root/drivers/gpu/drm/gma500/cdv_intel_display.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. cdv_sb_read
  2. cdv_sb_write
  3. cdv_sb_reset
  4. cdv_dpll_set_clock_cdv
  5. cdv_intel_limit
  6. cdv_intel_clock
  7. cdv_intel_find_dp_pll
  8. cdv_intel_pipe_enabled
  9. cdv_disable_sr
  10. cdv_update_wm
  11. cdv_intel_panel_fitter_pipe
  12. cdv_intel_crtc_mode_set
  13. i8xx_clock
  14. cdv_intel_crtc_clock_get
  15. cdv_intel_crtc_mode_get

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * Copyright © 2006-2011 Intel Corporation
   4  *
   5  * Authors:
   6  *      Eric Anholt <eric@anholt.net>
   7  */
   8 
   9 #include <linux/delay.h>
  10 #include <linux/i2c.h>
  11 
  12 #include <drm/drm_crtc.h>
  13 
  14 #include "cdv_device.h"
  15 #include "framebuffer.h"
  16 #include "gma_display.h"
  17 #include "power.h"
  18 #include "psb_drv.h"
  19 #include "psb_intel_drv.h"
  20 #include "psb_intel_reg.h"
  21 
  22 static bool cdv_intel_find_dp_pll(const struct gma_limit_t *limit,
  23                                   struct drm_crtc *crtc, int target,
  24                                   int refclk, struct gma_clock_t *best_clock);
  25 
  26 
  27 #define CDV_LIMIT_SINGLE_LVDS_96        0
  28 #define CDV_LIMIT_SINGLE_LVDS_100       1
  29 #define CDV_LIMIT_DAC_HDMI_27           2
  30 #define CDV_LIMIT_DAC_HDMI_96           3
  31 #define CDV_LIMIT_DP_27                 4
  32 #define CDV_LIMIT_DP_100                5
  33 
  34 static const struct gma_limit_t cdv_intel_limits[] = {
  35         {                       /* CDV_SINGLE_LVDS_96MHz */
  36          .dot = {.min = 20000, .max = 115500},
  37          .vco = {.min = 1800000, .max = 3600000},
  38          .n = {.min = 2, .max = 6},
  39          .m = {.min = 60, .max = 160},
  40          .m1 = {.min = 0, .max = 0},
  41          .m2 = {.min = 58, .max = 158},
  42          .p = {.min = 28, .max = 140},
  43          .p1 = {.min = 2, .max = 10},
  44          .p2 = {.dot_limit = 200000, .p2_slow = 14, .p2_fast = 14},
  45          .find_pll = gma_find_best_pll,
  46          },
  47         {                       /* CDV_SINGLE_LVDS_100MHz */
  48          .dot = {.min = 20000, .max = 115500},
  49          .vco = {.min = 1800000, .max = 3600000},
  50          .n = {.min = 2, .max = 6},
  51          .m = {.min = 60, .max = 160},
  52          .m1 = {.min = 0, .max = 0},
  53          .m2 = {.min = 58, .max = 158},
  54          .p = {.min = 28, .max = 140},
  55          .p1 = {.min = 2, .max = 10},
  56          /* The single-channel range is 25-112Mhz, and dual-channel
  57           * is 80-224Mhz.  Prefer single channel as much as possible.
  58           */
  59          .p2 = {.dot_limit = 200000, .p2_slow = 14, .p2_fast = 14},
  60          .find_pll = gma_find_best_pll,
  61          },
  62         {                       /* CDV_DAC_HDMI_27MHz */
  63          .dot = {.min = 20000, .max = 400000},
  64          .vco = {.min = 1809000, .max = 3564000},
  65          .n = {.min = 1, .max = 1},
  66          .m = {.min = 67, .max = 132},
  67          .m1 = {.min = 0, .max = 0},
  68          .m2 = {.min = 65, .max = 130},
  69          .p = {.min = 5, .max = 90},
  70          .p1 = {.min = 1, .max = 9},
  71          .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 5},
  72          .find_pll = gma_find_best_pll,
  73          },
  74         {                       /* CDV_DAC_HDMI_96MHz */
  75          .dot = {.min = 20000, .max = 400000},
  76          .vco = {.min = 1800000, .max = 3600000},
  77          .n = {.min = 2, .max = 6},
  78          .m = {.min = 60, .max = 160},
  79          .m1 = {.min = 0, .max = 0},
  80          .m2 = {.min = 58, .max = 158},
  81          .p = {.min = 5, .max = 100},
  82          .p1 = {.min = 1, .max = 10},
  83          .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 5},
  84          .find_pll = gma_find_best_pll,
  85          },
  86         {                       /* CDV_DP_27MHz */
  87          .dot = {.min = 160000, .max = 272000},
  88          .vco = {.min = 1809000, .max = 3564000},
  89          .n = {.min = 1, .max = 1},
  90          .m = {.min = 67, .max = 132},
  91          .m1 = {.min = 0, .max = 0},
  92          .m2 = {.min = 65, .max = 130},
  93          .p = {.min = 5, .max = 90},
  94          .p1 = {.min = 1, .max = 9},
  95          .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 10},
  96          .find_pll = cdv_intel_find_dp_pll,
  97          },
  98         {                       /* CDV_DP_100MHz */
  99          .dot = {.min = 160000, .max = 272000},
 100          .vco = {.min = 1800000, .max = 3600000},
 101          .n = {.min = 2, .max = 6},
 102          .m = {.min = 60, .max = 164},
 103          .m1 = {.min = 0, .max = 0},
 104          .m2 = {.min = 58, .max = 162},
 105          .p = {.min = 5, .max = 100},
 106          .p1 = {.min = 1, .max = 10},
 107          .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 10},
