root/drivers/gpu/drm/gma500/psb_intel_display.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. psb_intel_limit
  2. psb_intel_clock
  3. psb_intel_panel_fitter_pipe
  4. psb_intel_crtc_mode_set
  5. psb_intel_crtc_clock_get
  6. psb_intel_crtc_mode_get
  7. psb_intel_cursor_init
  8. psb_intel_crtc_init
  9. psb_intel_get_crtc_from_pipe
  10. gma_connector_clones

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * Copyright © 2006-2011 Intel Corporation
   4  *
   5  * Authors:
   6  *      Eric Anholt <eric@anholt.net>
   7  */
   8 
   9 #include <linux/delay.h>
  10 #include <linux/i2c.h>
  11 
  12 #include <drm/drm_plane_helper.h>
  13 
  14 #include "framebuffer.h"
  15 #include "gma_display.h"
  16 #include "power.h"
  17 #include "psb_drv.h"
  18 #include "psb_intel_drv.h"
  19 #include "psb_intel_reg.h"
  20 
  21 #define INTEL_LIMIT_I9XX_SDVO_DAC   0
  22 #define INTEL_LIMIT_I9XX_LVDS       1
  23 
  24 static const struct gma_limit_t psb_intel_limits[] = {
  25         {                       /* INTEL_LIMIT_I9XX_SDVO_DAC */
  26          .dot = {.min = 20000, .max = 400000},
  27          .vco = {.min = 1400000, .max = 2800000},
  28          .n = {.min = 1, .max = 6},
  29          .m = {.min = 70, .max = 120},
  30          .m1 = {.min = 8, .max = 18},
  31          .m2 = {.min = 3, .max = 7},
  32          .p = {.min = 5, .max = 80},
  33          .p1 = {.min = 1, .max = 8},
  34          .p2 = {.dot_limit = 200000, .p2_slow = 10, .p2_fast = 5},
  35          .find_pll = gma_find_best_pll,
  36          },
  37         {                       /* INTEL_LIMIT_I9XX_LVDS */
  38          .dot = {.min = 20000, .max = 400000},
  39          .vco = {.min = 1400000, .max = 2800000},
  40          .n = {.min = 1, .max = 6},
  41          .m = {.min = 70, .max = 120},
  42          .m1 = {.min = 8, .max = 18},
  43          .m2 = {.min = 3, .max = 7},
  44          .p = {.min = 7, .max = 98},
  45          .p1 = {.min = 1, .max = 8},
  46          /* The single-channel range is 25-112Mhz, and dual-channel
  47           * is 80-224Mhz.  Prefer single channel as much as possible.
  48           */
  49          .p2 = {.dot_limit = 112000, .p2_slow = 14, .p2_fast = 7},
  50          .find_pll = gma_find_best_pll,
  51          },
  52 };
  53 
  54 static const struct gma_limit_t *psb_intel_limit(struct drm_crtc *crtc,
  55                                                  int refclk)
  56 {
  57         const struct gma_limit_t *limit;
  58 
  59         if (gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  60                 limit = &psb_intel_limits[INTEL_LIMIT_I9XX_LVDS];
  61         else
  62                 limit = &psb_intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC];
  63         return limit;
  64 }
  65 
  66 static void psb_intel_clock(int refclk, struct gma_clock_t *clock)
  67 {
  68         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
  69         clock->p = clock->p1 * clock->p2;
  70         clock->vco = refclk * clock->m / (clock->n + 2);
  71         clock->dot = clock->vco / clock->p;
  72 }
  73 
  74 /**
  75  * Return the pipe currently connected to the panel fitter,
  76  * or -1 if the panel fitter is not present or not in use
  77  */
  78 static int psb_intel_panel_fitter_pipe(struct drm_device *dev)
  79 {
  80         u32 pfit_control;
  81 
  82         pfit_control = REG_READ(PFIT_CONTROL);
  83 
  84         /* See if the panel fitter is in use */
  85         if ((pfit_control & PFIT_ENABLE) == 0)
  86                 return -1;
  87         /* Must be on PIPE 1 for PSB */
  88         return 1;
  89 }
  90 
  91 static int psb_intel_crtc_mode_set(struct drm_crtc *crtc,
  92                                struct drm_display_mode *mode,
  93                                struct drm_display_mode *adjusted_mode,
  94                                int x, int y,
  95                                struct drm_framebuffer *old_fb)
  96 {
  97         struct drm_device *dev = crtc->dev;
  98         struct drm_psb_private *dev_priv = dev->dev_private;
  99         struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
 100         const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
 101         int pipe = gma_crtc->pipe;
 102         const struct psb_offset *map = &dev_priv->regmap[pipe];
 103         int refclk;
 104         struct gma_clock_t clock;
