This source file includes following definitions.
- psb_intel_limit
- psb_intel_clock
- psb_intel_panel_fitter_pipe
- psb_intel_crtc_mode_set
- psb_intel_crtc_clock_get
- psb_intel_crtc_mode_get
- psb_intel_cursor_init
- psb_intel_crtc_init
- psb_intel_get_crtc_from_pipe
- gma_connector_clones
1
2
3
4
5
6
7
8
9 #include <linux/delay.h>
10 #include <linux/i2c.h>
11
12 #include <drm/drm_plane_helper.h>
13
14 #include "framebuffer.h"
15 #include "gma_display.h"
16 #include "power.h"
17 #include "psb_drv.h"
18 #include "psb_intel_drv.h"
19 #include "psb_intel_reg.h"
20
21 #define INTEL_LIMIT_I9XX_SDVO_DAC 0
22 #define INTEL_LIMIT_I9XX_LVDS 1
23
24 static const struct gma_limit_t psb_intel_limits[] = {
25 {
26 .dot = {.min = 20000, .max = 400000},
27 .vco = {.min = 1400000, .max = 2800000},
28 .n = {.min = 1, .max = 6},
29 .m = {.min = 70, .max = 120},
30 .m1 = {.min = 8, .max = 18},
31 .m2 = {.min = 3, .max = 7},
32 .p = {.min = 5, .max = 80},
33 .p1 = {.min = 1, .max = 8},
34 .p2 = {.dot_limit = 200000, .p2_slow = 10, .p2_fast = 5},
35 .find_pll = gma_find_best_pll,
36 },
37 {
38 .dot = {.min = 20000, .max = 400000},
39 .vco = {.min = 1400000, .max = 2800000},
40 .n = {.min = 1, .max = 6},
41 .m = {.min = 70, .max = 120},
42 .m1 = {.min = 8, .max = 18},
43 .m2 = {.min = 3, .max = 7},
44 .p = {.min = 7, .max = 98},
45 .p1 = {.min = 1, .max = 8},
46
47
48
49 .p2 = {.dot_limit = 112000, .p2_slow = 14, .p2_fast = 7},
50 .find_pll = gma_find_best_pll,
51 },
52 };
53
54 static const struct gma_limit_t *psb_intel_limit(struct drm_crtc *crtc,
55 int refclk)
56 {
57 const struct gma_limit_t *limit;
58
59 if (gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
60 limit = &psb_intel_limits[INTEL_LIMIT_I9XX_LVDS];
61 else
62 limit = &psb_intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC];
63 return limit;
64 }
65
66 static void psb_intel_clock(int refclk, struct gma_clock_t *clock)
67 {
68 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
69 clock->p = clock->p1 * clock->p2;
70 clock->vco = refclk * clock->m / (clock->n + 2);
71 clock->dot = clock->vco / clock->p;
72 }
73
74
75
76
77
78 static int psb_intel_panel_fitter_pipe(struct drm_device *dev)
79 {
80 u32 pfit_control;
81
82 pfit_control = REG_READ(PFIT_CONTROL);
83
84
85 if ((pfit_control & PFIT_ENABLE) == 0)
86 return -1;
87
88 return 1;
89 }
90
91 static int psb_intel_crtc_mode_set(struct drm_crtc *crtc,
92 struct drm_display_mode *mode,
93 struct drm_display_mode *adjusted_mode,
94 int x, int y,
95 struct drm_framebuffer *old_fb)
96 {
97 struct drm_device *dev = crtc->dev;
98 struct drm_psb_private *dev_priv = dev->dev_private;
99 struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
100 const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
101 int pipe = gma_crtc->pipe;
102 const struct psb_offset *map = &dev_priv->regmap[pipe];
103 int refclk;
104 struct gma_clock_t clock;
105 u32 dpll = 0, fp = 0, dspcntr, pipeconf;
106 bool ok, is_sdvo = false;
107 bool is_lvds = false, is_tv = false;
108 struct drm_mode_config *mode_config = &dev->mode_config;
109 struct drm_connector *connector;
110 const struct gma_limit_t *limit;
111
112
113 if (crtc->primary->fb == NULL) {
114 crtc_funcs->mode_set_base(crtc, x, y, old_fb);
115 return 0;
116 }
117
118 list_for_each_entry(connector, &mode_config->connector_list, head) {
119 struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
120
121 if (!connector->encoder
122 || connector->encoder->crtc != crtc)
123 continue;
124
125 switch (gma_encoder->type) {
126 case INTEL_OUTPUT_LVDS:
127 is_lvds = true;
128 break;
129 case INTEL_OUTPUT_SDVO:
130 is_sdvo = true;