 108          .find_pll = cdv_intel_find_dp_pll,
 109         }
 110 };
 111 
 112 #define _wait_for(COND, MS, W) ({ \
 113         unsigned long timeout__ = jiffies + msecs_to_jiffies(MS);       \
 114         int ret__ = 0;                                                  \
 115         while (!(COND)) {                                               \
 116                 if (time_after(jiffies, timeout__)) {                   \
 117                         ret__ = -ETIMEDOUT;                             \
 118                         break;                                          \
 119                 }                                                       \
 120                 if (W && !in_dbg_master())                              \
 121                         msleep(W);                                      \
 122         }                                                               \
 123         ret__;                                                          \
 124 })
 125 
 126 #define wait_for(COND, MS) _wait_for(COND, MS, 1)
 127 
 128 
 129 int cdv_sb_read(struct drm_device *dev, u32 reg, u32 *val)
 130 {
 131         int ret;
 132 
 133         ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
 134         if (ret) {
 135                 DRM_ERROR("timeout waiting for SB to idle before read\n");
 136                 return ret;
 137         }
 138 
 139         REG_WRITE(SB_ADDR, reg);
 140         REG_WRITE(SB_PCKT,
 141                    SET_FIELD(SB_OPCODE_READ, SB_OPCODE) |
 142                    SET_FIELD(SB_DEST_DPLL, SB_DEST) |
 143                    SET_FIELD(0xf, SB_BYTE_ENABLE));
 144 
 145         ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
 146         if (ret) {
 147                 DRM_ERROR("timeout waiting for SB to idle after read\n");
 148                 return ret;
 149         }
 150 
 151         *val = REG_READ(SB_DATA);
 152 
 153         return 0;
 154 }
 155 
 156 int cdv_sb_write(struct drm_device *dev, u32 reg, u32 val)
 157 {
 158         int ret;
 159         static bool dpio_debug = true;
 160         u32 temp;
 161 
 162         if (dpio_debug) {
 163                 if (cdv_sb_read(dev, reg, &temp) == 0)
 164                         DRM_DEBUG_KMS("0x%08x: 0x%08x (before)\n", reg, temp);
 165                 DRM_DEBUG_KMS("0x%08x: 0x%08x\n", reg, val);
 166         }
 167 
 168         ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
 169         if (ret) {
 170                 DRM_ERROR("timeout waiting for SB to idle before write\n");
 171                 return ret;
 172         }
 173 
 174         REG_WRITE(SB_ADDR, reg);
 175         REG_WRITE(SB_DATA, val);
 176         REG_WRITE(SB_PCKT,
 177                    SET_FIELD(SB_OPCODE_WRITE, SB_OPCODE) |
 178                    SET_FIELD(SB_DEST_DPLL, SB_DEST) |
 179                    SET_FIELD(0xf, SB_BYTE_ENABLE));
 180 
 181         ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
 182         if (ret) {
 183                 DRM_ERROR("timeout waiting for SB to idle after write\n");
 184                 return ret;
 185         }
 186 
 187         if (dpio_debug) {
 188                 if (cdv_sb_read(dev, reg, &temp) == 0)
 189                         DRM_DEBUG_KMS("0x%08x: 0x%08x (after)\n", reg, temp);
 190         }
 191 
 192         return 0;
 193 }
 194 
 195 /* Reset the DPIO configuration register.  The BIOS does this at every
 196  * mode set.
 197  */
 198 void cdv_sb_reset(struct drm_device *dev)
 199 {
 200 
 201         REG_WRITE(DPIO_CFG, 0);
 202         REG_READ(DPIO_CFG);
 203         REG_WRITE(DPIO_CFG, DPIO_MODE_SELECT_0 | DPIO_CMN_RESET_N);
 204 }
 205 
 206 /* Unlike most Intel display engines, on Cedarview the DPLL registers
 207  * are behind this sideband bus.  They must be programmed while the
 208  * DPLL reference clock is on in the DPLL control register, but before
 209  * the DPLL is enabled in the DPLL control register.
 210  */
 211 static int
 212 cdv_dpll_set_clock_cdv(struct drm_device *dev, struct drm_crtc *crtc,
 213                        struct gma_clock_t *clock, bool is_lvds, u32 ddi_select)
 214 {
 215         struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
 216         int pipe = gma_crtc->pipe;
 217         u32 m, n_vco, p;
 218         int ret = 0;
 219         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
 220         int ref_sfr = (pipe == 0) ? SB_REF_DPLLA : SB_REF_DPLLB;
 221         u32 ref_value;
 222         u32 lane_reg, lane_value;
 223 
 224         cdv_sb_reset(dev);
 225 
 226         REG_WRITE(dpll_reg, DPLL_SYNCLOCK_ENABLE | DPLL_VGA_MODE_DIS);
 227 
 228         udelay(100);
 229 
 230         /* Follow the BIOS and write the REF/SFR Register. Hardcoded value */
 231         ref_value = 0x68A701;
 232 
 233         cdv_sb_write(dev, SB_REF_SFR(pipe), ref_value);
 234 
 235         /* We don't know what the other fields of these regs are, so
 236          * leave them in place.
