root/drivers/gpu/drm/nouveau/nvkm/subdev/clk/nv50.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. read_div
  2. read_pll_src
  3. read_pll_ref
  4. read_pll
  5. nv50_clk_read
  6. calc_pll
  7. calc_div
  8. clk_same
  9. nv50_clk_calc
  10. nv50_clk_prog
  11. nv50_clk_tidy
  12. nv50_clk_new_
  13. nv50_clk_new

   1 /*
   2  * Copyright 2012 Red Hat Inc.
   3  *
   4  * Permission is hereby granted, free of charge, to any person obtaining a
   5  * copy of this software and associated documentation files (the "Software"),
   6  * to deal in the Software without restriction, including without limitation
   7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8  * and/or sell copies of the Software, and to permit persons to whom the
   9  * Software is furnished to do so, subject to the following conditions:
  10  *
  11  * The above copyright notice and this permission notice shall be included in
  12  * all copies or substantial portions of the Software.
  13  *
  14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20  * OTHER DEALINGS IN THE SOFTWARE.
  21  *
  22  * Authors: Ben Skeggs
  23  */
  24 #include "nv50.h"
  25 #include "pll.h"
  26 #include "seq.h"
  27 
  28 #include <subdev/bios.h>
  29 #include <subdev/bios/pll.h>
  30 
  31 static u32
  32 read_div(struct nv50_clk *clk)
  33 {
  34         struct nvkm_device *device = clk->base.subdev.device;
  35         switch (device->chipset) {
  36         case 0x50: /* it exists, but only has bit 31, not the dividers.. */
  37         case 0x84:
  38         case 0x86:
  39         case 0x98:
  40         case 0xa0:
  41                 return nvkm_rd32(device, 0x004700);
  42         case 0x92:
  43         case 0x94:
  44         case 0x96:
  45                 return nvkm_rd32(device, 0x004800);
  46         default:
  47                 return 0x00000000;
  48         }
  49 }
  50 
  51 static u32
  52 read_pll_src(struct nv50_clk *clk, u32 base)
  53 {
  54         struct nvkm_subdev *subdev = &clk->base.subdev;
  55         struct nvkm_device *device = subdev->device;
  56         u32 coef, ref = nvkm_clk_read(&clk->base, nv_clk_src_crystal);
  57         u32 rsel = nvkm_rd32(device, 0x00e18c);
  58         int P, N, M, id;
  59 
  60         switch (device->chipset) {
  61         case 0x50:
  62         case 0xa0:
  63                 switch (base) {
  64                 case 0x4020:
  65                 case 0x4028: id = !!(rsel & 0x00000004); break;
  66                 case 0x4008: id = !!(rsel & 0x00000008); break;
  67                 case 0x4030: id = 0; break;
  68                 default:
  69                         nvkm_error(subdev, "ref: bad pll %06x\n", base);
  70                         return 0;
  71                 }
  72 
  73                 coef = nvkm_rd32(device, 0x00e81c + (id * 0x0c));
  74                 ref *=  (coef & 0x01000000) ? 2 : 4;
  75                 P    =  (coef & 0x00070000) >> 16;
  76                 N    = ((coef & 0x0000ff00) >> 8) + 1;
  77                 M    = ((coef & 0x000000ff) >> 0) + 1;
  78                 break;
  79         case 0x84:
  80         case 0x86:
  81         case 0x92:
  82                 coef = nvkm_rd32(device, 0x00e81c);
  83                 P    = (coef & 0x00070000) >> 16;
  84                 N    = (coef & 0x0000ff00) >> 8;
  85                 M    = (coef & 0x000000ff) >> 0;
  86                 break;
  87         case 0x94:
  88         case 0x96:
  89         case 0x98:
  90                 rsel = nvkm_rd32(device, 0x00c050);
  91                 switch (base) {
  92                 case 0x4020: rsel = (rsel & 0x00000003) >> 0; break;
  93                 case 0x4008: rsel = (rsel & 0x0000000c) >> 2; break;
  94                 case 0x4028: rsel = (rsel & 0x00001800) >> 11; break;
  95                 case 0x4030: rsel = 3; break;
  96                 default:
  97                         nvkm_error(subdev, "ref: bad pll %06x\n", base);
  98                         return 0;
  99                 }
 100 
 101                 switch (rsel) {
 102                 case 0: id = 1; break;
