This source file includes following definitions.
- pl_to_div
- div_to_pl
- gm20b_pllg_read_mnp
- gm20b_pllg_write_mnp
- gm20b_dvfs_calc_det_coeff
- gm20b_dvfs_calc_ndiv
- gm20b_pllg_slide
- gm20b_pllg_enable
- gm20b_pllg_disable
- gm20b_pllg_program_mnp
- gm20b_pllg_program_mnp_slide
- gm20b_clk_calc
- gm20b_dvfs_calc_safe_pll
- gm20b_dvfs_program_coeff
- gm20b_dvfs_program_ext_cal
- gm20b_dvfs_program_dfs_detection
- gm20b_clk_prog
- gm20b_clk_fini
- gm20b_clk_init_dvfs
- gm20b_clk_init
- gm20b_clk_new_speedo0
- gm20b_clk_init_fused_params
- gm20b_clk_init_safe_fmax
- gm20b_clk_new
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 #include <subdev/clk.h>
24 #include <subdev/volt.h>
25 #include <subdev/timer.h>
26 #include <core/device.h>
27 #include <core/tegra.h>
28
29 #include "priv.h"
30 #include "gk20a.h"
31
32 #define GPCPLL_CFG_SYNC_MODE BIT(2)
33
34 #define BYPASSCTRL_SYS (SYS_GPCPLL_CFG_BASE + 0x340)
35 #define BYPASSCTRL_SYS_GPCPLL_SHIFT 0
36 #define BYPASSCTRL_SYS_GPCPLL_WIDTH 1
37
38 #define GPCPLL_CFG2_SDM_DIN_SHIFT 0
39 #define GPCPLL_CFG2_SDM_DIN_WIDTH 8
40 #define GPCPLL_CFG2_SDM_DIN_MASK \
41 (MASK(GPCPLL_CFG2_SDM_DIN_WIDTH) << GPCPLL_CFG2_SDM_DIN_SHIFT)
42 #define GPCPLL_CFG2_SDM_DIN_NEW_SHIFT 8
43 #define GPCPLL_CFG2_SDM_DIN_NEW_WIDTH 15
44 #define GPCPLL_CFG2_SDM_DIN_NEW_MASK \
45 (MASK(GPCPLL_CFG2_SDM_DIN_NEW_WIDTH) << GPCPLL_CFG2_SDM_DIN_NEW_SHIFT)
46 #define GPCPLL_CFG2_SETUP2_SHIFT 16
47 #define GPCPLL_CFG2_PLL_STEPA_SHIFT 24
48
49 #define GPCPLL_DVFS0 (SYS_GPCPLL_CFG_BASE + 0x10)
50 #define GPCPLL_DVFS0_DFS_COEFF_SHIFT 0
51 #define GPCPLL_DVFS0_DFS_COEFF_WIDTH 7
52 #define GPCPLL_DVFS0_DFS_COEFF_MASK \
53 (MASK(GPCPLL_DVFS0_DFS_COEFF_WIDTH) << GPCPLL_DVFS0_DFS_COEFF_SHIFT)
54 #define GPCPLL_DVFS0_DFS_DET_MAX_SHIFT 8
55 #define GPCPLL_DVFS0_DFS_DET_MAX_WIDTH 7
56 #define GPCPLL_DVFS0_DFS_DET_MAX_MASK \
57 (MASK(GPCPLL_DVFS0_DFS_DET_MAX_WIDTH) << GPCPLL_DVFS0_DFS_DET_MAX_SHIFT)
58
59 #define GPCPLL_DVFS1 (SYS_GPCPLL_CFG_BASE + 0x14)
60 #define GPCPLL_DVFS1_DFS_EXT_DET_SHIFT 0
61 #define GPCPLL_DVFS1_DFS_EXT_DET_WIDTH 7
62 #define GPCPLL_DVFS1_DFS_EXT_STRB_SHIFT 7
63 #define GPCPLL_DVFS1_DFS_EXT_STRB_WIDTH 1
64 #define GPCPLL_DVFS1_DFS_EXT_CAL_SHIFT 8
65 #define GPCPLL_DVFS1_DFS_EXT_CAL_WIDTH 7
66 #define GPCPLL_DVFS1_DFS_EXT_SEL_SHIFT 15
67 #define GPCPLL_DVFS1_DFS_EXT_SEL_WIDTH 1
68 #define GPCPLL_DVFS1_DFS_CTRL_SHIFT 16
69 #define GPCPLL_DVFS1_DFS_CTRL_WIDTH 12
70 #define GPCPLL_DVFS1_EN_SDM_SHIFT 28
71 #define GPCPLL_DVFS1_EN_SDM_WIDTH 1
72 #define GPCPLL_DVFS1_EN_SDM_BIT BIT(28)
73 #define GPCPLL_DVFS1_EN_DFS_SHIFT 29
74 #define GPCPLL_DVFS1_EN_DFS_WIDTH 1
75 #define GPCPLL_DVFS1_EN_DFS_BIT BIT(29)
76 #define GPCPLL_DVFS1_EN_DFS_CAL_SHIFT 30
77 #define GPCPLL_DVFS1_EN_DFS_CAL_WIDTH 1
78 #define GPCPLL_DVFS1_EN_DFS_CAL_BIT BIT(30)
79 #define GPCPLL_DVFS1_DFS_CAL_DONE_SHIFT 31
80 #define GPCPLL_DVFS1_DFS_CAL_DONE_WIDTH 1
81 #define GPCPLL_DVFS1_DFS_CAL_DONE_BIT BIT(31)
82
83 #define GPC_BCAST_GPCPLL_DVFS2 (GPC_BCAST_GPCPLL_CFG_BASE + 0x20)
84 #define GPC_BCAST_GPCPLL_DVFS2_DFS_EXT_STROBE_BIT BIT(16)
85
86 #define GPCPLL_CFG3_PLL_DFS_TESTOUT_SHIFT 24
87 #define GPCPLL_CFG3_PLL_DFS_TESTOUT_WIDTH 7
88
89 #define DFS_DET_RANGE 6
90 #define SDM_DIN_RANGE 12
91
92 struct gm20b_clk_dvfs_params {
93 s32 coeff_slope;
94 s32 coeff_offs;
95 u32 vco_ctrl;
96 };
97
98 static const struct gm20b_clk_dvfs_params gm20b_dvfs_params = {