 237          */
 238         /*
 239          * The BIT 14:13 of 0x8010/0x8030 is used to select the ref clk
 240          * for the pipe A/B. Display spec 1.06 has wrong definition.
 241          * Correct definition is like below:
 242          *
 243          * refclka mean use clock from same PLL
 244          *
 245          * if DPLLA sets 01 and DPLLB sets 01, they use clock from their pll
 246          *
 247          * if DPLLA sets 01 and DPLLB sets 02, both use clk from DPLLA
 248          *
 249          */
 250         ret = cdv_sb_read(dev, ref_sfr, &ref_value);
 251         if (ret)
 252                 return ret;
 253         ref_value &= ~(REF_CLK_MASK);
 254 
 255         /* use DPLL_A for pipeB on CRT/HDMI */
 256         if (pipe == 1 && !is_lvds && !(ddi_select & DP_MASK)) {
 257                 DRM_DEBUG_KMS("use DPLLA for pipe B\n");
 258                 ref_value |= REF_CLK_DPLLA;
 259         } else {
 260                 DRM_DEBUG_KMS("use their DPLL for pipe A/B\n");
 261                 ref_value |= REF_CLK_DPLL;
 262         }
 263         ret = cdv_sb_write(dev, ref_sfr, ref_value);
 264         if (ret)
 265                 return ret;
 266 
 267         ret = cdv_sb_read(dev, SB_M(pipe), &m);
 268         if (ret)
 269                 return ret;
 270         m &= ~SB_M_DIVIDER_MASK;
 271         m |= ((clock->m2) << SB_M_DIVIDER_SHIFT);
 272         ret = cdv_sb_write(dev, SB_M(pipe), m);
 273         if (ret)
 274                 return ret;
 275 
 276         ret = cdv_sb_read(dev, SB_N_VCO(pipe), &n_vco);
 277         if (ret)
 278                 return ret;
 279 
 280         /* Follow the BIOS to program the N_DIVIDER REG */
 281         n_vco &= 0xFFFF;
 282         n_vco |= 0x107;
 283         n_vco &= ~(SB_N_VCO_SEL_MASK |
 284                    SB_N_DIVIDER_MASK |
 285                    SB_N_CB_TUNE_MASK);
 286 
 287         n_vco |= ((clock->n) << SB_N_DIVIDER_SHIFT);
 288 
 289         if (clock->vco < 2250000) {
 290                 n_vco |= (2 << SB_N_CB_TUNE_SHIFT);
 291                 n_vco |= (0 << SB_N_VCO_SEL_SHIFT);
 292         } else if (clock->vco < 2750000) {
 293                 n_vco |= (1 << SB_N_CB_TUNE_SHIFT);
 294                 n_vco |= (1 << SB_N_VCO_SEL_SHIFT);
 295         } else if (clock->vco < 3300000) {
 296                 n_vco |= (0 << SB_N_CB_TUNE_SHIFT);
 297                 n_vco |= (2 << SB_N_VCO_SEL_SHIFT);
 298         } else {
 299                 n_vco |= (0 << SB_N_CB_TUNE_SHIFT);
 300                 n_vco |= (3 << SB_N_VCO_SEL_SHIFT);
 301         }
 302 
 303         ret = cdv_sb_write(dev, SB_N_VCO(pipe), n_vco);
 304         if (ret)
 305                 return ret;
 306 
 307         ret = cdv_sb_read(dev, SB_P(pipe), &p);
 308         if (ret)
 309                 return ret;
 310         p &= ~(SB_P2_DIVIDER_MASK | SB_P1_DIVIDER_MASK);
 311         p |= SET_FIELD(clock->p1, SB_P1_DIVIDER);
 312         switch (clock->p2) {
 313         case 5:
 314                 p |= SET_FIELD(SB_P2_5, SB_P2_DIVIDER);
 315                 break;
 316         case 10:
 317                 p |= SET_FIELD(SB_P2_10, SB_P2_DIVIDER);
 318                 break;
 319         case 14:
 320                 p |= SET_FIELD(SB_P2_14, SB_P2_DIVIDER);
 321                 break;
 322         case 7:
 323                 p |= SET_FIELD(SB_P2_7, SB_P2_DIVIDER);
 324                 break;
 325         default:
 326                 DRM_ERROR("Bad P2 clock: %d\n", clock->p2);
 327                 return -EINVAL;
 328         }
 329         ret = cdv_sb_write(dev, SB_P(pipe), p);
 330         if (ret)
 331                 return ret;
 332 
 333         if (ddi_select) {
 334                 if ((ddi_select & DDI_MASK) == DDI0_SELECT) {
 335                         lane_reg = PSB_LANE0;
 336                         cdv_sb_read(dev, lane_reg, &lane_value);
 337                         lane_value &= ~(LANE_PLL_MASK);
 338                         lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
 339                         cdv_sb_write(dev, lane_reg, lane_value);
 340 
 341                         lane_reg = PSB_LANE1;
 342                         cdv_sb_read(dev, lane_reg, &lane_value);
 343                         lane_value &= ~(LANE_PLL_MASK);
 344                         lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
 345                         cdv_sb_write(dev, lane_reg, lane_value);
 346                 } else {
 347                         lane_reg = PSB_LANE2;
 348                         cdv_sb_read(dev, lane_reg, &lane_value);
 349                         lane_value &= ~(LANE_PLL_MASK);
 350                         lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
 351                         cdv_sb_write(dev, lane_reg, lane_value);
 352 
 353                         lane_reg = PSB_LANE3;
 354                         cdv_sb_read(dev, lane_reg, &lane_value);
 355                         lane_value &= ~(LANE_PLL_MASK);
 356                         lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
 357                         cdv_sb_write(dev, lane_reg, lane_value);
 358                 }
 359         }
 360         return 0;
 361 }
 362 
 363 static const struct gma_limit_t *cdv_intel_limit(struct drm_crtc *crtc,
 364                                                  int refclk)
 365 {
 366         const struct gma_limit_t *limit;
 367         if (gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
 368                 /*
 369                  * Now only single-channel LVDS is supported on CDV. If it is
 370                  * incorrect, please add the dual-channel LVDS.
