root/drivers/gpu/drm/vc4/vc4_crtc.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. to_vc4_crtc_state
  2. vc4_crtc_get_scanoutpos
  3. vc4_crtc_destroy
  4. vc4_crtc_lut_load
  5. vc4_crtc_update_gamma_lut
  6. vc4_get_fifo_full_level
  7. vc4_get_crtc_encoder
  8. vc4_crtc_config_pv
  9. vc4_crtc_mode_set_nofb
  10. require_hvs_enabled
  11. vc4_crtc_atomic_disable
  12. vc4_crtc_txp_armed
  13. vc4_crtc_update_dlist
  14. vc4_crtc_atomic_enable
  15. vc4_crtc_mode_valid
  16. vc4_crtc_get_margins
  17. vc4_crtc_atomic_check
  18. vc4_crtc_atomic_flush
  19. vc4_enable_vblank
  20. vc4_disable_vblank
  21. vc4_crtc_handle_page_flip
  22. vc4_crtc_handle_vblank
  23. vc4_crtc_irq_handler
  24. vc4_async_page_flip_complete
  25. vc4_async_page_flip
  26. vc4_page_flip
  27. vc4_crtc_duplicate_state
  28. vc4_crtc_destroy_state
  29. vc4_crtc_reset
  30. vc4_set_crtc_possible_masks
  31. vc4_crtc_get_cob_allocation
  32. vc4_crtc_bind
  33. vc4_crtc_unbind
  34. vc4_crtc_dev_probe
  35. vc4_crtc_dev_remove

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * Copyright (C) 2015 Broadcom
   4  */
   5 
   6 /**
   7  * DOC: VC4 CRTC module
   8  *
   9  * In VC4, the Pixel Valve is what most closely corresponds to the
  10  * DRM's concept of a CRTC.  The PV generates video timings from the
  11  * encoder's clock plus its configuration.  It pulls scaled pixels from
  12  * the HVS at that timing, and feeds it to the encoder.
  13  *
  14  * However, the DRM CRTC also collects the configuration of all the
  15  * DRM planes attached to it.  As a result, the CRTC is also
  16  * responsible for writing the display list for the HVS channel that
  17  * the CRTC will use.
  18  *
  19  * The 2835 has 3 different pixel valves.  pv0 in the audio power
  20  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
  21  * image domain can feed either HDMI or the SDTV controller.  The
  22  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
  23  * SDTV, etc.) according to which output type is chosen in the mux.
  24  *
  25  * For power management, the pixel valve's registers are all clocked
  26  * by the AXI clock, while the timings and FIFOs make use of the
  27  * output-specific clock.  Since the encoders also directly consume
  28  * the CPRMAN clocks, and know what timings they need, they are the
  29  * ones that set the clock.
  30  */
  31 
  32 #include <linux/clk.h>
  33 #include <linux/component.h>
  34 #include <linux/of_device.h>
  35 
  36 #include <drm/drm_atomic.h>
  37 #include <drm/drm_atomic_helper.h>
  38 #include <drm/drm_atomic_uapi.h>
  39 #include <drm/drm_fb_cma_helper.h>
  40 #include <drm/drm_print.h>
  41 #include <drm/drm_probe_helper.h>
  42 #include <drm/drm_vblank.h>
  43 
  44 #include "vc4_drv.h"
  45 #include "vc4_regs.h"
  46 
  47 struct vc4_crtc_state {
  48         struct drm_crtc_state base;
  49         /* Dlist area for this CRTC configuration. */
  50         struct drm_mm_node mm;
  51         bool feed_txp;
  52         bool txp_armed;
  53 
  54         struct {
  55                 unsigned int left;
  56                 unsigned int right;
  57                 unsigned int top;
  58                 unsigned int bottom;
  59         } margins;
  60 };
  61 
  62 static inline struct vc4_crtc_state *
  63 to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
  64 {
  65         return (struct vc4_crtc_state *)crtc_state;
  66 }
  67 
  68 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
  69 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
  70 
  71 static const struct debugfs_reg32 crtc_regs[] = {
  72         VC4_REG32(PV_CONTROL),
  73         VC4_REG32(PV_V_CONTROL),
  74         VC4_REG32(PV_VSYNCD_EVEN),
  75         VC4_REG32(PV_HORZA),
  76         VC4_REG32(PV_HORZB),
  77         VC4_REG32(PV_VERTA),
  78         VC4_REG32(PV_VERTB),
  79         VC4_REG32(PV_VERTA_EVEN),
  80         VC4_REG32(PV_VERTB_EVEN),
  81         VC4_REG32(PV_INTEN),
  82         VC4_REG32(PV_INTSTAT),
  83         VC4_REG32(PV_STAT),
  84         VC4_REG32(PV_HACT_ACT),
  85 };
  86 
  87 bool vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
  88                              bool in_vblank_irq, int *vpos, int *hpos,
  89                              ktime_t *stime, ktime_t *etime,
  90                              const struct drm_display_mode *mode)
  91 {
  92         struct vc4_dev *vc4 = to_vc4_dev(dev);
  93         struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
  94         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  95         u32 val;
  96         int fifo_lines;
  97         int vblank_lines;
  98         bool ret = false;
  99 
 100         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
 101 
 102         /* Get optional system timestamp before query. */
 103         if (stime)
 104                 *stime = ktime_get();
 105 
 106         /*
 107          * Read vertical scanline which is currently composed for our
 108          * pixelvalve by the HVS, and also the scaler status.
