This source file includes following definitions.
- to_vc4_crtc_state
- vc4_crtc_get_scanoutpos
- vc4_crtc_destroy
- vc4_crtc_lut_load
- vc4_crtc_update_gamma_lut
- vc4_get_fifo_full_level
- vc4_get_crtc_encoder
- vc4_crtc_config_pv
- vc4_crtc_mode_set_nofb
- require_hvs_enabled
- vc4_crtc_atomic_disable
- vc4_crtc_txp_armed
- vc4_crtc_update_dlist
- vc4_crtc_atomic_enable
- vc4_crtc_mode_valid
- vc4_crtc_get_margins
- vc4_crtc_atomic_check
- vc4_crtc_atomic_flush
- vc4_enable_vblank
- vc4_disable_vblank
- vc4_crtc_handle_page_flip
- vc4_crtc_handle_vblank
- vc4_crtc_irq_handler
- vc4_async_page_flip_complete
- vc4_async_page_flip
- vc4_page_flip
- vc4_crtc_duplicate_state
- vc4_crtc_destroy_state
- vc4_crtc_reset
- vc4_set_crtc_possible_masks
- vc4_crtc_get_cob_allocation
- vc4_crtc_bind
- vc4_crtc_unbind
- vc4_crtc_dev_probe
- vc4_crtc_dev_remove
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 #include <linux/clk.h>
33 #include <linux/component.h>
34 #include <linux/of_device.h>
35
36 #include <drm/drm_atomic.h>
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_atomic_uapi.h>
39 #include <drm/drm_fb_cma_helper.h>
40 #include <drm/drm_print.h>
41 #include <drm/drm_probe_helper.h>
42 #include <drm/drm_vblank.h>
43
44 #include "vc4_drv.h"
45 #include "vc4_regs.h"
46
47 struct vc4_crtc_state {
48 struct drm_crtc_state base;
49
50 struct drm_mm_node mm;
51 bool feed_txp;
52 bool txp_armed;
53
54 struct {
55 unsigned int left;
56 unsigned int right;
57 unsigned int top;
58 unsigned int bottom;
59 } margins;
60 };
61
62 static inline struct vc4_crtc_state *
63 to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
64 {
65 return (struct vc4_crtc_state *)crtc_state;
66 }
67
68 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
69 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
70
71 static const struct debugfs_reg32 crtc_regs[] = {
72 VC4_REG32(PV_CONTROL),
73 VC4_REG32(PV_V_CONTROL),
74 VC4_REG32(PV_VSYNCD_EVEN),
75 VC4_REG32(PV_HORZA),
76 VC4_REG32(PV_HORZB),
77 VC4_REG32(PV_VERTA),
78 VC4_REG32(PV_VERTB),
79 VC4_REG32(PV_VERTA_EVEN),
80 VC4_REG32(PV_VERTB_EVEN),
81 VC4_REG32(PV_INTEN),
82 VC4_REG32(PV_INTSTAT),
83 VC4_REG32(PV_STAT),
84 VC4_REG32(PV_HACT_ACT),
85 };
86
87 bool vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
88 bool in_vblank_irq, int *vpos, int *hpos,
89 ktime_t *stime, ktime_t *etime,
90 const struct drm_display_mode *mode)
91 {
92 struct vc4_dev *vc4 = to_vc4_dev(dev);
93 struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
94 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
95 u32 val;
96 int fifo_lines;
97 int vblank_lines;
98 bool ret = false;
99
100
101
102
103 if (stime)
104 *stime = ktime_get();
105
106
107
108
109
110 val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
111
112
113 if (etime)
114 *etime = ktime_get();
115
116
117
118
119 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
120 *hpos = 0;
121
122 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
123 *vpos /= 2;
124
125
126 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
127 *hpos += mode->crtc_htotal / 2;
128 }
129
130
131 fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
132
133 if (fifo_lines > 0)
134 ret = true;
135
136
137 if (*vpos > fifo_lines) {
138
139
140
141
142
143
144
145
146
147
148
149
150 *vpos -= fifo_lines + 1;
151
152 return ret;
153 }
154
155
156
157
158
159
160
161
162
163
164 vblank_lines = mode->vtotal - mode->vdisplay;
165
166 if (in_vblank_irq) {
167
168
169
170
171
172
173
174
175
176 *vpos = -vblank_lines;
177
178 if (stime)
179 *stime = vc4_crtc->t_vblank;
180 if (etime)
181 *etime = vc4_crtc->t_vblank;
182
183
184
185
186
187
188
189
190
191
192 } else {
193
194
195
196
197
198
199 *vpos = 0;
200 }
201
202 return ret;
203 }
204
205 static void vc4_crtc_destroy(struct drm_crtc *crtc)
206 {
207 drm_crtc_cleanup(crtc);
208 }
209
210 static void
211 vc4_crtc_lut_load(struct drm_crtc *crtc)
212 {
213 struct drm_device *dev = crtc->dev;
214 struct vc4_dev *vc4 = to_vc4_dev(dev);