 105         u32 dpll = 0, fp = 0, dspcntr, pipeconf;
 106         bool ok, is_sdvo = false;
 107         bool is_lvds = false, is_tv = false;
 108         struct drm_mode_config *mode_config = &dev->mode_config;
 109         struct drm_connector *connector;
 110         const struct gma_limit_t *limit;
 111 
 112         /* No scan out no play */
 113         if (crtc->primary->fb == NULL) {
 114                 crtc_funcs->mode_set_base(crtc, x, y, old_fb);
 115                 return 0;
 116         }
 117 
 118         list_for_each_entry(connector, &mode_config->connector_list, head) {
 119                 struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
 120 
 121                 if (!connector->encoder
 122                     || connector->encoder->crtc != crtc)
 123                         continue;
 124 
 125                 switch (gma_encoder->type) {
 126                 case INTEL_OUTPUT_LVDS:
 127                         is_lvds = true;
 128                         break;
 129                 case INTEL_OUTPUT_SDVO:
 130                         is_sdvo = true;
 131                         break;
 132                 case INTEL_OUTPUT_TVOUT:
 133                         is_tv = true;
 134                         break;
 135                 }
 136         }
 137 
 138         refclk = 96000;
 139 
 140         limit = gma_crtc->clock_funcs->limit(crtc, refclk);
 141 
 142         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk,
 143                                  &clock);
 144         if (!ok) {
 145                 DRM_ERROR("Couldn't find PLL settings for mode! target: %d, actual: %d",
 146                           adjusted_mode->clock, clock.dot);
 147                 return 0;
 148         }
 149 
 150         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
 151 
 152         dpll = DPLL_VGA_MODE_DIS;
 153         if (is_lvds) {
 154                 dpll |= DPLLB_MODE_LVDS;
 155                 dpll |= DPLL_DVO_HIGH_SPEED;
 156         } else
 157                 dpll |= DPLLB_MODE_DAC_SERIAL;
 158         if (is_sdvo) {
 159                 int sdvo_pixel_multiply =
 160                             adjusted_mode->clock / mode->clock;
 161                 dpll |= DPLL_DVO_HIGH_SPEED;
 162                 dpll |=
 163                     (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
 164         }
 165 
 166         /* compute bitmask from p1 value */
 167         dpll |= (1 << (clock.p1 - 1)) << 16;
 168         switch (clock.p2) {
 169         case 5:
 170                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
 171                 break;
 172         case 7:
 173                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
 174                 break;
 175         case 10:
 176                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
 177                 break;
 178         case 14:
 179                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
 180                 break;
 181         }
 182 
 183         if (is_tv) {
 184                 /* XXX: just matching BIOS for now */
 185 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
 186                 dpll |= 3;
 187         }
 188         dpll |= PLL_REF_INPUT_DREFCLK;
 189 
 190         /* setup pipeconf */
 191         pipeconf = REG_READ(map->conf);
 192 
 193         /* Set up the display plane register */
 194         dspcntr = DISPPLANE_GAMMA_ENABLE;
 195 
 196         if (pipe == 0)
 197                 dspcntr |= DISPPLANE_SEL_PIPE_A;
 198         else
 199                 dspcntr |= DISPPLANE_SEL_PIPE_B;
 200 
 201         dspcntr |= DISPLAY_PLANE_ENABLE;
 202         pipeconf |= PIPEACONF_ENABLE;
 203         dpll |= DPLL_VCO_ENABLE;
 204 
 205 
 206         /* Disable the panel fitter if it was on our pipe */
 207         if (psb_intel_panel_fitter_pipe(dev) == pipe)
 208                 REG_WRITE(PFIT_CONTROL, 0);
 209 
 210         drm_mode_debug_printmodeline(mode);
 211 
 212         if (dpll & DPLL_VCO_ENABLE) {
 213                 REG_WRITE(map->fp0, fp);
 214                 REG_WRITE(map->dpll, dpll & ~DPLL_VCO_ENABLE);
 215                 REG_READ(map->dpll);
 216                 udelay(150);
 217         }
 218 
 219         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
 220          * This is an exception to the general rule that mode_set doesn't turn
 221          * things on.