99 .coeff_slope = -165230,
100 .coeff_offs = 214007,
101 .vco_ctrl = 0x7 << 3,
102 };
103
104
105
106
107
108 struct gm20b_pll {
109 struct gk20a_pll base;
110 u32 sdm_din;
111 };
112
113 struct gm20b_clk_dvfs {
114 u32 dfs_coeff;
115 s32 dfs_det_max;
116 s32 dfs_ext_cal;
117 };
118
119 struct gm20b_clk {
120
121 struct gk20a_clk base;
122 struct gm20b_clk_dvfs dvfs;
123 u32 uv;
124
125
126 struct gk20a_pll new_pll;
127 struct gm20b_clk_dvfs new_dvfs;
128 u32 new_uv;
129
130 const struct gm20b_clk_dvfs_params *dvfs_params;
131
132
133 s32 uvdet_slope;
134 s32 uvdet_offs;
135
136
137 u32 safe_fmax_vmin;
138 };
139 #define gm20b_clk(p) container_of((gk20a_clk(p)), struct gm20b_clk, base)
140
141 static u32 pl_to_div(u32 pl)
142 {
143 return pl;
144 }
145
146 static u32 div_to_pl(u32 div)
147 {
148 return div;
149 }
150
151 static const struct gk20a_clk_pllg_params gm20b_pllg_params = {
152 .min_vco = 1300000, .max_vco = 2600000,
153 .min_u = 12000, .max_u = 38400,
154 .min_m = 1, .max_m = 255,
155 .min_n = 8, .max_n = 255,
156 .min_pl = 1, .max_pl = 31,
157 };
158
159 static void
160 gm20b_pllg_read_mnp(struct gm20b_clk *clk, struct gm20b_pll *pll)
161 {
162 struct nvkm_subdev *subdev = &clk->base.base.subdev;
163 struct nvkm_device *device = subdev->device;
164 u32 val;
165
166 gk20a_pllg_read_mnp(&clk->base, &pll->base);
167 val = nvkm_rd32(device, GPCPLL_CFG2);
168 pll->sdm_din = (val >> GPCPLL_CFG2_SDM_DIN_SHIFT) &
169 MASK(GPCPLL_CFG2_SDM_DIN_WIDTH);
170 }
171
172 static void
173 gm20b_pllg_write_mnp(struct gm20b_clk *clk, const struct gm20b_pll *pll)
174 {
175 struct nvkm_device *device = clk->base.base.subdev.device;
176
177 nvkm_mask(device, GPCPLL_CFG2, GPCPLL_CFG2_SDM_DIN_MASK,
178 pll->sdm_din << GPCPLL_CFG2_SDM_DIN_SHIFT);
179 gk20a_pllg_write_mnp(&clk->base, &pll->base);
180 }
181
182
183
184
185
186
187
188 static void
189 gm20b_dvfs_calc_det_coeff(struct gm20b_clk *clk, s32 uv,
190 struct gm20b_clk_dvfs *dvfs)
191 {
192 struct nvkm_subdev *subdev = &clk->base.base.subdev;
193 const struct gm20b_clk_dvfs_params *p = clk->dvfs_params;
194 u32 coeff;
195
196 s32 mv = DIV_ROUND_CLOSEST(uv, 1000);
197
198
199 coeff = DIV_ROUND_CLOSEST(mv * p->coeff_slope, 1000) + p->coeff_offs;
200 coeff = DIV_ROUND_CLOSEST(coeff, 1000);
201 dvfs->dfs_coeff = min_t(u32, coeff, MASK(GPCPLL_DVFS0_DFS_COEFF_WIDTH));
202
203 dvfs->dfs_ext_cal = DIV_ROUND_CLOSEST(uv - clk->uvdet_offs,
204 clk->uvdet_slope);
205
206 if (abs(dvfs->dfs_ext_cal) >= BIT(DFS_DET_RANGE))
207 nvkm_error(subdev, "dfs_ext_cal overflow!\n");
208
209 dvfs->dfs_det_max = 0;
210
211 nvkm_debug(subdev, "%s uv: %d coeff: %x, ext_cal: %d, det_max: %d\n",
212 __func__, uv, dvfs->dfs_coeff, dvfs->dfs_ext_cal,
213 dvfs->dfs_det_max);
214 }
215
216
217
218
219
220
221
222
223
224 static void
225 gm20b_dvfs_calc_ndiv(struct gm20b_clk *clk, u32 n_eff, u32 *n_int, u32 *sdm_din)
226 {
227 struct nvkm_subdev *subdev = &clk->base.base.subdev;
228 const struct gk20a_clk_pllg_params *p = clk->base.params;
229 u32 n;
230 s32 det_delta;
231 u32 rem, rem_range;
232
233
234 det_delta = DIV_ROUND_CLOSEST(((s32)clk->uv) - clk->uvdet_offs,
235 clk->uvdet_slope);
236 det_delta -= clk->dvfs.dfs_ext_cal;
237 det_delta = min(det_delta, clk->dvfs.dfs_det_max);
238 det_delta *= clk->dvfs.dfs_coeff;
239
240
241 n = (n_eff << DFS_DET_RANGE) - det_delta;
242