 103                 case 1: return nvkm_clk_read(&clk->base, nv_clk_src_crystal);
 104                 case 2: return nvkm_clk_read(&clk->base, nv_clk_src_href);
 105                 case 3: id = 0; break;
 106                 }
 107 
 108                 coef =  nvkm_rd32(device, 0x00e81c + (id * 0x28));
 109                 P    = (nvkm_rd32(device, 0x00e824 + (id * 0x28)) >> 16) & 7;
 110                 P   += (coef & 0x00070000) >> 16;
 111                 N    = (coef & 0x0000ff00) >> 8;
 112                 M    = (coef & 0x000000ff) >> 0;
 113                 break;
 114         default:
 115                 BUG();
 116         }
 117 
 118         if (M)
 119                 return (ref * N / M) >> P;
 120 
 121         return 0;
 122 }
 123 
 124 static u32
 125 read_pll_ref(struct nv50_clk *clk, u32 base)
 126 {
 127         struct nvkm_subdev *subdev = &clk->base.subdev;
 128         struct nvkm_device *device = subdev->device;
 129         u32 src, mast = nvkm_rd32(device, 0x00c040);
 130 
 131         switch (base) {
 132         case 0x004028:
 133                 src = !!(mast & 0x00200000);
 134                 break;
 135         case 0x004020:
 136                 src = !!(mast & 0x00400000);
 137                 break;
 138         case 0x004008:
 139                 src = !!(mast & 0x00010000);
 140                 break;
 141         case 0x004030:
 142                 src = !!(mast & 0x02000000);
 143                 break;
 144         case 0x00e810:
 145                 return nvkm_clk_read(&clk->base, nv_clk_src_crystal);
 146         default:
 147                 nvkm_error(subdev, "bad pll %06x\n", base);
 148                 return 0;
 149         }
 150 
 151         if (src)
 152                 return nvkm_clk_read(&clk->base, nv_clk_src_href);
 153 
 154         return read_pll_src(clk, base);
 155 }
 156 
 157 static u32
 158 read_pll(struct nv50_clk *clk, u32 base)
 159 {
 160         struct nvkm_device *device = clk->base.subdev.device;
 161         u32 mast = nvkm_rd32(device, 0x00c040);
 162         u32 ctrl = nvkm_rd32(device, base + 0);
 163         u32 coef = nvkm_rd32(device, base + 4);
 164         u32 ref = read_pll_ref(clk, base);
 165         u32 freq = 0;
 166         int N1, N2, M1, M2;
 167 
 168         if (base == 0x004028 && (mast & 0x00100000)) {
 169                 /* wtf, appears to only disable post-divider on gt200 */
 170                 if (device->chipset != 0xa0)
 171                         return nvkm_clk_read(&clk->base, nv_clk_src_dom6);
 172         }
 173 
 174         N2 = (coef & 0xff000000) >> 24;
 175         M2 = (coef & 0x00ff0000) >> 16;
 176         N1 = (coef & 0x0000ff00) >> 8;
 177         M1 = (coef & 0x000000ff);
 178         if ((ctrl & 0x80000000) && M1) {
 179                 freq = ref * N1 / M1;
 180                 if ((ctrl & 0x40000100) == 0x40000000) {
 181                         if (M2)
 182                                 freq = freq * N2 / M2;
 183                         else
 184                                 freq = 0;
 185                 }
 186         }
 187 
 188         return freq;
 189 }
 190 
 191 int
 192 nv50_clk_read(struct nvkm_clk *base, enum nv_clk_src src)
 193 {
 194         struct nv50_clk *clk = nv50_clk(base);
 195         struct nvkm_subdev *subdev = &clk->base.subdev;
 196         struct nvkm_device *device = subdev->device;
 197         u32 mast = nvkm_rd32(device, 0x00c040);
 198         u32 P = 0;
 199 
 200         switch (src) {
 201         case nv_clk_src_crystal:
 202                 return device->crystal;
 203         case nv_clk_src_href:
 204                 return 100000; /* PCIE reference clock */
 205         case nv_clk_src_hclk:
 206                 return div_u64((u64)nvkm_clk_read(&clk->base, nv_clk_src_href) * 27778, 10000);
 207         case nv_clk_src_hclkm3:
 208                 return nvkm_clk_read(&clk->base, nv_clk_src_hclk) * 3;
 209         case nv_clk_src_hclkm3d2:
 210                 return nvkm_clk_read(&clk->base, nv_clk_src_hclk) * 3 / 2;
 211         case nv_clk_src_host:
 212                 switch (mast & 0x30000000) {
 213                 case 0x00000000: return nvkm_clk_read(&clk->base, nv_clk_src_href);
 214                 case 0x10000000: break;
 215                 case 0x20000000: /* !0x50 */
 216                 case 0x30000000: return nvkm_clk_read(&clk->base, nv_clk_src_hclk);
 217                 }
 218                 break;
 219         case nv_clk_src_core:
 220                 if (!(mast & 0x00100000))
 221                         P = (nvkm_rd32(device, 0x004028) & 0x00070000) >> 16;
 222                 switch (mast & 0x00000003) {
 223                 case 0x00000000: return nvkm_clk_read(&clk->base, nv_clk_src_crystal) >> P;
 224                 case 0x00000001: return nvkm_clk_read(&clk->base, nv_clk_src_dom6);
 225                 case 0x00000002: return read_pll(clk, 0x004020) >> P;
 226                 case 0x00000003: return read_pll(clk, 0x004028) >> P;
 227                 }
 228                 break;
 229         case nv_clk_src_shader:
 230                 P = (nvkm_rd32(device, 0x004020) & 0x00070000) >> 16;
 231                 switch (mast & 0x00000030) {
 232                 case 0x00000000:
 233                         if (mast & 0x00000080)
 234                                 return nvkm_clk_read(&clk->base, nv_clk_src_host) >> P;
 235                         return nvkm_clk_read(&clk->base, nv_clk_src_crystal) >> P;
 236                 case 0x00000010: break;
 237                 case 0x00000020: return read_pll(clk, 0x004028) >> P;
 238                 case 0x00000030: return read_pll(clk, 0x004020) >> P;
 239                 }
 240                 break;
 241         case nv_clk_src_mem:
 242                 P = (nvkm_rd32(device, 0x004008) & 0x00070000) >> 16;
 243                 if (nvkm_rd32(device, 0x004008) & 0x00000200) {
 244                         switch (mast & 0x0000c000) {
 245                         case 0x00000000:
 246                                 return nvkm_clk_read(&clk->base, nv_clk_src_crystal) >> P;
 247                         case 0x00008000:
 248                         case 0x0000c000:
 249                                 return nvkm_clk_read(&clk->base, nv_clk_src_href) >> P;
 250                         }
 251                 } else {
 252                         return read_pll(clk, 0x004008) >> P;
 253                 }
 254                 break;
 255         case nv_clk_src_vdec:
 256                 P = (read_div(clk) & 0x00000700) >> 8;
 257                 switch (device->chipset) {
 258                 case 0x84:
 259                 case 0x86:
 260                 case 0x92:
 261                 case 0x94:
 262                 case 0x96:
 263                 case 0xa0:
 264                         switch (mast & 0x00000c00) {
 265                         case 0x00000000:
 266                                 if (device->chipset == 0xa0) /* wtf?? */
 267                                         return nvkm_clk_read(&clk->base, nv_clk_src_core) >> P;
 268                                 return nvkm_clk_read(&clk->base, nv_clk_src_crystal) >> P;
 269                         case 0x00000400:
 270                                 return 0;
 271                         case 0x00000800:
 272                                 if (mast & 0x01000000)
 273                                         return read_pll(clk, 0x004028) >> P;
 274                                 return read_pll(clk, 0x004030) >> P;
 275                         case 0x00000c00:
 276                                 return nvkm_clk_read(&clk->base, nv_clk_src_core) >> P;
 277                         }
 278                         break;
 279                 case 0x98:
 280                         switch (mast & 0x00000c00) {
 281                         case 0x00000000:
 282                                 return nvkm_clk_read(&clk->base, nv_clk_src_core) >> P;
 283                         case 0x00000400:
 284                                 return 0;
 285                         case 0x00000800:
 286                                 return nvkm_clk_read(&clk->base, nv_clk_src_hclkm3d2) >> P;