 109          */
 110         val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
 111 
 112         /* Get optional system timestamp after query. */
 113         if (etime)
 114                 *etime = ktime_get();
 115 
 116         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
 117 
 118         /* Vertical position of hvs composed scanline. */
 119         *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
 120         *hpos = 0;
 121 
 122         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
 123                 *vpos /= 2;
 124 
 125                 /* Use hpos to correct for field offset in interlaced mode. */
 126                 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
 127                         *hpos += mode->crtc_htotal / 2;
 128         }
 129 
 130         /* This is the offset we need for translating hvs -> pv scanout pos. */
 131         fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
 132 
 133         if (fifo_lines > 0)
 134                 ret = true;
 135 
 136         /* HVS more than fifo_lines into frame for compositing? */
 137         if (*vpos > fifo_lines) {
 138                 /*
 139                  * We are in active scanout and can get some meaningful results
 140                  * from HVS. The actual PV scanout can not trail behind more
 141                  * than fifo_lines as that is the fifo's capacity. Assume that
 142                  * in active scanout the HVS and PV work in lockstep wrt. HVS
 143                  * refilling the fifo and PV consuming from the fifo, ie.
 144                  * whenever the PV consumes and frees up a scanline in the
 145                  * fifo, the HVS will immediately refill it, therefore
 146                  * incrementing vpos. Therefore we choose HVS read position -
 147                  * fifo size in scanlines as a estimate of the real scanout
 148                  * position of the PV.
 149                  */
 150                 *vpos -= fifo_lines + 1;
 151 
 152                 return ret;
 153         }
 154 
 155         /*
 156          * Less: This happens when we are in vblank and the HVS, after getting
 157          * the VSTART restart signal from the PV, just started refilling its
 158          * fifo with new lines from the top-most lines of the new framebuffers.
 159          * The PV does not scan out in vblank, so does not remove lines from
 160          * the fifo, so the fifo will be full quickly and the HVS has to pause.
 161          * We can't get meaningful readings wrt. scanline position of the PV
 162          * and need to make things up in a approximative but consistent way.
 163          */
 164         vblank_lines = mode->vtotal - mode->vdisplay;
 165 
 166         if (in_vblank_irq) {
 167                 /*
 168                  * Assume the irq handler got called close to first
 169                  * line of vblank, so PV has about a full vblank
 170                  * scanlines to go, and as a base timestamp use the
 171                  * one taken at entry into vblank irq handler, so it
 172                  * is not affected by random delays due to lock
 173                  * contention on event_lock or vblank_time lock in
 174                  * the core.
 175                  */
 176                 *vpos = -vblank_lines;
 177 
 178                 if (stime)
 179                         *stime = vc4_crtc->t_vblank;
 180                 if (etime)
 181                         *etime = vc4_crtc->t_vblank;
 182 
 183                 /*
 184                  * If the HVS fifo is not yet full then we know for certain
 185                  * we are at the very beginning of vblank, as the hvs just
 186                  * started refilling, and the stime and etime timestamps
 187                  * truly correspond to start of vblank.
 188                  *
 189                  * Unfortunately there's no way to report this to upper levels
 190                  * and make it more useful.
 191                  */
 192         } else {
 193                 /*
 194                  * No clue where we are inside vblank. Return a vpos of zero,
 195                  * which will cause calling code to just return the etime
 196                  * timestamp uncorrected. At least this is no worse than the
 197                  * standard fallback.
 198                  */
 199                 *vpos = 0;
 200         }
 201 
 202         return ret;
 203 }
 204 
 205 static void vc4_crtc_destroy(struct drm_crtc *crtc)
 206 {
 207         drm_crtc_cleanup(crtc);
 208 }
 209 
 210 static void
 211 vc4_crtc_lut_load(struct drm_crtc *crtc)
 212 {
 213         struct drm_device *dev = crtc->dev;
 214         struct vc4_dev *vc4 = to_vc4_dev(dev);
 215         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 216         u32 i;
 217 
 218         /* The LUT memory is laid out with each HVS channel in order,
 219          * each of which takes 256 writes for R, 256 for G, then 256
 220          * for B.
 221          */
 222         HVS_WRITE(SCALER_GAMADDR,
 223                   SCALER_GAMADDR_AUTOINC |
 224                   (vc4_crtc->channel * 3 * crtc->gamma_size));
 225 
 226         for (i = 0; i < crtc->gamma_size; i++)
 227                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
 228         for (i = 0; i < crtc->gamma_size; i++)
 229                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
 230         for (i = 0; i < crtc->gamma_size; i++)
 231                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
 232 }
 233 
 234 static void
 235 vc4_crtc_update_gamma_lut(struct drm_crtc *crtc)
 236 {
 237         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 238         struct drm_color_lut *lut = crtc->state->gamma_lut->data;
 239         u32 length = drm_color_lut_size(crtc->state->gamma_lut);
 240         u32 i;
 241 
 242         for (i = 0; i < length; i++) {
 243                 vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8);
 244                 vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8);
 245                 vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8);
 246         }
 247 
 248         vc4_crtc_lut_load(crtc);
 249 }
 250 
 251 static u32 vc4_get_fifo_full_level(u32 format)
 252 {
 253         static const u32 fifo_len_bytes = 64;
 254         static const u32 hvs_latency_pix = 6;
 255 
 256         switch (format) {
 257         case PV_CONTROL_FORMAT_DSIV_16:
 258         case PV_CONTROL_FORMAT_DSIC_16:
 259                 return fifo_len_bytes - 2 * hvs_latency_pix;
 260         case PV_CONTROL_FORMAT_DSIV_18:
 261                 return fifo_len_bytes - 14;
 262         case PV_CONTROL_FORMAT_24:
 263         case PV_CONTROL_FORMAT_DSIV_24:
 264         default:
 265                 return fifo_len_bytes - 3 * hvs_latency_pix;
 266         }
 267 }
 268 
 269 /*
 270  * Returns the encoder attached to the CRTC.
 271  *
 272  * VC4 can only scan out to one encoder at a time, while the DRM core
 273  * allows drivers to push pixels to more than one encoder from the
 274  * same CRTC.
