This source file includes following definitions.
- fExponential
- fNaturalLog
- fDecodeLinearFuse
- fDecodeLogisticFuse
- fDecodeLeakageID
- ConvertToFraction
- fNegate
- Convert_ULONG_ToFraction
- GetScaledFraction
- fAdd
- fSubtract
- Equal
- GreaterThan
- fMultiply
- fDivide
- ConvertBackToInteger
- fGetSquare
- fSqrt
- SolveQuadracticEqn
- GetReal
- Divide
- uGetScaledDecimal
- uPow
- uAbs
- fRoundUpByStepSize
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 #include <asm/div64.h>
24
25 #define SHIFT_AMOUNT 16
26
27 #define PRECISION 5
28
29 #define SHIFTED_2 (2 << SHIFT_AMOUNT)
30 #define MAX (1 << (SHIFT_AMOUNT - 1)) - 1
31
32
33
34
35
36
37
38
39
40
41 typedef union _fInt {
42 int full;
43 struct _partial {
44 unsigned int decimal: SHIFT_AMOUNT;
45 int real: 32 - SHIFT_AMOUNT;
46 } partial;
47 } fInt;
48
49
50
51
52
53 static fInt ConvertToFraction(int);
54 static fInt Convert_ULONG_ToFraction(uint32_t);
55 static fInt GetScaledFraction(int, int);
56 static int ConvertBackToInteger(fInt);
57
58 static fInt fNegate(fInt);
59 static fInt fAdd (fInt, fInt);
60 static fInt fSubtract (fInt A, fInt B);
61 static fInt fMultiply (fInt, fInt);
62 static fInt fDivide (fInt A, fInt B);
63 static fInt fGetSquare(fInt);
64 static fInt fSqrt(fInt);
65
66 static int uAbs(int);
67 static int uPow(int base, int exponent);
68
69 static void SolveQuadracticEqn(fInt, fInt, fInt, fInt[]);
70 static bool Equal(fInt, fInt);
71 static bool GreaterThan(fInt A, fInt B);
72
73 static fInt fExponential(fInt exponent);
74 static fInt fNaturalLog(fInt value);
75
76
77
78
79 static fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength);
80 static fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength);
81 static fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength);
82
83
84
85
86
87 static fInt Divide (int, int);
88 static fInt fNegate(fInt);
89
90 static int uGetScaledDecimal (fInt);
91 static int GetReal (fInt A);
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108 static fInt fExponential(fInt exponent)
109 {
110 uint32_t i;
111 bool bNegated = false;
112
113 fInt fPositiveOne = ConvertToFraction(1);
114 fInt fZERO = ConvertToFraction(0);
115
116 fInt lower_bound = Divide(78, 10000);
117 fInt solution = fPositiveOne;
118 fInt error_term;
119
120 static const uint32_t k_array[11] = {55452, 27726, 13863, 6931, 4055, 2231, 1178, 606, 308, 155, 78};
121 static const uint32_t expk_array[11] = {2560000, 160000, 40000, 20000, 15000, 12500, 11250, 10625, 10313, 10156, 10078};
122
123 if (GreaterThan(fZERO, exponent)) {
124 exponent = fNegate(exponent);
125 bNegated = true;
126 }
127
128 while (GreaterThan(exponent, lower_bound)) {
129 for (i = 0; i < 11; i++) {
130 if (GreaterThan(exponent, GetScaledFraction(k_array[i], 10000))) {
131 exponent = fSubtract(exponent, GetScaledFraction(k_array[i], 10000));
132 solution = fMultiply(solution, GetScaledFraction(expk_array[i], 10000));
133 }
134 }
135 }
136
137 error_term = fAdd(fPositiveOne, exponent);
138
139 solution = fMultiply(solution, error_term);
140