 371                  */
 372                 if (refclk == 96000)
 373                         limit = &cdv_intel_limits[CDV_LIMIT_SINGLE_LVDS_96];
 374                 else
 375                         limit = &cdv_intel_limits[CDV_LIMIT_SINGLE_LVDS_100];
 376         } else if (gma_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
 377                         gma_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
 378                 if (refclk == 27000)
 379                         limit = &cdv_intel_limits[CDV_LIMIT_DP_27];
 380                 else
 381                         limit = &cdv_intel_limits[CDV_LIMIT_DP_100];
 382         } else {
 383                 if (refclk == 27000)
 384                         limit = &cdv_intel_limits[CDV_LIMIT_DAC_HDMI_27];
 385                 else
 386                         limit = &cdv_intel_limits[CDV_LIMIT_DAC_HDMI_96];
 387         }
 388         return limit;
 389 }
 390 
 391 /* m1 is reserved as 0 in CDV, n is a ring counter */
 392 static void cdv_intel_clock(int refclk, struct gma_clock_t *clock)
 393 {
 394         clock->m = clock->m2 + 2;
 395         clock->p = clock->p1 * clock->p2;
 396         clock->vco = (refclk * clock->m) / clock->n;
 397         clock->dot = clock->vco / clock->p;
 398 }
 399 
 400 static bool cdv_intel_find_dp_pll(const struct gma_limit_t *limit,
 401                                   struct drm_crtc *crtc, int target,
 402                                   int refclk,
 403                                   struct gma_clock_t *best_clock)
 404 {
 405         struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
 406         struct gma_clock_t clock;
 407 
 408         switch (refclk) {
 409         case 27000:
 410                 if (target < 200000) {
 411                         clock.p1 = 2;
 412                         clock.p2 = 10;
 413                         clock.n = 1;
 414                         clock.m1 = 0;
 415                         clock.m2 = 118;
 416                 } else {
 417                         clock.p1 = 1;
 418                         clock.p2 = 10;
 419                         clock.n = 1;
 420                         clock.m1 = 0;
 421                         clock.m2 = 98;
 422                 }
 423                 break;
 424 
 425         case 100000:
 426                 if (target < 200000) {
 427                         clock.p1 = 2;
 428                         clock.p2 = 10;
 429                         clock.n = 5;
 430                         clock.m1 = 0;
 431                         clock.m2 = 160;
 432                 } else {
 433                         clock.p1 = 1;
 434                         clock.p2 = 10;
 435                         clock.n = 5;
 436                         clock.m1 = 0;
 437                         clock.m2 = 133;
 438                 }
 439                 break;
 440 
 441         default:
 442                 return false;
 443         }
 444 
 445         gma_crtc->clock_funcs->clock(refclk, &clock);
 446         memcpy(best_clock, &clock, sizeof(struct gma_clock_t));
 447         return true;
 448 }
 449 
 450 #define         FIFO_PIPEA              (1 << 0)
 451 #define         FIFO_PIPEB              (1 << 1)
 452 
 453 static bool cdv_intel_pipe_enabled(struct drm_device *dev, int pipe)
 454 {
 455         struct drm_crtc *crtc;
 456         struct drm_psb_private *dev_priv = dev->dev_private;
 457         struct gma_crtc *gma_crtc = NULL;
 458 
 459         crtc = dev_priv->pipe_to_crtc_mapping[pipe];
 460         gma_crtc = to_gma_crtc(crtc);
 461 
 462         if (crtc->primary->fb == NULL || !gma_crtc->active)
 463                 return false;
 464         return true;
 465 }
 466 
 467 void cdv_disable_sr(struct drm_device *dev)
 468 {
 469         if (REG_READ(FW_BLC_SELF) & FW_BLC_SELF_EN) {
 470 
 471                 /* Disable self-refresh before adjust WM */
 472                 REG_WRITE(FW_BLC_SELF, (REG_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN));
 473                 REG_READ(FW_BLC_SELF);
 474 
 475                 gma_wait_for_vblank(dev);
 476 
 477                 /* Cedarview workaround to write ovelay plane, which force to leave
 478                  * MAX_FIFO state.
