1 /* 2 * Copyright (C) 2016 Samsung Electronics Co.Ltd 3 * Authors: 4 * Marek Szyprowski <m.szyprowski@samsung.com> 5 * 6 * DRM core plane blending related functions 7 * 8 * Permission to use, copy, modify, distribute, and sell this software and its 9 * documentation for any purpose is hereby granted without fee, provided that 10 * the above copyright notice appear in all copies and that both that copyright 11 * notice and this permission notice appear in supporting documentation, and 12 * that the name of the copyright holders not be used in advertising or 13 * publicity pertaining to distribution of the software without specific, 14 * written prior permission. The copyright holders make no representations 15 * about the suitability of this software for any purpose. It is provided "as 16 * is" without express or implied warranty. 17 * 18 * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, 19 * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO 20 * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR 21 * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, 22 * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER 23 * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE 24 * OF THIS SOFTWARE. 25 */ 26 27 #include <linux/export.h> 28 #include <linux/slab.h> 29 #include <linux/sort.h> 30 31 #include <drm/drm_atomic.h> 32 #include <drm/drm_blend.h> 33 #include <drm/drm_device.h> 34 #include <drm/drm_print.h> 35 36 #include "drm_crtc_internal.h" 37 38 /** 39 * DOC: overview 40 * 41 * The basic plane composition model supported by standard plane properties only 42 * has a source rectangle (in logical pixels within the &drm_framebuffer), with 43 * sub-pixel accuracy, which is scaled up to a pixel-aligned destination 44 * rectangle in the visible area of a &drm_crtc. The visible area of a CRTC is 45 * defined by the horizontal and vertical visible pixels (stored in @hdisplay 46 * and @vdisplay) of the requested mode (stored in &drm_crtc_state.mode). These 47 * two rectangles are both stored in the &drm_plane_state. 48 * 49 * For the atomic ioctl the following standard (atomic) properties on the plane object 50 * encode the basic plane composition model: 51 * 52 * SRC_X: 53 * X coordinate offset for the source rectangle within the 54 * &drm_framebuffer, in 16.16 fixed point. Must be positive. 55 * SRC_Y: 56 * Y coordinate offset for the source rectangle within the 57 * &drm_framebuffer, in 16.16 fixed point. Must be positive. 58 * SRC_W: 59 * Width for the source rectangle within the &drm_framebuffer, in 16.16 60 * fixed point. SRC_X plus SRC_W must be within the width of the source 61 * framebuffer. Must be positive. 62 * SRC_H: 63 * Height for the source rectangle within the &drm_framebuffer, in 16.16 64 * fixed point. SRC_Y plus SRC_H must be within the height of the source 65 * framebuffer. Must be positive. 66 * CRTC_X: 67 * X coordinate offset for the destination rectangle. Can be negative. 68 * CRTC_Y: 69 * Y coordinate offset for the destination rectangle. Can be negative. 70 * CRTC_W: 71 * Width for the destination rectangle. CRTC_X plus CRTC_W can extend past 72 * the currently visible horizontal area of the &drm_crtc. 73 * CRTC_H: 74 * Height for the destination rectangle. CRTC_Y plus CRTC_H can extend past 75 * the currently visible vertical area of the &drm_crtc. 76 * FB_ID: 77 * Mode object ID of the &drm_framebuffer this plane should scan out. 78 * CRTC_ID: 79 * Mode object ID of the &drm_crtc this plane should be connected to. 80 * 81 * Note that the source rectangle must fully lie within the bounds of the 82 * &drm_framebuffer. The destination rectangle can lie outside of the visible 83 * area of the current mode of the CRTC. It must be apprpriately clipped by the 84 * driver, which can be done by calling drm_plane_helper_check_update(). Drivers 85 * are also allowed to round the subpixel sampling positions appropriately, but 86 * only to the next full pixel. No pixel outside of the source rectangle may 87 * ever be sampled, which is important when applying more sophisticated 88 * filtering than just a bilinear one when scaling. The filtering mode when 89 * scaling is unspecified. 90 * 91 * On top of this basic transformation additional properties can be exposed by 92 * the driver: 93 * 94 * alpha: 95 * Alpha is setup with drm_plane_create_alpha_property(). It controls the 96 * plane-wide opacity, from transparent (0) to opaque (0xffff). It can be 97 * combined with pixel alpha. 98 * The pixel values in the framebuffers are expected to not be 99 * pre-multiplied by the global alpha associated to the plane. 100 * 101 * rotation: 102 * Rotation is set up with drm_plane_create_rotation_property(). It adds a 103 * rotation and reflection step between the source and destination rectangles. 104 * Without this property the rectangle is only scaled, but not rotated or 105 * reflected. 106 * 107 * Possbile values: 108 * 109 * "rotate-<degrees>": 110 * Signals that a drm plane is rotated <degrees> degrees in counter 111 * clockwise direction. 112 * 113 * "reflect-<axis>": 114 * Signals that the contents of a drm plane is reflected along the 115 * <axis> axis, in the same way as mirroring. 116 * 117 * reflect-x:: 118 * 119 * |o | | o| 120 * | | -> | | 121 * | v| |v | 122 * 123 * reflect-y:: 124 * 125 * |o | | ^| 126 * | | -> | | 127 * | v| |o | 128 * 129 * zpos: 130 * Z position is set up with drm_plane_create_zpos_immutable_property() and 131 * drm_plane_create_zpos_property(). It controls the visibility of overlapping 132 * planes. Without this property the primary plane is always below the cursor 133 * plane, and ordering between all other planes is undefined. 134 * 135 * pixel blend mode: 136 * Pixel blend mode is set up with drm_plane_create_blend_mode_property(). 137 * It adds a blend mode for alpha blending equation selection, describing 138 * how the pixels from the current plane are composited with the 139 * background. 140 * 141 * Three alpha blending equations are defined: 142 * 143 * "None": 144 * Blend formula that ignores the pixel alpha:: 145 * 146 * out.rgb = plane_alpha * fg.rgb + 147 * (1 - plane_alpha) * bg.rgb 148 * 149 * "Pre-multiplied": 150 * Blend formula that assumes the pixel color values 151 * have been already pre-multiplied with the alpha 152 * channel values:: 153 * 154 * out.rgb = plane_alpha * fg.rgb + 155 * (1 - (plane_alpha * fg.alpha)) * bg.rgb 156 * 157 * "Coverage": 158 * Blend formula that assumes the pixel color values have not 159 * been pre-multiplied and will do so when blending them to the 160 * background color values:: 161 * 162 * out.rgb = plane_alpha * fg.alpha * fg.rgb + 163 * (1 - (plane_alpha * fg.alpha)) * bg.rgb 164 * 165 * Using the following symbols: 166 * 167 * "fg.rgb": 168 * Each of the RGB component values from the plane's pixel 169 * "fg.alpha": 170 * Alpha component value from the plane's pixel. If the plane's 171 * pixel format has no alpha component, then this is assumed to be 172 * 1.0. In these cases, this property has no effect, as all three 173 * equations become equivalent. 