141 if (bNegated)
142 solution = fDivide(fPositiveOne, solution);
143
144 return solution;
145 }
146
147 static fInt fNaturalLog(fInt value)
148 {
149 uint32_t i;
150 fInt upper_bound = Divide(8, 1000);
151 fInt fNegativeOne = ConvertToFraction(-1);
152 fInt solution = ConvertToFraction(0);
153 fInt error_term;
154
155 static const uint32_t k_array[10] = {160000, 40000, 20000, 15000, 12500, 11250, 10625, 10313, 10156, 10078};
156 static const uint32_t logk_array[10] = {27726, 13863, 6931, 4055, 2231, 1178, 606, 308, 155, 78};
157
158 while (GreaterThan(fAdd(value, fNegativeOne), upper_bound)) {
159 for (i = 0; i < 10; i++) {
160 if (GreaterThan(value, GetScaledFraction(k_array[i], 10000))) {
161 value = fDivide(value, GetScaledFraction(k_array[i], 10000));
162 solution = fAdd(solution, GetScaledFraction(logk_array[i], 10000));
163 }
164 }
165 }
166
167 error_term = fAdd(fNegativeOne, value);
168
169 return (fAdd(solution, error_term));
170 }
171
172 static fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength)
173 {
174 fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value);
175 fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
176
177 fInt f_decoded_value;
178
179 f_decoded_value = fDivide(f_fuse_value, f_bit_max_value);
180 f_decoded_value = fMultiply(f_decoded_value, f_range);
181 f_decoded_value = fAdd(f_decoded_value, f_min);
182
183 return f_decoded_value;
184 }
185
186
187 static fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength)
188 {
189 fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value);
190 fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
191
192 fInt f_CONSTANT_NEG13 = ConvertToFraction(-13);
193 fInt f_CONSTANT1 = ConvertToFraction(1);
194
195 fInt f_decoded_value;
196
197 f_decoded_value = fSubtract(fDivide(f_bit_max_value, f_fuse_value), f_CONSTANT1);
198 f_decoded_value = fNaturalLog(f_decoded_value);
199 f_decoded_value = fMultiply(f_decoded_value, fDivide(f_range, f_CONSTANT_NEG13));
200 f_decoded_value = fAdd(f_decoded_value, f_average);
201
202 return f_decoded_value;
203 }
204
205 static fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength)
206 {
207 fInt fLeakage;
208 fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
209
210 fLeakage = fMultiply(ln_max_div_min, Convert_ULONG_ToFraction(leakageID_fuse));
211 fLeakage = fDivide(fLeakage, f_bit_max_value);
212 fLeakage = fExponential(fLeakage);
213 fLeakage = fMultiply(fLeakage, f_min);
214
215 return fLeakage;
216 }
217
218 static fInt ConvertToFraction(int X)
219 {
220 fInt temp;
221
222 if (X <= MAX)
223 temp.full = (X << SHIFT_AMOUNT);
224 else
225 temp.full = 0;
226
227 return temp;
228 }
229
230 static fInt fNegate(fInt X)
231 {
232 fInt CONSTANT_NEGONE = ConvertToFraction(-1);
233 return (fMultiply(X, CONSTANT_NEGONE));
234 }
235
236 static fInt Convert_ULONG_ToFraction(uint32_t X)
237 {
238 fInt temp;
239
240 if (X <= MAX)
241 temp.full = (X << SHIFT_AMOUNT);
242 else
243 temp.full = 0;
244
245 return temp;
246 }
247
248 static fInt GetScaledFraction(int X, int factor)
249 {
