attempt to populate Fuzzy Fan Control parameters Failed!",
1889 return -EINVAL);
1890
1891 if (vegam_populate_gnb_lpml(hwmgr))
1892 PP_ASSERT_WITH_CODE(false,
1893 "Attempt to populate GnbLPML Failed!",
1894 return -EINVAL);
1895
1896 if (vegam_populate_bapm_vddc_base_leakage_sidd(hwmgr))
1897 PP_ASSERT_WITH_CODE(false,
1898 "Attempt to populate BapmVddCBaseLeakage Hi and Lo "
1899 "Sidd Failed!", return -EINVAL);
1900
1901 if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
1902 (uint8_t *)&smu_data->power_tune_table,
1903 (sizeof(struct SMU75_Discrete_PmFuses) - PMFUSES_AVFSSIZE),
1904 SMC_RAM_END))
1905 PP_ASSERT_WITH_CODE(false,
1906 "Attempt to download PmFuseTable Failed!",
1907 return -EINVAL);
1908 }
1909 return 0;
1910 }
1911
1912 static int vegam_enable_reconfig_cus(struct pp_hwmgr *hwmgr)
1913 {
1914 struct amdgpu_device *adev = hwmgr->adev;
1915
1916 smum_send_msg_to_smc_with_parameter(hwmgr,
1917 PPSMC_MSG_EnableModeSwitchRLCNotification,
1918 adev->gfx.cu_info.number);
1919
1920 return 0;
1921 }
1922
1923 static int vegam_init_smc_table(struct pp_hwmgr *hwmgr)
1924 {
1925 int result;
1926 struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
1927 struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1928
1929 struct phm_ppt_v1_information *table_info =
1930 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1931 struct SMU75_Discrete_DpmTable *table = &(smu_data->smc_state_table);
1932 uint8_t i;
1933 struct pp_atomctrl_gpio_pin_assignment gpio_pin;
1934 struct phm_ppt_v1_gpio_table *gpio_table =
1935 (struct phm_ppt_v1_gpio_table *)table_info->gpio_table;
1936 pp_atomctrl_clock_dividers_vi dividers;
1937
1938 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
1939 PHM_PlatformCaps_AutomaticDCTransition);
1940
1941 vegam_initialize_power_tune_defaults(hwmgr);
1942
1943 if (SMU7_VOLTAGE_CONTROL_NONE != hw_data->voltage_control)
1944 vegam_populate_smc_voltage_tables(hwmgr, table);
1945
1946 table->SystemFlags = 0;
1947 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1948 PHM_PlatformCaps_AutomaticDCTransition))
1949 table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
1950
1951 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1952 PHM_PlatformCaps_StepVddc))
1953 table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
1954
1955 if (hw_data->is_memory_gddr5)
1956 table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
1957
1958 if (hw_data->ulv_supported && table_info->us_ulv_voltage_offset) {
1959 result = vegam_populate_ulv_state(hwmgr, table);
1960 PP_ASSERT_WITH_CODE(!result,
1961 "Failed to initialize ULV state!", return result);
1962 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1963 ixCG_ULV_PARAMETER, SMU7_CGULVPARAMETER_DFLT);
1964 }
1965
1966 result = vegam_populate_smc_link_level(hwmgr, table);
1967 PP_ASSERT_WITH_CODE(!result,
1968 "Failed to initialize Link Level!", return result);
1969
1970 result = vegam_populate_all_graphic_levels(hwmgr);
1971 PP_ASSERT_WITH_CODE(!result,
1972 "Failed to initialize Graphics Level!", return result);
1973
1974 result = vegam_populate_all_memory_levels(hwmgr);
1975 PP_ASSERT_WITH_CODE(!result,
1976 "Failed to initialize Memory Level!", return result);
1977
1978 result = vegam_populate_smc_acpi_level(hwmgr, table);
1979 PP_ASSERT_WITH_CODE(!result,
1980 "Failed to initialize ACPI Level!", return result);
1981
1982 result = vegam_populate_smc_vce_level(hwmgr, table);
1983 PP_ASSERT_WITH_CODE(!result,
1984 "Failed to initialize VCE Level!", return result);
1985
1986
1987
1988
1989
1990 result = vegam_program_memory_timing_parameters(hwmgr);
1991 PP_ASSERT_WITH_CODE(!result,
1992 "Failed to Write ARB settings for the initial state.", return result);
1993
1994 result = vegam_populate_smc_uvd_level(hwmgr, table);