131 break;
132 case INTEL_OUTPUT_TVOUT:
133 is_tv = true;
134 break;
135 }
136 }
137
138 refclk = 96000;
139
140 limit = gma_crtc->clock_funcs->limit(crtc, refclk);
141
142 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk,
143 &clock);
144 if (!ok) {
145 DRM_ERROR("Couldn't find PLL settings for mode! target: %d, actual: %d",
146 adjusted_mode->clock, clock.dot);
147 return 0;
148 }
149
150 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
151
152 dpll = DPLL_VGA_MODE_DIS;
153 if (is_lvds) {
154 dpll |= DPLLB_MODE_LVDS;
155 dpll |= DPLL_DVO_HIGH_SPEED;
156 } else
157 dpll |= DPLLB_MODE_DAC_SERIAL;
158 if (is_sdvo) {
159 int sdvo_pixel_multiply =
160 adjusted_mode->clock / mode->clock;
161 dpll |= DPLL_DVO_HIGH_SPEED;
162 dpll |=
163 (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
164 }
165
166
167 dpll |= (1 << (clock.p1 - 1)) << 16;
168 switch (clock.p2) {
169 case 5:
170 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
171 break;
172 case 7:
173 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
174 break;
175 case 10:
176 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
177 break;
178 case 14:
179 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
180 break;
181 }
182
183 if (is_tv) {
184
185
186 dpll |= 3;
187 }
188 dpll |= PLL_REF_INPUT_DREFCLK;
189
190
191 pipeconf = REG_READ(map->conf);
192
193
194 dspcntr = DISPPLANE_GAMMA_ENABLE;
195
196 if (pipe == 0)
197 dspcntr |= DISPPLANE_SEL_PIPE_A;
198 else
199 dspcntr |= DISPPLANE_SEL_PIPE_B;
200
201 dspcntr |= DISPLAY_PLANE_ENABLE;
202 pipeconf |= PIPEACONF_ENABLE;
203 dpll |= DPLL_VCO_ENABLE;
204
205
206
207 if (psb_intel_panel_fitter_pipe(dev) == pipe)
208 REG_WRITE(PFIT_CONTROL, 0);
209
210 drm_mode_debug_printmodeline(mode);
211
212 if (dpll & DPLL_VCO_ENABLE) {
213 REG_WRITE(map->fp0, fp);
214 REG_WRITE(map->dpll, dpll & ~DPLL_VCO_ENABLE);
215 REG_READ(map->dpll);
216 udelay(150);
217 }
218
219
220
221
222
223 if (is_lvds) {
224 u32 lvds = REG_READ(LVDS);
225
226 lvds &= ~LVDS_PIPEB_SELECT;
227 if (pipe == 1)
228 lvds |= LVDS_PIPEB_SELECT;
229
230 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
231
232
233
234
235 lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
236 if (clock.p2 == 7)
237 lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
238
239
240
241
242
243
244 REG_WRITE(LVDS, lvds);
245 REG_READ(LVDS);
246 }
247
248 REG_WRITE(map->fp0, fp);
249 REG_WRITE(map->dpll, dpll);
250 REG_READ(map->dpll);
251
252 udelay(150);
253
254
255 REG_WRITE(map->dpll, dpll);
256
257 REG_READ(map->dpll);
258
259 udelay(150);
260
261 REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) |
262 ((adjusted_mode->crtc_htotal - 1) << 16));
263 REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) |
264 ((adjusted_mode->crtc_hblank_end - 1) << 16));
265 REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) |
266 ((adjusted_mode->crtc_hsync_end - 1) << 16));
267 REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) |
268 ((adjusted_mode->crtc_vtotal - 1) << 16));
269 REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) |
270 ((adjusted_mode->crtc_vblank_end - 1) << 16));
271 REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) |
272 ((adjusted_mode->crtc_vsync_end - 1) << 16));
273
274
275
276 REG_WRITE(map->size,
277 ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
278 REG_WRITE(map->pos, 0);
279 REG_WRITE(map->src,
280 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
281 REG_WRITE(map->conf, pipeconf);
282 REG_READ(map->conf);
283
284 gma_wait_for_vblank(dev);
285
286 REG_WRITE(map->cntr, dspcntr);
287
288
289 crtc_funcs->mode_set_base(crtc, x, y, old_fb);