215 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
216 u32 i;
217
218
219
220
221
222 HVS_WRITE(SCALER_GAMADDR,
223 SCALER_GAMADDR_AUTOINC |
224 (vc4_crtc->channel * 3 * crtc->gamma_size));
225
226 for (i = 0; i < crtc->gamma_size; i++)
227 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
228 for (i = 0; i < crtc->gamma_size; i++)
229 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
230 for (i = 0; i < crtc->gamma_size; i++)
231 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
232 }
233
234 static void
235 vc4_crtc_update_gamma_lut(struct drm_crtc *crtc)
236 {
237 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
238 struct drm_color_lut *lut = crtc->state->gamma_lut->data;
239 u32 length = drm_color_lut_size(crtc->state->gamma_lut);
240 u32 i;
241
242 for (i = 0; i < length; i++) {
243 vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8);
244 vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8);
245 vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8);
246 }
247
248 vc4_crtc_lut_load(crtc);
249 }
250
251 static u32 vc4_get_fifo_full_level(u32 format)
252 {
253 static const u32 fifo_len_bytes = 64;
254 static const u32 hvs_latency_pix = 6;
255
256 switch (format) {
257 case PV_CONTROL_FORMAT_DSIV_16:
258 case PV_CONTROL_FORMAT_DSIC_16:
259 return fifo_len_bytes - 2 * hvs_latency_pix;
260 case PV_CONTROL_FORMAT_DSIV_18:
261 return fifo_len_bytes - 14;
262 case PV_CONTROL_FORMAT_24:
263 case PV_CONTROL_FORMAT_DSIV_24:
264 default:
265 return fifo_len_bytes - 3 * hvs_latency_pix;
266 }
267 }
268
269
270
271
272
273
274
275
276 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
277 {
278 struct drm_connector *connector;
279 struct drm_connector_list_iter conn_iter;
280
281 drm_connector_list_iter_begin(crtc->dev, &conn_iter);
282 drm_for_each_connector_iter(connector, &conn_iter) {
283 if (connector->state->crtc == crtc) {
284 drm_connector_list_iter_end(&conn_iter);
285 return connector->encoder;
286 }
287 }
288 drm_connector_list_iter_end(&conn_iter);
289
290 return NULL;
291 }
292
293 static void vc4_crtc_config_pv(struct drm_crtc *crtc)
294 {
295 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
296 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
297 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
298 struct drm_crtc_state *state = crtc->state;
299 struct drm_display_mode *mode = &state->adjusted_mode;
300 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
301 u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
302 bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
303 vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
304 u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
305
306
307 CRTC_WRITE(PV_CONTROL, 0);
308 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
309 CRTC_WRITE(PV_CONTROL, 0);
310
311 CRTC_WRITE(PV_HORZA,
312 VC4_SET_FIELD((mode->htotal -
313 mode->hsync_end) * pixel_rep,
314 PV_HORZA_HBP) |
315 VC4_SET_FIELD((mode->hsync_end -
316 mode->hsync_start) * pixel_rep,
317 PV_HORZA_HSYNC));
318 CRTC_WRITE(PV_HORZB,
319 VC4_SET_FIELD((mode->hsync_start -
320 mode->hdisplay) * pixel_rep,
321 PV_HORZB_HFP) |
322 VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
323
324 CRTC_WRITE(PV_VERTA,
325 VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
326 PV_VERTA_VBP) |
327 VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
328 PV_VERTA_VSYNC));
329 CRTC_WRITE(PV_VERTB,
330 VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
331 PV_VERTB_VFP) |
332 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
333
334 if (interlace) {
335 CRTC_WRITE(PV_VERTA_EVEN,
336 VC4_SET_FIELD(mode->crtc_vtotal -
337 mode->crtc_vsync_end - 1,
338 PV_VERTA_VBP) |
339 VC4_SET_FIELD(mode->crtc_vsync_end -
340 mode->crtc_vsync_start,
341 PV_VERTA_VSYNC));
342 CRTC_WRITE(PV_VERTB_EVEN,
343 VC4_SET_FIELD(mode->crtc_vsync_start -
344 mode->crtc_vdisplay,
345 PV_VERTB_VFP) |
346 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
347
348
349
350