 275  */
 276 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
 277 {
 278         struct drm_connector *connector;
 279         struct drm_connector_list_iter conn_iter;
 280 
 281         drm_connector_list_iter_begin(crtc->dev, &conn_iter);
 282         drm_for_each_connector_iter(connector, &conn_iter) {
 283                 if (connector->state->crtc == crtc) {
 284                         drm_connector_list_iter_end(&conn_iter);
 285                         return connector->encoder;
 286                 }
 287         }
 288         drm_connector_list_iter_end(&conn_iter);
 289 
 290         return NULL;
 291 }
 292 
 293 static void vc4_crtc_config_pv(struct drm_crtc *crtc)
 294 {
 295         struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
 296         struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
 297         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 298         struct drm_crtc_state *state = crtc->state;
 299         struct drm_display_mode *mode = &state->adjusted_mode;
 300         bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
 301         u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
 302         bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
 303                        vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
 304         u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
 305 
 306         /* Reset the PV fifo. */
 307         CRTC_WRITE(PV_CONTROL, 0);
 308         CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
 309         CRTC_WRITE(PV_CONTROL, 0);
 310 
 311         CRTC_WRITE(PV_HORZA,
 312                    VC4_SET_FIELD((mode->htotal -
 313                                   mode->hsync_end) * pixel_rep,
 314                                  PV_HORZA_HBP) |
 315                    VC4_SET_FIELD((mode->hsync_end -
 316                                   mode->hsync_start) * pixel_rep,
 317                                  PV_HORZA_HSYNC));
 318         CRTC_WRITE(PV_HORZB,
 319                    VC4_SET_FIELD((mode->hsync_start -
 320                                   mode->hdisplay) * pixel_rep,
 321                                  PV_HORZB_HFP) |
 322                    VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
 323 
 324         CRTC_WRITE(PV_VERTA,
 325                    VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
 326                                  PV_VERTA_VBP) |
 327                    VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
 328                                  PV_VERTA_VSYNC));
 329         CRTC_WRITE(PV_VERTB,
 330                    VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
 331                                  PV_VERTB_VFP) |
 332                    VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
 333 
 334         if (interlace) {
 335                 CRTC_WRITE(PV_VERTA_EVEN,
 336                            VC4_SET_FIELD(mode->crtc_vtotal -
 337                                          mode->crtc_vsync_end - 1,
 338                                          PV_VERTA_VBP) |
 339                            VC4_SET_FIELD(mode->crtc_vsync_end -
 340                                          mode->crtc_vsync_start,
 341                                          PV_VERTA_VSYNC));
 342                 CRTC_WRITE(PV_VERTB_EVEN,
 343                            VC4_SET_FIELD(mode->crtc_vsync_start -
 344                                          mode->crtc_vdisplay,
 345                                          PV_VERTB_VFP) |
 346                            VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
 347 
 348                 /* We set up first field even mode for HDMI.  VEC's
 349                  * NTSC mode would want first field odd instead, once
 350                  * we support it (to do so, set ODD_FIRST and put the
 351                  * delay in VSYNCD_EVEN instead).
 352                  */
 353                 CRTC_WRITE(PV_V_CONTROL,
 354                            PV_VCONTROL_CONTINUOUS |
 355                            (is_dsi ? PV_VCONTROL_DSI : 0) |
 356                            PV_VCONTROL_INTERLACE |
 357                            VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
 358                                          PV_VCONTROL_ODD_DELAY));
 359                 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
 360         } else {
 361                 CRTC_WRITE(PV_V_CONTROL,
 362                            PV_VCONTROL_CONTINUOUS |
 363                            (is_dsi ? PV_VCONTROL_DSI : 0));
 364         }
 365 
 366         CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
 367 
 368         CRTC_WRITE(PV_CONTROL,
 369                    VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
 370                    VC4_SET_FIELD(vc4_get_fifo_full_level(format),
 371                                  PV_CONTROL_FIFO_LEVEL) |
 372                    VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
 373                    PV_CONTROL_CLR_AT_START |
 374                    PV_CONTROL_TRIGGER_UNDERFLOW |
 375                    PV_CONTROL_WAIT_HSTART |
 376                    VC4_SET_FIELD(vc4_encoder->clock_select,
 377                                  PV_CONTROL_CLK_SELECT) |
 378                    PV_CONTROL_FIFO_CLR |
 379                    PV_CONTROL_EN);
 380 }
 381 
 382 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
 383 {
 384         struct drm_device *dev = crtc->dev;
 385         struct vc4_dev *vc4 = to_vc4_dev(dev);
 386         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 387         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
 388         struct drm_display_mode *mode = &crtc->state->adjusted_mode;
 389         bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
 390         bool debug_dump_regs = false;
 391 
 392         if (debug_dump_regs) {
 393                 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
 394                 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
 395                          drm_crtc_index(crtc));
 396                 drm_print_regset32(&p, &vc4_crtc->regset);
 397         }
 398 
 399         if (vc4_crtc->channel == 2) {
 400                 u32 dispctrl;
 401                 u32 dsp3_mux;
 402 
 403                 /*
 404                  * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to
 405                  * FIFO X'.
 406                  * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'.
 407                  *
 408                  * DSP3 is connected to FIFO2 unless the transposer is
 409                  * enabled. In this case, FIFO 2 is directly accessed by the
 410                  * TXP IP, and we need to disable the FIFO2 -> pixelvalve1
 411                  * route.
