root/arch/arm64/kernel/process.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. __cpu_do_idle
  2. __cpu_do_idle_irqprio
  3. cpu_do_idle
  4. arch_cpu_idle
  5. arch_cpu_idle_dead
  6. machine_shutdown
  7. machine_halt
  8. machine_power_off
  9. machine_restart
  10. print_pstate
  11. __show_regs
  12. show_regs
  13. tls_thread_flush
  14. flush_tagged_addr_state
  15. flush_thread
  16. release_thread
  17. arch_release_task_struct
  18. arch_dup_task_struct
  19. ret_from_fork
  20. tls_preserve_current_state
  21. tls_thread_switch
  22. uao_thread_switch
  23. ssbs_thread_switch
  24. entry_task_switch
  25. __switch_to
  26. get_wchan
  27. arch_align_stack
  28. arch_setup_new_exec
  29. set_tagged_addr_ctrl
  30. get_tagged_addr_ctrl
  31. tagged_addr_init
  32. arm64_preempt_schedule_irq

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * Based on arch/arm/kernel/process.c
   4  *
   5  * Original Copyright (C) 1995  Linus Torvalds
   6  * Copyright (C) 1996-2000 Russell King - Converted to ARM.
   7  * Copyright (C) 2012 ARM Ltd.
   8  */
   9 
  10 #include <stdarg.h>
  11 
  12 #include <linux/compat.h>
  13 #include <linux/efi.h>
  14 #include <linux/export.h>
  15 #include <linux/sched.h>
  16 #include <linux/sched/debug.h>
  17 #include <linux/sched/task.h>
  18 #include <linux/sched/task_stack.h>
  19 #include <linux/kernel.h>
  20 #include <linux/lockdep.h>
  21 #include <linux/mm.h>
  22 #include <linux/stddef.h>
  23 #include <linux/sysctl.h>
  24 #include <linux/unistd.h>
  25 #include <linux/user.h>
  26 #include <linux/delay.h>
  27 #include <linux/reboot.h>
  28 #include <linux/interrupt.h>
  29 #include <linux/init.h>
  30 #include <linux/cpu.h>
  31 #include <linux/elfcore.h>
  32 #include <linux/pm.h>
  33 #include <linux/tick.h>
  34 #include <linux/utsname.h>
  35 #include <linux/uaccess.h>
  36 #include <linux/random.h>
  37 #include <linux/hw_breakpoint.h>
  38 #include <linux/personality.h>
  39 #include <linux/notifier.h>
  40 #include <trace/events/power.h>
  41 #include <linux/percpu.h>
  42 #include <linux/thread_info.h>
  43 #include <linux/prctl.h>
  44 
  45 #include <asm/alternative.h>
  46 #include <asm/arch_gicv3.h>
  47 #include <asm/compat.h>
  48 #include <asm/cpufeature.h>
  49 #include <asm/cacheflush.h>
  50 #include <asm/exec.h>
  51 #include <asm/fpsimd.h>
  52 #include <asm/mmu_context.h>
  53 #include <asm/processor.h>
  54 #include <asm/pointer_auth.h>
  55 #include <asm/stacktrace.h>
  56 
  57 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
  58 #include <linux/stackprotector.h>
  59 unsigned long __stack_chk_guard __read_mostly;
  60 EXPORT_SYMBOL(__stack_chk_guard);
  61 #endif
  62 
  63 /*
  64  * Function pointers to optional machine specific functions
  65  */
  66 void (*pm_power_off)(void);
  67 EXPORT_SYMBOL_GPL(pm_power_off);
  68 
  69 void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
  70 
  71 static void __cpu_do_idle(void)
  72 {
  73         dsb(sy);
  74         wfi();
  75 }
  76 
  77 static void __cpu_do_idle_irqprio(void)
  78 {
  79         unsigned long pmr;
  80         unsigned long daif_bits;
  81 
  82         daif_bits = read_sysreg(daif);
  83         write_sysreg(daif_bits | PSR_I_BIT, daif);
  84 
  85         /*
  86          * Unmask PMR before going idle to make sure interrupts can
  87          * be raised.