351
352
353 CRTC_WRITE(PV_V_CONTROL,
354 PV_VCONTROL_CONTINUOUS |
355 (is_dsi ? PV_VCONTROL_DSI : 0) |
356 PV_VCONTROL_INTERLACE |
357 VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
358 PV_VCONTROL_ODD_DELAY));
359 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
360 } else {
361 CRTC_WRITE(PV_V_CONTROL,
362 PV_VCONTROL_CONTINUOUS |
363 (is_dsi ? PV_VCONTROL_DSI : 0));
364 }
365
366 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
367
368 CRTC_WRITE(PV_CONTROL,
369 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
370 VC4_SET_FIELD(vc4_get_fifo_full_level(format),
371 PV_CONTROL_FIFO_LEVEL) |
372 VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
373 PV_CONTROL_CLR_AT_START |
374 PV_CONTROL_TRIGGER_UNDERFLOW |
375 PV_CONTROL_WAIT_HSTART |
376 VC4_SET_FIELD(vc4_encoder->clock_select,
377 PV_CONTROL_CLK_SELECT) |
378 PV_CONTROL_FIFO_CLR |
379 PV_CONTROL_EN);
380 }
381
382 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
383 {
384 struct drm_device *dev = crtc->dev;
385 struct vc4_dev *vc4 = to_vc4_dev(dev);
386 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
387 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
388 struct drm_display_mode *mode = &crtc->state->adjusted_mode;
389 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
390 bool debug_dump_regs = false;
391
392 if (debug_dump_regs) {
393 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
394 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
395 drm_crtc_index(crtc));
396 drm_print_regset32(&p, &vc4_crtc->regset);
397 }
398
399 if (vc4_crtc->channel == 2) {
400 u32 dispctrl;
401 u32 dsp3_mux;
402
403
404
405
406
407
408
409
410
411
412
413 if (vc4_state->feed_txp)
414 dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX);
415 else
416 dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
417
418 dispctrl = HVS_READ(SCALER_DISPCTRL) &
419 ~SCALER_DISPCTRL_DSP3_MUX_MASK;
420 HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux);
421 }
422
423 if (!vc4_state->feed_txp)
424 vc4_crtc_config_pv(crtc);
425
426 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
427 SCALER_DISPBKGND_AUTOHS |
428 SCALER_DISPBKGND_GAMMA |
429 (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
430
431
432
433
434 vc4_crtc_lut_load(crtc);
435
436 if (debug_dump_regs) {
437 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
438 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
439 drm_crtc_index(crtc));
440 drm_print_regset32(&p, &vc4_crtc->regset);
441 }
442 }
443
444 static void require_hvs_enabled(struct drm_device *dev)
445 {
446 struct vc4_dev *vc4 = to_vc4_dev(dev);
447
448 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
449 SCALER_DISPCTRL_ENABLE);
450 }
451
452 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
453 struct drm_crtc_state *old_state)
454 {
455 struct drm_device *dev = crtc->dev;
456 struct vc4_dev *vc4 = to_vc4_dev(dev);
457 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
458 u32 chan = vc4_crtc->channel;
459 int ret;
460 require_hvs_enabled(dev);
461
462
463 drm_crtc_vblank_off(crtc);
464
465 CRTC_WRITE(PV_V_CONTROL,
466 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
467 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
468 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
469
470 if (HVS_READ(SCALER_DISPCTRLX(chan)) &
471 SCALER_DISPCTRLX_ENABLE) {
472 HVS_WRITE(SCALER_DISPCTRLX(chan),
473 SCALER_DISPCTRLX_RESET);
474
475
476
477
478 HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
479 }
480
481
482
483 WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
484
485 WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
486 SCALER_DISPSTATX_MODE) !=
487 SCALER_DISPSTATX_MODE_DISABLED);
488
489 WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
490 (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
491 SCALER_DISPSTATX_EMPTY);
492
493
494
495
496
497 if (crtc->state->event) {
498 unsigned long flags;
499
500 spin_lock_irqsave(&dev->event_lock, flags);