1995 PP_ASSERT_WITH_CODE(!result,
1996 "Failed to initialize UVD Level!", return result);
1997
1998 result = vegam_populate_smc_boot_level(hwmgr, table);
1999 PP_ASSERT_WITH_CODE(!result,
2000 "Failed to initialize Boot Level!", return result);
2001
2002 result = vegam_populate_smc_initial_state(hwmgr);
2003 PP_ASSERT_WITH_CODE(!result,
2004 "Failed to initialize Boot State!", return result);
2005
2006 result = vegam_populate_bapm_parameters_in_dpm_table(hwmgr);
2007 PP_ASSERT_WITH_CODE(!result,
2008 "Failed to populate BAPM Parameters!", return result);
2009
2010 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2011 PHM_PlatformCaps_ClockStretcher)) {
2012 result = vegam_populate_clock_stretcher_data_table(hwmgr);
2013 PP_ASSERT_WITH_CODE(!result,
2014 "Failed to populate Clock Stretcher Data Table!",
2015 return result);
2016 }
2017
2018 result = vegam_populate_avfs_parameters(hwmgr);
2019 PP_ASSERT_WITH_CODE(!result,
2020 "Failed to populate AVFS Parameters!", return result;);
2021
2022 table->CurrSclkPllRange = 0xff;
2023 table->GraphicsVoltageChangeEnable = 1;
2024 table->GraphicsThermThrottleEnable = 1;
2025 table->GraphicsInterval = 1;
2026 table->VoltageInterval = 1;
2027 table->ThermalInterval = 1;
2028 table->TemperatureLimitHigh =
2029 table_info->cac_dtp_table->usTargetOperatingTemp *
2030 SMU7_Q88_FORMAT_CONVERSION_UNIT;
2031 table->TemperatureLimitLow =
2032 (table_info->cac_dtp_table->usTargetOperatingTemp - 1) *
2033 SMU7_Q88_FORMAT_CONVERSION_UNIT;
2034 table->MemoryVoltageChangeEnable = 1;
2035 table->MemoryInterval = 1;
2036 table->VoltageResponseTime = 0;
2037 table->PhaseResponseTime = 0;
2038 table->MemoryThermThrottleEnable = 1;
2039
2040 PP_ASSERT_WITH_CODE(hw_data->dpm_table.pcie_speed_table.count >= 1,
2041 "There must be 1 or more PCIE levels defined in PPTable.",
2042 return -EINVAL);
2043 table->PCIeBootLinkLevel =
2044 hw_data->dpm_table.pcie_speed_table.count;
2045 table->PCIeGenInterval = 1;
2046 table->VRConfig = 0;
2047
2048 result = vegam_populate_vr_config(hwmgr, table);
2049 PP_ASSERT_WITH_CODE(!result,
2050 "Failed to populate VRConfig setting!", return result);
2051
2052 table->ThermGpio = 17;
2053 table->SclkStepSize = 0x4000;
2054
2055 if (atomctrl_get_pp_assign_pin(hwmgr,
2056 VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
2057 table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
2058 if (gpio_table)
2059 table->VRHotLevel =
2060 table_info->gpio_table->vrhot_triggered_sclk_dpm_index;
2061 } else {
2062 table->VRHotGpio = SMU7_UNUSED_GPIO_PIN;
2063 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2064 PHM_PlatformCaps_RegulatorHot);
2065 }
2066
2067 if (atomctrl_get_pp_assign_pin(hwmgr,
2068 PP_AC_DC_SWITCH_GPIO_PINID, &gpio_pin)) {
2069 table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift;
2070 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2071 PHM_PlatformCaps_AutomaticDCTransition) &&
2072 !smum_send_msg_to_smc(hwmgr, PPSMC_MSG_UseNewGPIOScheme))
2073 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2074 PHM_PlatformCaps_SMCtoPPLIBAcdcGpioScheme);
2075 } else {
2076 table->AcDcGpio = SMU7_UNUSED_GPIO_PIN;
2077 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2078 PHM_PlatformCaps_AutomaticDCTransition);
2079 }
2080
2081
2082 if (atomctrl_get_pp_assign_pin(hwmgr,
2083 THERMAL_INT_OUTPUT_GPIO_PINID, &gpio_pin)) {
2084 table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift;
2085
2086
2087
2088
2089
2090
2091 table->ThermOutPolarity =
2092 (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
2093 (1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0;
2094 table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
2095
2096