 222          */
 223         if (is_lvds) {
 224                 u32 lvds = REG_READ(LVDS);
 225 
 226                 lvds &= ~LVDS_PIPEB_SELECT;
 227                 if (pipe == 1)
 228                         lvds |= LVDS_PIPEB_SELECT;
 229 
 230                 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
 231                 /* Set the B0-B3 data pairs corresponding to
 232                  * whether we're going to
 233                  * set the DPLLs for dual-channel mode or not.
 234                  */
 235                 lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
 236                 if (clock.p2 == 7)
 237                         lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
 238 
 239                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
 240                  * appropriately here, but we need to look more
 241                  * thoroughly into how panels behave in the two modes.
 242                  */
 243 
 244                 REG_WRITE(LVDS, lvds);
 245                 REG_READ(LVDS);
 246         }
 247 
 248         REG_WRITE(map->fp0, fp);
 249         REG_WRITE(map->dpll, dpll);
 250         REG_READ(map->dpll);
 251         /* Wait for the clocks to stabilize. */
 252         udelay(150);
 253 
 254         /* write it again -- the BIOS does, after all */
 255         REG_WRITE(map->dpll, dpll);
 256 
 257         REG_READ(map->dpll);
 258         /* Wait for the clocks to stabilize. */
 259         udelay(150);
 260 
 261         REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) |
 262                   ((adjusted_mode->crtc_htotal - 1) << 16));
 263         REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) |
 264                   ((adjusted_mode->crtc_hblank_end - 1) << 16));
 265         REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) |
 266                   ((adjusted_mode->crtc_hsync_end - 1) << 16));
 267         REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) |
 268                   ((adjusted_mode->crtc_vtotal - 1) << 16));
 269         REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) |
 270                   ((adjusted_mode->crtc_vblank_end - 1) << 16));
 271         REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) |
 272                   ((adjusted_mode->crtc_vsync_end - 1) << 16));
 273         /* pipesrc and dspsize control the size that is scaled from,
 274          * which should always be the user's requested size.
 275          */
 276         REG_WRITE(map->size,
 277                   ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
 278         REG_WRITE(map->pos, 0);
 279         REG_WRITE(map->src,
 280                   ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
 281         REG_WRITE(map->conf, pipeconf);
 282         REG_READ(map->conf);
 283 
 284         gma_wait_for_vblank(dev);
 285 
 286         REG_WRITE(map->cntr, dspcntr);
 287 
 288         /* Flush the plane changes */
 289         crtc_funcs->mode_set_base(crtc, x, y, old_fb);
 290 
 291         gma_wait_for_vblank(dev);
 292 
 293         return 0;
 294 }
 295 
 296 /* Returns the clock of the currently programmed mode of the given pipe. */
 297 static int psb_intel_crtc_clock_get(struct drm_device *dev,
 298                                 struct drm_crtc *crtc)
 299 {
 300         struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
 301         struct drm_psb_private *dev_priv = dev->dev_private;
 302         int pipe = gma_crtc->pipe;
 303         const struct psb_offset *map = &dev_priv->regmap[pipe];
 304         u32 dpll;
 305         u32 fp;
 306         struct gma_clock_t clock;
 307         bool is_lvds;
 308         struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
 309 
 310         if (gma_power_begin(dev, false)) {
 311                 dpll = REG_READ(map->dpll);
 312                 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
 313                         fp = REG_READ(map->fp0);
 314                 else
 315                         fp = REG_READ(map->fp1);
 316                 is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN);
 317                 gma_power_end(dev);
 318         } else {
 319                 dpll = p->dpll;
 320 
 321                 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
 322                         fp = p->fp0;
 323                 else
 324                         fp = p->fp1;
 325 
 326                 is_lvds = (pipe == 1) && (dev_priv->regs.psb.saveLVDS &
 327                                                                 LVDS_PORT_EN);
 328         }
 329 
 330         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
 331         clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
 332         clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
 333 
 334         if (is_lvds) {
 335                 clock.p1 =
 336                     ffs((dpll &
 337                          DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
 338                         DPLL_FPA01_P1_POST_DIV_SHIFT);
 339                 clock.p2 = 14;
 340 
 341                 if ((dpll & PLL_REF_INPUT_MASK) ==
 342                     PLLB_REF_INPUT_SPREADSPECTRUMIN) {
 343                         /* XXX: might not be 66MHz */
 344                         psb_intel_clock(66000, &clock);
 345                 } else
 346                         psb_intel_clock(48000, &clock);
 347         } else {
 348                 if (dpll & PLL_P1_DIVIDE_BY_TWO)
 349                         clock.p1 = 2;
 350                 else {
 351                         clock.p1 =
 352                             ((dpll &
 353                               DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
 354                              DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
 355                 }
 356                 if (dpll & PLL_P2_DIVIDE_BY_4)
 357                         clock.p2 = 4;
 358                 else
 359                         clock.p2 = 2;
 360 
 361                 psb_intel_clock(48000, &clock);
 362         }
 363 
 364         /* XXX: It would be nice to validate the clocks, but we can't reuse
 365          * i830PllIsValid() because it relies on the xf86_config connector
 366          * configuration being accurate, which it isn't necessarily.