501 drm_crtc_send_vblank_event(crtc, crtc->state->event);
502 crtc->state->event = NULL;
503 spin_unlock_irqrestore(&dev->event_lock, flags);
504 }
505 }
506
507 void vc4_crtc_txp_armed(struct drm_crtc_state *state)
508 {
509 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
510
511 vc4_state->txp_armed = true;
512 }
513
514 static void vc4_crtc_update_dlist(struct drm_crtc *crtc)
515 {
516 struct drm_device *dev = crtc->dev;
517 struct vc4_dev *vc4 = to_vc4_dev(dev);
518 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
519 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
520
521 if (crtc->state->event) {
522 unsigned long flags;
523
524 crtc->state->event->pipe = drm_crtc_index(crtc);
525
526 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
527
528 spin_lock_irqsave(&dev->event_lock, flags);
529
530 if (!vc4_state->feed_txp || vc4_state->txp_armed) {
531 vc4_crtc->event = crtc->state->event;
532 crtc->state->event = NULL;
533 }
534
535 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
536 vc4_state->mm.start);
537
538 spin_unlock_irqrestore(&dev->event_lock, flags);
539 } else {
540 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
541 vc4_state->mm.start);
542 }
543 }
544
545 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
546 struct drm_crtc_state *old_state)
547 {
548 struct drm_device *dev = crtc->dev;
549 struct vc4_dev *vc4 = to_vc4_dev(dev);
550 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
551 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
552 struct drm_display_mode *mode = &crtc->state->adjusted_mode;
553
554 require_hvs_enabled(dev);
555
556
557
558
559 drm_crtc_vblank_on(crtc);
560 vc4_crtc_update_dlist(crtc);
561
562
563
564
565
566
567 HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
568 VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
569 VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
570 SCALER_DISPCTRLX_ENABLE |
571 (vc4_state->feed_txp ? SCALER_DISPCTRLX_ONESHOT : 0));
572
573
574
575
576 if (!vc4_state->feed_txp)
577 CRTC_WRITE(PV_V_CONTROL,
578 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
579 }
580
581 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
582 const struct drm_display_mode *mode)
583 {
584
585 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
586 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
587 crtc->base.id);
588 return MODE_NO_DBLESCAN;
589 }
590
591 return MODE_OK;
592 }
593
594 void vc4_crtc_get_margins(struct drm_crtc_state *state,
595 unsigned int *left, unsigned int *right,
596 unsigned int *top, unsigned int *bottom)
597 {
598 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
599 struct drm_connector_state *conn_state;
600 struct drm_connector *conn;
601 int i;
602
603 *left = vc4_state->margins.left;
604 *right = vc4_state->margins.right;
605 *top = vc4_state->margins.top;
606 *bottom = vc4_state->margins.bottom;
607
608
609
610
611
612
613 for_each_new_connector_in_state(state->state, conn, conn_state, i) {
614 if (conn_state->crtc != state->crtc)
615 continue;
616
617 *left = conn_state->tv.margins.left;
618 *right = conn_state->tv.margins.right;
619 *top = conn_state->tv.margins.top;
620 *bottom = conn_state->tv.margins.bottom;
621 break;
622 }
623 }
624
625 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
626 struct drm_crtc_state *state)
627 {
628 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
629 struct drm_device *dev = crtc->dev;
630 struct vc4_dev *vc4 = to_vc4_dev(dev);
631 struct drm_plane *plane;
632 unsigned long flags;
633 const struct drm_plane_state *plane_state;
634 struct drm_connector *conn;
635 struct drm_connector_state *conn_state;
636 u32 dlist_count = 0;
637 int ret, i;
638
639
640
641
642 if (hweight32(state->connector_mask) > 1)
643 return -EINVAL;
644
645 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
646 dlist_count += vc4_plane_dlist_size(plane_state);
647
648 dlist_count++;
649
650 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