174 * "bg.rgb": 175 * Each of the RGB component values from the background 176 * "plane_alpha": 177 * Plane alpha value set by the plane "alpha" property. If the 178 * plane does not expose the "alpha" property, then this is 179 * assumed to be 1.0 180 * 181 * Note that all the property extensions described here apply either to the 182 * plane or the CRTC (e.g. for the background color, which currently is not 183 * exposed and assumed to be black). 184 */ 185 186 /** 187 * drm_plane_create_alpha_property - create a new alpha property 188 * @plane: drm plane 189 * 190 * This function creates a generic, mutable, alpha property and enables support 191 * for it in the DRM core. It is attached to @plane. 192 * 193 * The alpha property will be allowed to be within the bounds of 0 194 * (transparent) to 0xffff (opaque). 195 * 196 * Returns: 197 * 0 on success, negative error code on failure. 198 */ 199 int drm_plane_create_alpha_property(struct drm_plane *plane) 200 { 201 struct drm_property *prop; 202 203 prop = drm_property_create_range(plane->dev, 0, "alpha", 204 0, DRM_BLEND_ALPHA_OPAQUE); 205 if (!prop) 206 return -ENOMEM; 207 208 drm_object_attach_property(&plane->base, prop, DRM_BLEND_ALPHA_OPAQUE); 209 plane->alpha_property = prop; 210 211 if (plane->state) 212 plane->state->alpha = DRM_BLEND_ALPHA_OPAQUE; 213 214 return 0; 215 } 216 EXPORT_SYMBOL(drm_plane_create_alpha_property); 217 218 /** 219 * drm_plane_create_rotation_property - create a new rotation property 220 * @plane: drm plane 221 * @rotation: initial value of the rotation property 222 * @supported_rotations: bitmask of supported rotations and reflections 223 * 224 * This creates a new property with the selected support for transformations. 225 * 226 * Since a rotation by 180° degress is the same as reflecting both along the x 227 * and the y axis the rotation property is somewhat redundant. Drivers can use 228 * drm_rotation_simplify() to normalize values of this property. 229 * 230 * The property exposed to userspace is a bitmask property (see 231 * drm_property_create_bitmask()) called "rotation" and has the following 232 * bitmask enumaration values: 233 * 234 * DRM_MODE_ROTATE_0: 235 * "rotate-0" 236 * DRM_MODE_ROTATE_90: 237 * "rotate-90" 238 * DRM_MODE_ROTATE_180: 239 * "rotate-180" 240 * DRM_MODE_ROTATE_270: 241 * "rotate-270" 242 * DRM_MODE_REFLECT_X: 243 * "reflect-x" 244 * DRM_MODE_REFLECT_Y: 245 * "reflect-y" 246 * 247 * Rotation is the specified amount in degrees in counter clockwise direction, 248 * the X and Y axis are within the source rectangle, i.e. the X/Y axis before 249 * rotation. After reflection, the rotation is applied to the image sampled from 250 * the source rectangle, before scaling it to fit the destination rectangle. 251 */ 252 int drm_plane_create_rotation_property(struct drm_plane *plane, 253 unsigned int rotation, 254 unsigned int supported_rotations) 255 { 256 static const struct drm_prop_enum_list props[] = { 257 { __builtin_ffs(DRM_MODE_ROTATE_0) - 1, "rotate-0" }, 258 { __builtin_ffs(DRM_MODE_ROTATE_90) - 1, "rotate-90" }, 259 { __builtin_ffs(DRM_MODE_ROTATE_180) - 1, "rotate-180" }, 260 { __builtin_ffs(DRM_MODE_ROTATE_270) - 1, "rotate-270" }, 261 { __builtin_ffs(DRM_MODE_REFLECT_X) - 1, "reflect-x" }, 262 { __builtin_ffs(DRM_MODE_REFLECT_Y) - 1, "reflect-y" }, 263 }; 264 struct drm_property *prop; 265 266 WARN_ON((supported_rotations & DRM_MODE_ROTATE_MASK) == 0); 267 WARN_ON(!is_power_of_2(rotation & DRM_MODE_ROTATE_MASK)); 268 WARN_ON(rotation & ~supported_rotations); 269 270 prop = drm_property_create_bitmask(plane->dev, 0, "rotation", 271 props, ARRAY_SIZE(props), 272 supported_rotations); 273 if (!prop) 274 return -ENOMEM; 275 276 drm_object_attach_property(&plane->base, prop, rotation); 277 278 if (plane->state) 279 plane->state->rotation = rotation; 280 281 plane->rotation_property = prop; 282 283 return 0; 284 } 285 EXPORT_SYMBOL(drm_plane_create_rotation_property); 286 287 /** 288 * drm_rotation_simplify() - Try to simplify the rotation 289 * @rotation: Rotation to be simplified 290 * @supported_rotations: Supported rotations 291 * 292 * Attempt to simplify the rotation to a form that is supported. 