290
291 gma_wait_for_vblank(dev);
292
293 return 0;
294 }
295
296
297 static int psb_intel_crtc_clock_get(struct drm_device *dev,
298 struct drm_crtc *crtc)
299 {
300 struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
301 struct drm_psb_private *dev_priv = dev->dev_private;
302 int pipe = gma_crtc->pipe;
303 const struct psb_offset *map = &dev_priv->regmap[pipe];
304 u32 dpll;
305 u32 fp;
306 struct gma_clock_t clock;
307 bool is_lvds;
308 struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
309
310 if (gma_power_begin(dev, false)) {
311 dpll = REG_READ(map->dpll);
312 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
313 fp = REG_READ(map->fp0);
314 else
315 fp = REG_READ(map->fp1);
316 is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN);
317 gma_power_end(dev);
318 } else {
319 dpll = p->dpll;
320
321 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
322 fp = p->fp0;
323 else
324 fp = p->fp1;
325
326 is_lvds = (pipe == 1) && (dev_priv->regs.psb.saveLVDS &
327 LVDS_PORT_EN);
328 }
329
330 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
331 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
332 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
333
334 if (is_lvds) {
335 clock.p1 =
336 ffs((dpll &
337 DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
338 DPLL_FPA01_P1_POST_DIV_SHIFT);
339 clock.p2 = 14;
340
341 if ((dpll & PLL_REF_INPUT_MASK) ==
342 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
343
344 psb_intel_clock(66000, &clock);
345 } else
346 psb_intel_clock(48000, &clock);
347 } else {
348 if (dpll & PLL_P1_DIVIDE_BY_TWO)
349 clock.p1 = 2;
350 else {
351 clock.p1 =
352 ((dpll &
353 DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
354 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
355 }
356 if (dpll & PLL_P2_DIVIDE_BY_4)
357 clock.p2 = 4;
358 else
359 clock.p2 = 2;
360
361 psb_intel_clock(48000, &clock);
362 }
363
364
365
366
367
368
369 return clock.dot;
370 }
371
372
373 struct drm_display_mode *psb_intel_crtc_mode_get(struct drm_device *dev,
374 struct drm_crtc *crtc)
375 {
376 struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
377 int pipe = gma_crtc->pipe;
378 struct drm_display_mode *mode;
379 int htot;
380 int hsync;
381 int vtot;
382 int vsync;
383 struct drm_psb_private *dev_priv = dev->dev_private;
384 struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
385 const struct psb_offset *map = &dev_priv->regmap[pipe];
386
387 if (gma_power_begin(dev, false)) {
388 htot = REG_READ(map->htotal);
389 hsync = REG_READ(map->hsync);
390 vtot = REG_READ(map->vtotal);
391 vsync = REG_READ(map->vsync);
392 gma_power_end(dev);
393 } else {
394 htot = p->htotal;
395 hsync = p->hsync;
396 vtot = p->vtotal;
397 vsync = p->vsync;
398 }
399
400 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
401 if (!mode)
402 return NULL;
403
404 mode->clock = psb_intel_crtc_clock_get(dev, crtc);
405 mode->hdisplay = (htot & 0xffff) + 1;
406 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
407 mode->hsync_start = (hsync & 0xffff) + 1;
408 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
409 mode->vdisplay = (vtot & 0xffff) + 1;
410 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
411 mode->vsync_start = (vsync & 0xffff) + 1;
412 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
413
414 drm_mode_set_name(mode);
415 drm_mode_set_crtcinfo(mode, 0);
416
417 return mode;
418 }
419
420 const struct drm_crtc_helper_funcs psb_intel_helper_funcs = {
421 .dpms = gma_crtc_dpms,
422 .mode_set = psb_intel_crtc_mode_set,
423 .mode_set_base = gma_pipe_set_base,
424 .prepare = gma_crtc_prepare,