  88          */
  89         pmr = gic_read_pmr();
  90         gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
  91 
  92         __cpu_do_idle();
  93 
  94         gic_write_pmr(pmr);
  95         write_sysreg(daif_bits, daif);
  96 }
  97 
  98 /*
  99  *      cpu_do_idle()
 100  *
 101  *      Idle the processor (wait for interrupt).
 102  *
 103  *      If the CPU supports priority masking we must do additional work to
 104  *      ensure that interrupts are not masked at the PMR (because the core will
 105  *      not wake up if we block the wake up signal in the interrupt controller).
 106  */
 107 void cpu_do_idle(void)
 108 {
 109         if (system_uses_irq_prio_masking())
 110                 __cpu_do_idle_irqprio();
 111         else
 112                 __cpu_do_idle();
 113 }
 114 
 115 /*
 116  * This is our default idle handler.
 117  */
 118 void arch_cpu_idle(void)
 119 {
 120         /*
 121          * This should do all the clock switching and wait for interrupt
 122          * tricks
 123          */
 124         trace_cpu_idle_rcuidle(1, smp_processor_id());
 125         cpu_do_idle();
 126         local_irq_enable();
 127         trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
 128 }
 129 
 130 #ifdef CONFIG_HOTPLUG_CPU
 131 void arch_cpu_idle_dead(void)
 132 {
 133        cpu_die();
 134 }
 135 #endif
 136 
 137 /*
 138  * Called by kexec, immediately prior to machine_kexec().
 139  *
 140  * This must completely disable all secondary CPUs; simply causing those CPUs
 141  * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
 142  * kexec'd kernel to use any and all RAM as it sees fit, without having to
 143  * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
 144  * functionality embodied in disable_nonboot_cpus() to achieve this.
 145  */
 146 void machine_shutdown(void)
 147 {
 148         disable_nonboot_cpus();
 149 }
 150 
 151 /*
 152  * Halting simply requires that the secondary CPUs stop performing any
 153  * activity (executing tasks, handling interrupts). smp_send_stop()
 154  * achieves this.
 155  */
 156 void machine_halt(void)
 157 {
 158         local_irq_disable();
 159         smp_send_stop();
 160         while (1);
 161 }
 162 
 163 /*
 164  * Power-off simply requires that the secondary CPUs stop performing any
 165  * activity (executing tasks, handling interrupts). smp_send_stop()
 166  * achieves this. When the system power is turned off, it will take all CPUs
 167  * with it.
 168  */
 169 void machine_power_off(void)
 170 {
 171         local_irq_disable();
 172         smp_send_stop();
 173         if (pm_power_off)
 174                 pm_power_off();
 175 }
 176 
 177 /*
 178  * Restart requires that the secondary CPUs stop performing any activity
 179  * while the primary CPU resets the system. Systems with multiple CPUs must
 180  * provide a HW restart implementation, to ensure that all CPUs reset at once.
 181  * This is required so that any code running after reset on the primary CPU
 182  * doesn't have to co-ordinate with other CPUs to ensure they aren't still
 183  * executing pre-reset code, and using RAM that the primary CPU's code wishes
 184  * to use. Implementing such co-ordination would be essentially impossible.
 185  */
 186 void machine_restart(char *cmd)
 187 {
 188         /* Disable interrupts first */
 189         local_irq_disable();
 190         smp_send_stop();
 191 
 192         /*
 193          * UpdateCapsule() depends on the system being reset via
 194          * ResetSystem().
 195          */
 196         if (efi_enabled(EFI_RUNTIME_SERVICES))
 197                 efi_reboot(reboot_mode, NULL);
 198 
 199         /* Now call the architecture specific reboot code. */
 200         if (arm_pm_restart)
 201                 arm_pm_restart(reboot_mode, cmd);
 202         else
 203                 do_kernel_restart(cmd);
 204 
 205         /*
 206          * Whoops - the architecture was unable to reboot.