243 if (n <= 0) {
244 nvkm_error(subdev, "ndiv <= 0 - setting to 1...\n");
245 n = 1 << DFS_DET_RANGE;
246 }
247 if (n >> DFS_DET_RANGE > p->max_n) {
248 nvkm_error(subdev, "ndiv > max_n - setting to max_n...\n");
249 n = p->max_n << DFS_DET_RANGE;
250 }
251 *n_int = n >> DFS_DET_RANGE;
252
253
254 rem = ((u32)n) & MASK(DFS_DET_RANGE);
255 rem_range = SDM_DIN_RANGE + 1 - DFS_DET_RANGE;
256
257 rem = (rem << rem_range) - BIT(SDM_DIN_RANGE);
258
259 *sdm_din = (rem >> BITS_PER_BYTE) & MASK(GPCPLL_CFG2_SDM_DIN_WIDTH);
260
261 nvkm_debug(subdev, "%s n_eff: %d, n_int: %d, sdm_din: %d\n", __func__,
262 n_eff, *n_int, *sdm_din);
263 }
264
265 static int
266 gm20b_pllg_slide(struct gm20b_clk *clk, u32 n)
267 {
268 struct nvkm_subdev *subdev = &clk->base.base.subdev;
269 struct nvkm_device *device = subdev->device;
270 struct gm20b_pll pll;
271 u32 n_int, sdm_din;
272 int ret = 0;
273
274
275 gm20b_dvfs_calc_ndiv(clk, n, &n_int, &sdm_din);
276
277
278 gm20b_pllg_read_mnp(clk, &pll);
279
280 if (n_int == pll.base.n && sdm_din == pll.sdm_din)
281 return 0;
282
283
284 nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
285 BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT),
286 BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT));
287
288
289
290 nvkm_mask(device, GPCPLL_CFG2, GPCPLL_CFG2_SDM_DIN_NEW_MASK,
291 sdm_din << GPCPLL_CFG2_SDM_DIN_NEW_SHIFT);
292 pll.base.n = n_int;
293 udelay(1);
294 gk20a_pllg_write_mnp(&clk->base, &pll.base);
295
296
297 udelay(1);
298 nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
299 BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT),
300 BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT));
301
302
303 if (nvkm_wait_usec(device, 500, GPC_BCAST_NDIV_SLOWDOWN_DEBUG,
304 GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK,
305 GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK) < 0)
306 ret = -ETIMEDOUT;
307
308
309 nvkm_mask(device, GPCPLL_CFG2, GPCPLL_CFG2_SDM_DIN_MASK,
310 sdm_din << GPCPLL_CFG2_SDM_DIN_SHIFT);
311
312
313 nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
314 BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT) |
315 BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT), 0);
316 nvkm_rd32(device, GPCPLL_NDIV_SLOWDOWN);
317
318 return ret;
319 }
320
321 static int
322 gm20b_pllg_enable(struct gm20b_clk *clk)
323 {
324 struct nvkm_device *device = clk->base.base.subdev.device;
325
326 nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, GPCPLL_CFG_ENABLE);
327 nvkm_rd32(device, GPCPLL_CFG);
328
329
330 udelay(40);
331
332
333 nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_SYNC_MODE,
334 GPCPLL_CFG_SYNC_MODE);
335 nvkm_rd32(device, GPCPLL_CFG);
336
337
338 nvkm_mask(device, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT),
339 BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));
340
341 return 0;
342 }
343
344 static void
345 gm20b_pllg_disable(struct gm20b_clk *clk)
346 {
347 struct nvkm_device *device = clk->base.base.subdev.device;
348
349
350 nvkm_mask(device, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT), 0);
351
352
353 nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_SYNC_MODE, 0);
354
355 nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, 0);
356 nvkm_rd32(device, GPCPLL_CFG);
357 }
358
359 static int
360 gm20b_pllg_program_mnp(struct gm20b_clk *clk, const struct gk20a_pll *pll)