651 ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
652 dlist_count);
653 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
654 if (ret)
655 return ret;
656
657 for_each_new_connector_in_state(state->state, conn, conn_state, i) {
658 if (conn_state->crtc != crtc)
659 continue;
660
661
662
663
664 if (conn->connector_type == DRM_MODE_CONNECTOR_WRITEBACK) {
665 state->no_vblank = true;
666 vc4_state->feed_txp = true;
667 } else {
668 state->no_vblank = false;
669 vc4_state->feed_txp = false;
670 }
671
672 vc4_state->margins.left = conn_state->tv.margins.left;
673 vc4_state->margins.right = conn_state->tv.margins.right;
674 vc4_state->margins.top = conn_state->tv.margins.top;
675 vc4_state->margins.bottom = conn_state->tv.margins.bottom;
676 break;
677 }
678
679 return 0;
680 }
681
682 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
683 struct drm_crtc_state *old_state)
684 {
685 struct drm_device *dev = crtc->dev;
686 struct vc4_dev *vc4 = to_vc4_dev(dev);
687 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
688 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
689 struct drm_plane *plane;
690 struct vc4_plane_state *vc4_plane_state;
691 bool debug_dump_regs = false;
692 bool enable_bg_fill = false;
693 u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
694 u32 __iomem *dlist_next = dlist_start;
695
696 if (debug_dump_regs) {
697 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
698 vc4_hvs_dump_state(dev);
699 }
700
701
702 drm_atomic_crtc_for_each_plane(plane, crtc) {
703
704 if (dlist_next == dlist_start) {
705
706
707
708
709
710
711
712
713 vc4_plane_state = to_vc4_plane_state(plane->state);
714 enable_bg_fill = vc4_plane_state->needs_bg_fill;
715 }
716
717 dlist_next += vc4_plane_write_dlist(plane, dlist_next);
718 }
719
720 writel(SCALER_CTL0_END, dlist_next);
721 dlist_next++;
722
723 WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
724
725 if (enable_bg_fill)
726
727
728
729 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
730 HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel)) |
731 SCALER_DISPBKGND_FILL);
732
733
734
735
736
737
738
739
740 if (crtc->state->active && old_state->active)
741 vc4_crtc_update_dlist(crtc);
742
743 if (crtc->state->color_mgmt_changed) {
744 u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel));
745
746 if (crtc->state->gamma_lut) {
747 vc4_crtc_update_gamma_lut(crtc);
748 dispbkgndx |= SCALER_DISPBKGND_GAMMA;
749 } else {
750
751
752
753
754 dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
755 }
756 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), dispbkgndx);
757 }
758
759 if (debug_dump_regs) {
760 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
761 vc4_hvs_dump_state(dev);
762 }
763 }
764
765 static int vc4_enable_vblank(struct drm_crtc *crtc)
766 {
767 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
768
769 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
770
771 return 0;
772 }
773
774 static void vc4_disable_vblank(struct drm_crtc *crtc)
775 {
776 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
777
778 CRTC_WRITE(PV_INTEN, 0);
779 }
780
781 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
782 {
783 struct drm_crtc *crtc = &vc4_crtc->base;
784 struct drm_device *dev = crtc->dev;
785 struct vc4_dev *vc4 = to_vc4_dev(dev);
786 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
787 u32 chan = vc4_crtc->channel;
788 unsigned long flags;
789
790 spin_lock_irqsave(&dev->event_lock, flags);
791 if (vc4_crtc->event &&
792 (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) ||
793 vc4_state->feed_txp)) {
794 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
795 vc4_crtc->event = NULL;
796 drm_crtc_vblank_put(crtc);
797
798
799
800
801
802
803
804 vc4_hvs_unmask_underrun(dev, vc4_crtc->channel);
805 }
806 spin_unlock_irqrestore(&dev->event_lock, flags);
807 }
808
809 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
810 {
811 crtc->t_vblank = ktime_get();
812 drm_crtc_handle_vblank(&crtc->base);
813 vc4_crtc_handle_page_flip(crtc);