 207          */
 208         printk("Reboot failed -- System halted\n");
 209         while (1);
 210 }
 211 
 212 static void print_pstate(struct pt_regs *regs)
 213 {
 214         u64 pstate = regs->pstate;
 215 
 216         if (compat_user_mode(regs)) {
 217                 printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n",
 218                         pstate,
 219                         pstate & PSR_AA32_N_BIT ? 'N' : 'n',
 220                         pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
 221                         pstate & PSR_AA32_C_BIT ? 'C' : 'c',
 222                         pstate & PSR_AA32_V_BIT ? 'V' : 'v',
 223                         pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
 224                         pstate & PSR_AA32_T_BIT ? "T32" : "A32",
 225                         pstate & PSR_AA32_E_BIT ? "BE" : "LE",
 226                         pstate & PSR_AA32_A_BIT ? 'A' : 'a',
 227                         pstate & PSR_AA32_I_BIT ? 'I' : 'i',
 228                         pstate & PSR_AA32_F_BIT ? 'F' : 'f');
 229         } else {
 230                 printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO)\n",
 231                         pstate,
 232                         pstate & PSR_N_BIT ? 'N' : 'n',
 233                         pstate & PSR_Z_BIT ? 'Z' : 'z',
 234                         pstate & PSR_C_BIT ? 'C' : 'c',
 235                         pstate & PSR_V_BIT ? 'V' : 'v',
 236                         pstate & PSR_D_BIT ? 'D' : 'd',
 237                         pstate & PSR_A_BIT ? 'A' : 'a',
 238                         pstate & PSR_I_BIT ? 'I' : 'i',
 239                         pstate & PSR_F_BIT ? 'F' : 'f',
 240                         pstate & PSR_PAN_BIT ? '+' : '-',
 241                         pstate & PSR_UAO_BIT ? '+' : '-');
 242         }
 243 }
 244 
 245 void __show_regs(struct pt_regs *regs)
 246 {
 247         int i, top_reg;
 248         u64 lr, sp;
 249 
 250         if (compat_user_mode(regs)) {
 251                 lr = regs->compat_lr;
 252                 sp = regs->compat_sp;
 253                 top_reg = 12;
 254         } else {
 255                 lr = regs->regs[30];
 256                 sp = regs->sp;
 257                 top_reg = 29;
 258         }
 259 
 260         show_regs_print_info(KERN_DEFAULT);
 261         print_pstate(regs);
 262 
 263         if (!user_mode(regs)) {
 264                 printk("pc : %pS\n", (void *)regs->pc);
 265                 printk("lr : %pS\n", (void *)lr);
 266         } else {
 267                 printk("pc : %016llx\n", regs->pc);
 268                 printk("lr : %016llx\n", lr);
 269         }
 270 
 271         printk("sp : %016llx\n", sp);
 272 
 273         if (system_uses_irq_prio_masking())
 274                 printk("pmr_save: %08llx\n", regs->pmr_save);
 275 
 276         i = top_reg;
 277 
 278         while (i >= 0) {
 279                 printk("x%-2d: %016llx ", i, regs->regs[i]);
 280                 i--;
 281 
 282                 if (i % 2 == 0) {
 283                         pr_cont("x%-2d: %016llx ", i, regs->regs[i]);
 284                         i--;
 285                 }
 286 
 287                 pr_cont("\n");
 288         }
 289 }
 290 
 291 void show_regs(struct pt_regs * regs)
 292 {
 293         __show_regs(regs);
 294         dump_backtrace(regs, NULL);
 295 }
 296 
 297 static void tls_thread_flush(void)
 298 {
 299         write_sysreg(0, tpidr_el0);
 300 
 301         if (is_compat_task()) {
 302                 current->thread.uw.tp_value = 0;
 303 
 304                 /*
 305                  * We need to ensure ordering between the shadow state and the
 306                  * hardware state, so that we don't corrupt the hardware state
 307                  * with a stale shadow state during context switch.