250 int times_shifted, factor_shifted;
251 bool bNEGATED;
252 fInt fValue;
253
254 times_shifted = 0;
255 factor_shifted = 0;
256 bNEGATED = false;
257
258 if (X < 0) {
259 X = -1*X;
260 bNEGATED = true;
261 }
262
263 if (factor < 0) {
264 factor = -1*factor;
265 bNEGATED = !bNEGATED;
266 }
267
268 if ((X > MAX) || factor > MAX) {
269 if ((X/factor) <= MAX) {
270 while (X > MAX) {
271 X = X >> 1;
272 times_shifted++;
273 }
274
275 while (factor > MAX) {
276 factor = factor >> 1;
277 factor_shifted++;
278 }
279 } else {
280 fValue.full = 0;
281 return fValue;
282 }
283 }
284
285 if (factor == 1)
286 return ConvertToFraction(X);
287
288 fValue = fDivide(ConvertToFraction(X * uPow(-1, bNEGATED)), ConvertToFraction(factor));
289
290 fValue.full = fValue.full << times_shifted;
291 fValue.full = fValue.full >> factor_shifted;
292
293 return fValue;
294 }
295
296
297 static fInt fAdd (fInt X, fInt Y)
298 {
299 fInt Sum;
300
301 Sum.full = X.full + Y.full;
302
303 return Sum;
304 }
305
306
307 static fInt fSubtract (fInt X, fInt Y)
308 {
309 fInt Difference;
310
311 Difference.full = X.full - Y.full;
312
313 return Difference;
314 }
315
316 static bool Equal(fInt A, fInt B)
317 {
318 if (A.full == B.full)
319 return true;
320 else
321 return false;
322 }
323
324 static bool GreaterThan(fInt A, fInt B)
325 {
326 if (A.full > B.full)
327 return true;
328 else
329 return false;
330 }
331
332 static fInt fMultiply (fInt X, fInt Y)
333 {
334 fInt Product;
335 int64_t tempProduct;
336 bool X_LessThanOne, Y_LessThanOne;
337
338 X_LessThanOne = (X.partial.real == 0 && X.partial.decimal != 0 && X.full >= 0);
339 Y_LessThanOne = (Y.partial.real == 0 && Y.partial.decimal != 0 && Y.full >= 0);
340
341
342
343
344
345
346
347
348
349 tempProduct = ((int64_t)X.full) * ((int64_t)Y.full);
350 tempProduct = tempProduct >> 16;
351 Product.full = (int)tempProduct;
352
353 return Product;
354 }
355
356 static fInt fDivide (fInt X, fInt Y)
357 {
358 fInt fZERO, fQuotient;
359 int64_t longlongX, longlongY;
360
361 fZERO = ConvertToFraction(0);
362
363 if (Equal(Y, fZERO))
364 return fZERO;
365
366 longlongX = (int64_t)X.full;
367 longlongY = (int64_t)Y.full;
368
369 longlongX = longlongX << 16;
370
371 div64_s64(longlongX, longlongY);
372
373 fQuotient.full = (int)longlongX;
374 return fQuotient;
375 }
376
377 static int ConvertBackToInteger (fInt A)
378 {
379 fInt fullNumber, scaledDecimal, scaledReal;
380
381 scaledReal.full = GetReal(A) * uPow(10, PRECISION-1);
382
383 scaledDecimal.full = uGetScaledDecimal(A);
384
385 fullNumber = fAdd(scaledDecimal,scaledReal);
386
387 return fullNumber.full;
388 }
389
390 static fInt fGetSquare(fInt A)
391 {
392 return fMultiply(A,A);
393 }
394
395
396 static fInt fSqrt(fInt num)
397 {
398 fInt F_divide_Fprime, Fprime;
399 fInt test;
400 fInt twoShifted;
401 int seed, counter, error;
402 fInt x_new, x_old, C, y;
403
404 fInt fZERO = ConvertToFraction(0);
405
406
407
408 if (GreaterThan(fZERO, num) || Equal(fZERO, num))
409 return fZERO;
410
411 C = num;
412
413 if (num.partial.real > 3000)
414 seed = 60;