 367          */
 368 
 369         return clock.dot;
 370 }
 371 
 372 /** Returns the currently programmed mode of the given pipe. */
 373 struct drm_display_mode *psb_intel_crtc_mode_get(struct drm_device *dev,
 374                                              struct drm_crtc *crtc)
 375 {
 376         struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
 377         int pipe = gma_crtc->pipe;
 378         struct drm_display_mode *mode;
 379         int htot;
 380         int hsync;
 381         int vtot;
 382         int vsync;
 383         struct drm_psb_private *dev_priv = dev->dev_private;
 384         struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
 385         const struct psb_offset *map = &dev_priv->regmap[pipe];
 386 
 387         if (gma_power_begin(dev, false)) {
 388                 htot = REG_READ(map->htotal);
 389                 hsync = REG_READ(map->hsync);
 390                 vtot = REG_READ(map->vtotal);
 391                 vsync = REG_READ(map->vsync);
 392                 gma_power_end(dev);
 393         } else {
 394                 htot = p->htotal;
 395                 hsync = p->hsync;
 396                 vtot = p->vtotal;
 397                 vsync = p->vsync;
 398         }
 399 
 400         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
 401         if (!mode)
 402                 return NULL;
 403 
 404         mode->clock = psb_intel_crtc_clock_get(dev, crtc);
 405         mode->hdisplay = (htot & 0xffff) + 1;
 406         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
 407         mode->hsync_start = (hsync & 0xffff) + 1;
 408         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
 409         mode->vdisplay = (vtot & 0xffff) + 1;
 410         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
 411         mode->vsync_start = (vsync & 0xffff) + 1;
 412         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
 413 
 414         drm_mode_set_name(mode);
 415         drm_mode_set_crtcinfo(mode, 0);
 416 
 417         return mode;
 418 }
 419 
 420 const struct drm_crtc_helper_funcs psb_intel_helper_funcs = {
 421         .dpms = gma_crtc_dpms,
 422         .mode_set = psb_intel_crtc_mode_set,
 423         .mode_set_base = gma_pipe_set_base,
 424         .prepare = gma_crtc_prepare,
 425         .commit = gma_crtc_commit,
 426         .disable = gma_crtc_disable,
 427 };
 428 
 429 const struct drm_crtc_funcs psb_intel_crtc_funcs = {
 430         .cursor_set = gma_crtc_cursor_set,
 431         .cursor_move = gma_crtc_cursor_move,
 432         .gamma_set = gma_crtc_gamma_set,
 433         .set_config = gma_crtc_set_config,
 434         .destroy = gma_crtc_destroy,
 435 };
 436 
 437 const struct gma_clock_funcs psb_clock_funcs = {
 438         .clock = psb_intel_clock,
 439         .limit = psb_intel_limit,
 440         .pll_is_valid = gma_pll_is_valid,
 441 };
 442 
 443 /*
 444  * Set the default value of cursor control and base register
 445  * to zero. This is a workaround for h/w defect on Oaktrail
 446  */
 447 static void psb_intel_cursor_init(struct drm_device *dev,
 448                                   struct gma_crtc *gma_crtc)
 449 {
 450         struct drm_psb_private *dev_priv = dev->dev_private;
 451         u32 control[3] = { CURACNTR, CURBCNTR, CURCCNTR };
 452         u32 base[3] = { CURABASE, CURBBASE, CURCBASE };
 453         struct gtt_range *cursor_gt;
 454 
 455         if (dev_priv->ops->cursor_needs_phys) {
 456                 /* Allocate 4 pages of stolen mem for a hardware cursor. That
 457                  * is enough for the 64 x 64 ARGB cursors we support.