 412                  */
 413                 if (vc4_state->feed_txp)
 414                         dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX);
 415                 else
 416                         dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
 417 
 418                 dispctrl = HVS_READ(SCALER_DISPCTRL) &
 419                            ~SCALER_DISPCTRL_DSP3_MUX_MASK;
 420                 HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux);
 421         }
 422 
 423         if (!vc4_state->feed_txp)
 424                 vc4_crtc_config_pv(crtc);
 425 
 426         HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
 427                   SCALER_DISPBKGND_AUTOHS |
 428                   SCALER_DISPBKGND_GAMMA |
 429                   (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
 430 
 431         /* Reload the LUT, since the SRAMs would have been disabled if
 432          * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
 433          */
 434         vc4_crtc_lut_load(crtc);
 435 
 436         if (debug_dump_regs) {
 437                 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
 438                 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
 439                          drm_crtc_index(crtc));
 440                 drm_print_regset32(&p, &vc4_crtc->regset);
 441         }
 442 }
 443 
 444 static void require_hvs_enabled(struct drm_device *dev)
 445 {
 446         struct vc4_dev *vc4 = to_vc4_dev(dev);
 447 
 448         WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
 449                      SCALER_DISPCTRL_ENABLE);
 450 }
 451 
 452 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
 453                                     struct drm_crtc_state *old_state)
 454 {
 455         struct drm_device *dev = crtc->dev;
 456         struct vc4_dev *vc4 = to_vc4_dev(dev);
 457         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 458         u32 chan = vc4_crtc->channel;
 459         int ret;
 460         require_hvs_enabled(dev);
 461 
 462         /* Disable vblank irq handling before crtc is disabled. */
 463         drm_crtc_vblank_off(crtc);
 464 
 465         CRTC_WRITE(PV_V_CONTROL,
 466                    CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
 467         ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
 468         WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
 469 
 470         if (HVS_READ(SCALER_DISPCTRLX(chan)) &
 471             SCALER_DISPCTRLX_ENABLE) {
 472                 HVS_WRITE(SCALER_DISPCTRLX(chan),
 473                           SCALER_DISPCTRLX_RESET);
 474 
 475                 /* While the docs say that reset is self-clearing, it
 476                  * seems it doesn't actually.
 477                  */
 478                 HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
 479         }
 480 
 481         /* Once we leave, the scaler should be disabled and its fifo empty. */
 482 
 483         WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
 484 
 485         WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
 486                                    SCALER_DISPSTATX_MODE) !=
 487                      SCALER_DISPSTATX_MODE_DISABLED);
 488 
 489         WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
 490                       (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
 491                      SCALER_DISPSTATX_EMPTY);
 492 
 493         /*
 494          * Make sure we issue a vblank event after disabling the CRTC if
 495          * someone was waiting it.
 496          */
 497         if (crtc->state->event) {
 498                 unsigned long flags;
 499 
 500                 spin_lock_irqsave(&dev->event_lock, flags);
 501                 drm_crtc_send_vblank_event(crtc, crtc->state->event);
 502                 crtc->state->event = NULL;
 503                 spin_unlock_irqrestore(&dev->event_lock, flags);
 504         }
 505 }
 506 
 507 void vc4_crtc_txp_armed(struct drm_crtc_state *state)
 508 {
 509         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
 510 
 511         vc4_state->txp_armed = true;
 512 }
 513 
 514 static void vc4_crtc_update_dlist(struct drm_crtc *crtc)
 515 {
 516         struct drm_device *dev = crtc->dev;
 517         struct vc4_dev *vc4 = to_vc4_dev(dev);
 518         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 519         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
 520 
 521         if (crtc->state->event) {
 522                 unsigned long flags;
 523 
 524                 crtc->state->event->pipe = drm_crtc_index(crtc);
 525 
 526                 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
 527 
 528                 spin_lock_irqsave(&dev->event_lock, flags);
 529 
 530                 if (!vc4_state->feed_txp || vc4_state->txp_armed) {
 531                         vc4_crtc->event = crtc->state->event;
 532                         crtc->state->event = NULL;
 533                 }
 534 
 535                 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
 536                           vc4_state->mm.start);
 537 
 538                 spin_unlock_irqrestore(&dev->event_lock, flags);
 539         } else {
 540                 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
 541                           vc4_state->mm.start);
 542         }
 543 }
 544 
 545 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
 546                                    struct drm_crtc_state *old_state)
 547 {
 548         struct drm_device *dev = crtc->dev;
 549         struct vc4_dev *vc4 = to_vc4_dev(dev);
 550         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 551         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
 552         struct drm_display_mode *mode = &crtc->state->adjusted_mode;
 553 
 554         require_hvs_enabled(dev);
 555 
 556         /* Enable vblank irq handling before crtc is started otherwise
 557          * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
 558          */
 559         drm_crtc_vblank_on(crtc);
 560         vc4_crtc_update_dlist(crtc);
 561 
 562         /* Turn on the scaler, which will wait for vstart to start
 563          * compositing.
 564          * When feeding the transposer, we should operate in oneshot
 565          * mode.
 566          */
 567         HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
 568                   VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
 569                   VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
 570                   SCALER_DISPCTRLX_ENABLE |
 571                   (vc4_state->feed_txp ? SCALER_DISPCTRLX_ONESHOT : 0));
 572 
 573         /* When feeding the transposer block the pixelvalve is unneeded and
 574          * should not be enabled.
 575          */
 576         if (!vc4_state->feed_txp)
 577                 CRTC_WRITE(PV_V_CONTROL,
 578                            CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
 579 }
 580 
 581 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
 582                                                 const struct drm_display_mode *mode)
 583 {
 584         /* Do not allow doublescan modes from user space */
 585         if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
 586                 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
 587                               crtc->base.id);
 588                 return MODE_NO_DBLESCAN;
 589         }
 590 
 591         return MODE_OK;
 592 }
 593 
 594 void vc4_crtc_get_margins(struct drm_crtc_state *state,
 595                           unsigned int *left, unsigned int *right,
 596                           unsigned int *top, unsigned int *bottom)
 597 {
 598         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
 599         struct drm_connector_state *conn_state;
 600         struct drm_connector *conn;
 601         int i;
 602 
 603         *left = vc4_state->margins.left;
 604         *right = vc4_state->margins.right;
 605         *top = vc4_state->margins.top;
 606         *bottom = vc4_state->margins.bottom;
 607 
 608         /* We have to interate over all new connector states because
 609          * vc4_crtc_get_margins() might be called before
 610          * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
 611          * might be outdated.