 479                  */
 480                 REG_WRITE(OV_OVADD, 0/*dev_priv->ovl_offset*/);
 481                 REG_READ(OV_OVADD);
 482 
 483                 gma_wait_for_vblank(dev);
 484         }
 485 
 486 }
 487 
 488 void cdv_update_wm(struct drm_device *dev, struct drm_crtc *crtc)
 489 {
 490         struct drm_psb_private *dev_priv = dev->dev_private;
 491         struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
 492 
 493         /* Is only one pipe enabled? */
 494         if (cdv_intel_pipe_enabled(dev, 0) ^ cdv_intel_pipe_enabled(dev, 1)) {
 495                 u32 fw;
 496 
 497                 fw = REG_READ(DSPFW1);
 498                 fw &= ~DSP_FIFO_SR_WM_MASK;
 499                 fw |= (0x7e << DSP_FIFO_SR_WM_SHIFT);
 500                 fw &= ~CURSOR_B_FIFO_WM_MASK;
 501                 fw |= (0x4 << CURSOR_B_FIFO_WM_SHIFT);
 502                 REG_WRITE(DSPFW1, fw);
 503 
 504                 fw = REG_READ(DSPFW2);
 505                 fw &= ~CURSOR_A_FIFO_WM_MASK;
 506                 fw |= (0x6 << CURSOR_A_FIFO_WM_SHIFT);
 507                 fw &= ~DSP_PLANE_C_FIFO_WM_MASK;
 508                 fw |= (0x8 << DSP_PLANE_C_FIFO_WM_SHIFT);
 509                 REG_WRITE(DSPFW2, fw);
 510 
 511                 REG_WRITE(DSPFW3, 0x36000000);
 512 
 513                 /* ignore FW4 */
 514 
 515                 /* Is pipe b lvds ? */
 516                 if (gma_crtc->pipe == 1 &&
 517                     gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
 518                         REG_WRITE(DSPFW5, 0x00040330);
 519                 } else {
 520                         fw = (3 << DSP_PLANE_B_FIFO_WM1_SHIFT) |
 521                              (4 << DSP_PLANE_A_FIFO_WM1_SHIFT) |
 522                              (3 << CURSOR_B_FIFO_WM1_SHIFT) |
 523                              (4 << CURSOR_FIFO_SR_WM1_SHIFT);
 524                         REG_WRITE(DSPFW5, fw);
 525                 }
 526 
 527                 REG_WRITE(DSPFW6, 0x10);
 528 
 529                 gma_wait_for_vblank(dev);
 530 
 531                 /* enable self-refresh for single pipe active */
 532                 REG_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
 533                 REG_READ(FW_BLC_SELF);
 534                 gma_wait_for_vblank(dev);
 535 
 536         } else {
 537 
 538                 /* HW team suggested values... */
 539                 REG_WRITE(DSPFW1, 0x3f880808);
 540                 REG_WRITE(DSPFW2, 0x0b020202);
 541                 REG_WRITE(DSPFW3, 0x24000000);
 542                 REG_WRITE(DSPFW4, 0x08030202);
 543                 REG_WRITE(DSPFW5, 0x01010101);
 544                 REG_WRITE(DSPFW6, 0x1d0);
 545 
 546                 gma_wait_for_vblank(dev);
 547 
 548                 dev_priv->ops->disable_sr(dev);
 549         }
 550 }
 551 
 552 /**
 553  * Return the pipe currently connected to the panel fitter,
 554  * or -1 if the panel fitter is not present or not in use
 555  */
 556 static int cdv_intel_panel_fitter_pipe(struct drm_device *dev)
 557 {
 558         u32 pfit_control;
 559 
 560         pfit_control = REG_READ(PFIT_CONTROL);
 561 
 562         /* See if the panel fitter is in use */
 563         if ((pfit_control & PFIT_ENABLE) == 0)
 564                 return -1;
 565         return (pfit_control >> 29) & 0x3;
 566 }
 567 
 568 static int cdv_intel_crtc_mode_set(struct drm_crtc *crtc,
 569                                struct drm_display_mode *mode,
 570                                struct drm_display_mode *adjusted_mode,
 571                                int x, int y,
 572                                struct drm_framebuffer *old_fb)
 573 {
 574         struct drm_device *dev = crtc->dev;
 575         struct drm_psb_private *dev_priv = dev->dev_private;
 576         struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
 577         int pipe = gma_crtc->pipe;
 578         const struct psb_offset *map = &dev_priv->regmap[pipe];
 579         int refclk;
 580         struct gma_clock_t clock;
 581         u32 dpll = 0, dspcntr, pipeconf;
 582         bool ok;
 583         bool is_crt = false, is_lvds = false, is_tv = false;
 584         bool is_hdmi = false, is_dp = false;
 585         struct drm_mode_config *mode_config = &dev->mode_config;
 586         struct drm_connector *connector;
 587         const struct gma_limit_t *limit;
 588         u32 ddi_select = 0;
 589         bool is_edp = false;
 590 
 591         list_for_each_entry(connector, &mode_config->connector_list, head) {
 592                 struct gma_encoder *gma_encoder =
 593                                         gma_attached_encoder(connector);
 594 
 595                 if (!connector->encoder
 596                     || connector->encoder->crtc != crtc)
 597                         continue;
 598 
 599                 ddi_select = gma_encoder->ddi_select;
 600                 switch (gma_encoder->type) {
 601                 case INTEL_OUTPUT_LVDS:
 602                         is_lvds = true;
 603                         break;
 604                 case INTEL_OUTPUT_TVOUT:
 605                         is_tv = true;
 606                         break;