 287                         case 0x00000c00:
 288                                 return nvkm_clk_read(&clk->base, nv_clk_src_mem) >> P;
 289                         }
 290                         break;
 291                 }
 292                 break;
 293         case nv_clk_src_dom6:
 294                 switch (device->chipset) {
 295                 case 0x50:
 296                 case 0xa0:
 297                         return read_pll(clk, 0x00e810) >> 2;
 298                 case 0x84:
 299                 case 0x86:
 300                 case 0x92:
 301                 case 0x94:
 302                 case 0x96:
 303                 case 0x98:
 304                         P = (read_div(clk) & 0x00000007) >> 0;
 305                         switch (mast & 0x0c000000) {
 306                         case 0x00000000: return nvkm_clk_read(&clk->base, nv_clk_src_href);
 307                         case 0x04000000: break;
 308                         case 0x08000000: return nvkm_clk_read(&clk->base, nv_clk_src_hclk);
 309                         case 0x0c000000:
 310                                 return nvkm_clk_read(&clk->base, nv_clk_src_hclkm3) >> P;
 311                         }
 312                         break;
 313                 default:
 314                         break;
 315                 }
 316         default:
 317                 break;
 318         }
 319 
 320         nvkm_debug(subdev, "unknown clock source %d %08x\n", src, mast);
 321         return -EINVAL;
 322 }
 323 
 324 static u32
 325 calc_pll(struct nv50_clk *clk, u32 reg, u32 idx, int *N, int *M, int *P)
 326 {
 327         struct nvkm_subdev *subdev = &clk->base.subdev;
 328         struct nvbios_pll pll;
 329         int ret;
 330 
 331         ret = nvbios_pll_parse(subdev->device->bios, reg, &pll);
 332         if (ret)
 333                 return 0;
 334 
 335         pll.vco2.max_freq = 0;
 336         pll.refclk = read_pll_ref(clk, reg);
 337         if (!pll.refclk)
 338                 return 0;
 339 
 340         return nv04_pll_calc(subdev, &pll, idx, N, M, NULL, NULL, P);
 341 }
 342 
 343 static inline u32
 344 calc_div(u32 src, u32 target, int *div)
 345 {
 346         u32 clk0 = src, clk1 = src;
 347         for (*div = 0; *div <= 7; (*div)++) {
 348                 if (clk0 <= target) {
 349                         clk1 = clk0 << (*div ? 1 : 0);
 350                         break;
 351                 }
 352                 clk0 >>= 1;
 353         }
 354 
 355         if (target - clk0 <= clk1 - target)
 356                 return clk0;
 357         (*div)--;
 358         return clk1;
 359 }
 360 
 361 static inline u32
 362 clk_same(u32 a, u32 b)
 363 {
 364         return ((a / 1000) == (b / 1000));
 365 }
 366 
 367 int
 368 nv50_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate)
 369 {
 370         struct nv50_clk *clk = nv50_clk(base);
 371         struct nv50_clk_hwsq *hwsq = &clk->hwsq;
 372         struct nvkm_subdev *subdev = &clk->base.subdev;
 373         struct nvkm_device *device = subdev->device;
 374         const int shader = cstate->domain[nv_clk_src_shader];
 375         const int core = cstate->domain[nv_clk_src_core];
 376         const int vdec = cstate->domain[nv_clk_src_vdec];
 377         const int dom6 = cstate->domain[nv_clk_src_dom6];
 378         u32 mastm = 0, mastv = 0;
 379         u32 divsm = 0, divsv = 0;
 380         int N, M, P1, P2;
 381         int freq, out;
 382 
 383         /* prepare a hwsq script from which we'll perform the reclock */
 384         out = clk_init(hwsq, subdev);
 385         if (out)
 386                 return out;
 387 
 388         clk_wr32(hwsq, fifo, 0x00000001); /* block fifo */
 389         clk_nsec(hwsq, 8000);
 390         clk_setf(hwsq, 0x10, 0x00); /* disable fb */
 391         clk_wait(hwsq, 0x00, 0x01); /* wait for fb disabled */
 392 
 393         /* vdec: avoid modifying xpll until we know exactly how the other
 394          * clock domains work, i suspect at least some of them can also be
 395          * tied to xpll...