361 {
362 struct nvkm_subdev *subdev = &clk->base.base.subdev;
363 struct nvkm_device *device = subdev->device;
364 struct gm20b_pll cur_pll;
365 u32 n_int, sdm_din;
366
367 bool pdiv_only;
368 int ret;
369
370 gm20b_dvfs_calc_ndiv(clk, pll->n, &n_int, &sdm_din);
371 gm20b_pllg_read_mnp(clk, &cur_pll);
372 pdiv_only = cur_pll.base.n == n_int && cur_pll.sdm_din == sdm_din &&
373 cur_pll.base.m == pll->m;
374
375
376 if (!gk20a_pllg_is_enabled(&clk->base))
377 pdiv_only = false;
378
379
380 nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
381 GPC2CLK_OUT_VCODIV2 << GPC2CLK_OUT_VCODIV_SHIFT);
382
383 nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
384 GPC2CLK_OUT_VCODIV2 << GPC2CLK_OUT_VCODIV_SHIFT);
385 nvkm_rd32(device, GPC2CLK_OUT);
386 udelay(2);
387
388 if (pdiv_only) {
389 u32 old = cur_pll.base.pl;
390 u32 new = pll->pl;
391
392
393
394
395
396
397
398 if ((old & new) == 0) {
399 cur_pll.base.pl = min(old | BIT(ffs(new) - 1),
400 new | BIT(ffs(old) - 1));
401 gk20a_pllg_write_mnp(&clk->base, &cur_pll.base);
402 }
403
404 cur_pll.base.pl = new;
405 gk20a_pllg_write_mnp(&clk->base, &cur_pll.base);
406 } else {
407
408 gm20b_pllg_disable(clk);
409
410 cur_pll.base = *pll;
411 cur_pll.base.n = n_int;
412 cur_pll.sdm_din = sdm_din;
413 gm20b_pllg_write_mnp(clk, &cur_pll);
414
415 ret = gm20b_pllg_enable(clk);
416 if (ret)
417 return ret;
418 }
419
420
421 udelay(2);
422 nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
423 GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT);
424
425 nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
426 GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT);
427 nvkm_rd32(device, GPC2CLK_OUT);
428
429 return 0;
430 }
431
432 static int
433 gm20b_pllg_program_mnp_slide(struct gm20b_clk *clk, const struct gk20a_pll *pll)
434 {
435 struct gk20a_pll cur_pll;
436 int ret;
437
438 if (gk20a_pllg_is_enabled(&clk->base)) {
439 gk20a_pllg_read_mnp(&clk->base, &cur_pll);
440
441
442 if (pll->m == cur_pll.m && pll->pl == cur_pll.pl)
443 return gm20b_pllg_slide(clk, pll->n);
444
445
446 cur_pll.n = gk20a_pllg_n_lo(&clk->base, &cur_pll);
447 ret = gm20b_pllg_slide(clk, cur_pll.n);
448 if (ret)
449 return ret;
450 }
451
452
453 cur_pll = *pll;
454 cur_pll.n = gk20a_pllg_n_lo(&clk->base, &cur_pll);
455 ret = gm20b_pllg_program_mnp(clk, &cur_pll);
456 if (ret)
457 return ret;
458
459
460 return gm20b_pllg_slide(clk, pll->n);
461 }
462
463 static int
464 gm20b_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate)
465 {
466 struct gm20b_clk *clk = gm20b_clk(base);
467 struct nvkm_subdev *subdev = &base->subdev;
468 struct nvkm_volt *volt = base->subdev.device->volt;
469 int ret;
470
471 ret = gk20a_pllg_calc_mnp(&clk->base, cstate->domain[nv_clk_src_gpc] *
472 GK20A_CLK_GPC_MDIV, &clk->new_pll);
473 if (ret)
474 return ret;
475
476 clk->new_uv = volt->vid[cstate->voltage].uv;
477 gm20b_dvfs_calc_det_coeff(clk, clk->new_uv, &clk->new_dvfs);
478
479 nvkm_debug(subdev, "%s uv: %d uv\n", __func__, clk->new_uv);
480
481 return 0;
482 }
483
484
485
486
487 static void
488 gm20b_dvfs_calc_safe_pll(struct gm20b_clk *clk, struct gk20a_pll *pll)
489 {
490 u32 rate = gk20a_pllg_calc_rate(&clk->base, pll) / KHZ;
491 u32 parent_rate = clk->base.parent_rate / KHZ;
492 u32 nmin, nsafe;
493
494
495 if (rate > clk->safe_fmax_vmin)
496 rate = rate * (100 - 10) / 100;
497
498
499 rate *= 2;