 607                 case INTEL_OUTPUT_ANALOG:
 608                         is_crt = true;
 609                         break;
 610                 case INTEL_OUTPUT_HDMI:
 611                         is_hdmi = true;
 612                         break;
 613                 case INTEL_OUTPUT_DISPLAYPORT:
 614                         is_dp = true;
 615                         break;
 616                 case INTEL_OUTPUT_EDP:
 617                         is_edp = true;
 618                         break;
 619                 default:
 620                         DRM_ERROR("invalid output type.\n");
 621                         return 0;
 622                 }
 623         }
 624 
 625         if (dev_priv->dplla_96mhz)
 626                 /* low-end sku, 96/100 mhz */
 627                 refclk = 96000;
 628         else
 629                 /* high-end sku, 27/100 mhz */
 630                 refclk = 27000;
 631         if (is_dp || is_edp) {
 632                 /*
 633                  * Based on the spec the low-end SKU has only CRT/LVDS. So it is
 634                  * unnecessary to consider it for DP/eDP.
 635                  * On the high-end SKU, it will use the 27/100M reference clk
 636                  * for DP/eDP. When using SSC clock, the ref clk is 100MHz.Otherwise
 637                  * it will be 27MHz. From the VBIOS code it seems that the pipe A choose
 638                  * 27MHz for DP/eDP while the Pipe B chooses the 100MHz.
 639                  */
 640                 if (pipe == 0)
 641                         refclk = 27000;
 642                 else
 643                         refclk = 100000;
 644         }
 645 
 646         if (is_lvds && dev_priv->lvds_use_ssc) {
 647                 refclk = dev_priv->lvds_ssc_freq * 1000;
 648                 DRM_DEBUG_KMS("Use SSC reference clock %d Mhz\n", dev_priv->lvds_ssc_freq);
 649         }
 650 
 651         drm_mode_debug_printmodeline(adjusted_mode);
 652 
 653         limit = gma_crtc->clock_funcs->limit(crtc, refclk);
 654 
 655         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk,
 656                                  &clock);
 657         if (!ok) {
 658                 DRM_ERROR("Couldn't find PLL settings for mode! target: %d, actual: %d",
 659                           adjusted_mode->clock, clock.dot);
 660                 return 0;
 661         }
 662 
 663         dpll = DPLL_VGA_MODE_DIS;
 664         if (is_tv) {
 665                 /* XXX: just matching BIOS for now */
 666 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
 667                 dpll |= 3;
 668         }
 669 /*              dpll |= PLL_REF_INPUT_DREFCLK; */
 670 
 671         if (is_dp || is_edp) {
 672                 cdv_intel_dp_set_m_n(crtc, mode, adjusted_mode);
 673         } else {
 674                 REG_WRITE(PIPE_GMCH_DATA_M(pipe), 0);
 675                 REG_WRITE(PIPE_GMCH_DATA_N(pipe), 0);
 676                 REG_WRITE(PIPE_DP_LINK_M(pipe), 0);
 677                 REG_WRITE(PIPE_DP_LINK_N(pipe), 0);
 678         }
 679 
 680         dpll |= DPLL_SYNCLOCK_ENABLE;
 681 /*      if (is_lvds)
 682                 dpll |= DPLLB_MODE_LVDS;
 683         else
 684                 dpll |= DPLLB_MODE_DAC_SERIAL; */
 685         /* dpll |= (2 << 11); */
 686 
 687         /* setup pipeconf */
 688         pipeconf = REG_READ(map->conf);
 689 
 690         pipeconf &= ~(PIPE_BPC_MASK);
 691         if (is_edp) {
 692                 switch (dev_priv->edp.bpp) {
 693                 case 24:
 694                         pipeconf |= PIPE_8BPC;
 695                         break;
 696                 case 18:
 697                         pipeconf |= PIPE_6BPC;
 698                         break;
 699                 case 30:
 700                         pipeconf |= PIPE_10BPC;
 701                         break;
 702                 default:
 703                         pipeconf |= PIPE_8BPC;
 704                         break;
 705                 }
 706         } else if (is_lvds) {
 707                 /* the BPC will be 6 if it is 18-bit LVDS panel */
 708                 if ((REG_READ(LVDS) & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
 709                         pipeconf |= PIPE_8BPC;
 710                 else
 711                         pipeconf |= PIPE_6BPC;
 712         } else
 713                 pipeconf |= PIPE_8BPC;
 714 
 715         /* Set up the display plane register */
 716         dspcntr = DISPPLANE_GAMMA_ENABLE;
 717 
 718         if (pipe == 0)
 719                 dspcntr |= DISPPLANE_SEL_PIPE_A;
 720         else
 721                 dspcntr |= DISPPLANE_SEL_PIPE_B;
 722 
 723         dspcntr |= DISPLAY_PLANE_ENABLE;
 724         pipeconf |= PIPEACONF_ENABLE;
 725 
 726         REG_WRITE(map->dpll, dpll | DPLL_VGA_MODE_DIS | DPLL_SYNCLOCK_ENABLE);
 727         REG_READ(map->dpll);
 728 
 729         cdv_dpll_set_clock_cdv(dev, crtc, &clock, is_lvds, ddi_select);
 730 
 731         udelay(150);
 732 
 733 
 734         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
 735          * This is an exception to the general rule that mode_set doesn't turn
 736          * things on.