 612          */
 613         for_each_new_connector_in_state(state->state, conn, conn_state, i) {
 614                 if (conn_state->crtc != state->crtc)
 615                         continue;
 616 
 617                 *left = conn_state->tv.margins.left;
 618                 *right = conn_state->tv.margins.right;
 619                 *top = conn_state->tv.margins.top;
 620                 *bottom = conn_state->tv.margins.bottom;
 621                 break;
 622         }
 623 }
 624 
 625 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
 626                                  struct drm_crtc_state *state)
 627 {
 628         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
 629         struct drm_device *dev = crtc->dev;
 630         struct vc4_dev *vc4 = to_vc4_dev(dev);
 631         struct drm_plane *plane;
 632         unsigned long flags;
 633         const struct drm_plane_state *plane_state;
 634         struct drm_connector *conn;
 635         struct drm_connector_state *conn_state;
 636         u32 dlist_count = 0;
 637         int ret, i;
 638 
 639         /* The pixelvalve can only feed one encoder (and encoders are
 640          * 1:1 with connectors.)
 641          */
 642         if (hweight32(state->connector_mask) > 1)
 643                 return -EINVAL;
 644 
 645         drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
 646                 dlist_count += vc4_plane_dlist_size(plane_state);
 647 
 648         dlist_count++; /* Account for SCALER_CTL0_END. */
 649 
 650         spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
 651         ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
 652                                  dlist_count);
 653         spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
 654         if (ret)
 655                 return ret;
 656 
 657         for_each_new_connector_in_state(state->state, conn, conn_state, i) {
 658                 if (conn_state->crtc != crtc)
 659                         continue;
 660 
 661                 /* The writeback connector is implemented using the transposer
 662                  * block which is directly taking its data from the HVS FIFO.
 663                  */
 664                 if (conn->connector_type == DRM_MODE_CONNECTOR_WRITEBACK) {
 665                         state->no_vblank = true;
 666                         vc4_state->feed_txp = true;
 667                 } else {
 668                         state->no_vblank = false;
 669                         vc4_state->feed_txp = false;
 670                 }
 671 
 672                 vc4_state->margins.left = conn_state->tv.margins.left;
 673                 vc4_state->margins.right = conn_state->tv.margins.right;
 674                 vc4_state->margins.top = conn_state->tv.margins.top;
 675                 vc4_state->margins.bottom = conn_state->tv.margins.bottom;
 676                 break;
 677         }
 678 
 679         return 0;
 680 }
 681 
 682 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
 683                                   struct drm_crtc_state *old_state)
 684 {
 685         struct drm_device *dev = crtc->dev;
 686         struct vc4_dev *vc4 = to_vc4_dev(dev);
 687         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 688         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
 689         struct drm_plane *plane;
 690         struct vc4_plane_state *vc4_plane_state;
 691         bool debug_dump_regs = false;
 692         bool enable_bg_fill = false;
 693         u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
 694         u32 __iomem *dlist_next = dlist_start;
 695 
 696         if (debug_dump_regs) {
 697                 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
 698                 vc4_hvs_dump_state(dev);
 699         }
 700 
 701         /* Copy all the active planes' dlist contents to the hardware dlist. */
 702         drm_atomic_crtc_for_each_plane(plane, crtc) {
 703                 /* Is this the first active plane? */
 704                 if (dlist_next == dlist_start) {
 705                         /* We need to enable background fill when a plane
 706                          * could be alpha blending from the background, i.e.
 707                          * where no other plane is underneath. It suffices to
 708                          * consider the first active plane here since we set
 709                          * needs_bg_fill such that either the first plane
 710                          * already needs it or all planes on top blend from
 711                          * the first or a lower plane.
 712                          */
 713                         vc4_plane_state = to_vc4_plane_state(plane->state);
 714                         enable_bg_fill = vc4_plane_state->needs_bg_fill;
 715                 }
 716 
 717                 dlist_next += vc4_plane_write_dlist(plane, dlist_next);
 718         }
 719 
 720         writel(SCALER_CTL0_END, dlist_next);
 721         dlist_next++;
 722 
 723         WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
 724 
 725         if (enable_bg_fill)
 726                 /* This sets a black background color fill, as is the case
 727                  * with other DRM drivers.
 728                  */
 729                 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
 730                           HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel)) |
 731                           SCALER_DISPBKGND_FILL);
 732 
 733         /* Only update DISPLIST if the CRTC was already running and is not
 734          * being disabled.
 735          * vc4_crtc_enable() takes care of updating the dlist just after
 736          * re-enabling VBLANK interrupts and before enabling the engine.
 737          * If the CRTC is being disabled, there's no point in updating this
 738          * information.
 739          */
 740         if (crtc->state->active && old_state->active)
 741                 vc4_crtc_update_dlist(crtc);
 742 
 743         if (crtc->state->color_mgmt_changed) {
 744                 u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel));
 745 
 746                 if (crtc->state->gamma_lut) {
 747                         vc4_crtc_update_gamma_lut(crtc);
 748                         dispbkgndx |= SCALER_DISPBKGND_GAMMA;
 749                 } else {
 750                         /* Unsetting DISPBKGND_GAMMA skips the gamma lut step
 751                          * in hardware, which is the same as a linear lut that
 752                          * DRM expects us to use in absence of a user lut.