814 }
815
816 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
817 {
818 struct vc4_crtc *vc4_crtc = data;
819 u32 stat = CRTC_READ(PV_INTSTAT);
820 irqreturn_t ret = IRQ_NONE;
821
822 if (stat & PV_INT_VFP_START) {
823 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
824 vc4_crtc_handle_vblank(vc4_crtc);
825 ret = IRQ_HANDLED;
826 }
827
828 return ret;
829 }
830
831 struct vc4_async_flip_state {
832 struct drm_crtc *crtc;
833 struct drm_framebuffer *fb;
834 struct drm_framebuffer *old_fb;
835 struct drm_pending_vblank_event *event;
836
837 struct vc4_seqno_cb cb;
838 };
839
840
841
842
843 static void
844 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
845 {
846 struct vc4_async_flip_state *flip_state =
847 container_of(cb, struct vc4_async_flip_state, cb);
848 struct drm_crtc *crtc = flip_state->crtc;
849 struct drm_device *dev = crtc->dev;
850 struct vc4_dev *vc4 = to_vc4_dev(dev);
851 struct drm_plane *plane = crtc->primary;
852
853 vc4_plane_async_set_fb(plane, flip_state->fb);
854 if (flip_state->event) {
855 unsigned long flags;
856
857 spin_lock_irqsave(&dev->event_lock, flags);
858 drm_crtc_send_vblank_event(crtc, flip_state->event);
859 spin_unlock_irqrestore(&dev->event_lock, flags);
860 }
861
862 drm_crtc_vblank_put(crtc);
863 drm_framebuffer_put(flip_state->fb);
864
865
866
867
868
869
870
871 if (flip_state->old_fb) {
872 struct drm_gem_cma_object *cma_bo;
873 struct vc4_bo *bo;
874
875 cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
876 bo = to_vc4_bo(&cma_bo->base);
877 vc4_bo_dec_usecnt(bo);
878 drm_framebuffer_put(flip_state->old_fb);
879 }
880
881 kfree(flip_state);
882
883 up(&vc4->async_modeset);
884 }
885
886
887
888
889
890
891
892 static int vc4_async_page_flip(struct drm_crtc *crtc,
893 struct drm_framebuffer *fb,
894 struct drm_pending_vblank_event *event,
895 uint32_t flags)
896 {
897 struct drm_device *dev = crtc->dev;
898 struct vc4_dev *vc4 = to_vc4_dev(dev);
899 struct drm_plane *plane = crtc->primary;
900 int ret = 0;
901 struct vc4_async_flip_state *flip_state;
902 struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
903 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
904
905
906
907
908
909
910
911
912 ret = vc4_bo_inc_usecnt(bo);
913 if (ret)
914 return ret;
915
916 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
917 if (!flip_state) {
918 vc4_bo_dec_usecnt(bo);
919 return -ENOMEM;
920 }
921
922 drm_framebuffer_get(fb);
923 flip_state->fb = fb;
924 flip_state->crtc = crtc;
925 flip_state->event = event;
926
927
928 ret = down_interruptible(&vc4->async_modeset);
929 if (ret) {
930 drm_framebuffer_put(fb);
931 vc4_bo_dec_usecnt(bo);
932 kfree(flip_state);
933 return ret;
934 }
935
936
937
938
939
940
941
942
943
944 flip_state->old_fb = plane->state->fb;
945 if (flip_state->old_fb)
946 drm_framebuffer_get(flip_state->old_fb);
947
948 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
949
950
951
952
953
954 drm_atomic_set_fb_for_plane(plane->state, fb);
955
956 vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
957 vc4_async_page_flip_complete);
958
959
960 return 0;
961 }
962
963 static int vc4_page_flip(struct drm_crtc *crtc,
964 struct drm_framebuffer *fb,
965 struct drm_pending_vblank_event *event,
966 uint32_t flags,
967 struct drm_modeset_acquire_ctx *ctx)
968 {
969 if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
970 return vc4_async_page_flip(crtc, fb, event, flags);
971 else
972 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
973 }
974
975 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
976 {
977 struct vc4_crtc_state *vc4_state, *old_vc4_state;
978
979 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
980 if (!vc4_state)
981 return NULL;
982
983 old_vc4_state = to_vc4_crtc_state(crtc->state);
984 vc4_state->feed_txp = old_vc4_state->feed_txp;
985 vc4_state->margins = old_vc4_state->margins;
986
987 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
988 return &vc4_state->base;
989 }
990