500
501 nmin = DIV_ROUND_UP(pll->m * clk->base.params->min_vco, parent_rate);
502 nsafe = pll->m * rate / (clk->base.parent_rate);
503
504 if (nsafe < nmin) {
505 pll->pl = DIV_ROUND_UP(nmin * parent_rate, pll->m * rate);
506 nsafe = nmin;
507 }
508
509 pll->n = nsafe;
510 }
511
512 static void
513 gm20b_dvfs_program_coeff(struct gm20b_clk *clk, u32 coeff)
514 {
515 struct nvkm_device *device = clk->base.base.subdev.device;
516
517
518 nvkm_mask(device, GPC_BCAST_GPCPLL_DVFS2,
519 GPC_BCAST_GPCPLL_DVFS2_DFS_EXT_STROBE_BIT,
520 GPC_BCAST_GPCPLL_DVFS2_DFS_EXT_STROBE_BIT);
521
522 nvkm_mask(device, GPCPLL_DVFS0, GPCPLL_DVFS0_DFS_COEFF_MASK,
523 coeff << GPCPLL_DVFS0_DFS_COEFF_SHIFT);
524
525 udelay(1);
526 nvkm_mask(device, GPC_BCAST_GPCPLL_DVFS2,
527 GPC_BCAST_GPCPLL_DVFS2_DFS_EXT_STROBE_BIT, 0);
528 }
529
530 static void
531 gm20b_dvfs_program_ext_cal(struct gm20b_clk *clk, u32 dfs_det_cal)
532 {
533 struct nvkm_device *device = clk->base.base.subdev.device;
534 u32 val;
535
536 nvkm_mask(device, GPC_BCAST_GPCPLL_DVFS2, MASK(DFS_DET_RANGE + 1),
537 dfs_det_cal);
538 udelay(1);
539
540 val = nvkm_rd32(device, GPCPLL_DVFS1);
541 if (!(val & BIT(25))) {
542
543 val |= BIT(25) | BIT(16);
544 nvkm_wr32(device, GPCPLL_DVFS1, val);
545 }
546 }
547
548 static void
549 gm20b_dvfs_program_dfs_detection(struct gm20b_clk *clk,
550 struct gm20b_clk_dvfs *dvfs)
551 {
552 struct nvkm_device *device = clk->base.base.subdev.device;
553
554
555 nvkm_mask(device, GPC_BCAST_GPCPLL_DVFS2,
556 GPC_BCAST_GPCPLL_DVFS2_DFS_EXT_STROBE_BIT,
557 GPC_BCAST_GPCPLL_DVFS2_DFS_EXT_STROBE_BIT);
558
559 nvkm_mask(device, GPCPLL_DVFS0,
560 GPCPLL_DVFS0_DFS_COEFF_MASK | GPCPLL_DVFS0_DFS_DET_MAX_MASK,
561 dvfs->dfs_coeff << GPCPLL_DVFS0_DFS_COEFF_SHIFT |
562 dvfs->dfs_det_max << GPCPLL_DVFS0_DFS_DET_MAX_SHIFT);
563
564 udelay(1);
565 nvkm_mask(device, GPC_BCAST_GPCPLL_DVFS2,
566 GPC_BCAST_GPCPLL_DVFS2_DFS_EXT_STROBE_BIT, 0);
567
568 gm20b_dvfs_program_ext_cal(clk, dvfs->dfs_ext_cal);
569 }
570
571 static int
572 gm20b_clk_prog(struct nvkm_clk *base)
573 {
574 struct gm20b_clk *clk = gm20b_clk(base);
575 u32 cur_freq;
576 int ret;
577
578
579 if (clk->uv == clk->new_uv)
580 goto prog;
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601 cur_freq = nvkm_clk_read(&clk->base.base, nv_clk_src_gpc);
602 if (cur_freq > clk->safe_fmax_vmin) {
603 struct gk20a_pll pll_safe;
604
605 if (clk->uv < clk->new_uv)
606
607 pll_safe = clk->base.pll;
608 else
609
610 pll_safe = clk->new_pll;
611
612 gm20b_dvfs_calc_safe_pll(clk, &pll_safe);
613 ret = gm20b_pllg_program_mnp_slide(clk, &pll_safe);
614 if (ret)
615 return ret;
616 }
617
618
619
620
621
622
623
624 gm20b_dvfs_program_coeff(clk, 0);
625 gm20b_dvfs_program_ext_cal(clk, clk->new_dvfs.dfs_ext_cal);
626 gm20b_dvfs_program_coeff(clk, clk->new_dvfs.dfs_coeff);
627 gm20b_dvfs_program_dfs_detection(clk, &clk->new_dvfs);
628
629 prog:
630 clk->uv = clk->new_uv;
631 clk->dvfs = clk->new_dvfs;
632 clk->base.pll = clk->new_pll;
633
634 return gm20b_pllg_program_mnp_slide(clk, &clk->base.pll);
635 }
636
637 static struct nvkm_pstate
638 gm20b_pstates[] = {
639 {
640 .base = {
641 .domain[nv_clk_src_gpc] = 76800,
642 .voltage = 0,
643 },
644 },
645 {
646 .base = {
647 .domain[nv_clk_src_gpc] = 153600,
648 .voltage = 1,
649 },
650 },
651 {
652 .base = {
653 .domain[nv_clk_src_gpc] = 230400,
654 .voltage = 2,
655 },