 308                  */
 309                 barrier();
 310                 write_sysreg(0, tpidrro_el0);
 311         }
 312 }
 313 
 314 static void flush_tagged_addr_state(void)
 315 {
 316         if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI))
 317                 clear_thread_flag(TIF_TAGGED_ADDR);
 318 }
 319 
 320 void flush_thread(void)
 321 {
 322         fpsimd_flush_thread();
 323         tls_thread_flush();
 324         flush_ptrace_hw_breakpoint(current);
 325         flush_tagged_addr_state();
 326 }
 327 
 328 void release_thread(struct task_struct *dead_task)
 329 {
 330 }
 331 
 332 void arch_release_task_struct(struct task_struct *tsk)
 333 {
 334         fpsimd_release_task(tsk);
 335 }
 336 
 337 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
 338 {
 339         if (current->mm)
 340                 fpsimd_preserve_current_state();
 341         *dst = *src;
 342 
 343         /* We rely on the above assignment to initialize dst's thread_flags: */
 344         BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK));
 345 
 346         /*
 347          * Detach src's sve_state (if any) from dst so that it does not
 348          * get erroneously used or freed prematurely.  dst's sve_state
 349          * will be allocated on demand later on if dst uses SVE.
 350          * For consistency, also clear TIF_SVE here: this could be done
 351          * later in copy_process(), but to avoid tripping up future
 352          * maintainers it is best not to leave TIF_SVE and sve_state in
 353          * an inconsistent state, even temporarily.
 354          */
 355         dst->thread.sve_state = NULL;
 356         clear_tsk_thread_flag(dst, TIF_SVE);
 357 
 358         return 0;
 359 }
 360 
 361 asmlinkage void ret_from_fork(void) asm("ret_from_fork");
 362 
 363 int copy_thread_tls(unsigned long clone_flags, unsigned long stack_start,
 364                 unsigned long stk_sz, struct task_struct *p, unsigned long tls)
 365 {
 366         struct pt_regs *childregs = task_pt_regs(p);
 367 
 368         memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
 369 
 370         /*
 371          * In case p was allocated the same task_struct pointer as some
 372          * other recently-exited task, make sure p is disassociated from
 373          * any cpu that may have run that now-exited task recently.
 374          * Otherwise we could erroneously skip reloading the FPSIMD
 375          * registers for p.
 376          */
 377         fpsimd_flush_task_state(p);
 378 
 379         if (likely(!(p->flags & PF_KTHREAD))) {
 380                 *childregs = *current_pt_regs();
 381                 childregs->regs[0] = 0;
 382 
 383                 /*
 384                  * Read the current TLS pointer from tpidr_el0 as it may be
 385                  * out-of-sync with the saved value.
 386                  */
 387                 *task_user_tls(p) = read_sysreg(tpidr_el0);
 388 
 389                 if (stack_start) {
 390                         if (is_compat_thread(task_thread_info(p)))
 391                                 childregs->compat_sp = stack_start;
 392                         else
 393                                 childregs->sp = stack_start;
 394                 }
 395 
 396                 /*
 397                  * If a TLS pointer was passed to clone, use it for the new
 398                  * thread.