2097 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2098 PHM_PlatformCaps_RegulatorHot) &&
2099 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2100 PHM_PlatformCaps_CombinePCCWithThermalSignal))
2101 table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
2102 } else {
2103 table->ThermOutGpio = 17;
2104 table->ThermOutPolarity = 1;
2105 table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
2106 }
2107
2108
2109 for (i = 0; i <= hw_data->dpm_table.pcie_speed_table.count; i++) {
2110 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
2111 smu_data->bif_sclk_table[i], ÷rs);
2112 PP_ASSERT_WITH_CODE(!result,
2113 "Can not find DFS divide id for Sclk",
2114 return result);
2115
2116 if (i == 0)
2117 table->Ulv.BifSclkDfs =
2118 PP_HOST_TO_SMC_US((uint16_t)(dividers.pll_post_divider));
2119 else
2120 table->LinkLevel[i - 1].BifSclkDfs =
2121 PP_HOST_TO_SMC_US((uint16_t)(dividers.pll_post_divider));
2122 }
2123
2124 for (i = 0; i < SMU75_MAX_ENTRIES_SMIO; i++)
2125 table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
2126
2127 CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
2128 CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
2129 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
2130 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
2131 CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
2132 CONVERT_FROM_HOST_TO_SMC_UL(table->CurrSclkPllRange);
2133 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
2134 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
2135 CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
2136 CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
2137
2138
2139 result = smu7_copy_bytes_to_smc(hwmgr,
2140 smu_data->smu7_data.dpm_table_start +
2141 offsetof(SMU75_Discrete_DpmTable, SystemFlags),
2142 (uint8_t *)&(table->SystemFlags),
2143 sizeof(SMU75_Discrete_DpmTable) - 3 * sizeof(SMU75_PIDController),
2144 SMC_RAM_END);
2145 PP_ASSERT_WITH_CODE(!result,
2146 "Failed to upload dpm data to SMC memory!", return result);
2147
2148 result = vegam_populate_pm_fuses(hwmgr);
2149 PP_ASSERT_WITH_CODE(!result,
2150 "Failed to populate PM fuses to SMC memory!", return result);
2151
2152 result = vegam_enable_reconfig_cus(hwmgr);
2153 PP_ASSERT_WITH_CODE(!result,
2154 "Failed to enable reconfigurable CUs!", return result);
2155
2156 return 0;
2157 }
2158
2159 static uint32_t vegam_get_offsetof(uint32_t type, uint32_t member)
2160 {
2161 switch (type) {
2162 case SMU_SoftRegisters:
2163 switch (member) {
2164 case HandshakeDisables:
2165 return offsetof(SMU75_SoftRegisters, HandshakeDisables);
2166 case VoltageChangeTimeout:
2167 return offsetof(SMU75_SoftRegisters, VoltageChangeTimeout);
2168 case AverageGraphicsActivity:
2169 return offsetof(SMU75_SoftRegisters, AverageGraphicsActivity);
2170 case AverageMemoryActivity:
2171 return offsetof(SMU75_SoftRegisters, AverageMemoryActivity);
2172 case PreVBlankGap:
2173 return offsetof(SMU75_SoftRegisters, PreVBlankGap);
2174 case VBlankTimeout:
2175 return offsetof(SMU75_SoftRegisters, VBlankTimeout);
2176 case UcodeLoadStatus:
2177 return offsetof(SMU75_SoftRegisters, UcodeLoadStatus);
2178 case DRAM_LOG_ADDR_H:
2179 return offsetof(SMU75_SoftRegisters, DRAM_LOG_ADDR_H);
2180 case DRAM_LOG_ADDR_L:
2181 return offsetof(SMU75_SoftRegisters, DRAM_LOG_ADDR_L);
2182 case DRAM_LOG_PHY_ADDR_H:
2183 return offsetof(SMU75_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
2184 case DRAM_LOG_PHY_ADDR_L:
2185 return offsetof(SMU75_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
2186 case DRAM_LOG_BUFF_SIZE:
2187 return offsetof(SMU75_SoftRegisters, DRAM_LOG_BUFF_SIZE);
2188 }
2189 break;
2190 case SMU_Discrete_DpmTable:
2191 switch (member) {
2192 case UvdBootLevel:
2193 return offsetof(SMU75_Discrete_DpmTable, UvdBootLevel);