656 },
657 {
658 .base = {
659 .domain[nv_clk_src_gpc] = 307200,
660 .voltage = 3,
661 },
662 },
663 {
664 .base = {
665 .domain[nv_clk_src_gpc] = 384000,
666 .voltage = 4,
667 },
668 },
669 {
670 .base = {
671 .domain[nv_clk_src_gpc] = 460800,
672 .voltage = 5,
673 },
674 },
675 {
676 .base = {
677 .domain[nv_clk_src_gpc] = 537600,
678 .voltage = 6,
679 },
680 },
681 {
682 .base = {
683 .domain[nv_clk_src_gpc] = 614400,
684 .voltage = 7,
685 },
686 },
687 {
688 .base = {
689 .domain[nv_clk_src_gpc] = 691200,
690 .voltage = 8,
691 },
692 },
693 {
694 .base = {
695 .domain[nv_clk_src_gpc] = 768000,
696 .voltage = 9,
697 },
698 },
699 {
700 .base = {
701 .domain[nv_clk_src_gpc] = 844800,
702 .voltage = 10,
703 },
704 },
705 {
706 .base = {
707 .domain[nv_clk_src_gpc] = 921600,
708 .voltage = 11,
709 },
710 },
711 {
712 .base = {
713 .domain[nv_clk_src_gpc] = 998400,
714 .voltage = 12,
715 },
716 },
717 };
718
719 static void
720 gm20b_clk_fini(struct nvkm_clk *base)
721 {
722 struct nvkm_device *device = base->subdev.device;
723 struct gm20b_clk *clk = gm20b_clk(base);
724
725
726 if (gk20a_pllg_is_enabled(&clk->base)) {
727 struct gk20a_pll pll;
728 u32 n_lo;
729
730 gk20a_pllg_read_mnp(&clk->base, &pll);
731 n_lo = gk20a_pllg_n_lo(&clk->base, &pll);
732 gm20b_pllg_slide(clk, n_lo);
733 }
734
735 gm20b_pllg_disable(clk);
736
737
738 nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_IDDQ, 1);
739 }
740
741 static int
742 gm20b_clk_init_dvfs(struct gm20b_clk *clk)
743 {
744 struct nvkm_subdev *subdev = &clk->base.base.subdev;
745 struct nvkm_device *device = subdev->device;
746 bool fused = clk->uvdet_offs && clk->uvdet_slope;
747 static const s32 ADC_SLOPE_UV = 10000;
748 u32 data;
749 int ret;
750
751
752 nvkm_mask(device, GPCPLL_DVFS1, GPCPLL_DVFS1_EN_DFS_BIT,
753 GPCPLL_DVFS1_EN_DFS_BIT);
754
755
756 if (clk->dvfs_params->vco_ctrl)
757 nvkm_mask(device, GPCPLL_CFG3, GPCPLL_CFG3_VCO_CTRL_MASK,
758 clk->dvfs_params->vco_ctrl << GPCPLL_CFG3_VCO_CTRL_SHIFT);
759
760 if (fused) {
761
762 nvkm_mask(device, GPCPLL_DVFS1, GPCPLL_DVFS1_EN_DFS_CAL_BIT,
763 GPCPLL_DVFS1_EN_DFS_CAL_BIT);
764
765
766 goto calibrated;
767 }
768
769
770
771
772
773
774 nvkm_mask(device, GPCPLL_DVFS1, GPCPLL_DVFS1_EN_DFS_CAL_BIT,
775 GPCPLL_DVFS1_EN_DFS_CAL_BIT);
776
777
778 ret = nvkm_wait_usec(device, 10, GPCPLL_DVFS1,
779 GPCPLL_DVFS1_DFS_CAL_DONE_BIT,
780 GPCPLL_DVFS1_DFS_CAL_DONE_BIT);
781 if (ret < 0) {
782 nvkm_error(subdev, "GPCPLL calibration timeout\n");
783 return -ETIMEDOUT;
784 }
785
786 data = nvkm_rd32(device, GPCPLL_CFG3) >>
787 GPCPLL_CFG3_PLL_DFS_TESTOUT_SHIFT;
788 data &= MASK(GPCPLL_CFG3_PLL_DFS_TESTOUT_WIDTH);
789
790 clk->uvdet_slope = ADC_SLOPE_UV;
791 clk->uvdet_offs = ((s32)clk->uv) - data * ADC_SLOPE_UV;
792
793 nvkm_debug(subdev, "calibrated DVFS parameters: offs %d, slope %d\n",
794 clk->uvdet_offs, clk->uvdet_slope);
795
796 calibrated:
797
798 gm20b_dvfs_calc_det_coeff(clk, clk->uv, &clk->dvfs);
799 gm20b_dvfs_program_coeff(clk, 0);
800 gm20b_dvfs_program_ext_cal(clk, clk->dvfs.dfs_ext_cal);
801 gm20b_dvfs_program_coeff(clk, clk->dvfs.dfs_coeff);
802 gm20b_dvfs_program_dfs_detection(clk, &clk->new_dvfs);
803
804 return 0;
805 }
806
807
808 static const struct nvkm_clk_func gm20b_clk;
809
810 static int
811 gm20b_clk_init(struct nvkm_clk *base)
812 {
813 struct gk20a_clk *clk = gk20a_clk(base);