 396          */
 397         if (vdec) {
 398                 /* see how close we can get using nvclk as a source */
 399                 freq = calc_div(core, vdec, &P1);
 400 
 401                 /* see how close we can get using xpll/hclk as a source */
 402                 if (device->chipset != 0x98)
 403                         out = read_pll(clk, 0x004030);
 404                 else
 405                         out = nvkm_clk_read(&clk->base, nv_clk_src_hclkm3d2);
 406                 out = calc_div(out, vdec, &P2);
 407 
 408                 /* select whichever gets us closest */
 409                 if (abs(vdec - freq) <= abs(vdec - out)) {
 410                         if (device->chipset != 0x98)
 411                                 mastv |= 0x00000c00;
 412                         divsv |= P1 << 8;
 413                 } else {
 414                         mastv |= 0x00000800;
 415                         divsv |= P2 << 8;
 416                 }
 417 
 418                 mastm |= 0x00000c00;
 419                 divsm |= 0x00000700;
 420         }
 421 
 422         /* dom6: nfi what this is, but we're limited to various combinations
 423          * of the host clock frequency
 424          */
 425         if (dom6) {
 426                 if (clk_same(dom6, nvkm_clk_read(&clk->base, nv_clk_src_href))) {
 427                         mastv |= 0x00000000;
 428                 } else
 429                 if (clk_same(dom6, nvkm_clk_read(&clk->base, nv_clk_src_hclk))) {
 430                         mastv |= 0x08000000;
 431                 } else {
 432                         freq = nvkm_clk_read(&clk->base, nv_clk_src_hclk) * 3;
 433                         calc_div(freq, dom6, &P1);
 434 
 435                         mastv |= 0x0c000000;
 436                         divsv |= P1;
 437                 }
 438 
 439                 mastm |= 0x0c000000;
 440                 divsm |= 0x00000007;
 441         }
 442 
 443         /* vdec/dom6: switch to "safe" clocks temporarily, update dividers
 444          * and then switch to target clocks
 445          */
 446         clk_mask(hwsq, mast, mastm, 0x00000000);
 447         clk_mask(hwsq, divs, divsm, divsv);
 448         clk_mask(hwsq, mast, mastm, mastv);
 449 
 450         /* core/shader: disconnect nvclk/sclk from their PLLs (nvclk to dom6,
 451          * sclk to hclk) before reprogramming
 452          */
 453         if (device->chipset < 0x92)
 454                 clk_mask(hwsq, mast, 0x001000b0, 0x00100080);
 455         else
 456                 clk_mask(hwsq, mast, 0x000000b3, 0x00000081);
 457 
 458         /* core: for the moment at least, always use nvpll */
 459         freq = calc_pll(clk, 0x4028, core, &N, &M, &P1);
 460         if (freq == 0)
 461                 return -ERANGE;
 462 
 463         clk_mask(hwsq, nvpll[0], 0xc03f0100,
 464                                  0x80000000 | (P1 << 19) | (P1 << 16));
 465         clk_mask(hwsq, nvpll[1], 0x0000ffff, (N << 8) | M);
 466 
 467         /* shader: tie to nvclk if possible, otherwise use spll.  have to be
 468          * very careful that the shader clock is at least twice the core, or
 469          * some chipsets will be very unhappy.  i expect most or all of these
 470          * cases will be handled by tying to nvclk, but it's possible there's