 399                  */
 400                 if (clone_flags & CLONE_SETTLS)
 401                         p->thread.uw.tp_value = tls;
 402         } else {
 403                 memset(childregs, 0, sizeof(struct pt_regs));
 404                 childregs->pstate = PSR_MODE_EL1h;
 405                 if (IS_ENABLED(CONFIG_ARM64_UAO) &&
 406                     cpus_have_const_cap(ARM64_HAS_UAO))
 407                         childregs->pstate |= PSR_UAO_BIT;
 408 
 409                 if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE)
 410                         set_ssbs_bit(childregs);
 411 
 412                 if (system_uses_irq_prio_masking())
 413                         childregs->pmr_save = GIC_PRIO_IRQON;
 414 
 415                 p->thread.cpu_context.x19 = stack_start;
 416                 p->thread.cpu_context.x20 = stk_sz;
 417         }
 418         p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
 419         p->thread.cpu_context.sp = (unsigned long)childregs;
 420 
 421         ptrace_hw_copy_thread(p);
 422 
 423         return 0;
 424 }
 425 
 426 void tls_preserve_current_state(void)
 427 {
 428         *task_user_tls(current) = read_sysreg(tpidr_el0);
 429 }
 430 
 431 static void tls_thread_switch(struct task_struct *next)
 432 {
 433         tls_preserve_current_state();
 434 
 435         if (is_compat_thread(task_thread_info(next)))
 436                 write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
 437         else if (!arm64_kernel_unmapped_at_el0())
 438                 write_sysreg(0, tpidrro_el0);
 439 
 440         write_sysreg(*task_user_tls(next), tpidr_el0);
 441 }
 442 
 443 /* Restore the UAO state depending on next's addr_limit */
 444 void uao_thread_switch(struct task_struct *next)
 445 {
 446         if (IS_ENABLED(CONFIG_ARM64_UAO)) {
 447                 if (task_thread_info(next)->addr_limit == KERNEL_DS)
 448                         asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO));
 449                 else
 450                         asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO));
 451         }
 452 }
 453 
 454 /*
 455  * Force SSBS state on context-switch, since it may be lost after migrating
 456  * from a CPU which treats the bit as RES0 in a heterogeneous system.
 457  */
 458 static void ssbs_thread_switch(struct task_struct *next)
 459 {
 460         struct pt_regs *regs = task_pt_regs(next);
 461 
 462         /*
 463          * Nothing to do for kernel threads, but 'regs' may be junk
 464          * (e.g. idle task) so check the flags and bail early.
 465          */
 466         if (unlikely(next->flags & PF_KTHREAD))
 467                 return;
 468 
 469         /*
 470          * If all CPUs implement the SSBS extension, then we just need to
 471          * context-switch the PSTATE field.
 472          */
 473         if (cpu_have_feature(cpu_feature(SSBS)))
 474                 return;
 475 
 476         /* If the mitigation is enabled, then we leave SSBS clear. */
 477         if ((arm64_get_ssbd_state() == ARM64_SSBD_FORCE_ENABLE) ||
 478             test_tsk_thread_flag(next, TIF_SSBD))
 479                 return;
 480 
 481         if (compat_user_mode(regs))
 482                 set_compat_ssbs_bit(regs);
 483         else if (user_mode(regs))
 484                 set_ssbs_bit(regs);
 485 }
 486 
 487 /*
 488  * We store our current task in sp_el0, which is clobbered by userspace. Keep a
 489  * shadow copy so that we can restore this upon entry from userspace.
 490  *
 491  * This is *only* for exception entry from EL0, and is not valid until we
 492  * __switch_to() a user task.
 493  */
 494 DEFINE_PER_CPU(struct task_struct *, __entry_task);
 495 
 496 static void entry_task_switch(struct task_struct *next)
 497 {
 498         __this_cpu_write(__entry_task, next);
 499 }
 500 
 501 /*
 502  * Thread switching.
 503  */
 504 __notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev,
 505                                 struct task_struct *next)
 506 {
 507         struct task_struct *last;
 508 
 509         fpsimd_thread_switch(next);
 510         tls_thread_switch(next);
 511         hw_breakpoint_thread_switch(next);
 512         contextidr_thread_switch(next);
 513         entry_task_switch(next);
 514         uao_thread_switch(next);
 515         ptrauth_thread_switch(next);
 516         ssbs_thread_switch(next);
 517 
 518         /*
 519          * Complete any pending TLB or cache maintenance on this CPU in case
 520          * the thread migrates to a different CPU.
 521          * This full barrier is also required by the membarrier system
 522          * call.