814 struct nvkm_subdev *subdev = &clk->base.subdev;
815 struct nvkm_device *device = subdev->device;
816 int ret;
817 u32 data;
818
819
820 nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_IDDQ, 0);
821 nvkm_rd32(device, GPCPLL_CFG);
822 udelay(5);
823
824 nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_INIT_MASK,
825 GPC2CLK_OUT_INIT_VAL);
826
827
828 nvkm_mask(device, BYPASSCTRL_SYS,
829 MASK(BYPASSCTRL_SYS_GPCPLL_WIDTH) << BYPASSCTRL_SYS_GPCPLL_SHIFT,
830 0);
831
832 ret = gk20a_clk_setup_slide(clk);
833 if (ret)
834 return ret;
835
836
837 data = nvkm_rd32(device, 0x021944);
838 if (!(data & 0x3)) {
839 data |= 0x2;
840 nvkm_wr32(device, 0x021944, data);
841
842 data = nvkm_rd32(device, 0x021948);
843 data |= 0x1;
844 nvkm_wr32(device, 0x021948, data);
845 }
846
847
848 nvkm_mask(device, 0x20160, 0x003f0000, 0x0);
849
850
851 if (clk->base.func == &gm20b_clk) {
852 struct gm20b_clk *_clk = gm20b_clk(base);
853 struct nvkm_volt *volt = device->volt;
854
855
856 _clk->uv = nvkm_volt_get(volt);
857
858
859 ret = gm20b_clk_init_dvfs(_clk);
860 if (ret)
861 return ret;
862 }
863
864
865 base->func->calc(base, &base->func->pstates[0].base);
866 ret = base->func->prog(base);
867 if (ret) {
868 nvkm_error(subdev, "cannot initialize clock\n");
869 return ret;
870 }
871
872 return 0;
873 }
874
875 static const struct nvkm_clk_func
876 gm20b_clk_speedo0 = {
877 .init = gm20b_clk_init,
878 .fini = gk20a_clk_fini,
879 .read = gk20a_clk_read,
880 .calc = gk20a_clk_calc,
881 .prog = gk20a_clk_prog,
882 .tidy = gk20a_clk_tidy,
883 .pstates = gm20b_pstates,
884
885 .nr_pstates = ARRAY_SIZE(gm20b_pstates) - 1,
886 .domains = {
887 { nv_clk_src_crystal, 0xff },
888 { nv_clk_src_gpc, 0xff, 0, "core", GK20A_CLK_GPC_MDIV },
889 { nv_clk_src_max },
890 },
891 };
892
893 static const struct nvkm_clk_func
894 gm20b_clk = {
895 .init = gm20b_clk_init,
896 .fini = gm20b_clk_fini,
897 .read = gk20a_clk_read,
898 .calc = gm20b_clk_calc,
899 .prog = gm20b_clk_prog,
900 .tidy = gk20a_clk_tidy,
901 .pstates = gm20b_pstates,
902 .nr_pstates = ARRAY_SIZE(gm20b_pstates),
903 .domains = {
904 { nv_clk_src_crystal, 0xff },
905 { nv_clk_src_gpc, 0xff, 0, "core", GK20A_CLK_GPC_MDIV },
906 { nv_clk_src_max },
907 },
908 };
909
910 static int
911 gm20b_clk_new_speedo0(struct nvkm_device *device, int index,
912 struct nvkm_clk **pclk)
913 {
914 struct gk20a_clk *clk;
915 int ret;
916
917 clk = kzalloc(sizeof(*clk), GFP_KERNEL);
918 if (!clk)
919 return -ENOMEM;
920 *pclk = &clk->base;
921
922 ret = gk20a_clk_ctor(device, index, &gm20b_clk_speedo0,
923 &gm20b_pllg_params, clk);
924
925 clk->pl_to_div = pl_to_div;
926 clk->div_to_pl = div_to_pl;
927
928 return ret;
929 }
930
931
932 #define FUSE_RESERVED_CALIB0 0x204
933 #define FUSE_RESERVED_CALIB0_INTERCEPT_FRAC_SHIFT 0
934 #define FUSE_RESERVED_CALIB0_INTERCEPT_FRAC_WIDTH 4
935 #define FUSE_RESERVED_CALIB0_INTERCEPT_INT_SHIFT 4
936 #define FUSE_RESERVED_CALIB0_INTERCEPT_INT_WIDTH 10
937 #define FUSE_RESERVED_CALIB0_SLOPE_FRAC_SHIFT 14
938 #define FUSE_RESERVED_CALIB0_SLOPE_FRAC_WIDTH 10
939 #define FUSE_RESERVED_CALIB0_SLOPE_INT_SHIFT 24
940 #define FUSE_RESERVED_CALIB0_SLOPE_INT_WIDTH 6
941 #define FUSE_RESERVED_CALIB0_FUSE_REV_SHIFT 30
942 #define FUSE_RESERVED_CALIB0_FUSE_REV_WIDTH 2
943
944 static int
945 gm20b_clk_init_fused_params(struct gm20b_clk *clk)
946 {
947 struct nvkm_subdev *subdev = &clk->base.base.subdev;