 753                          */
 754                         dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
 755                 }
 756                 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), dispbkgndx);
 757         }
 758 
 759         if (debug_dump_regs) {
 760                 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
 761                 vc4_hvs_dump_state(dev);
 762         }
 763 }
 764 
 765 static int vc4_enable_vblank(struct drm_crtc *crtc)
 766 {
 767         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 768 
 769         CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
 770 
 771         return 0;
 772 }
 773 
 774 static void vc4_disable_vblank(struct drm_crtc *crtc)
 775 {
 776         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 777 
 778         CRTC_WRITE(PV_INTEN, 0);
 779 }
 780 
 781 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
 782 {
 783         struct drm_crtc *crtc = &vc4_crtc->base;
 784         struct drm_device *dev = crtc->dev;
 785         struct vc4_dev *vc4 = to_vc4_dev(dev);
 786         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
 787         u32 chan = vc4_crtc->channel;
 788         unsigned long flags;
 789 
 790         spin_lock_irqsave(&dev->event_lock, flags);
 791         if (vc4_crtc->event &&
 792             (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) ||
 793              vc4_state->feed_txp)) {
 794                 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
 795                 vc4_crtc->event = NULL;
 796                 drm_crtc_vblank_put(crtc);
 797 
 798                 /* Wait for the page flip to unmask the underrun to ensure that
 799                  * the display list was updated by the hardware. Before that
 800                  * happens, the HVS will be using the previous display list with
 801                  * the CRTC and encoder already reconfigured, leading to
 802                  * underruns. This can be seen when reconfiguring the CRTC.
 803                  */
 804                 vc4_hvs_unmask_underrun(dev, vc4_crtc->channel);
 805         }
 806         spin_unlock_irqrestore(&dev->event_lock, flags);
 807 }
 808 
 809 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
 810 {
 811         crtc->t_vblank = ktime_get();
 812         drm_crtc_handle_vblank(&crtc->base);
 813         vc4_crtc_handle_page_flip(crtc);
 814 }
 815 
 816 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
 817 {
 818         struct vc4_crtc *vc4_crtc = data;
 819         u32 stat = CRTC_READ(PV_INTSTAT);
 820         irqreturn_t ret = IRQ_NONE;
 821 
 822         if (stat & PV_INT_VFP_START) {
 823                 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
 824                 vc4_crtc_handle_vblank(vc4_crtc);
 825                 ret = IRQ_HANDLED;
 826         }
 827 
 828         return ret;
 829 }
 830 
 831 struct vc4_async_flip_state {
 832         struct drm_crtc *crtc;
 833         struct drm_framebuffer *fb;
 834         struct drm_framebuffer *old_fb;
 835         struct drm_pending_vblank_event *event;
 836 
 837         struct vc4_seqno_cb cb;
 838 };
 839 
 840 /* Called when the V3D execution for the BO being flipped to is done, so that
 841  * we can actually update the plane's address to point to it.
 842  */
 843 static void
 844 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
 845 {
 846         struct vc4_async_flip_state *flip_state =
 847                 container_of(cb, struct vc4_async_flip_state, cb);
 848         struct drm_crtc *crtc = flip_state->crtc;
 849         struct drm_device *dev = crtc->dev;
 850         struct vc4_dev *vc4 = to_vc4_dev(dev);
 851         struct drm_plane *plane = crtc->primary;
 852 
 853         vc4_plane_async_set_fb(plane, flip_state->fb);
 854         if (flip_state->event) {
 855                 unsigned long flags;
 856 
 857                 spin_lock_irqsave(&dev->event_lock, flags);
 858                 drm_crtc_send_vblank_event(crtc, flip_state->event);
 859                 spin_unlock_irqrestore(&dev->event_lock, flags);
 860         }
 861 
 862         drm_crtc_vblank_put(crtc);
 863         drm_framebuffer_put(flip_state->fb);
 864 
 865         /* Decrement the BO usecnt in order to keep the inc/dec calls balanced
 866          * when the planes are updated through the async update path.
 867          * FIXME: we should move to generic async-page-flip when it's
 868          * available, so that we can get rid of this hand-made cleanup_fb()
 869          * logic.
 870          */
 871         if (flip_state->old_fb) {
 872                 struct drm_gem_cma_object *cma_bo;
 873                 struct vc4_bo *bo;
 874 
 875                 cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
 876                 bo = to_vc4_bo(&cma_bo->base);
 877                 vc4_bo_dec_usecnt(bo);
 878                 drm_framebuffer_put(flip_state->old_fb);
 879         }
 880 
 881         kfree(flip_state);
 882 
 883         up(&vc4->async_modeset);
 884 }
 885 
 886 /* Implements async (non-vblank-synced) page flips.
 887  *
 888  * The page flip ioctl needs to return immediately, so we grab the
 889  * modeset semaphore on the pipe, and queue the address update for
 890  * when V3D is done with the BO being flipped to.
 891  */
 892 static int vc4_async_page_flip(struct drm_crtc *crtc,
 893                                struct drm_framebuffer *fb,
 894                                struct drm_pending_vblank_event *event,
 895                                uint32_t flags)
 896 {
 897         struct drm_device *dev = crtc->dev;
 898         struct vc4_dev *vc4 = to_vc4_dev(dev);
 899         struct drm_plane *plane = crtc->primary;
 900         int ret = 0;
 901         struct vc4_async_flip_state *flip_state;
 902         struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
 903         struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
 904 
 905         /* Increment the BO usecnt here, so that we never end up with an
 906          * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
 907          * plane is later updated through the non-async path.
 908          * FIXME: we should move to generic async-page-flip when it's
 909          * available, so that we can get rid of this hand-made prepare_fb()
 910          * logic.
 911          */
 912         ret = vc4_bo_inc_usecnt(bo);
 913         if (ret)
 914                 return ret;
 915 
 916         flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
 917         if (!flip_state) {
 918                 vc4_bo_dec_usecnt(bo);
 919                 return -ENOMEM;
 920         }
 921 
 922         drm_framebuffer_get(fb);
 923         flip_state->fb = fb;
 924         flip_state->crtc = crtc;
 925         flip_state->event = event;
 926 
 927         /* Make sure all other async modesetes have landed. */
 928         ret = down_interruptible(&vc4->async_modeset);
 929         if (ret) {
 930                 drm_framebuffer_put(fb);
 931                 vc4_bo_dec_usecnt(bo);
 932                 kfree(flip_state);
 933                 return ret;
 934         }
 935 
 936         /* Save the current FB before it's replaced by the new one in
 937          * drm_atomic_set_fb_for_plane(). We'll need the old FB in
 938          * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
 939          * it consistent.