991 static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
992 struct drm_crtc_state *state)
993 {
994 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
995 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
996
997 if (vc4_state->mm.allocated) {
998 unsigned long flags;
999
1000 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
1001 drm_mm_remove_node(&vc4_state->mm);
1002 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
1003
1004 }
1005
1006 drm_atomic_helper_crtc_destroy_state(crtc, state);
1007 }
1008
1009 static void
1010 vc4_crtc_reset(struct drm_crtc *crtc)
1011 {
1012 if (crtc->state)
1013 vc4_crtc_destroy_state(crtc, crtc->state);
1014
1015 crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
1016 if (crtc->state)
1017 crtc->state->crtc = crtc;
1018 }
1019
1020 static const struct drm_crtc_funcs vc4_crtc_funcs = {
1021 .set_config = drm_atomic_helper_set_config,
1022 .destroy = vc4_crtc_destroy,
1023 .page_flip = vc4_page_flip,
1024 .set_property = NULL,
1025 .cursor_set = NULL,
1026 .cursor_move = NULL,
1027 .reset = vc4_crtc_reset,
1028 .atomic_duplicate_state = vc4_crtc_duplicate_state,
1029 .atomic_destroy_state = vc4_crtc_destroy_state,
1030 .gamma_set = drm_atomic_helper_legacy_gamma_set,
1031 .enable_vblank = vc4_enable_vblank,
1032 .disable_vblank = vc4_disable_vblank,
1033 };
1034
1035 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
1036 .mode_set_nofb = vc4_crtc_mode_set_nofb,
1037 .mode_valid = vc4_crtc_mode_valid,
1038 .atomic_check = vc4_crtc_atomic_check,
1039 .atomic_flush = vc4_crtc_atomic_flush,
1040 .atomic_enable = vc4_crtc_atomic_enable,
1041 .atomic_disable = vc4_crtc_atomic_disable,
1042 };
1043
1044 static const struct vc4_crtc_data pv0_data = {
1045 .hvs_channel = 0,
1046 .debugfs_name = "crtc0_regs",
1047 .encoder_types = {
1048 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
1049 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
1050 },
1051 };
1052
1053 static const struct vc4_crtc_data pv1_data = {
1054 .hvs_channel = 2,
1055 .debugfs_name = "crtc1_regs",
1056 .encoder_types = {
1057 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
1058 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
1059 },
1060 };
1061
1062 static const struct vc4_crtc_data pv2_data = {
1063 .hvs_channel = 1,
1064 .debugfs_name = "crtc2_regs",
1065 .encoder_types = {
1066 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
1067 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1068 },
1069 };
1070
1071 static const struct of_device_id vc4_crtc_dt_match[] = {
1072 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
1073 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
1074 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
1075 {}
1076 };
1077
1078 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1079 struct drm_crtc *crtc)
1080 {
1081 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1082 const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
1083 const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
1084 struct drm_encoder *encoder;
1085
1086 drm_for_each_encoder(encoder, drm) {
1087 struct vc4_encoder *vc4_encoder;
1088 int i;
1089
1090
1091 if (crtc_data->hvs_channel == 2 &&
1092 encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL) {
1093 encoder->possible_crtcs |= drm_crtc_mask(crtc);
1094 continue;
1095 }
1096
1097 vc4_encoder = to_vc4_encoder(encoder);
1098 for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
1099 if (vc4_encoder->type == encoder_types[i]) {
1100 vc4_encoder->clock_select = i;
1101 encoder->possible_crtcs |= drm_crtc_mask(crtc);
1102 break;
1103 }
1104 }
1105 }
1106 }
1107
1108 static void
1109 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
1110 {
1111 struct drm_device *drm = vc4_crtc->base.dev;
1112 struct vc4_dev *vc4 = to_vc4_dev(drm);
1113 u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
1114
1115
1116
1117
1118 u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
1119 u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