 737          */
 738         if (is_lvds) {
 739                 u32 lvds = REG_READ(LVDS);
 740 
 741                 lvds |=
 742                     LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP |
 743                     LVDS_PIPEB_SELECT;
 744                 /* Set the B0-B3 data pairs corresponding to
 745                  * whether we're going to
 746                  * set the DPLLs for dual-channel mode or not.
 747                  */
 748                 if (clock.p2 == 7)
 749                         lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
 750                 else
 751                         lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
 752 
 753                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
 754                  * appropriately here, but we need to look more
 755                  * thoroughly into how panels behave in the two modes.
 756                  */
 757 
 758                 REG_WRITE(LVDS, lvds);
 759                 REG_READ(LVDS);
 760         }
 761 
 762         dpll |= DPLL_VCO_ENABLE;
 763 
 764         /* Disable the panel fitter if it was on our pipe */
 765         if (cdv_intel_panel_fitter_pipe(dev) == pipe)
 766                 REG_WRITE(PFIT_CONTROL, 0);
 767 
 768         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
 769         drm_mode_debug_printmodeline(mode);
 770 
 771         REG_WRITE(map->dpll,
 772                 (REG_READ(map->dpll) & ~DPLL_LOCK) | DPLL_VCO_ENABLE);
 773         REG_READ(map->dpll);
 774         /* Wait for the clocks to stabilize. */
 775         udelay(150); /* 42 usec w/o calibration, 110 with.  rounded up. */
 776 
 777         if (!(REG_READ(map->dpll) & DPLL_LOCK)) {
 778                 dev_err(dev->dev, "Failed to get DPLL lock\n");
 779                 return -EBUSY;
 780         }
 781 
 782         {
 783                 int sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
 784                 REG_WRITE(map->dpll_md, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) | ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
 785         }
 786 
 787         REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) |
 788                   ((adjusted_mode->crtc_htotal - 1) << 16));
 789         REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) |
 790                   ((adjusted_mode->crtc_hblank_end - 1) << 16));
 791         REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) |
 792                   ((adjusted_mode->crtc_hsync_end - 1) << 16));
 793         REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) |
 794                   ((adjusted_mode->crtc_vtotal - 1) << 16));
 795         REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) |
 796                   ((adjusted_mode->crtc_vblank_end - 1) << 16));
 797         REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) |
 798                   ((adjusted_mode->crtc_vsync_end - 1) << 16));
 799         /* pipesrc and dspsize control the size that is scaled from,
 800          * which should always be the user's requested size.
 801          */
 802         REG_WRITE(map->size,
 803                   ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
 804         REG_WRITE(map->pos, 0);
 805         REG_WRITE(map->src,
 806                   ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
 807         REG_WRITE(map->conf, pipeconf);
 808         REG_READ(map->conf);
 809 
 810         gma_wait_for_vblank(dev);
 811 
 812         REG_WRITE(map->cntr, dspcntr);
 813 
 814         /* Flush the plane changes */
 815         {
 816                 const struct drm_crtc_helper_funcs *crtc_funcs =
 817                     crtc->helper_private;
 818                 crtc_funcs->mode_set_base(crtc, x, y, old_fb);
 819         }
 820 
 821         gma_wait_for_vblank(dev);
 822 
 823         return 0;
 824 }
 825 
 826 /** Derive the pixel clock for the given refclk and divisors for 8xx chips. */
 827 
 828 /* FIXME: why are we using this, should it be cdv_ in this tree ? */
 829 
 830 static void i8xx_clock(int refclk, struct gma_clock_t *clock)
 831 {
 832         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
 833         clock->p = clock->p1 * clock->p2;
 834         clock->vco = refclk * clock->m / (clock->n + 2);
 835         clock->dot = clock->vco / clock->p;
 836 }
 837 
 838 /* Returns the clock of the currently programmed mode of the given pipe. */
 839 static int cdv_intel_crtc_clock_get(struct drm_device *dev,
 840                                 struct drm_crtc *crtc)
 841 {
 842         struct drm_psb_private *dev_priv = dev->dev_private;
 843         struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
 844         int pipe = gma_crtc->pipe;
 845         const struct psb_offset *map = &dev_priv->regmap[pipe];
 846         u32 dpll;
 847         u32 fp;
 848         struct gma_clock_t clock;
 849         bool is_lvds;
 850         struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
 851 
 852         if (gma_power_begin(dev, false)) {
 853                 dpll = REG_READ(map->dpll);
 854                 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
 855                         fp = REG_READ(map->fp0);
 856                 else
 857                         fp = REG_READ(map->fp1);