415 else if (num.partial.real > 1000)
416 seed = 30;
417 else if (num.partial.real > 100)
418 seed = 10;
419 else
420 seed = 2;
421
422 counter = 0;
423
424 if (Equal(num, fZERO))
425 return fZERO;
426
427 twoShifted = ConvertToFraction(2);
428 x_new = ConvertToFraction(seed);
429
430 do {
431 counter++;
432
433 x_old.full = x_new.full;
434
435 test = fGetSquare(x_old);
436 y = fSubtract(test, C);
437
438 Fprime = fMultiply(twoShifted, x_old);
439 F_divide_Fprime = fDivide(y, Fprime);
440
441 x_new = fSubtract(x_old, F_divide_Fprime);
442
443 error = ConvertBackToInteger(x_new) - ConvertBackToInteger(x_old);
444
445 if (counter > 20)
446 return x_new;
447
448 } while (uAbs(error) > 0);
449
450 return (x_new);
451 }
452
453 static void SolveQuadracticEqn(fInt A, fInt B, fInt C, fInt Roots[])
454 {
455 fInt *pRoots = &Roots[0];
456 fInt temp, root_first, root_second;
457 fInt f_CONSTANT10, f_CONSTANT100;
458
459 f_CONSTANT100 = ConvertToFraction(100);
460 f_CONSTANT10 = ConvertToFraction(10);
461
462 while(GreaterThan(A, f_CONSTANT100) || GreaterThan(B, f_CONSTANT100) || GreaterThan(C, f_CONSTANT100)) {
463 A = fDivide(A, f_CONSTANT10);
464 B = fDivide(B, f_CONSTANT10);
465 C = fDivide(C, f_CONSTANT10);
466 }
467
468 temp = fMultiply(ConvertToFraction(4), A);
469 temp = fMultiply(temp, C);
470 temp = fSubtract(fGetSquare(B), temp);
471 temp = fSqrt(temp);
472
473 root_first = fSubtract(fNegate(B), temp);
474 root_second = fAdd(fNegate(B), temp);
475
476 root_first = fDivide(root_first, ConvertToFraction(2));
477 root_first = fDivide(root_first, A);
478
479 root_second = fDivide(root_second, ConvertToFraction(2));
480 root_second = fDivide(root_second, A);
481
482 *(pRoots + 0) = root_first;
483 *(pRoots + 1) = root_second;
484 }
485
486
487
488
489
490
491
492 static int GetReal (fInt A)
493 {
494 return (A.full >> SHIFT_AMOUNT);
495 }
496
497 static fInt Divide (int X, int Y)
498 {
499 fInt A, B, Quotient;
500
501 A.full = X << SHIFT_AMOUNT;
502 B.full = Y << SHIFT_AMOUNT;
503
504 Quotient = fDivide(A, B);
505
506 return Quotient;
507 }
508
509 static int uGetScaledDecimal (fInt A)
510 {
511 int dec[PRECISION];
512 int i, scaledDecimal = 0, tmp = A.partial.decimal;
513
514 for (i = 0; i < PRECISION; i++) {
515 dec[i] = tmp / (1 << SHIFT_AMOUNT);
516 tmp = tmp - ((1 << SHIFT_AMOUNT)*dec[i]);
517 tmp *= 10;
518 scaledDecimal = scaledDecimal + dec[i]*uPow(10, PRECISION - 1 -i);
519 }
520
521 return scaledDecimal;
522 }
523
524 static int uPow(int base, int power)
525 {
526 if (power == 0)
527 return 1;
528 else
529 return (base)*uPow(base, power - 1);
530 }
531
532 static int uAbs(int X)
533 {
534 if (X < 0)
535 return (X * -1);
536 else
537 return X;
538 }
539
540 static fInt fRoundUpByStepSize(fInt A, fInt fStepSize, bool error_term)
541 {
542 fInt solution;
543
544 solution = fDivide(A, fStepSize);
545 solution.partial.decimal = 0;
546
547 if (error_term)
548 solution.partial.real += 1;
549
550 solution = fMultiply(solution, fStepSize);
551 solution = fAdd(solution, fStepSize);
552
553 return solution;
554 }
555