 471          * corners
 472          */
 473         if (P1-- && shader == (core << 1)) {
 474                 clk_mask(hwsq, spll[0], 0xc03f0100, (P1 << 19) | (P1 << 16));
 475                 clk_mask(hwsq, mast, 0x00100033, 0x00000023);
 476         } else {
 477                 freq = calc_pll(clk, 0x4020, shader, &N, &M, &P1);
 478                 if (freq == 0)
 479                         return -ERANGE;
 480 
 481                 clk_mask(hwsq, spll[0], 0xc03f0100,
 482                                         0x80000000 | (P1 << 19) | (P1 << 16));
 483                 clk_mask(hwsq, spll[1], 0x0000ffff, (N << 8) | M);
 484                 clk_mask(hwsq, mast, 0x00100033, 0x00000033);
 485         }
 486 
 487         /* restore normal operation */
 488         clk_setf(hwsq, 0x10, 0x01); /* enable fb */
 489         clk_wait(hwsq, 0x00, 0x00); /* wait for fb enabled */
 490         clk_wr32(hwsq, fifo, 0x00000000); /* un-block fifo */
 491         return 0;
 492 }
 493 
 494 int
 495 nv50_clk_prog(struct nvkm_clk *base)
 496 {
 497         struct nv50_clk *clk = nv50_clk(base);
 498         return clk_exec(&clk->hwsq, true);
 499 }
 500 
 501 void
 502 nv50_clk_tidy(struct nvkm_clk *base)
 503 {
 504         struct nv50_clk *clk = nv50_clk(base);
 505         clk_exec(&clk->hwsq, false);
 506 }
 507 
 508 int
 509 nv50_clk_new_(const struct nvkm_clk_func *func, struct nvkm_device *device,
 510               int index, bool allow_reclock, struct nvkm_clk **pclk)
 511 {
 512         struct nv50_clk *clk;
 513         int ret;
 514 
 515         if (!(clk = kzalloc(sizeof(*clk), GFP_KERNEL)))
 516                 return -ENOMEM;
 517         ret = nvkm_clk_ctor(func, device, index, allow_reclock, &clk->base);
 518         *pclk = &clk->base;
 519         if (ret)
 520                 return ret;
 521 
 522         clk->hwsq.r_fifo = hwsq_reg(0x002504);
 523         clk->hwsq.r_spll[0] = hwsq_reg(0x004020);
 524         clk->hwsq.r_spll[1] = hwsq_reg(0x004024);
 525         clk->hwsq.r_nvpll[0] = hwsq_reg(0x004028);
 526         clk->hwsq.r_nvpll[1] = hwsq_reg(0x00402c);
 527         switch (device->chipset) {
 528         case 0x92:
 529         case 0x94:
 530         case 0x96:
 531                 clk->hwsq.r_divs = hwsq_reg(0x004800);
 532                 break;
 533         default:
 534                 clk->hwsq.r_divs = hwsq_reg(0x004700);
 535                 break;
 536         }
 537         clk->hwsq.r_mast = hwsq_reg(0x00c040);
 538         return 0;
 539 }
 540 
 541 static const struct nvkm_clk_func
 542 nv50_clk = {
 543         .read = nv50_clk_read,
 544         .calc = nv50_clk_calc,
 545         .prog = nv50_clk_prog,
 546         .tidy = nv50_clk_tidy,
 547         .domains = {
 548                 { nv_clk_src_crystal, 0xff },
 549                 { nv_clk_src_href   , 0xff },
 550                 { nv_clk_src_core   , 0xff, 0, "core", 1000 },
 551                 { nv_clk_src_shader , 0xff, 0, "shader", 1000 },
 552                 { nv_clk_src_mem    , 0xff, 0, "memory", 1000 },
 553                 { nv_clk_src_max }
 554         }
 555 };
 556 
 557 int
 558 nv50_clk_new(struct nvkm_device *device, int index, struct nvkm_clk **pclk)
 559 {
 560         return nv50_clk_new_(&nv50_clk, device, index, false, pclk);
 561 }

/* [<][>][^][v][top][bottom][index][help] */