 858                 is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN);
 859                 gma_power_end(dev);
 860         } else {
 861                 dpll = p->dpll;
 862                 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
 863                         fp = p->fp0;
 864                 else
 865                         fp = p->fp1;
 866 
 867                 is_lvds = (pipe == 1) &&
 868                                 (dev_priv->regs.psb.saveLVDS & LVDS_PORT_EN);
 869         }
 870 
 871         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
 872         clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
 873         clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
 874 
 875         if (is_lvds) {
 876                 clock.p1 =
 877                     ffs((dpll &
 878                          DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
 879                         DPLL_FPA01_P1_POST_DIV_SHIFT);
 880                 if (clock.p1 == 0) {
 881                         clock.p1 = 4;
 882                         dev_err(dev->dev, "PLL %d\n", dpll);
 883                 }
 884                 clock.p2 = 14;
 885 
 886                 if ((dpll & PLL_REF_INPUT_MASK) ==
 887                     PLLB_REF_INPUT_SPREADSPECTRUMIN) {
 888                         /* XXX: might not be 66MHz */
 889                         i8xx_clock(66000, &clock);
 890                 } else
 891                         i8xx_clock(48000, &clock);
 892         } else {
 893                 if (dpll & PLL_P1_DIVIDE_BY_TWO)
 894                         clock.p1 = 2;
 895                 else {
 896                         clock.p1 =
 897                             ((dpll &
 898                               DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
 899                              DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
 900                 }
 901                 if (dpll & PLL_P2_DIVIDE_BY_4)
 902                         clock.p2 = 4;
 903                 else
 904                         clock.p2 = 2;
 905 
 906                 i8xx_clock(48000, &clock);
 907         }
 908 
 909         /* XXX: It would be nice to validate the clocks, but we can't reuse
 910          * i830PllIsValid() because it relies on the xf86_config connector
 911          * configuration being accurate, which it isn't necessarily.
 912          */
 913 
 914         return clock.dot;
 915 }
 916 
 917 /** Returns the currently programmed mode of the given pipe. */
 918 struct drm_display_mode *cdv_intel_crtc_mode_get(struct drm_device *dev,
 919                                              struct drm_crtc *crtc)
 920 {
 921         struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
 922         int pipe = gma_crtc->pipe;
 923         struct drm_psb_private *dev_priv = dev->dev_private;
 924         struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
 925         const struct psb_offset *map = &dev_priv->regmap[pipe];
 926         struct drm_display_mode *mode;
 927         int htot;
 928         int hsync;
 929         int vtot;
 930         int vsync;
 931 
 932         if (gma_power_begin(dev, false)) {
 933                 htot = REG_READ(map->htotal);
 934                 hsync = REG_READ(map->hsync);
 935                 vtot = REG_READ(map->vtotal);
 936                 vsync = REG_READ(map->vsync);
 937                 gma_power_end(dev);
 938         } else {
 939                 htot = p->htotal;
 940                 hsync = p->hsync;
 941                 vtot = p->vtotal;
 942                 vsync = p->vsync;
 943         }
 944 
 945         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
 946         if (!mode)
 947                 return NULL;
 948 
 949         mode->clock = cdv_intel_crtc_clock_get(dev, crtc);
 950         mode->hdisplay = (htot & 0xffff) + 1;
 951         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
 952         mode->hsync_start = (hsync & 0xffff) + 1;
 953         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
 954         mode->vdisplay = (vtot & 0xffff) + 1;
 955         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
 956         mode->vsync_start = (vsync & 0xffff) + 1;
 957         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
 958 
 959         drm_mode_set_name(mode);
 960         drm_mode_set_crtcinfo(mode, 0);
 961 
 962         return mode;
 963 }
 964 
 965 const struct drm_crtc_helper_funcs cdv_intel_helper_funcs = {
 966         .dpms = gma_crtc_dpms,
 967         .mode_set = cdv_intel_crtc_mode_set,
 968         .mode_set_base = gma_pipe_set_base,
 969         .prepare = gma_crtc_prepare,
 970         .commit = gma_crtc_commit,
 971         .disable = gma_crtc_disable,
 972 };
 973 
 974 const struct drm_crtc_funcs cdv_intel_crtc_funcs = {
 975         .cursor_set = gma_crtc_cursor_set,
 976         .cursor_move = gma_crtc_cursor_move,
 977         .gamma_set = gma_crtc_gamma_set,
 978         .set_config = gma_crtc_set_config,
 979         .destroy = gma_crtc_destroy,
 980 };
 981 
 982 const struct gma_clock_funcs cdv_clock_funcs = {
 983         .clock = cdv_intel_clock,
 984         .limit = cdv_intel_limit,
 985         .pll_is_valid = gma_pll_is_valid,
 986 };

/* [<][>][^][v][top][bottom][index][help] */