 523          */
 524         dsb(ish);
 525 
 526         /* the actual thread switch */
 527         last = cpu_switch_to(prev, next);
 528 
 529         return last;
 530 }
 531 
 532 unsigned long get_wchan(struct task_struct *p)
 533 {
 534         struct stackframe frame;
 535         unsigned long stack_page, ret = 0;
 536         int count = 0;
 537         if (!p || p == current || p->state == TASK_RUNNING)
 538                 return 0;
 539 
 540         stack_page = (unsigned long)try_get_task_stack(p);
 541         if (!stack_page)
 542                 return 0;
 543 
 544         start_backtrace(&frame, thread_saved_fp(p), thread_saved_pc(p));
 545 
 546         do {
 547                 if (unwind_frame(p, &frame))
 548                         goto out;
 549                 if (!in_sched_functions(frame.pc)) {
 550                         ret = frame.pc;
 551                         goto out;
 552                 }
 553         } while (count ++ < 16);
 554 
 555 out:
 556         put_task_stack(p);
 557         return ret;
 558 }
 559 
 560 unsigned long arch_align_stack(unsigned long sp)
 561 {
 562         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
 563                 sp -= get_random_int() & ~PAGE_MASK;
 564         return sp & ~0xf;
 565 }
 566 
 567 /*
 568  * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
 569  */
 570 void arch_setup_new_exec(void)
 571 {
 572         current->mm->context.flags = is_compat_task() ? MMCF_AARCH32 : 0;
 573 
 574         ptrauth_thread_init_user(current);
 575 }
 576 
 577 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
 578 /*
 579  * Control the relaxed ABI allowing tagged user addresses into the kernel.
 580  */
 581 static unsigned int tagged_addr_disabled;
 582 
 583 long set_tagged_addr_ctrl(unsigned long arg)
 584 {
 585         if (is_compat_task())
 586                 return -EINVAL;
 587         if (arg & ~PR_TAGGED_ADDR_ENABLE)
 588                 return -EINVAL;
 589 
 590         /*
 591          * Do not allow the enabling of the tagged address ABI if globally
 592          * disabled via sysctl abi.tagged_addr_disabled.
 593          */
 594         if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled)
 595                 return -EINVAL;
 596 
 597         update_thread_flag(TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE);
 598 
 599         return 0;
 600 }
 601 
 602 long get_tagged_addr_ctrl(void)
 603 {
 604         if (is_compat_task())
 605                 return -EINVAL;
 606 
 607         if (test_thread_flag(TIF_TAGGED_ADDR))
 608                 return PR_TAGGED_ADDR_ENABLE;
 609 
 610         return 0;
 611 }
 612 
 613 /*
 614  * Global sysctl to disable the tagged user addresses support. This control
 615  * only prevents the tagged address ABI enabling via prctl() and does not
 616  * disable it for tasks that already opted in to the relaxed ABI.
 617  */
 618 static int zero;
 619 static int one = 1;
 620 
 621 static struct ctl_table tagged_addr_sysctl_table[] = {
 622         {
 623                 .procname       = "tagged_addr_disabled",
 624                 .mode           = 0644,
 625                 .data           = &tagged_addr_disabled,
 626                 .maxlen         = sizeof(int),
 627                 .proc_handler   = proc_dointvec_minmax,
 628                 .extra1         = &zero,
 629                 .extra2         = &one,
 630         },
 631         { }
 632 };
 633 
 634 static int __init tagged_addr_init(void)
 635 {
 636         if (!register_sysctl("abi", tagged_addr_sysctl_table))
 637                 return -EINVAL;
 638         return 0;
 639 }
 640 
 641 core_initcall(tagged_addr_init);
 642 #endif  /* CONFIG_ARM64_TAGGED_ADDR_ABI */
 643 
 644 asmlinkage void __sched arm64_preempt_schedule_irq(void)
 645 {
 646         lockdep_assert_irqs_disabled();
 647 
 648         /*
 649          * Preempting a task from an IRQ means we leave copies of PSTATE
 650          * on the stack. cpufeature's enable calls may modify PSTATE, but
 651          * resuming one of these preempted tasks would undo those changes.
 652          *
 653          * Only allow a task to be preempted once cpufeatures have been
 654          * enabled.
 655          */
 656         if (static_branch_likely(&arm64_const_caps_ready))
 657                 preempt_schedule_irq();
 658 }

/* [<][>][^][v][top][bottom][index][help] */