 458                  */
 459                 cursor_gt = psb_gtt_alloc_range(dev, 4 * PAGE_SIZE, "cursor", 1,
 460                                                 PAGE_SIZE);
 461                 if (!cursor_gt) {
 462                         gma_crtc->cursor_gt = NULL;
 463                         goto out;
 464                 }
 465                 gma_crtc->cursor_gt = cursor_gt;
 466                 gma_crtc->cursor_addr = dev_priv->stolen_base +
 467                                                         cursor_gt->offset;
 468         } else {
 469                 gma_crtc->cursor_gt = NULL;
 470         }
 471 
 472 out:
 473         REG_WRITE(control[gma_crtc->pipe], 0);
 474         REG_WRITE(base[gma_crtc->pipe], 0);
 475 }
 476 
 477 void psb_intel_crtc_init(struct drm_device *dev, int pipe,
 478                      struct psb_intel_mode_device *mode_dev)
 479 {
 480         struct drm_psb_private *dev_priv = dev->dev_private;
 481         struct gma_crtc *gma_crtc;
 482         int i;
 483 
 484         /* We allocate a extra array of drm_connector pointers
 485          * for fbdev after the crtc */
 486         gma_crtc = kzalloc(sizeof(struct gma_crtc) +
 487                         (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)),
 488                         GFP_KERNEL);
 489         if (gma_crtc == NULL)
 490                 return;
 491 
 492         gma_crtc->crtc_state =
 493                 kzalloc(sizeof(struct psb_intel_crtc_state), GFP_KERNEL);
 494         if (!gma_crtc->crtc_state) {
 495                 dev_err(dev->dev, "Crtc state error: No memory\n");
 496                 kfree(gma_crtc);
 497                 return;
 498         }
 499 
 500         /* Set the CRTC operations from the chip specific data */
 501         drm_crtc_init(dev, &gma_crtc->base, dev_priv->ops->crtc_funcs);
 502 
 503         /* Set the CRTC clock functions from chip specific data */
 504         gma_crtc->clock_funcs = dev_priv->ops->clock_funcs;
 505 
 506         drm_mode_crtc_set_gamma_size(&gma_crtc->base, 256);
 507         gma_crtc->pipe = pipe;
 508         gma_crtc->plane = pipe;
 509 
 510         for (i = 0; i < 256; i++)
 511                 gma_crtc->lut_adj[i] = 0;
 512 
 513         gma_crtc->mode_dev = mode_dev;
 514         gma_crtc->cursor_addr = 0;
 515 
 516         drm_crtc_helper_add(&gma_crtc->base,
 517                                                 dev_priv->ops->crtc_helper);
 518 
 519         /* Setup the array of drm_connector pointer array */
 520         gma_crtc->mode_set.crtc = &gma_crtc->base;
 521         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
 522                dev_priv->plane_to_crtc_mapping[gma_crtc->plane] != NULL);
 523         dev_priv->plane_to_crtc_mapping[gma_crtc->plane] = &gma_crtc->base;
 524         dev_priv->pipe_to_crtc_mapping[gma_crtc->pipe] = &gma_crtc->base;
 525         gma_crtc->mode_set.connectors = (struct drm_connector **)(gma_crtc + 1);
 526         gma_crtc->mode_set.num_connectors = 0;
 527         psb_intel_cursor_init(dev, gma_crtc);
 528 
 529         /* Set to true so that the pipe is forced off on initial config. */
 530         gma_crtc->active = true;
 531 }
 532 
 533 struct drm_crtc *psb_intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
 534 {
 535         struct drm_crtc *crtc = NULL;
 536 
 537         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
 538                 struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
 539                 if (gma_crtc->pipe == pipe)
 540                         break;
 541         }
 542         return crtc;
 543 }
 544 
 545 int gma_connector_clones(struct drm_device *dev, int type_mask)
 546 {
 547         int index_mask = 0;
 548         struct drm_connector *connector;
 549         int entry = 0;
 550 
 551         list_for_each_entry(connector, &dev->mode_config.connector_list,
 552                             head) {
 553                 struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
 554                 if (type_mask & (1 << gma_encoder->type))
 555                         index_mask |= (1 << entry);
 556                 entry++;
 557         }
 558         return index_mask;
 559 }

/* [<][>][^][v][top][bottom][index][help] */