948 u32 val = 0;
949 u32 rev = 0;
950
951 #if IS_ENABLED(CONFIG_ARCH_TEGRA)
952 tegra_fuse_readl(FUSE_RESERVED_CALIB0, &val);
953 rev = (val >> FUSE_RESERVED_CALIB0_FUSE_REV_SHIFT) &
954 MASK(FUSE_RESERVED_CALIB0_FUSE_REV_WIDTH);
955 #endif
956
957
958 if (rev == 0)
959 return -EINVAL;
960
961
962 clk->uvdet_slope = ((val >> FUSE_RESERVED_CALIB0_SLOPE_INT_SHIFT) &
963 MASK(FUSE_RESERVED_CALIB0_SLOPE_INT_WIDTH)) * 1000 +
964 ((val >> FUSE_RESERVED_CALIB0_SLOPE_FRAC_SHIFT) &
965 MASK(FUSE_RESERVED_CALIB0_SLOPE_FRAC_WIDTH));
966
967
968 clk->uvdet_offs = ((val >> FUSE_RESERVED_CALIB0_INTERCEPT_INT_SHIFT) &
969 MASK(FUSE_RESERVED_CALIB0_INTERCEPT_INT_WIDTH)) * 1000 +
970 ((val >> FUSE_RESERVED_CALIB0_INTERCEPT_FRAC_SHIFT) &
971 MASK(FUSE_RESERVED_CALIB0_INTERCEPT_FRAC_WIDTH)) * 100;
972
973 nvkm_debug(subdev, "fused calibration data: slope %d, offs %d\n",
974 clk->uvdet_slope, clk->uvdet_offs);
975 return 0;
976 }
977
978 static int
979 gm20b_clk_init_safe_fmax(struct gm20b_clk *clk)
980 {
981 struct nvkm_subdev *subdev = &clk->base.base.subdev;
982 struct nvkm_volt *volt = subdev->device->volt;
983 struct nvkm_pstate *pstates = clk->base.base.func->pstates;
984 int nr_pstates = clk->base.base.func->nr_pstates;
985 int vmin, id = 0;
986 u32 fmax = 0;
987 int i;
988
989
990 vmin = volt->vid[0].uv;
991 for (i = 1; i < volt->vid_nr; i++) {
992 if (volt->vid[i].uv <= vmin) {
993 vmin = volt->vid[i].uv;
994 id = volt->vid[i].vid;
995 }
996 }
997
998
999 for (i = 0; i < nr_pstates; i++)
1000 if (pstates[i].base.voltage == id)
1001 fmax = max(fmax,
1002 pstates[i].base.domain[nv_clk_src_gpc]);
1003
1004 if (!fmax) {
1005 nvkm_error(subdev, "failed to evaluate safe fmax\n");
1006 return -EINVAL;
1007 }
1008
1009
1010 clk->safe_fmax_vmin = fmax * (100 - 10) / 100;
1011 nvkm_debug(subdev, "safe fmax @ vmin = %u Khz\n", clk->safe_fmax_vmin);
1012
1013 return 0;
1014 }
1015
1016 int
1017 gm20b_clk_new(struct nvkm_device *device, int index, struct nvkm_clk **pclk)
1018 {
1019 struct nvkm_device_tegra *tdev = device->func->tegra(device);
1020 struct gm20b_clk *clk;
1021 struct nvkm_subdev *subdev;
1022 struct gk20a_clk_pllg_params *clk_params;
1023 int ret;
1024
1025
1026 if (tdev->gpu_speedo_id == 0)
1027 return gm20b_clk_new_speedo0(device, index, pclk);
1028
1029
1030 clk = kzalloc(sizeof(*clk) + sizeof(*clk_params), GFP_KERNEL);
1031 if (!clk)
1032 return -ENOMEM;
1033 *pclk = &clk->base.base;
1034 subdev = &clk->base.base.subdev;
1035
1036
1037 clk_params = (void *) (clk + 1);
1038 *clk_params = gm20b_pllg_params;
1039 ret = gk20a_clk_ctor(device, index, &gm20b_clk, clk_params,
1040 &clk->base);
1041 if (ret)
1042 return ret;
1043
1044
1045
1046
1047
1048 clk_params->max_m = clk_params->min_m = DIV_ROUND_UP(clk_params->max_u,
1049 (clk->base.parent_rate / KHZ));
1050 if (clk_params->max_m == 0) {
1051 nvkm_warn(subdev, "cannot use NAPLL, using legacy clock...\n");
1052 kfree(clk);
1053 return gm20b_clk_new_speedo0(device, index, pclk);
1054 }
1055
1056 clk->base.pl_to_div = pl_to_div;
1057 clk->base.div_to_pl = div_to_pl;
1058
1059 clk->dvfs_params = &gm20b_dvfs_params;
1060
1061 ret = gm20b_clk_init_fused_params(clk);
1062
1063
1064
1065
1066 if (ret)
1067 nvkm_warn(subdev, "no fused calibration parameters\n");
1068
1069 ret = gm20b_clk_init_safe_fmax(clk);
1070 if (ret)
1071 return ret;
1072
1073 return 0;
1074 }