2194 case VceBootLevel:
2195 return offsetof(SMU75_Discrete_DpmTable, VceBootLevel);
2196 case LowSclkInterruptThreshold:
2197 return offsetof(SMU75_Discrete_DpmTable, LowSclkInterruptThreshold);
2198 }
2199 break;
2200 }
2201 pr_warn("can't get the offset of type %x member %x\n", type, member);
2202 return 0;
2203 }
2204
2205 static int vegam_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
2206 {
2207 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2208
2209 if (data->need_update_smu7_dpm_table &
2210 (DPMTABLE_OD_UPDATE_SCLK +
2211 DPMTABLE_UPDATE_SCLK +
2212 DPMTABLE_UPDATE_MCLK))
2213 return vegam_program_memory_timing_parameters(hwmgr);
2214
2215 return 0;
2216 }
2217
2218 static int vegam_update_sclk_threshold(struct pp_hwmgr *hwmgr)
2219 {
2220 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2221 struct vegam_smumgr *smu_data =
2222 (struct vegam_smumgr *)(hwmgr->smu_backend);
2223 int result = 0;
2224 uint32_t low_sclk_interrupt_threshold = 0;
2225
2226 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2227 PHM_PlatformCaps_SclkThrottleLowNotification)
2228 && (data->low_sclk_interrupt_threshold != 0)) {
2229 low_sclk_interrupt_threshold =
2230 data->low_sclk_interrupt_threshold;
2231
2232 CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
2233
2234 result = smu7_copy_bytes_to_smc(
2235 hwmgr,
2236 smu_data->smu7_data.dpm_table_start +
2237 offsetof(SMU75_Discrete_DpmTable,
2238 LowSclkInterruptThreshold),
2239 (uint8_t *)&low_sclk_interrupt_threshold,
2240 sizeof(uint32_t),
2241 SMC_RAM_END);
2242 }
2243 PP_ASSERT_WITH_CODE((result == 0),
2244 "Failed to update SCLK threshold!", return result);
2245
2246 result = vegam_program_mem_timing_parameters(hwmgr);
2247 PP_ASSERT_WITH_CODE((result == 0),
2248 "Failed to program memory timing parameters!",
2249 );
2250
2251 return result;
2252 }
2253
2254 int vegam_thermal_avfs_enable(struct pp_hwmgr *hwmgr)
2255 {
2256 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2257 int ret;
2258
2259 if (!hwmgr->avfs_supported)
2260 return 0;
2261
2262 ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableAvfs);
2263 if (!ret) {
2264 if (data->apply_avfs_cks_off_voltage)
2265 ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ApplyAvfsCksOffVoltage);
2266 }
2267
2268 return ret;
2269 }
2270
2271 static int vegam_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
2272 {
2273 PP_ASSERT_WITH_CODE(hwmgr->thermal_controller.fanInfo.bNoFan,
2274 "VBIOS fan info is not correct!",
2275 );
2276 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2277 PHM_PlatformCaps_MicrocodeFanControl);
2278 return 0;
2279 }
2280
2281 const struct pp_smumgr_func vegam_smu_funcs = {
2282 .name = "vegam_smu",
2283 .smu_init = vegam_smu_init,
2284 .smu_fini = smu7_smu_fini,
2285 .start_smu = vegam_start_smu,
2286 .check_fw_load_finish = smu7_check_fw_load_finish,
2287 .request_smu_load_fw = smu7_reload_firmware,
2288 .request_smu_load_specific_fw = NULL,
2289 .send_msg_to_smc = smu7_send_msg_to_smc,
2290 .send_msg_to_smc_with_parameter = smu7_send_msg_to_smc_with_parameter,
2291 .process_firmware_header = vegam_process_firmware_header,
2292 .is_dpm_running = vegam_is_dpm_running,
2293 .get_mac_definition = vegam_get_mac_definition,
2294 .update_smc_table = vegam_update_smc_table,
2295 .init_smc_table = vegam_init_smc_table,
2296 .get_offsetof = vegam_get_offsetof,
2297 .populate_all_graphic_levels = vegam_populate_all_graphic_levels,
2298 .populate_all_memory_levels = vegam_populate_all_memory_levels,
2299 .update_sclk_threshold = vegam_update_sclk_threshold,
2300 .is_hw_avfs_present = vegam_is_hw_avfs_present,
2301 .thermal_avfs_enable = vegam_thermal_avfs_enable,
2302 .thermal_setup_fan_table = vegam_thermal_setup_fan_table,
2303 };