293 * Eg. if the hardware supports everything except DRM_MODE_REFLECT_X 294 * one could call this function like this: 295 * 296 * drm_rotation_simplify(rotation, DRM_MODE_ROTATE_0 | 297 * DRM_MODE_ROTATE_90 | DRM_MODE_ROTATE_180 | 298 * DRM_MODE_ROTATE_270 | DRM_MODE_REFLECT_Y); 299 * 300 * to eliminate the DRM_MODE_ROTATE_X flag. Depending on what kind of 301 * transforms the hardware supports, this function may not 302 * be able to produce a supported transform, so the caller should 303 * check the result afterwards. 304 */ 305 unsigned int drm_rotation_simplify(unsigned int rotation, 306 unsigned int supported_rotations) 307 { 308 if (rotation & ~supported_rotations) { 309 rotation ^= DRM_MODE_REFLECT_X | DRM_MODE_REFLECT_Y; 310 rotation = (rotation & DRM_MODE_REFLECT_MASK) | 311 BIT((ffs(rotation & DRM_MODE_ROTATE_MASK) + 1) 312 % 4); 313 } 314 315 return rotation; 316 } 317 EXPORT_SYMBOL(drm_rotation_simplify); 318 319 /** 320 * drm_plane_create_zpos_property - create mutable zpos property 321 * @plane: drm plane 322 * @zpos: initial value of zpos property 323 * @min: minimal possible value of zpos property 324 * @max: maximal possible value of zpos property 325 * 326 * This function initializes generic mutable zpos property and enables support 327 * for it in drm core. Drivers can then attach this property to planes to enable 328 * support for configurable planes arrangement during blending operation. 329 * Drivers that attach a mutable zpos property to any plane should call the 330 * drm_atomic_normalize_zpos() helper during their implementation of 331 * &drm_mode_config_funcs.atomic_check(), which will update the normalized zpos 332 * values and store them in &drm_plane_state.normalized_zpos. Usually min 333 * should be set to 0 and max to maximal number of planes for given crtc - 1. 334 * 335 * If zpos of some planes cannot be changed (like fixed background or 336 * cursor/topmost planes), driver should adjust min/max values and assign those 337 * planes immutable zpos property with lower or higher values (for more 338 * information, see drm_plane_create_zpos_immutable_property() function). In such 339 * case driver should also assign proper initial zpos values for all planes in 340 * its plane_reset() callback, so the planes will be always sorted properly. 341 * 342 * See also drm_atomic_normalize_zpos(). 343 * 344 * The property exposed to userspace is called "zpos". 345 * 346 * Returns: 347 * Zero on success, negative errno on failure. 348 */ 349 int drm_plane_create_zpos_property(struct drm_plane *plane, 350 unsigned int zpos, 351 unsigned int min, unsigned int max) 352 { 353 struct drm_property *prop; 354 355 prop = drm_property_create_range(plane->dev, 0, "zpos", min, max); 356 if (!prop) 357 return -ENOMEM; 358 359 drm_object_attach_property(&plane->base, prop, zpos); 360 361 plane->zpos_property = prop; 362 363 if (plane->state) { 364 plane->state->zpos = zpos; 365 plane->state->normalized_zpos = zpos; 366 } 367 368 return 0; 369 } 370 EXPORT_SYMBOL(drm_plane_create_zpos_property); 371 372 /** 373 * drm_plane_create_zpos_immutable_property - create immuttable zpos property 374 * @plane: drm plane 375 * @zpos: value of zpos property 376 * 377 * This function initializes generic immutable zpos property and enables 378 * support for it in drm core. Using this property driver lets userspace 379 * to get the arrangement of the planes for blending operation and notifies 380 * it that the hardware (or driver) doesn't support changing of the planes' 381 * order. For mutable zpos see drm_plane_create_zpos_property(). 