 940          * FIXME: we should move to generic async-page-flip when it's
 941          * available, so that we can get rid of this hand-made cleanup_fb()
 942          * logic.
 943          */
 944         flip_state->old_fb = plane->state->fb;
 945         if (flip_state->old_fb)
 946                 drm_framebuffer_get(flip_state->old_fb);
 947 
 948         WARN_ON(drm_crtc_vblank_get(crtc) != 0);
 949 
 950         /* Immediately update the plane's legacy fb pointer, so that later
 951          * modeset prep sees the state that will be present when the semaphore
 952          * is released.
 953          */
 954         drm_atomic_set_fb_for_plane(plane->state, fb);
 955 
 956         vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
 957                            vc4_async_page_flip_complete);
 958 
 959         /* Driver takes ownership of state on successful async commit. */
 960         return 0;
 961 }
 962 
 963 static int vc4_page_flip(struct drm_crtc *crtc,
 964                          struct drm_framebuffer *fb,
 965                          struct drm_pending_vblank_event *event,
 966                          uint32_t flags,
 967                          struct drm_modeset_acquire_ctx *ctx)
 968 {
 969         if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
 970                 return vc4_async_page_flip(crtc, fb, event, flags);
 971         else
 972                 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
 973 }
 974 
 975 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
 976 {
 977         struct vc4_crtc_state *vc4_state, *old_vc4_state;
 978 
 979         vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
 980         if (!vc4_state)
 981                 return NULL;
 982 
 983         old_vc4_state = to_vc4_crtc_state(crtc->state);
 984         vc4_state->feed_txp = old_vc4_state->feed_txp;
 985         vc4_state->margins = old_vc4_state->margins;
 986 
 987         __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
 988         return &vc4_state->base;
 989 }
 990 
 991 static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
 992                                    struct drm_crtc_state *state)
 993 {
 994         struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
 995         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
 996 
 997         if (vc4_state->mm.allocated) {
 998                 unsigned long flags;
 999 
1000                 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
1001                 drm_mm_remove_node(&vc4_state->mm);
1002                 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
1003 
1004         }
1005 
1006         drm_atomic_helper_crtc_destroy_state(crtc, state);
1007 }
1008 
1009 static void
1010 vc4_crtc_reset(struct drm_crtc *crtc)
1011 {
1012         if (crtc->state)
1013                 vc4_crtc_destroy_state(crtc, crtc->state);
1014 
1015         crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
1016         if (crtc->state)
1017                 crtc->state->crtc = crtc;
1018 }
1019 
1020 static const struct drm_crtc_funcs vc4_crtc_funcs = {
1021         .set_config = drm_atomic_helper_set_config,
1022         .destroy = vc4_crtc_destroy,
1023         .page_flip = vc4_page_flip,
1024         .set_property = NULL,
1025         .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
1026         .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
1027         .reset = vc4_crtc_reset,
1028         .atomic_duplicate_state = vc4_crtc_duplicate_state,
1029         .atomic_destroy_state = vc4_crtc_destroy_state,
1030         .gamma_set = drm_atomic_helper_legacy_gamma_set,
1031         .enable_vblank = vc4_enable_vblank,
1032         .disable_vblank = vc4_disable_vblank,
1033 };
1034 
1035 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
1036         .mode_set_nofb = vc4_crtc_mode_set_nofb,
1037         .mode_valid = vc4_crtc_mode_valid,
1038         .atomic_check = vc4_crtc_atomic_check,
1039         .atomic_flush = vc4_crtc_atomic_flush,
1040         .atomic_enable = vc4_crtc_atomic_enable,
1041         .atomic_disable = vc4_crtc_atomic_disable,
1042 };
1043 
1044 static const struct vc4_crtc_data pv0_data = {
1045         .hvs_channel = 0,
1046         .debugfs_name = "crtc0_regs",
1047         .encoder_types = {
1048                 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
1049                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
1050         },
1051 };
1052 
1053 static const struct vc4_crtc_data pv1_data = {
1054         .hvs_channel = 2,
1055         .debugfs_name = "crtc1_regs",
1056         .encoder_types = {
1057                 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
1058                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
1059         },
1060 };
1061 
1062 static const struct vc4_crtc_data pv2_data = {
1063         .hvs_channel = 1,
1064         .debugfs_name = "crtc2_regs",
1065         .encoder_types = {
1066                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
1067                 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1068         },
1069 };
1070 
1071 static const struct of_device_id vc4_crtc_dt_match[] = {
1072         { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
1073         { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
1074         { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
1075         {}
1076 };
1077 
1078 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1079                                         struct drm_crtc *crtc)
1080 {
1081         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1082         const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
1083         const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
1084         struct drm_encoder *encoder;
1085 
1086         drm_for_each_encoder(encoder, drm) {
1087                 struct vc4_encoder *vc4_encoder;
1088                 int i;
1089 
1090                 /* HVS FIFO2 can feed the TXP IP. */
1091                 if (crtc_data->hvs_channel == 2 &&
1092                     encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL) {
1093                         encoder->possible_crtcs |= drm_crtc_mask(crtc);
1094                         continue;
1095                 }
1096 
1097                 vc4_encoder = to_vc4_encoder(encoder);
1098                 for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
1099                         if (vc4_encoder->type == encoder_types[i]) {
1100                                 vc4_encoder->clock_select = i;
1101                                 encoder->possible_crtcs |= drm_crtc_mask(crtc);
1102                                 break;
1103                         }
1104                 }
1105         }
1106 }
1107 
1108 static void
1109 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
1110 {
1111         struct drm_device *drm = vc4_crtc->base.dev;
1112         struct vc4_dev *vc4 = to_vc4_dev(drm);
1113         u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
1114         /* Top/base are supposed to be 4-pixel aligned, but the
1115          * Raspberry Pi firmware fills the low bits (which are
1116          * presumably ignored).