425 .commit = gma_crtc_commit,
426 .disable = gma_crtc_disable,
427 };
428
429 const struct drm_crtc_funcs psb_intel_crtc_funcs = {
430 .cursor_set = gma_crtc_cursor_set,
431 .cursor_move = gma_crtc_cursor_move,
432 .gamma_set = gma_crtc_gamma_set,
433 .set_config = gma_crtc_set_config,
434 .destroy = gma_crtc_destroy,
435 };
436
437 const struct gma_clock_funcs psb_clock_funcs = {
438 .clock = psb_intel_clock,
439 .limit = psb_intel_limit,
440 .pll_is_valid = gma_pll_is_valid,
441 };
442
443
444
445
446
447 static void psb_intel_cursor_init(struct drm_device *dev,
448 struct gma_crtc *gma_crtc)
449 {
450 struct drm_psb_private *dev_priv = dev->dev_private;
451 u32 control[3] = { CURACNTR, CURBCNTR, CURCCNTR };
452 u32 base[3] = { CURABASE, CURBBASE, CURCBASE };
453 struct gtt_range *cursor_gt;
454
455 if (dev_priv->ops->cursor_needs_phys) {
456
457
458
459 cursor_gt = psb_gtt_alloc_range(dev, 4 * PAGE_SIZE, "cursor", 1,
460 PAGE_SIZE);
461 if (!cursor_gt) {
462 gma_crtc->cursor_gt = NULL;
463 goto out;
464 }
465 gma_crtc->cursor_gt = cursor_gt;
466 gma_crtc->cursor_addr = dev_priv->stolen_base +
467 cursor_gt->offset;
468 } else {
469 gma_crtc->cursor_gt = NULL;
470 }
471
472 out:
473 REG_WRITE(control[gma_crtc->pipe], 0);
474 REG_WRITE(base[gma_crtc->pipe], 0);
475 }
476
477 void psb_intel_crtc_init(struct drm_device *dev, int pipe,
478 struct psb_intel_mode_device *mode_dev)
479 {
480 struct drm_psb_private *dev_priv = dev->dev_private;
481 struct gma_crtc *gma_crtc;
482 int i;
483
484
485
486 gma_crtc = kzalloc(sizeof(struct gma_crtc) +
487 (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)),
488 GFP_KERNEL);
489 if (gma_crtc == NULL)
490 return;
491
492 gma_crtc->crtc_state =
493 kzalloc(sizeof(struct psb_intel_crtc_state), GFP_KERNEL);
494 if (!gma_crtc->crtc_state) {
495 dev_err(dev->dev, "Crtc state error: No memory\n");
496 kfree(gma_crtc);
497 return;
498 }
499
500
501 drm_crtc_init(dev, &gma_crtc->base, dev_priv->ops->crtc_funcs);
502
503
504 gma_crtc->clock_funcs = dev_priv->ops->clock_funcs;
505
506 drm_mode_crtc_set_gamma_size(&gma_crtc->base, 256);
507 gma_crtc->pipe = pipe;
508 gma_crtc->plane = pipe;
509
510 for (i = 0; i < 256; i++)
511 gma_crtc->lut_adj[i] = 0;
512
513 gma_crtc->mode_dev = mode_dev;
514 gma_crtc->cursor_addr = 0;
515
516 drm_crtc_helper_add(&gma_crtc->base,
517 dev_priv->ops->crtc_helper);
518
519
520 gma_crtc->mode_set.crtc = &gma_crtc->base;
521 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
522 dev_priv->plane_to_crtc_mapping[gma_crtc->plane] != NULL);
523 dev_priv->plane_to_crtc_mapping[gma_crtc->plane] = &gma_crtc->base;
524 dev_priv->pipe_to_crtc_mapping[gma_crtc->pipe] = &gma_crtc->base;
525 gma_crtc->mode_set.connectors = (struct drm_connector **)(gma_crtc + 1);
526 gma_crtc->mode_set.num_connectors = 0;
527 psb_intel_cursor_init(dev, gma_crtc);
528
529
530 gma_crtc->active = true;
531 }
532
533 struct drm_crtc *psb_intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
534 {
535 struct drm_crtc *crtc = NULL;
536
537 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
538 struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
539 if (gma_crtc->pipe == pipe)
540 break;
541 }
542 return crtc;
543 }
544
545 int gma_connector_clones(struct drm_device *dev, int type_mask)
546 {
547 int index_mask = 0;
548 struct drm_connector *connector;
549 int entry = 0;
550
551 list_for_each_entry(connector, &dev->mode_config.connector_list,
552 head) {
553 struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
554 if (type_mask & (1 << gma_encoder->type))
555 index_mask |= (1 << entry);
556 entry++;
557 }
558 return index_mask;
559 }