1120
1121 vc4_crtc->cob_size = top - base + 4;
1122 }
1123
1124 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1125 {
1126 struct platform_device *pdev = to_platform_device(dev);
1127 struct drm_device *drm = dev_get_drvdata(master);
1128 struct vc4_crtc *vc4_crtc;
1129 struct drm_crtc *crtc;
1130 struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
1131 const struct of_device_id *match;
1132 int ret, i;
1133
1134 vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1135 if (!vc4_crtc)
1136 return -ENOMEM;
1137 crtc = &vc4_crtc->base;
1138
1139 match = of_match_device(vc4_crtc_dt_match, dev);
1140 if (!match)
1141 return -ENODEV;
1142 vc4_crtc->data = match->data;
1143 vc4_crtc->pdev = pdev;
1144
1145 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1146 if (IS_ERR(vc4_crtc->regs))
1147 return PTR_ERR(vc4_crtc->regs);
1148
1149 vc4_crtc->regset.base = vc4_crtc->regs;
1150 vc4_crtc->regset.regs = crtc_regs;
1151 vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1152
1153
1154
1155
1156
1157
1158
1159 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1160 if (IS_ERR(primary_plane)) {
1161 dev_err(dev, "failed to construct primary plane\n");
1162 ret = PTR_ERR(primary_plane);
1163 goto err;
1164 }
1165
1166 drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1167 &vc4_crtc_funcs, NULL);
1168 drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
1169 vc4_crtc->channel = vc4_crtc->data->hvs_channel;
1170 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1171 drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1172
1173
1174
1175
1176 drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187 for (i = 0; i < 8; i++) {
1188 struct drm_plane *plane =
1189 vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
1190
1191 if (IS_ERR(plane))
1192 continue;
1193
1194 plane->possible_crtcs = drm_crtc_mask(crtc);
1195 }
1196
1197
1198
1199
1200
1201 cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
1202 if (!IS_ERR(cursor_plane)) {
1203 cursor_plane->possible_crtcs = drm_crtc_mask(crtc);
1204 crtc->cursor = cursor_plane;
1205 }
1206
1207 vc4_crtc_get_cob_allocation(vc4_crtc);
1208
1209 CRTC_WRITE(PV_INTEN, 0);
1210 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1211 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1212 vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
1213 if (ret)
1214 goto err_destroy_planes;
1215
1216 vc4_set_crtc_possible_masks(drm, crtc);
1217
1218 for (i = 0; i < crtc->gamma_size; i++) {
1219 vc4_crtc->lut_r[i] = i;
1220 vc4_crtc->lut_g[i] = i;
1221 vc4_crtc->lut_b[i] = i;
1222 }
1223
1224 platform_set_drvdata(pdev, vc4_crtc);
1225
1226 vc4_debugfs_add_regset32(drm, vc4_crtc->data->debugfs_name,
1227 &vc4_crtc->regset);
1228
1229 return 0;
1230
1231 err_destroy_planes:
1232 list_for_each_entry_safe(destroy_plane, temp,
1233 &drm->mode_config.plane_list, head) {
1234 if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
1235 destroy_plane->funcs->destroy(destroy_plane);
1236 }
1237 err:
1238 return ret;
1239 }
1240
1241 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1242 void *data)
1243 {
1244 struct platform_device *pdev = to_platform_device(dev);
1245 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1246
1247 vc4_crtc_destroy(&vc4_crtc->base);
1248
1249 CRTC_WRITE(PV_INTEN, 0);
1250
1251 platform_set_drvdata(pdev, NULL);
1252 }
1253
1254 static const struct component_ops vc4_crtc_ops = {
1255 .bind = vc4_crtc_bind,
1256 .unbind = vc4_crtc_unbind,
1257 };
1258
1259 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1260 {
1261 return component_add(&pdev->dev, &vc4_crtc_ops);
1262 }
1263
1264 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1265 {
1266 component_del(&pdev->dev, &vc4_crtc_ops);
1267 return 0;
1268 }
1269
1270 struct platform_driver vc4_crtc_driver = {
1271 .probe = vc4_crtc_dev_probe,
1272 .remove = vc4_crtc_dev_remove,
1273 .driver = {
1274 .name = "vc4_crtc",
1275 .of_match_table = vc4_crtc_dt_match,
1276 },
1277 };