1117          */
1118         u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
1119         u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
1120 
1121         vc4_crtc->cob_size = top - base + 4;
1122 }
1123 
1124 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1125 {
1126         struct platform_device *pdev = to_platform_device(dev);
1127         struct drm_device *drm = dev_get_drvdata(master);
1128         struct vc4_crtc *vc4_crtc;
1129         struct drm_crtc *crtc;
1130         struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
1131         const struct of_device_id *match;
1132         int ret, i;
1133 
1134         vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1135         if (!vc4_crtc)
1136                 return -ENOMEM;
1137         crtc = &vc4_crtc->base;
1138 
1139         match = of_match_device(vc4_crtc_dt_match, dev);
1140         if (!match)
1141                 return -ENODEV;
1142         vc4_crtc->data = match->data;
1143         vc4_crtc->pdev = pdev;
1144 
1145         vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1146         if (IS_ERR(vc4_crtc->regs))
1147                 return PTR_ERR(vc4_crtc->regs);
1148 
1149         vc4_crtc->regset.base = vc4_crtc->regs;
1150         vc4_crtc->regset.regs = crtc_regs;
1151         vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1152 
1153         /* For now, we create just the primary and the legacy cursor
1154          * planes.  We should be able to stack more planes on easily,
1155          * but to do that we would need to compute the bandwidth
1156          * requirement of the plane configuration, and reject ones
1157          * that will take too much.
1158          */
1159         primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1160         if (IS_ERR(primary_plane)) {
1161                 dev_err(dev, "failed to construct primary plane\n");
1162                 ret = PTR_ERR(primary_plane);
1163                 goto err;
1164         }
1165 
1166         drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1167                                   &vc4_crtc_funcs, NULL);
1168         drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
1169         vc4_crtc->channel = vc4_crtc->data->hvs_channel;
1170         drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1171         drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1172 
1173         /* We support CTM, but only for one CRTC at a time. It's therefore
1174          * implemented as private driver state in vc4_kms, not here.
1175          */
1176         drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1177 
1178         /* Set up some arbitrary number of planes.  We're not limited
1179          * by a set number of physical registers, just the space in
1180          * the HVS (16k) and how small an plane can be (28 bytes).
1181          * However, each plane we set up takes up some memory, and
1182          * increases the cost of looping over planes, which atomic
1183          * modesetting does quite a bit.  As a result, we pick a
1184          * modest number of planes to expose, that should hopefully
1185          * still cover any sane usecase.
1186          */
1187         for (i = 0; i < 8; i++) {
1188                 struct drm_plane *plane =
1189                         vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
1190 
1191                 if (IS_ERR(plane))
1192                         continue;
1193 
1194                 plane->possible_crtcs = drm_crtc_mask(crtc);
1195         }
1196 
1197         /* Set up the legacy cursor after overlay initialization,
1198          * since we overlay planes on the CRTC in the order they were
1199          * initialized.
1200          */
1201         cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
1202         if (!IS_ERR(cursor_plane)) {
1203                 cursor_plane->possible_crtcs = drm_crtc_mask(crtc);
1204                 crtc->cursor = cursor_plane;
1205         }
1206 
1207         vc4_crtc_get_cob_allocation(vc4_crtc);
1208 
1209         CRTC_WRITE(PV_INTEN, 0);
1210         CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1211         ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1212                                vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
1213         if (ret)
1214                 goto err_destroy_planes;
1215 
1216         vc4_set_crtc_possible_masks(drm, crtc);
1217 
1218         for (i = 0; i < crtc->gamma_size; i++) {
1219                 vc4_crtc->lut_r[i] = i;
1220                 vc4_crtc->lut_g[i] = i;
1221                 vc4_crtc->lut_b[i] = i;
1222         }
1223 
1224         platform_set_drvdata(pdev, vc4_crtc);
1225 
1226         vc4_debugfs_add_regset32(drm, vc4_crtc->data->debugfs_name,
1227                                  &vc4_crtc->regset);
1228 
1229         return 0;
1230 
1231 err_destroy_planes:
1232         list_for_each_entry_safe(destroy_plane, temp,
1233                                  &drm->mode_config.plane_list, head) {
1234                 if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
1235                     destroy_plane->funcs->destroy(destroy_plane);
1236         }
1237 err:
1238         return ret;
1239 }
1240 
1241 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1242                             void *data)
1243 {
1244         struct platform_device *pdev = to_platform_device(dev);
1245         struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1246 
1247         vc4_crtc_destroy(&vc4_crtc->base);
1248 
1249         CRTC_WRITE(PV_INTEN, 0);
1250 
1251         platform_set_drvdata(pdev, NULL);
1252 }
1253 
1254 static const struct component_ops vc4_crtc_ops = {
1255         .bind   = vc4_crtc_bind,
1256         .unbind = vc4_crtc_unbind,
1257 };
1258 
1259 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1260 {
1261         return component_add(&pdev->dev, &vc4_crtc_ops);
1262 }
1263 
1264 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1265 {
1266         component_del(&pdev->dev, &vc4_crtc_ops);
1267         return 0;
1268 }
1269 
1270 struct platform_driver vc4_crtc_driver = {
1271         .probe = vc4_crtc_dev_probe,
1272         .remove = vc4_crtc_dev_remove,
1273         .driver = {
1274                 .name = "vc4_crtc",
1275                 .of_match_table = vc4_crtc_dt_match,
1276         },
1277 };

/* [<][>][^][v][top][bottom][index][help] */