382 * 383 * The property exposed to userspace is called "zpos". 384 * 385 * Returns: 386 * Zero on success, negative errno on failure. 387 */ 388 int drm_plane_create_zpos_immutable_property(struct drm_plane *plane, 389 unsigned int zpos) 390 { 391 struct drm_property *prop; 392 393 prop = drm_property_create_range(plane->dev, DRM_MODE_PROP_IMMUTABLE, 394 "zpos", zpos, zpos); 395 if (!prop) 396 return -ENOMEM; 397 398 drm_object_attach_property(&plane->base, prop, zpos); 399 400 plane->zpos_property = prop; 401 402 if (plane->state) { 403 plane->state->zpos = zpos; 404 plane->state->normalized_zpos = zpos; 405 } 406 407 return 0; 408 } 409 EXPORT_SYMBOL(drm_plane_create_zpos_immutable_property); 410 411 static int drm_atomic_state_zpos_cmp(const void *a, const void *b) 412 { 413 const struct drm_plane_state *sa = *(struct drm_plane_state **)a; 414 const struct drm_plane_state *sb = *(struct drm_plane_state **)b; 415 416 if (sa->zpos != sb->zpos) 417 return sa->zpos - sb->zpos; 418 else 419 return sa->plane->base.id - sb->plane->base.id; 420 } 421 422 static int drm_atomic_helper_crtc_normalize_zpos(struct drm_crtc *crtc, 423 struct drm_crtc_state *crtc_state) 424 { 425 struct drm_atomic_state *state = crtc_state->state; 426 struct drm_device *dev = crtc->dev; 427 int total_planes = dev->mode_config.num_total_plane; 428 struct drm_plane_state **states; 429 struct drm_plane *plane; 430 int i, n = 0; 431 int ret = 0; 432 433 DRM_DEBUG_ATOMIC("[CRTC:%d:%s] calculating normalized zpos values\n", 434 crtc->base.id, crtc->name); 435 436 states = kmalloc_array(total_planes, sizeof(*states), GFP_KERNEL); 437 if (!states) 438 return -ENOMEM; 439 440 /* 441 * Normalization process might create new states for planes which 442 * normalized_zpos has to be recalculated. 443 */ 444 drm_for_each_plane_mask(plane, dev, crtc_state->plane_mask) { 445 struct drm_plane_state *plane_state = 446 drm_atomic_get_plane_state(state, plane); 447 if (IS_ERR(plane_state)) { 448 ret = PTR_ERR(plane_state); 449 goto done; 450 } 451 states[n++] = plane_state; 452 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] processing zpos value %d\n", 453 plane->base.id, plane->name, 454 plane_state->zpos); 455 } 456 457 sort(states, n, sizeof(*states), drm_atomic_state_zpos_cmp, NULL); 458 459 for (i = 0; i < n; i++) { 460 plane = states[i]->plane; 461 462 states[i]->normalized_zpos = i; 463 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] normalized zpos value %d\n", 464 plane->base.id, plane->name, i); 465 } 466 crtc_state->zpos_changed = true; 467 468 done: 469 kfree(states); 470 return ret; 471 } 472 473 /** 474 * drm_atomic_normalize_zpos - calculate normalized zpos values for all crtcs 475 * @dev: DRM device 476 * @state: atomic state of DRM device 477 * 478 * This function calculates normalized zpos value for all modified planes in 479 * the provided atomic state of DRM device. 480 * 481 * For every CRTC this function checks new states of all planes assigned to 482 * it and calculates normalized zpos value for these planes. Planes are compared 483 * first by their zpos values, then by plane id (if zpos is equal). The plane 484 * with lowest zpos value is at the bottom. The &drm_plane_state.normalized_zpos 485 * is then filled with unique values from 0 to number of active planes in crtc 486 * minus one. 487 * 488 * RETURNS 489 * Zero for success or -errno 490 */ 491 int drm_atomic_normalize_zpos(struct drm_device *dev, 492 struct drm_atomic_state *state) 493 { 494 struct drm_crtc *crtc; 495 struct drm_crtc_state *old_crtc_state, *new_crtc_state; 496 struct drm_plane *plane; 497 struct drm_plane_state *old_plane_state, *new_plane_state; 498 int i, ret = 0; 499 500 for_each_oldnew_plane_in_state(state, plane, old_plane_state, new_plane_state, i) { 501 crtc = new_plane_state->crtc; 502 if (!crtc) 503 continue; 504 if (old_plane_state->zpos != new_plane_state->zpos) { 505 new_crtc_state = drm_atomic_get_new_crtc_state(state, crtc); 506 new_crtc_state->zpos_changed = true; 507 } 508 } 509 510 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 511 if (old_crtc_state->plane_mask != new_crtc_state->plane_mask || 512 new_crtc_state->zpos_changed) { 513 ret = drm_atomic_helper_crtc_normalize_zpos(crtc, 514 new_crtc_state); 515 if (ret) 516 return ret; 517 } 518 } 519 return 0; 520 } 521 EXPORT_SYMBOL(drm_atomic_normalize_zpos); 522 523 /** 524 * drm_plane_create_blend_mode_property - create a new blend mode property 525 * @plane: drm plane 526 * @supported_modes: bitmask of supported modes, must include 527 * BIT(DRM_MODE_BLEND_PREMULTI). Current DRM assumption is 528 * that alpha is premultiplied, and old userspace can break if 529 * the property defaults to anything else. 530 * 531 * This creates a new property describing the blend mode. 532 * 533 * The property exposed to userspace is an enumeration property (see 534 * drm_property_create_enum()) called "pixel blend mode" and has the 535 * following enumeration values: 536 * 537 * "None": 538 * Blend formula that ignores the pixel alpha. 539 * 540 * "Pre-multiplied": 541 * Blend formula that assumes the pixel color values have been already 542 * pre-multiplied with the alpha channel values. 543 * 544 * "Coverage": 545 * Blend formula that assumes the pixel color values have not been 546 * pre-multiplied and will do so when blending them to the background color 547 * values. 548 * 549 * RETURNS: 550 * Zero for success or -errno 551 */ 552 int drm_plane_create_blend_mode_property(struct drm_plane *plane, 553 unsigned int supported_modes) 554 { 555 struct drm_device *dev = plane->dev; 556 struct drm_property *prop; 557 static const struct drm_prop_enum_list props[] = { 558 { DRM_MODE_BLEND_PIXEL_NONE, "None" }, 559 { DRM_MODE_BLEND_PREMULTI, "Pre-multiplied" }, 560 { DRM_MODE_BLEND_COVERAGE, "Coverage" }, 561 }; 562 unsigned int valid_mode_mask = BIT(DRM_MODE_BLEND_PIXEL_NONE) | 563 BIT(DRM_MODE_BLEND_PREMULTI) | 564 BIT(DRM_MODE_BLEND_COVERAGE); 565 int i; 566 567 if (WARN_ON((supported_modes & ~valid_mode_mask) || 568 ((supported_modes & BIT(DRM_MODE_BLEND_PREMULTI)) == 0))) 569 return -EINVAL; 570 571 prop = drm_property_create(dev, DRM_MODE_PROP_ENUM, 572 "pixel blend mode", 573 hweight32(supported_modes)); 574 if (!prop) 575 return -ENOMEM; 576 577 for (i = 0; i < ARRAY_SIZE(props); i++) { 578 int ret; 579 580 if (!(BIT(props[i].type) & supported_modes)) 581 continue; 582 583 ret = drm_property_add_enum(prop, props[i].type, 584 props[i].name); 585 586 if (ret) { 587 drm_property_destroy(dev, prop); 588 589 return ret; 590 } 591 } 592 593 drm_object_attach_property(&plane->base, prop, DRM_MODE_BLEND_PREMULTI); 594 plane->blend_mode_property = prop; 595 596 return 0; 597 } 598 EXPORT_SYMBOL(drm_plane_create_blend_mode_property);